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Abstract
This paper is devoted to the non-asymptotic analysis of the Ruppert-Polyak averaging method introduced
in [26] and [28] for the minimization of a smooth function f with a stochastic algorithm. We first establish
a general non-asymptotic optimal bound: if 6,, is the position of the algorithm at step n, we prove that

A Tr(X* 0
Eld, — argmin(H)* < TO) 4 0y s,

where X* is the limiting covariance matrix of the CLT demonstrated in [26] and Cq sn~"# is a new state-
of-the-art second order term that translates the effect of the dimension. We also identify the optimal gain
of the baseline SGD v, = yn~**, leading to a second-order term with r3/4 = 5/4. Second, we show that
this result holds under some Kurdyka-Lojiasewicz-type condition [21, 22] for function f, which is far more
general than the standard uniformly strongly convex case. In particular, it makes it possible to handle some
pathological examples such as on-line learning for logistic regression and recursive quantile estimation.

1 Introduction

We consider the problem of minimizing f : R — R when f € C*(R%,R), limjg|— 1+ f(#) = +00 and 6* is the
unique critical point of f, so that 8* = argmin(f). Let us assume that V f admits the following representation:
a measurable function A : R? x R? — R? and a random variable Z with values in RP exist such that:

V0E R, V(0) = Ezu[A6, 2)]. 1)
Without loss of generality, we assume in the paper that f(6*) = 0.

1.1 Averaging principle for stochastic algorithms

Stochastic Gradient Descent The Robbins-Monro procedure (see [27]) is built with an i.i.d. sequence of
observations (Z;);>1 distributed according to p. Under some mild assumptions, the minimizers of f can be
approximated with a stochastic gradient descent (SGD) (6,,)n>0 defined by: 6y € R% and

Vnz=0, Opy1=0,— 7n+1A(9n7 Zn-H)a (2)

where (7, )n>1 iS a non-increasing gain sequence of positive numbers such that:

Yo =yn~? withBe[1/2,1) and T, = Z Vi ~ T_pi-b,
k=1 1-6

Equation (2) is sometimes written as a noisy gradient descent:
Vn=0: 9n+1 = en - '7n+1vf(0n) + 7n+1AMn+17 (3)

where (AM,,1+1)n>0 stands for a sequence of noises (martingale increments), i.e. Yn > 1, E[AM,,1|F,] =0,
where (F,)n>0 is the filtration defined by F,, = 0(Z1,...,Z,) for n = 1, Fy is the trivial o-field and for a given
o-field G, E[ . |G] stands for the related conditional expectation.



Averaging The Ruppert-Polyak averaging procedure (referred to as RP below) consists in introducing a
Cesaro average over the past iterations of the SGD:

~ 1 n
On =3 Ok n=1
This averaging procedure is a way to improve the convergence properties of the original SGD (6,,),>1. We recall
the CLT associated with (6,,),>0, the statement is adapted from [26]! in the strongly convex situation SC(«):

SC(a) :=={feC*R?) : D*f —aly >0} (4)

where D? f stands for the Hessian matrix of f and inequality A > 0 for any matrix A has to be understood in
the sense of quadratic forms.

Theorem 1 (Ruppert-Polyak CLT). Assume f € SC(a), |D?f|s < o0 and lim,E[AM,, (1 AME 1| F,] = S*
in probability, then:
Vn(, —6%) ﬁ N(0,S*) with$* = {D?f(0*)}LS*{D?f(6*)} . (5)
This result is achieved asymptotically in the situation where f is assumed to be strongly uniformly convex
(For the sake of simplicity, we will only write strongly conver in the rest of the paper). We refer to [26] for
the initial asymptotic description and to [20] for some more general results. In [6], a non-asymptotic result is
obtained in the strongly convex situation under restrictive moment assumptions on the noisy gradients. The
problem is also tackled non asymptotically in some specific cases when the strong convexity property fails (on-
line logistic regression [3], recursive median estimation [11, 16] for example). But a non-asymptotic result for a
more general class of functions that preserves a sharp optimal O(n~!) rate of the L2-risk is missing yet.

LP rates Beyond the L2-risk of the original SGD and of the averaged sequence, a popular alternative is also to
study some more general LLP-risk for a general p > 2. Of course, such results are interesting by themselves and we
refer to [17] for a specific study of the geometric median estimation problem, and to [18] for a more general study
in locally strongly convex problems. But LP-risks represent also a common intermediary step to derive some
L2-risk results for the averaged sequence with the help of a linearization of the drift term induced by averaging.
This is for example the case when looking for either asymptotic results (see e.g. [25]) or non-asymptotic ones
in specific situations (in the case of the logistic regression, we refer to [5] for instance).

Optimality and dimensional effect The bias-variance decomposition of the mean square error (M.S.E.)
associated with Theorem 1 induces that we cannot expect a behaviour of the M.S.E. lower than Tr(¥*)n~!,
which is the variance brought by the Gaussian limit. Therefore, we will refer to a non-asymptotic optimal
M.S.E. upper bound as soon as we obtain an upper bound that holds for any n such that the first order term
is Tr(X*)n %

E[|6, — 6*?] < Te(Z*)n~" + agn". (6)

We emphasize that the leading term Tr(X*)n~! corresponds to the Cramer-Rao lower-bound in some specific
cases of statistical models, so that it is also commonly admitted that the RP averaging cannot be improved to
obtain a lower variance (asymptotically or not) with any other estimation method.

Finally, we observe that Tr(X*) generally grows with the dimension of the ambient space d (of course it
depends on the nature of £*), and so is expected the second order term with as in (6). As a common nowadays
statistical paradigm, we will pay a specific attention to the effect of d on the second order term in (6).

Below, we will obtain an optimal upper bound with the desired and unimprovable Tr(X*)n~! leading term.
Nevertheless, we do not know at this stage whether the second order term essentially parametrized by as and
p > 1 is also optimal or not.

n [26], the result is stated in a more general framework with the help of a Lyapunov function. We have chosen to simplify the
statement for the sake of readability.



1.2 Main contribution of the paper
We will prove a non-asymptotic result on a large set of functions that satisfy a Kurdyka-Lojasiewicz inequality:
Global KL inequality (Hi ) The function f is C2(R?,R) with D?f bounded and Lipschitz, D? f(6*) invertible

and for r € [0,1/2]:
‘liminf IVl >0 and limsup f7"|Vf| < +o0 (7)

|[—+o0 |z]—>+00
We establish the next result (whose statement will be more general later on):

Theorem 2. Assume (Hyy). Suppose that the covariance of the martingale increment is Lipschitz continuous
and that E[|AM,,41[0e(tHIAMn [

. 3
E(lén _ 9*'2) < Tr(nz ) + CT <\I/IJE> n—(5+1/2)/\(2—[3),

|Fn] < +00 a.s.. Then, a constant C,. exists such that:

where  is the lowest eigenvalue of D2f(0%).

Our main result is therefore an optimal non-asymptotic bound of the L2-risk for the RP-algorithm under
some very general assumptions beyond the traditional convexity point of view. Our bound is optimal at the first
order since it attains the Cramer-Rao lower bound (i.e. rate in O(Tr(X*)n~!) with the lowest possible variance)
and provides a second order term which is better than other results of the literature (see Table 1 for details).

Our proof strategy will be splitted into two steps. In a first stage, we obtain a general theorem under a
so-called consistency assumption on the original SGD (6,,),>0 (see Section 2.2). In a second stage, we show
that this consistency assumption holds in the strongly convex case but also under the Kurdyka- Lojasiewicz
inequality (Hyy,) (see [21, 22]), which is a much weaker situation than the traditionnal strongly convex settings.
This second part leads to some considerable improvements of state of the art results since important applica-
tions are not tackled by the strongly convex setting: typically on-line logistic regression or recursive quantile
approximation (among others). A range of applications are listed in the next table, enriched by a comparison
with existing results in the literature:

Setting Cramer-Rao 27 order vy, Yo =mn P Anytime
Strong. Convex .
Convex (Smooth KL) L TeEY) n~(B+2)A(2=H) Be(1/2,1) .
Our work Logist. Reg. (KL) Yes: =5 vl = O(n_%) B =3/4 Yes
Recurs. Quantile (KL)
. —(B+3)~(3-8) Be(1/2,1)
BM(11) [6 Strong. Convex Yes : D) " ’ " ! Yes
(19 5 S vh=0(n" %) B =2/3
Convex No: O(n~/?)
BM(11) [6] Logist. Reg. No: O(n~"?) 0] B=1/2 Yes
Recurs. Quantile %)
: . 1 —
—(B+3)r(5-8) Be(1/2,1)
CCGB(17) [16 Recurs. Quantile No: O (+ " ’ N ’ Yes
() 1ol : ) vs = O(n”5) B =12/3

Table 1: Overview of our results and comparisons with the literature. v} refers to the optimal (smallest) size
of the second-order term when £ is chosen equal to 5*.



2 Main results

This section presents our main notations and our precise statements.

2.1 Notations

For any vector y € R?, yT is the transpose of y and |y| is the Euclidean norm. The set M4(R) refers to the set

of squared real matrices of size d x d and the tensor product ®2 is used to refer to the following quadratic form:
VM e Mg(R) YyeR?T  My®? =y My.
I, is the identity matrix and O4(R) denotes the set of orthonormal matrices:
Oa(R) := {Q e My(R) : Q"Q = I,}.

Finally, the notation || .| corresponds to the operatorial norm on Mgy(R):
[Al = /(AT A),

where p(AT A) refers to the largest eigenvalue of AT A. In the meantime, for any twice differentiable function
f, we introduce the following notation:

peo(f) 1= sup [D*f ()],

zeR4

which is the largest eigenvalue of D?f over the state space. We also define p = min(1, Sp(D?f(6*))) and the
Lipschitz constant:

|D? f|Lip == inf{c > 1 : V(z,y) e R |D*f(x) — D*f(y)| < clo—yl}.

For two positive sequences (a,),>1 and (b,)n>1, the notation a,, <;q4b, refers to a domination relationship,
i.e. a, < cb, where ¢ > 0 is independent of n and of the dimension of the ambient space d. The
binary relationship a,, = O;4(b,) then holds if and only if |a,|<;q|bnl-

2.2 Non asymptotic adaptive and optimal inequality

We state our main general result (Theorem 3) under some general assumptions on the noise part and on the
behavior of the LP-norm of the SGD procedure (6,,),>1 ((LP,1/7,)-consistency). We introduce the next

property:
Definition 1 ((L?,,/7y)-consistency). A SGD sequence (0,,)n>1 satisfies the (LP,,/¥y,)-consistency if:
Je, =1, Yn=1  Elf|P <cpfm)t.
Note that according to the Jensen inequality, the (L”,,/,)-consistency implies the (L?,,/v,)-consistency for

any 0 < ¢ < p with ¢, < {c,}9/?.

The above definition refers to the behaviour of the SGD (6,),>1 defined by Equation (2). We will prove

that it is a key property to derive sharp non-asymptotic bounds for the RP-algorithm (6,,),>1 (see Theorem 3
below).

We introduce an assumption on the covariance of the martingale increment:

Assumption (Hg) The covariance of the martingale (3) satisfies:

E [AMy AME | F,] = 5(6,) a.s.



where S : RY — My(R) is a Lipschitz continuous function:
AL >0 VY(61,6:) e RY | S(61) — S(62)| < L|#1 — 6]

The smallest value of L is denoted by [ S]|Lip-

When compared to Theorem 1, Assumption (Hg) is more restrictive but in fact corresponds to the usual
framework. Under additional technicalities, this assumption may be relaxed to a local Lipschitz behaviour of
S. For reasons of clarity, we preferred to reduce our purpose to this reasonable setting.

Theorem 3 (Optimal non-asymptotic bound ). If (6,,)n>1 is (L*,\/7n)-consistent, if (Hg) holds and D?f(6*)
is positive-definite, then for any n:

Vd

3
") | Cs(ca, £, 5) (u) n~"% withrg = (5 + ;) A (2-0), (8)

El6, — "> < ——2

n
and ¥* is defined in Equation (5) (with S* = S(0*)). In particular, rg > 1 for all B € (1/2,1) and B — 1p
attains its maximum for B = 3/4 and r3;, = 5/4.

The quantity Cg(cq, f,S) is made precise in Proposition 7 . Theorem 3 deserves several remarks.

e Sharpness of the first order term: we obtain the exact optimal rate O(n~!) with the sharp constant Tr(X*)
as shown by Theorem 1. At the first order, Theorem 3 shows that the averaging is minimax optimal with respect
to the Cramer-Rao lower bound. The result is adaptive with respect to the value of the Hessian D?f(6*): any
sequence 7, = yn~? with 8 € (1/2,1) and v > 0, regardless the value of 3 or -y, produces the result of Theorem
3. Such an adaptive property does not hold for the initial sequence (6,,),>1 as proved by the CLT satisfied by
the SGD (6,,)n>1 (see [13] for example).

e Second order term: Even though any value of 8 € (1/2,1) yields a leading term, the “optimal”
choice of 5 remains unclear. In [6] and [16], 8 = 2/3 is motivated by the optimization of the second order term.

Tr(S*)
n

In particular, [6] obtains in the strongly convex case an upper bound of the order %E*) + O(n~"/%): Theorem

3 of [6] ensures that:
A /]E|§n — 02 < % + Cn’z/?’,
n

which in turn implies that E|f, — 6*|2 < %E*) + QC«/Tr(E*)L\/Zﬁ/3 + C?n~43 = @ +0 (n776).

Our Theorem 3 improves this second order term: 5 = 3/4 leads to an upper bound of the order %E*) +
O(n~%*). Moreover, for any value of 8 € (1/2,1), the second order term O(n~(#+1/2)A(2=8)) in Theorem 3
is always better than O(n~(#+1/2)A(3/2=8)) " the one of [6]. For further comments on this topic (including the
particular case of null third derivatives), we refer to Section 3.3.

Our result is also related to some recent works on some Berry-Esseen upper bounds derived for the CLT
stated in Theorem 1. Corollary 5 of [1] shows that for any Lipschitz and twice differentiable function h:

Eh[yi(0, — 0*)] — En(Z)| < c%

where Z is a multivariate Gaussian random variable N(0,%*). However, this result is not exactly of the same
nature. Actually, in order to derive M.S.E. bounds (or at least L!-bounds), this would involve to apply the
above result to h(z) = |z|? (or to h(z) = |z| for the L'-error). But this is not possible since h(z) = |z|? is
not Lipschitz and h(z) = |z| is not differentiable everywhere. Furthermore, the bounds obtained in [1] seem to
strongly depend on these assumptions and it is not clear that technical extensions would allow to include such
types of functions. Thus, even though these techniques lead to sharp bounds, they seem to not be adapted to
derive second-order bounds for the M.S.E. of the L'-error.

Finally, we point out that the effect of the dimension d and of the lowest eigenvalue p is sligthly stronger

on the second order term (proportional to n~"# up to d3/ 2&*’) than on the first order one (proportional to



n~! up to du=2). To the best of our knowlegde, Theorem 3 is the first non-asymptotic regret analysis of the
Ruppert-Polyak algorithm for a large classe of functions and identifies a dimension-dependent upper bound
432378,

e Idea of the proof: the proof of Theorem 3 is achieved through a spectral analysis of the (non-homogeneous)
second-order Markov chain induced by (6., én)ngl. This spectral analysis requires a preliminary linearization
step of the drift from 0,, to én,+1- The cost of this linearization is absorbed by a preliminary control of the initial
sequence (6,,)n>1, obtained with the (LP, /¥,)-consistency for p = 4 (see Proposition 1 and Theorem 5). We
emphasize that this linearization applies regardless the global assumptions on the objective function: we only
impose a local curvature near 6*.

o Anytime strategy: an important feature of on-line optimization algorithm is the anytime property, i.e., the
ability of the algorithm to produce an optimal performance regardless the choice of the stopping iteration time
since in many situations the final number of iterations is not known in advance. In general, such an anytime
property fails when the step-size sequence depends on the final horizon. One way to bypass this issue is to use
the doubling trick strategy (see, e.g. [12]) , which produces an anytime algorithm and that degrades the final
rate with a multiplicative log term. However, for the RP algorithm, such a doubling trick on the initial SGD
sequence is questionable: there is no recursive expression for the RP averaging associated with the doubling
trick strategy.

As indicated in our Theorem 3, in [6] (for strongly convex function) and [16] (quantile estimation), the
sequence (vn)n>1 is chosen independently of the final horizon time, and the procedure is therefore anytime.
Oppositely, the step-size sequence proposed in [3] highly depends on the final number of iterations (the proposed
sequence is proportional to ﬁ where n is the stopping time: i.e. the strategy of [3] for on-line logistic
regression is not anytime).

2.3 (L?,\/7,)-consistency

In Theorem 3, the control of the moments of the SGD sequence (6,,)n>1 is fundamental to derive (8). We first
deal with the strongly convex case.

2.3.1 (LP,,/7,)-consistency with strong convexity

Here, we introduce an additional condition on the noise, denoted by (H%Cp)
Assumption (H%f) For a given p e N*, a constant ¥, exists such that

Yn=0  E[[AM, 1P| F] < S,(1+ (f(0,) as.

We emphasize that even though SC(«) is a potentially restrictive assumption on f, (H%S) is not restrictive
and allows a polynomial dependency in f(6,,) of the moments of AM,,, which is much weaker than the bounded
increments used in [6]. For example, such an assumption holds in the case of the recursive linear least square
problem. In that case, we retrieve the baseline assumption introduced in [13] that only provides an almost sure
convergence of (6,)n>1 towards 8* without any rate. In this setting, we can state the following proposition.

Proposition 1. Assume that f is SC(a), x —> D?f(x) is Lipschitz bounded and (AM,,),>1 satisfies (H%f)
Then (0y)n>1 is (LP,+/7n)-consistent, i.e.

Vp=1 d¢, >0 E|0n - 9*|p < Cp{'Vn}pp'

The proof works using an induction on p, initialized at p = 1 for integer values of p, and then may be
generalized to any p > 1 thanks to the Jensen inequality. The proof of this result is well known in the strongly
convex situation and is left to the reader. Up to some minor modifications, the main arguments are also contained
in the more general result stated in Theorem 11 whose proof is given in Section 4.2. A direct consequence of
Proposition 1 and Theorem 3 is the next corollary.



Corollary 4. If (Hg) and the assumptions of Proposition 1 hold, then:
Tr(X* ’
Vn e N* E [|én - 9*|2] < rE) + Cg(ca, £, 5) () n="8
n

where rg is defined in Theorem 3 and Cg(ca, f,S) in Proposition 7.

2.3.2 (LP,,/7n)-consistency without strong convexity

In some interesting cases, the latter SC(«) is not suitable because the repelling effect towards 6* of V f(x) is not
strong enough for large values of |x|: this is the case for the logistic regression and the recursive quantile where
the function Vf is asymptotically flat for large values of |z|. Motivated by these examples, we generalize the
class of functions f for which the (L?,,/¥,)-consistency property holds. For this purpose, we define Assumption
(Hy) by:

Assumption (Hy) D?f is bounded and Lipschitz, D* f(6*) invertible and:

e i) ¢ is C*(Ry,R) non-decreasing and 3xg = 0 : Vo > g, ¢"(x) < 0.

e ii) Two positive numbers m and M exist such that Vo € R4\ {6*}:

T 2
0<m < NV + THE <o ©)

Roughly speaking, ¢ quantifies the deficit of convexity far from 6*.
When ¢ = 1, we recover the previous case: SC(a) = (H,) with ¢ = 1. Actually, in this case, a3 > 0 and
oy > 0 exist such that

aq * |2 Q2 *|2 * *

?x—ﬁ | < f(z) < ?|x—9 [, and aqlz — 0% < |V f(2)] < |z — 0%
But (H,) is more general since it can be true even when D?f vanishes.
The opposite case is ¢(z) = x. In this setting, (Hy) is satisfied when m < |V f(2)|> < M with some positive
m and M. Note that this framework includes the logistic regression and the recursive quantile (see Subsection
2.5).

For practical purposes, we introduced in Section 1.2 a parametric version of Assumption (Hy) denoted by
(H}q,), which may be seen as a global Kurdyka-Lojasiewicz gradient inequality (see, e.g. [21, 22] and Subsection
2.4 for details). (Hy) and (Hy;y,) are linked by the following proposition.

Proposition 2. (Hi; ) = (H,) for any non-decreasing C*-function ¢ : R, — R such that ¢(u) = u*=2" on
[1,+0). Furthermore,

lim inf f(x)|a:|_1i7r > 0. (10)
|x| =400
The implication is easy to prove: near 0%, f(z)<;qlz — 0*| and |z — 0*| < |V f(z)] since Vf(0*) = 0 and
2
D2f(6*) > 0 (in the sense of symmetric matrices) so that z % is lower-bounded by a positive constant

near #*. Since 6* is the unique critical point of f, we can also repeat the same argument on any compact set of
R since f is twice differentiable and V f a continuous function. For large values of |z|, the lower-bound of (9)
is a direct consequence of (7). Finally, the upper-bound is a consequence of the fact that |D?f|, < 400 and
from (7) again. The proof of (10) is postponed to Appendix 4.2. Note that this property will be important to
derive the (L?,,/7y)-consistency (see Theorem 5). Further comments are postponed to Subsection 2.4 and the
rest of this paragraph is devoted to the main consequences of (Hy) and (Hiy,) .

As in SC(«), Assumptions (Hy) and (Hj,) need to be combined with some (more stringent) assumption
on the martingale increment:



Assumption (H% ) A constant ¥, exists such that:
P

Vn>0,  E[JAM,|Pr2efAMa®) | F 1< as. (11)

Remark 1. The general form of this assumption can be roughly explained as follows: the main idea of Theorem
5 below is to use the function x — fp(x)ed’(f(m)) to obtain a contraction property. When (AM,,)n>1 is bounded,

(H% ) is automatically satisfied (this is the case for the recursive quantile and for the logistic regression of
P

bounded variables: see Subsection 2.5). In some cases, Assumption (H“;iJ ) may appear a little bit restrictive
P

since it asks for some exponential moment on the noise AM, 11 that applies at each iteration of the algorithm.
However, note that in [Bach, 2014], the assumption is clearly stronger since the work requires that the noisy
gradients are bounded almost surely. In particular, the assumption of [Bach, 2014] relies on V f(0,) + AMy 11
and not simply on AM,, 1. Implicitely, it introduces a kind of boundedness assumption on the sequence (0,)n>1
itself. Secondly, our assumption (H%p) introduces a kind of continuum effect between strongly and weakly convex
cases through the effect of the function ¢, which typically evolves like ¢(u) = u'=2" with r between 0 (very weakly
conver case) and 1/2 (strongly convez case).

We state the main result for a potentially non-convex function f.

Theorem 5.  For any p = 1, if f satisfies (Hy) and (H% ) holds, then:

i) A constant c, exists such that:
E[fp(ovl)€¢(f(0n))] < cp{m}?.

i) If iminfj, 4o [2] 722 fP(2)e?T @) > 0, then (0,)ns1 is (L?P,\/An)-consistent:

El6n — 07 < cp{mn}?-

iii) If (Hiy) holds, (0,)n>1 is (L?P,\/7n)-consistent.

Proof. The proof of i) is postponed to Section 4 and is stated in Theorem 11.

ii) is a consequence of 7): actually, we only need to prove that the function 7(z) = f?(z)e?V(®) 2z e RY,
satisfies inf,cga\ (0 7(2)|z — 0*]72 > 0. Near 6*, D?f(6*) is positive-definite and z — 7(z)|z — 6*| 72" is lower-
bounded by a positive constant. Since 7 is positive on RY, the result follows from the additional assumption
lim inf|,, o0 7(2)|2| 72 > 0.

Finally, for ii7), we have to prove that the additional assumption of i) holds under (Hjy ). It is a consequence
of (10) and ¢(z) = (1 + |=[?) =" . o O

Theorem 3 allows to derive non-asymptotic bounds under (Hy).

Corollary 6.  Assume (Hg), (Hy) and (H%p) with p = 2, then:

3
A Te(S*
VneN* E [|9,, - 9*\2] < % + Cslea f, S) (f) n="s,

where ¢4 is given in Theorem 11 and rg is defined in Theorem 3.

At first sight, the result brought by Corollary 6 may appear surprising: we obtain a O(1/n) rate for the
mean-squared error of the averaged sequence towards 8* without strong convezity, including, for example, some
situations where f(x) ~ |z| as || — +oo. However, this result does not contradict the minimax rate of
convergence O(1/4/n) for stochastic optimization problems in the simple convex case (see, e.g. [2] or [23]). The
above minimax result O(1/4/n) simply refers to the worst situation in the class of convex functions that are



not necessarily differentiable, whereas (H,) describes a set of functions that are not necessarily strongly convex
or even simply convex, but all these functions belong to C2(R? R) and have a positive curvature around 6*.
In particular, the worst case is attained in [2] through linear combinations of shifted piecewise affine functions
x> |z +1/2| and = — |z — 1/2|, functions for which Assumption (H,) is obviously not satisfied. According
to the results in Appendix H of [4], the local curvature near 6* makes it possible to obtain a O(n~1) rate whereas
the smoothness assumption allows to obtain a precise constant, leading to the Cramer-Rao lower bound in the
specific setting of [4].

2.4 Comments on (H,) and link with the Kurdyka-Lojasiewicz inequality

To the best of our knowledge, this is the first work that uses this in stochastic optimization and it thus deserves
several comments.

f does not necessarily need to be convex It is important to notice that the function f itself is not
necessarily assumed to be convex. The minimal requirement is that f possesses a unique critical point. Our
analysis will be based on a descent lemma for the SGD (6, )n>0. We will use a Lyapunov analysis that will
involve fPe®f) instead of f itself for the sequence (f,,)n>0. The descent property will then be derived from
Equation (9) in ) of (Hg). Thereafter, we will be able to exploit a spectral analysis of the dynamical system
that governs (én)nZO- We stress that usually the results without any convexity assumption are usually limited
to almost sure convergence with the help of the Robbins-Siegmund Lemma (see, e.g. [13]). As will be shown
later on, (Hg) will be sufficient to derive efficient convergence rates for the averaged sequence (én)n>0 without
any strong converity.

f is necessarily sub-quadratic and L-smooth (Hg) entails an a priori upper bound for f that cannot
increase faster than a quadratic form. We have:

Vo € RY M<M — |[V(W/Jf)| <

f(x)

NE=

M .
— f@) < Tl

However, we also need a slightly stronger condition with D?f bounded over R?, meaning that f is L-smooth
for a suitable value of L (with an L-Lipschitz gradient). We refer to [24] for an introduction to this class of
functions. Even in deterministic settings, the L-smooth property is a minimal requirement for good convergence
rates in smooth optimization problems (see, e.g. [7]).

About the Kurdyka-Lojasiewicz inequality (H,) should be related to the KL inequalities. The Lojasiewicz
gradient inequality [22] with exponent 7 is:

Im>0 3rel0,1) YzeR?  f(z)7"|Vf(z)| =m, (12)

while a generalization (see, e.g., [21]) is governed by the existence of a concave increasing “desingularizing”
function ¢ such that: |V (i o f)| = 1. The Lojasiewicz gradient inequality is then just a particular case of
the previous inequality while choosing ¥(t) = ct!=". We refer to [8] that characterizes some large families of
functions f such that a generalized KL-inequality holds.

In this paper, the KL-type gradient inequality appears through (Hj, ) with r € [0,1/2], which implies (H,)
(see Proposition 2). However, it should be noticed that (Hy ) is slightly different from (12) since we only
enforce the function f~"|V f| to be asymptotically lower-bounded by a positive constant.

In fact, in our setting where f has only one critical point and where D?f(6*) > 0, it is easy to prove that
(H%y,) implies (12) everywhere: around 6*, D?f(6*) is positive definite so that we could choose r = 1/2 and



then satisfy the Lojasiewicz gradient inequality (12) near 6* so that the link between (H ) given in (7) and
(12) has to be understood for large values of |z|.

Moreover, Proposition 2 states that the classical Lojasiewicz gradient inequality (12) associated with the
assumption of local invertibility of D?f(6*) implies (Hg). The choice 7 = 1/2 in Equation (12) corresponds to
the strongly-convex case with ¢ = 1 and () = v/t. Conversely, the Lojasiewicz exponent r = 0 corresponds to
the weak repelling force |V f(z)[?ccl as |z| — 400 and ¢(t) = /1 + t2, leading to ¥(t) = t.

Finally, the interest of (Hy) in the stochastic framework is related to the behavior of the algorithm when
(01)n>1 is far from 6%, whereas in the deterministic framework, the main interest of the desingularizing function
1 is used around 6* to derive fast linear rates even in non strongly convex situations (see e.g. [9]). The difficulty
to assert some good properties of stochastic algorithms is not the same as the one for deterministic problems: it
is more difficult to control the time for a stochastic algorithm to come back far from 6* than for a deterministic
method with a weakly reverting effect of —V f because of the noise on the algorithm. In contrast, the rate of a
deterministic method crucially depends on the local behavior of Vf around 6* (see, e.g. [9]).

Dissipative condition We also observe from Proposition 2 that (H,) has no prior link with a dissipativity
condition standardly used in theory of P.D.E. and stochastic processes for assessing trend to equilibrium of
dynamical systems

f(@) = alz]* - B.
Consider f(x) = |z|°, we verify easily that dissipativity holds for p > 2 whereas (Hg) is verified when p < 2.

Counter-examples of the global KL inequality Finally, we should have in mind what kind of functions
do not satisfy the global Lojasiewicz inequality (12). Since we assumed f to have a unique minimizer 6* with
D?f(0*) invertible, f="|Vf| = m > 0 should only fail asymptotically. From Equation (10) of Proposition 2,
we know that |z|<qf(x) for large values of |z|. As a consequence, any function f with logarithmic growth
or comparable to |z|" growth with r € (0,1) at infinity can not be managed by this assumption. Another
counter-example occurs when f exhibits an infinite sequence of oscillations in the values of f’ > 0 with longer
and longer areas near f’ = 0 when |z| is increasing. We refer to [9] for the following function that does not
satisfy KL for any r > 2: f(z) = 22"[2 + cos(x™1)] if x # 0 and f(0) = 0.

2.5 Applications

Strongly convex situation First, Corollary 4 provides a very tractable criterion to assess the non-asymptotic
first-order optimality of the averaging procedure since SC(«) is easy to check. For example, considering the
recursive mean square estimation problem (see, i.e., [13]), 8 — f(0) is quadratic. In that case, the
problem is strongly convex, and the noise increment satisfies:

E[|AM, || F,] < Ep(1+ (f(6n))” a.s.

Then Proposition 1 yields the (LP, ,/7,) consistency rate of (6, ),>1, which implies a first-order optimal excess

risk for (én)n>1 with a O(n=%*) second-order term. We stress that [6] also proves a sharp non-asymptotic
O(1/n) rate of convergence with a O(n~7/6) second-order term and a more restrictive assumption on AM,,.
Hence, Corollary 4 yields a stronger result in that case.

Assumptions (Hy) and (H% ) hold in many situations
P

e Semi-algebraic case Before explicit examples, an argument relies on the statement of Theorem 2 of [8]:
a coercive convex proper and semi-algebraic continuous function f (see [8] for some details), satisfies the KL
inequality.

e On-line logistic regression The logistic regression corresponds to:

£(0) :=E[log (1 + e Y=%>)] (13)

10



where X is a R? random variable and Y| X takes its value in {—1,1} with:

1
We then observe a sequence of i.i.d. replications (X;,Y;) and the SGD is:
Y, X,
On+1 = On + i1 =On — Yt+1Vf(0n) + Yt 1AM 11 (15)

1 + e}/n<9n7Xn>
We state the following result:

Proposition 3. If the law of X is compactly supported and elliptic: for any e € S™H(R?), Var(< X,e >) > 0.
Then

i) f defined in (13) is convex with D?f bounded and Lipschitz continous, D% f(0*) is invertible and f satisfies
(Hyy,) withr =0.

i) If ©* is defined in (5), the averaged sequence (0,,)n>1 satisfies:

. Tr(S* 5
3C;>0 Yn=1 Elf, -0 < L e
n

Proof: We study 7). Some straightforward computations yield:

X [6<X,0> o e<X,9*>]

1+ e<X,0>] [1 + e<X,0*>]

Xle€<X’0>
(1 + 6<X,9>)2

Vf(@)zEl[ ] and D2f(9)k,l=E[

We deduce that Vf(0*) = 0 and that (see [3] for example) f is convex with

. [< X,0>— < X,0* >][e<X0> — 6<X,0*>]
<9—07Vf(0) >:El [1+€<X’6*>][1+6<X79>] 20,

because (x — y)[e® — e¥] > 0 for every pair (x,y) such that x # y. It implies that 6* is the unique minimizer
of f. Moreover, D?f(0*) = E [XXT e=<X0">

Ate<x0>
property easily follows from the ellipticity condition on the distribution of the design:

] is invertible as soon as the design matrix is invertible. This

Ve e STTHRY) Var(< X,e >) = e’E[XXT]e > 0,

which proves that the Hessian D2 f(6*) is invertible. Regarding now the asymptotic norm of [V f(#)|, the
Lebesgue Theorem yields, Ve € ST1(R?):

Il
=

lime— 400 |V f(te)]

1 + e<X,9*>

<X,0*>
|:X1<X,e>>0 — Xe 1<X,e><0:|
E

<X,0*>
X1<X,e>>0 — Xe 1<X,e><0 e
1 + e<X,0*> ?

\%
B~

\%

1+ e<X,0*>

E

\%

X,0*
[< X,€>1<X,e>20—<X7€>e< >1<X,e><0:|

< X,e > 1<X,e>>0
1+ e<X,0*>

*
el = X, —e>e~X">1_x .50
1+ 6<X,9*>

11



where we used the orthogonal decomposition on e and et. Hence for any e, lim;_, |V f(te)| > 0. The

Cauchy-Schwarz inequality | < X, 0* > | < |X]|0*] yields:

< X76 > 1<X,e>>0 >< Xe> 67‘X|‘0*| 1<X,e>20.
1 4 e<X,0*> ’ 2

In a same way, we also observe that

<X,—e>e" N1y ono _ <X —e>1cx_e>30 >< X,—e>e
1+ e<X0> 1+ e <X0°> o

The assumption on the ellipticity of the design X yields Ve € S4~(R9):

'IE [< X,e>1_xe>>0

L4 o=Xi> ” >0 and

E <X,—e> e=X0 >1<X,—e>>0
1+ 6<X79*>

—|X1/6*] 1<X,—e>20

. _ . [ <X, e>1 .
Since S?~!(R?) is a compact space and that e — [E %]

E <X7fe>e<X’6*> 1-x
A 1+6<X,9*>

continuous function (by the Lebesgue continuity theorem), we thus obtain that:

n <X,e>1.xe>>0 N X,—e>eN">1_x .o 0
eeS4—1(R4) 1+ e<X,0*> 1 4+ e<X.0*> :
We then deduce that:
1 x
liminf [VAO)>5 inf  E[<X,e>, e X7 >0,
|6]—+00 2 eeS4-1(R4)

It is straightforward to check that limsupjg_, o |V f(0)| < 400, which concludes the proof of 7).

,e>20:|

is

a

We now prove 4i) and apply Corollary 6. In that case, Assumption (Hj ) holds with » = 0. Regarding

Assumption (H‘z’ ), we can observe that the martingale increments are bounded owing to the boundedness of

X (see [3], for example) and Inequality (11) is satisfied. Hence, Corollary 6 implies that (6;,)n>1 is a LP-{/7.}
consistent sequence for any p > 2. We can therefore apply Theorem 3 for the averaging procedure (én)nZM with

¥* given in (5). This ends the proof.

a

Recursive quantile The recursive quantile estimation problem is a standard example that may be stated
as follows (see, e.g. [13] for details). For a given cumulative distribution G defined over R, the problem is to
find g, such that G(gy) = 1 — a. We assume that we observe a sequence of i.i.d. (X;);>1 distributed with a

cumulative distribution G. The recursive quantile is then:

0n+1 = 971 — Tn+1 [1Xn<9" - (1 - Oé)] = an - fYn-‘rl[G(en) - (1 - O()] + 'Yn-ﬁ-lAMn-‘rla
In that situation, the function f” is defined by:

q
where p is the density with respect to the Lebesgue measure such that G(q) = f p. Below, we consider

— 00
the case where p is a Lipschitz continuous function with p(¢,) > 0. To satisfy f(g.) = 0, we define f by:

= S S p s)dsdu, whose minimum is 0 and is attained when 6 = ¢,. It can immediately be checked that
f"(qa) £ 0 as soon as p(ga) > 0 and f'(#) — 1 — @ when § — +00 while f'(¢) — —« when § — —oo0.

12



Therefore, f satisfies (Hg) since (H% ;) and Equation (12) hold with r = 0 and ¢(¢) = ¢. Again, regarding
Assumption (H% ), we can observe that the martingale increments are bounded. Therefore, Inequality (11) is

obviously satisfied since ¢ is a monotone increasing function. Corollary 6 implies that (0,,),>1 satisfies:

. a(l —«) n=5/4
Vn>1 El0,, — qu|? < —|—(9<
| | p(ga)m p(ga)?

2.6 Organization of the paper

The rest of the paper is dedicated to the proofs, organized as follows.

In Section 3, we detail our spectral analysis of the behavior of (én)n>1 and we provide the main tools for the
proof of Theorem 3, that we conclude in Section 3.1. In particular, Proposition 7 provides the main argument
to derive the sharp exact first-order rate of convergence, and the results postponed below in Section 3 only
represent technical lemmas that are useful for the proof of Proposition 7. Section 4 is dedicated to the proof of
the (LP,/7n)-consistency under (Hg) (proof of Theorem 5 )). The generalization to the stronger situation of

strong convexity (Proposition 1) is left to the reader (it only requires slight changes).

3 Non asymptotic optimal averaging procedure

We first assume without loss of generality that 6* = 0 and that f(6*) = 0. Our proof relies on a spectral
strategy developed by [15] for the study of the Heavy Ball with Friction stochastic algorithm. For the sake of
convenience, we assume below that v = 1, which means that v, = n=".

3.1 Proof of Theorem 3

The starting point is to exhibit the coupled dynamics of (6, én) For this purpose, we introduce the notation
for the drift at time n:

1
A i— f D2f(t0,)dt so that A6y — Vf(0), (16)
0
using the Taylor formula and the fact that Vf(6*) = 0. The recursive evolution of (6,,0,) is then precised in
the next proposition.
Proposition 4. If Z,, = (0,, én), then:

Iy — ynv1hn 0 > (AMn+1)
Zn = Zn + n n . 17
o <nJ1r1(Id_’Yn+1An) (1= 5)1a Tn+1 % (17)

Proof: We start from én+l =0, + %H (9n+1 — én> . Now, Equation (2) yields:

Vn e N { €n+1= eAn - ’7n+lvf(6n) + 7n+1AMn+1
9n+1: an(l - %_,_1) + %_;,_1 (en - 'Yn-&-lvf(en) + ’Yn+1AMn+1) .

The result then follows from (16). o
The next result describes the linearization (A,, is replaced by A* := D2 f(6*)).
Proposition 5. Q € O4(R) ezists such that Z, = (%2 g) Zy, satisfies:

> > QAMTL+1> ( Q(A* - An)gn >

Zn = AnZn + Yn n + Yn * n ) 18

! e ( bt )T\ QA — Ay 1s)

1=Up

13



where D* is the diagonal matriz associated to the eigenvalues of A* and

Id - /Y’I’L+1D* 0 )
A, = . ) 19
(nJld(Id — Y1 D*)  (1- %H)Id (19)
Proof: We write A,, = D?f(6*) +(A,, — D?f(6*)) and use the spectrum of A*.
—_
=A%
Id - '7n+1A* 0 ) (AMn+1>
Zn = * Zn + Yn " + ns 20
+1 (n-l&-l(ld — Y1) (11— T-lu)fd Yn+1 A/T\Lilﬂ v (20)

where the term v,, will be shown to be negligible and is defined by

Un = Yn+1 ( (A*iA")zn >
n-— In+ * n .

(An —A )n7+1
The matrix A* is the Hessian of f at 6* and is a symmetric positive matrix, which may be reduced into a diagonal
matrix D* = Diag(u},. .., ;) with positive eigenvalues in an orthonormal basis: 3Q € Oq(R) A* = QTD*Q
with Q7 = Q~'. The new sequence adapted to the spectral decomposition of A* is:

Ly = Ly = A~ 21
" (0 Q)" Qo 1)
Using QA* = D*Q, we obtain the equality described in Equation (18). o
An important feature about (Z,,),>1) is the blockwise structure of A,:
1= Yng1pd 0 e 0
0 1= Yn+1p13 ' 04
0 . 0 11— ny1py
An = L 0 0 : (22)
1—Yny143 :
0 n+1 te (1 — %_H)Id
1—n *
0 0 —nithd

The matrices made of components (i,7) (¢,d + ), (d +4,4) and (d + i,d + i) have a similar form, which is the
object of the next proposition.

1— 0
Proposition 6. ForueR andn>1, set £, , := < 1,,777't11u 1 >
n+1 T on+l

o If 1 — pyns1(n+1) # 0, define €, nt1 by:

1 — pyn41
L= pynsr(n + 1)

€pun+l = (23)

The eigenvalues of E,, , are then given by Sp(E,, ») = {1 — WYn+1,1 — n%rl} , whereas the associated eigenvectors

are:
u#n:( 1 > and v=<0>.
’ €pn+1 1

o If 1 — pypy1(n+1) =0, E, , is not diagonalizable in R.

14



At this stage, we point out that the eigenvectors are modified from one iteration to another in our spectral

analysis of (6,,)n>1 (see Lemma 12).
Remark 2.  The spectral decomposition of E,, ,, will be important below.

o E,, (and A,) is not symmetric (see Equation (22)), leading to a non-orthonormal change of basis and
some difficulties for the study of (Zy)n>1.

e To a lesser extent, it is also interesting to point out that this “no self-adjointness” property of A, is a
new example of acceleration of convergence rates with the help of non symmetric dynamical systems. (see
[29, 14, 10, 15]).

o The first eigenvalue of E,, ,, is 1 — uyn41, and essentially acts on the component 0, of the vector Z,. We
recover a standard contraction on the SGD.

e Interestingly, the second eigenvalue of E, ., is 1 — (n + 1), which is independent of the value of p.

This eigenvalue acts on the component brought by 0,, in the vector Zy, and is at the core of our study of

(en)n>1~
1—
From the factorization E, , = < 1 0) < K+l 0 1 > < ! 0> , we define the diagonal
’ €umntl 1 0 1=/ \—€unt1 1
matrix &, p~ by:
gn,D* = Diag(eui,nﬂ, ey 6#2»”+1)7 (24)

we then deduce the spectral decomposition of A,:

Id 0 Id - ’Yn+1D* 0 Id 0
A, = . 25
(en,D* Id) ( 0 - o) \enp 1, (25)

We introduce the last change of basis as:

s (I 0\,  (z"
7, = (—En,p* Id> Z, = (ZT(LQ) . (26)

For the sequence (Z,,)n>1, the following proposition holds:

Proposition 7. Assume (Hg) and (0,)n>1 is a (L*,\/7,)-consistent:

~

4
e i) A constant ¢y exists such that: Yn =1 E ZS)

2
< CaVpe

o i) Let B € [1/2,1], rg = {(B+1/2) A (2= 8)} > 1 and ny be the positive integer defined in Lemma 13.
For any n = ny:
3
~oy)2 Tr(X* d
E‘Zr(?)’ < % + Cﬁ(C4,f, S) <{> Oia (n_rﬁ) .

where C(ca, f,8) = cas(1 = B)7'Cys with Cy.s = [ D*fLip + |57 + [S]Lip-

We are driven to the “optimal” choice S = 3/4, which in turns implies that:

3
~ Tr(X* d
e EZOPR< T oo <W> Ot (n™").
n Iz

15



Proof. Proof of i): By Equations (21) and (26), Z\") = Q6,,. The (LP, \/3,,)-consistency of (Z(Ll))nzl then comes
from the one of (6,,)n>1-

Proof of ii): We pick ng such that Yn > ng : €, < 0 for any € Sp(A*).

Step 1: Recursion formula. In order to study the behavior of the L2-norm of (Z ( " )>n>07 we first precise the
relationship between Z, and Z,.1. Equations (18) and (20) combined with definitions (21) and (26) yield:

~ I, 0\ -
L1 = Zn
i (*5n+1,D* Id) i
I, 0 . QAM 11
= AnZn+ n +Vn
(el 1) (102 s o (B2 40

_ Id 0 Id 0 Id — ’yn+1D* 0 Z
_5n+1,D* Id 5n,D* Id 0 (1 - n+1)Id

Tn+1 (7€n+l,D* n+1)QAMn+1 (gn+1,D* — n+1)Q(A* A, )en s

where we used the eigenvalues of A,, in (25). D?f is Lipschitz so that:
e 2 Lo
I = Aul < [ ID2£08,) = D*1(0)1d < 51D gl

Then, we deduce that:

Z7<11+1 = (Ig — i1 D) Z ) 4 Ynt1 (QAM i1 + Osq (| D? f|Lip|0n]?)) (27)
28, = (11— 2DZP + QZP + ynar T (QAMus1 + Oia (| D flLip|0n]?))
with Q,, = (gn,D* - 5n+1,D*)(Id — Yn41D*) and T, = n+1,D* — nlfrl
Step 2: E[|ZZ|2] = Oiq(n~1) We introduce the covariance:
Vie{l,....d}  wa(i) =E[(Zn)i(Zn)asi] = E[(Z1)i(Z2))s], (28)
and the useful coefficient: .
Vie{l,....d LR, J [ p— O 1 29
e ah=2(1- ) o (29)

We use the Young inequality ab < % + 2%172 with e = nf~2

1

B0,128]) _ 0’ s TR
- 5 Ell6n]"] + TE[|Zn|]<57n(n L nTE[|Z |]).

Second, Lemma 13 implies that i € {1,...,d} : |od,| <iq p~ 1nf=2. Hence

nl S

; 1 1B\ 1 1. 8~
Fwn(i)] < 5=5) 1R ZO)? + pn? 2EZ(2)2>
Yo lanenil < s ((nd= %) "BIZOP + unt = FEIZ2)
Ccon g+2 8_3 ~
< — +n? 2E[Z{P)?
1
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We use this inequality into Lemma 13 %), an integer n; exists (see Lemma 13):

- 1 \2 -
vnz=n  E[ZP) 2 < ((1 - 1) + [n—ﬁ—% + n’é—%D E[|ZP|?]

Tr(Z*) oS eyd 3 _
=) g | —— 70 -3-8 3+
+(n+1)2+od< 2 3 5( vn )

1\’ _ ~ Tr(S*
< ((1 - ) - Cm"> E[|Z?|?] + T®) + Cyn ™4,

n+1 (n+1)2

where Cg is defined in Lemma 13, Cy := 2, r = (8 + 1/2) A (3/2 - 5/2), ¢ = (3/2 + 5) A (5/2 — §/2) and
Cy =0y <%§IC’S). Setting N = ny and u,, = ]E[|Z(12)|2], we apply Lemma 16 and deduce that:

Tr(X*)

Vn=N  E[Z®]] < + O (“’“”1 + TS )" + cgn—Q) .
n

Using the arguments of (50), Tr(X*) < dp~2|S*|. The definition of Cs yields:

unlnl

cqd
n > ni, [|Z | ] ~id 70

Remark that Lemma 15 entails up, Siq 12 Bnl so that:

C2 1 Co =2 2
Un, M1 Sid 7 —5" ¥ <ia 15 (no f+¢,” +|D f|L1p>

2 2 )
Sid e + ) T |D*fLip <. cad i
(1—5)H 1-5 1-p (1_ﬁ)ﬁ

using in particular that ¢y < ,/c4. As a conclusion, we finally get:

05'7

C4d

(1—=pB)p3

Step 3: Control of the covariance Inequality (30) yields for n = ny

E[16,21Z2 )] < VE[I0u [T\ E[1 2572 —m/ S zd 7" (31)

Plugging this control into Lemma 13 ¢), we obtain that for all ¢ € {1,...,d}:

Vn=ny,  E[ZP?] <ia Csnt. (30)

n
n+1

dCs

wn (1) = (1= yntapsi) wn(i)| Sia Co + ca| D flip A8 v

Now, remark that 7, <;gn "2 so that we conclude that E[|9n|2\27(72)|] shall be neglected in (wy,(%))n>1. Now,
set
Crs = |D*flluip + Cs + 1.

<o, (chﬂ) |

B2 n

We have

n )
Vn =1 Wnt1(7) = (1 = yng1p) ?wn(z)
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From Lemma 14 stated in Appendix 4.2, we conclude that:

1
Vie{l,...,d} wn(i)|<(9id(c4\/acf’s>.

32 n

Step 4: Conclusion of the proof From (32) and (31), we have:

d ) 3/2 1
Z. aywn (1) = cad - Cr.s Oia ( ) and
i=1 H‘J/Q

n3y,

~(2
E[6.212:70 _,  vd_, ()
n 4H3/2Cf1$ id 3z

We use these bounds in the statement of Lemma 13 i) and deduce that:

2 *
=) 12 1 Sy Tr(EY)
E||Z < 1-—— | E[|Z + —=

3/2(7,
+7c4d /3Cf’s(9¢d (n*3+ﬂ v n73/276> )
Jad
where we used that v, = n~? so that \/7,n"2 = o(y,n~/?) regardless the value of 3 € (1/2,1). Applying again
Lemma 16 with C; = 0 and ¢g = (% + 8) A (3 — ), we obtain the desired result. o
0

3.2 End of the proof of Theorem 3

To end the study of (0,,),>1, we first remark that for n > n;:
0.2 < 2 (12O + p(En ) 1ZOP)
which in turn implies the desired inequality when n > ny. When n < ny, we deduce from Lemma 15 that

—B
Comn < C2 n;
1-8 1-8

E|6,|* < oy,

Since 73 — 8 = § A {2(1 — B)} and:

1 1
ni Sia kTP + ey + |D? o,

we get
— C2 _
cany” p Sid -5 (ﬁ Zre+ HDQfHOO) .
3/2
Up to a universal constant, this last upper bound is smaller than %. o

3.3 Further remarks on the second order term

When x — D?f(z) is constant (or also when the function f to minimize is C* with third partial derivatives
Lipschitz and null at 6*), we remark that A,, — A* = O(]0,,|?). Following the proof of Lemma 13, the error term

is replaced by n_loid(E[|9n|3|Zr(L2)|])$Z-d(n_1'yn)% if the (LS, /7, )-consistency holds. Hence, we obtain:

2
E[Z2, ] < (1 - 1) E[IZP[2] + O~y + O (””) ,

n+1 n?

18



which is a better upper bound (from the point of view of the exponent on n only) comparing to the recursion
obtained in the end of the previous proof. The rate is then optimized with g = 2/3 and rg = %.

The previous remark shows that we may obtain a different size of the second order terms when f is locally
symmetric around 6* (which occurs when D3 f(6*) = 0) whereas when f is not locally symmetric, Theorem
3 proves that this second order term may be fixed of size O(n~5%). We have computed (with a Monte-Carlo

approximation) n — n” (E[|§n —0*%] — %E*)) with p = 2 and 8 = 2 for a locally non-symmetric f; around

0* and n — n” (E[|én —0**] — %E*)) with p = 3 and 8 = 2 for a locally symmetric f. We have used
2

filz) = Zearctan(@) and fo(z) = ’”2—27 which trivially fall into the two different cases (see Figure 1): our
simulations confirm that the second-order terms are of the right sizes and cannot be improved.

04 V'\‘.~"*\ Y ~

0 2 4 6 8 10
x10°

Figure 1: n — n” (]E[\én —0%%] - %2*)) Blue curve: p = 2 and 3 = 2 for a non locally symmetric function

fi- Red curve: p = % and 8 = % for a locally symmetric function fs.

4 Proof of the (L*,,/7,)-consistency - (Theorem 5)

The main objective of this section is to prove Theorem 5. Our analysis is based on a Lyapunov-type approach
with the help of V}, : R? — R defined as:

Vp=1  Vy(x) = fP(x) exp(e(f(2)).

4.1 Taylor’s expansion on V,

To prove our main result (Theorem 11), we need to establish some technical results related to ¢ and V,. The
first result is a simple sub-additive property on ¢ that essentially relies on the concavity property on [z, +0).

Lemma 7. If ¢ satisfies (Hy)(i), then a constant cy exists such that:

V(z,y) e Ry ¢z +y) < o(x) + ¢(y) + co.

Proof: Since ¢” < 0 on [xg, +0), the function ¢ is concave on [xg, +0). Hence, the function z — ¢(z+y) — d(z)
is decreasing on [zg, +0) so that:

Ve>zo o(x+y) <o)+ d(xo +y) — o).
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Since ¢’ is decreasing on [xg, +00), then ¢ is upper-bounded and a constant C' > 0 exists such that ¢(y + zq) <
&(y) + Czg. We then deduce that:

Vezazo Yy=0 ¢z +y) <o)+ d(y) + Cro — ¢(x0). (33)

In the other situation when z < z, the fact that ¢ is non-decreasing yields and Equation (33) applied at point
xq yields:
Pz +y) < dlxo +y) < d(y) + Cro < () + ¢(y) + Co.
We then obtain the desired inequality for any value of x and y in R,.. o
The next result is a straightforward computation left to the reader.

Lemma 8. For any p € N* and any x € R)\{0*}, we have:
i)

Viz)

f(x)

YV, (@) = Vy(a) (p ; ¢’(f(w))Vf(x)) |

i)
DV (x) = Vy() [¢1(2)V f(2) ® V f () + o(2) D* f ()],

where ¥y and Yy are given by:

2
= (-2 L (e — P L (f@) an 2(2) 1= P+ ¢ (f(2).
ia(a) = (5 + $U@)) — s+ ) ot dale)i= L+ 1)

The next lemma translates the effect of the drift of the algorithm on the exponential function introduced in
the definition of V.

Lemma 9. If f satisfies (Hg): 0 <m < ¢/'(f)|Vf]* + % < M, then

i)
vz e R? (VVp(x), Vi(z)) = mV,y(z).
i)
VR D)5+ M+ polr) (Veor(O 4 ).
Proof: i) We apply Lemma 8 i) and obtain that:
veerigey V) VIEE L )9 @),

Vo(2) f(x)

The result then follows from Assumption (Hy) 4i).
ii) We apply Lemma 8 4i). We have that Yy € R%:

{y, D>V, (&)y) _ W) Wl(f)@»vf(f) ®VSf(&y)+ ¢2(§)<yaD2f(5)y>]

lyl® R
< Vy(6) (| o5 + AU ~ i + G| AP + | S + 01D 2)
We now use the constant M involved in Assumption (Hy):
VIR _ M s
EGEREG d SO IVIOI < M'(£(£))-
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Using the definition of M, we deduce that:

Y. D*V, (O
ly[1?
S MVE) | 17+ S+ FONE + o (Vt6) |
Sia (M + poo(£)Vp-1(€) + MV,(8) (¢ (£(€)) + ¢ (f(£)£(8)) -
H,, implies that ¢” is negative for u > x so that ¢’ is bounded (it is a non-negative function and non-increasing
on [zg,+00)). Now, H(ii) yields

sup (¢'(£(€)) + ¢"(£(€))£(©) L+ V)

£eRd
< (190 + M+ sup ]¢”(w)(wo(1 + M)
z€|0,zg
<ia 1+ M.

We then deduce that

{y, D*Vp()y)

Yy € RY
lyl*

Va(§)
Sid(l + M? + Poo(f)) (Vpl(g) + 1+|vf('§)|2> .

The second assertion follows. o

Lemma 10. Suppose that Hy holds and consider v € [0,1]. For any § > 0, € > 0 define &5epnp = T +
06 (=V f(x) +¢) with £ € [0,1]. Then,

i) Assume that § > 0 is such that po(f)d < 1/2, then:
F(&se,0,0) < fla) +0lef.
ii) Assume that po(f)6 < 1/2, then q,(¢) exists such that for all Vo € R? :

DV, (&5,0.0,0)(—V [ () +)®% < gy (¢) S, 1 (1 + 2@+ 1)) et Clel)
X (Vp—1(x) + Vp(z) + 5”’1),

with qy(¢) = Osa(1 + M? + po ().
iii) When ¢ =0, if peo(f)0 < 1/2, then a q,(¢) exists such that Va € RY,

D? P (5.c,0,0)(=V f () + )% < gp(6) (1 + 5p) 7
xu (fP(x) + [ (@) |ef” + 6P ef*P)

Furthermore, g,(¢) = Oiq ((1 + M2+ poo(f))(1 + Ep))'

Proof:
Proof of i) Using the Taylor formula, £ € [z, 5, 5,¢] exists such that:

0252, - @2

F(&see) = (@) = GBIV (@)|* + XV f(2),6) + —=D*f(£) (~V () +¢)
From |a + b]? < 2(]lal|? + |b]?) and the definition of po(f), we get:

D*f(&) (~Vf(x) + &) < 2000(f) (IVF(@)]* + <)) -
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The elementary inequality [(u,v)| < L(|u]? + [v]?) yields:
FEewr) < F@) — GIVF@E + T F().2) + £0po () (IV1@)1P + o]?)
< @)+ 0] ~5 + 000 ()| IVS@IP + | 5 + o) TP (34)
< @)+ 13lel? < @) + el

where in the last line we use that £ < 1 and the condition dps(f) < 1/2.

Proof of ii) We divide the proof into 3 steps.
e Step 1: Comparison between V,.(€5¢,5.¢) and V,.(z). We consider r > 0 and write { = &5 ¢ for the sake of

convenience. Since ¢ is non-decreasing, one first deduces from (4) that:
Ve(€) < (f(x) + 0]e|*)" exp (¢(f () + 6]e]?)) -
Lemma 7 and (|a| + |b])" < 2" (|a|” + |b|") yields:
Vr(f) < gr—1 (fr( )+ 67’H€H2r) d(f(z)+o(S|e]? )+co
Setting T: . = (1 + |€]?>") exp(4(5]e|?), and using that Vg = e?(/):

Vr=0 3C >0 Vi(€) S exp(d(8e]*) [Vilz) + 8" [e]* Vo(a)]
Sia exp((3]el®) [(1 + el *)Va(2) + 0[] "]
Sia Ter [Ve(@) +67]. (35)

where in the second line, we used that Vp < e®® + V.
e Step 2: Upper bound of p(D?V,(€)).|V f(z)|?. We apply Lemma 9 ii). Setting g1 = 1+ M? + po(f), we get:

POV Siatr (Vo O + (g ) 97

Siatt (Teop1 Vo @)V F(@) + 61V (@) 2]

VP
T g+ )

Under Assumption (Hy), Vp—1(2)|Vf(2)]? < MV,(z) and #71V f(z)]>? < M&P 1 f(z) < M&P~1(1 + V,(2)).
Inequality Tt s p—1 < 2Tc 5, leads to:

| D2V, (€)Y f ()2

1 Tes.p 0P|V
Sut BT, s V(o) + 071 g 22l P BT
| : ey Wel@) + TSP
Sia (L+ M° + poo(f)Te s, [[Vp( )+ P+ 1+ [VF©? ] :

(36)

To handle Equation (36), we are driven to derive an upper bound of % According to the Taylor formula,

a & exists in [z, ] such that:

Vf(x) = Vf(€) —D*f(&) (~Vf(z) +e),
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and the triangle inequality associated with ¢ € [0, 1] yields:
V(@) < VA + poo(FO(V S ()] + |e])-
Gathering all the terms with |V f(z)| on the left hand side and using po, (f)d < 1/2, we obtain that:
V@) < Q= po(H)O) (VO + el) < 2(VFE)] + lel) -

The elementary inequality (u + v)? < 2(u? + v?) leads to |V f(2)]?> < 8(|Vf(&)|* + |]?). As a consequence,

V)P :
i ivige <D

We use this last inequality into (36) and obtain that:
P (Vo(©)) IV F(@)PSia(l + M? + poo () Tesp (677" + [Vp(2) +071(1 + [e]?)) -
Finally, since 1% 5, (1 + ||e]|?) < 37%.5p+1, we conclude that:
P (Vp(©) VS @) Siall+ M2+ poo())Tespin (877 + V(@) (37)

e Step 3: Upper bound of |D?V,(&sc.2.0)s-|€]?>. (35) and Lemma 9 i4) yield:

p (D*Vyy(&se,00)) e’ Siat1 Te5p11 (Vo1 (z) + Vp(z) + 6771 . (38)

The result then follows from the combination of Equations (37) and (38).

Proof of iii) Finally, let us consider the particular case ¢ = 0 that corresponds to the situation where SC(a).

Going back to Lemma 8 i) and noting that (Hy) in this case reads mf(z) < |[Vf(z)|?> < M f(x), we deduce
that:

p(D2F7()) < (M + poo()S7(): (39)
Using Lemma 10 ¢), we have, if dp(f) < 1/2:
PDF7(€)Sia(M + poo(£)) (771 (@) + 677 [2770) )
so that:
p(D27()) (VS @) + e2)Sia(M + pec(1) (M P (@) + 77 ()]
+ (M f ()PP + [£27))

The inequality follows when p = 1. When p > 1, we deduce from the Young inequality that f(z)[e|>®~1) <4
fP(x) + |e|*” and deduce the result. o

4.2 Main result

We have the following result on the convergence rate of the SGD (0,,)n>1-

Theorem 11. Let p > 1, if (Hy) and (H% ) when ¢ #0 (or (Hy) and (H%Cp) if ¢ =0) hold. Consider g,(¢)
from Lemma 10 and:
1
<< /.
8 }

: m fyq —’Yq
no :=f § 7 1 Yni1Gp(¢) < - and Vg <p: Tn it
MYn+1
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i) For all n = ny,

E[Vp (041)]
< (1= 22911) EIV,(62)] + Oia (p(6) (ELVp1 0)]02 11 +9241) ) (40)

ii) (Cp)p=1 exists such that for all n = ng, E[V,(0,)] < Cp{yn}? with

C, = E[Vl(ono)]m(‘z’) + O ("ﬁ”)

m

and for every integer p = 2,

) = B[V, (6, )] <q”7§j5))p + 0w <(Cp_1 + 1)"?””) . (41)

m

Proof of Theorem 11 ¢): We apply the Taylor formula to V,, and obtain that:
Vp(en-H) = Vp(en) - 'yn+1<VVp(9n), V§(0n)) + 'Yn+1<vp(9n)a AMii1)

2
Tn
+ DV (€n 1) (=Y F (0n) + AMu 1),

where &,4+1 = 0, + £,A0,,+1, where £,, € [0,1]. Using Lemma 9 i), we get
Vn e N* Vp(6n) = 11{VVp(00), V f(6n)) < Vp(0) (1 — myps1). (42)

Now, we need to consider separately the cases ¢ = 0 and ¢ # 0.
e Case ¢ # 0: Since Vpp00(f) < Yngp(¢) < 1/2 for all n = ny, (H% ) yields
_— P

E[(1+ [AMy1 *PD) exp(6(7|AM 11 )| Fa] <
Thus, we deduce from Lemma 10 #) that for every n = ny

E [Vp(en+l) |]:n]
< (L =myn41)Vp(n) + ap(0) (%2L+1(Vp(9n) + fol(en){'VnJrl}p-’—l) .
This yields
E [Vp(0n+1) [ Fn] (43)
< (1 — MYn+1 + Qp(¢)772L+1) Vp(en) + Qp(¢)(7i+1vp—l(9n) + {’Yn+1}p+1)-

The result follows since n > ng so that 1 — my,41 + qp($)v2, <1 — 2y,
e Case ¢ = 0: By Lemma 10 ¢i) and Assumption (H%S), we have for all n > ny,

E [Dpr(§n+1)(_Vf(9n) + AMn+1)®2|]:n]
< gp(@)1+ )7 (£7(62) + F77H0)S1 (1 + F(00) + 5151+ £7(6,)

< @) TR0 + 7 0) + D

Since |z|*> <1+ |z|?F for any p > 1, ¥1 < 1+ X,. Thus, at the price of replacing q,(¢) by 2q,(¢) (gp(¢) is
defined up to a universal constant), we get

B [D2 7 (€0 ) (=T (00) + AMui )]
< (@) (V1 (F7(0) + £771(60)) + 9213
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Now, the initial Taylor formula with the previous inequality ends the proof.
Proof of Theorem 11 i3): This result is obtained by an induction on p. We preliminary consider the situation
where p is an integer greater than 1. Then, a general result is deduced for any p > 1 using the Jensen inequality:

Bllxp] < (e(x )"

where p’ is an integer larger than p since ¢ — |t\p/p' is a concave function.
e We first consider the case where p = 1, we use the elementary inequality Vj < 1 + V; and obtain that

3m

Vn =ng, E[Vi(0n41)] < (11— T’Yn-rl + Q1(¢)%2L+1)E[V1(9n)] +2q1 (¢)7721+1~

According to our choice on n, we deduce that

Vn = no, E[Vl (9n+1)] < (1 - %'}%4—1)&2[‘/1 (0n)] + ZQ1(¢)’Y721+1'

Set vy, = 7, 'E[V1(6,,)]. We obtain

-1
m ,yn+

Vn > ng, Upt1 < (]- - 57n+1)vn 11 + q1(¢)’7n+1~

n

According to the construction of ng, we can check that for all n > ng,

p

m

< T > <1+ —7m4
Tn+1 4

We then obtain

m m
Vn = ng, Ungr < (1 - 57n+1> Un (1 + Z’YnJrl) + q1(¢)7n+1~ (44)

Since (1 — Fynt1)(1 + Fynt1) < 1 — Gynq1, we deduce that for all n = ny,

n n—1

m n m
v <vn, || (- 2+ L]1(¢)Zk=n0+1% le(l -

k=no+1

with the convention [ [ = 1. By the elementary inequality log(1 + x) < x for > —1, this yields

—o(r,—T n — (D —T
b < e F T gy ()Y e T,
=no

On the one hand, e~ %™ ~Tx) <1, on the other hand, a series/integral comparison yields

FTI
n m m T m
Zki 1,}/]66—7(1—‘71,71—1—‘1&-71) < e_Ianl J e1T%dr
=no+ 0
4 _m 4e'T Mo 5
< —e il (e 4F"—1)< < —.
m m m

where we used in the last equality that my,, < yn,q1(¢) < 1/2. -
e Let us now assume that p is an integer greater than 2 and assume that C},_1 is finite. Then, for all n > no,
E[VP~1(6,)] < Cp—172~! and hence, by (40), we deduce that

3m _
Vn = no, E[Vp(9n+1)] < (1 - 4’7n+1> E[Vp(gn)] + Qp(¢) (Cp71'y£+1 + 'Yﬁi}) .
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As a consequence, by setting v, = v, PE[V,(6,)] and dividing the above inequality by 7" ;, we obtain

3m Tni1 A
Vn =ng, vUpg1 < (1-— T’VnJrl)UnF + qp(A) (1 + Cp—1)Yn+1-

n

As in the case p = 1, the definition of ng implies that for all n > ny,

m
Vn = nyg, Unt1 S (1 - Z’VnJrl)'Un + QP(¢)(1 + Cpfl)’VnJrl'

The end of the proof is identical to the case p = 1. o

Acknowledgements The authors gratefully acknowledge Jérome Bolte and Gersende Fort for stimulating
discussions on the Kurdyka-Lojasiewicz inequality and averaged stochastic optimization algorithms. We also
warmly thank Francis Bach for several constructive comments on an earlier version of our work and pointing
out some useful recent references.

References

[1] A. Anastasiou and K. Balasubramanian and M.A. Erdogdu, Normal Approximation for Stochastic Gradient
Descent via Non-Asymptotic Rates of Martingale CLT, Proceedings of the Thirty-Second Conference on
Learning Theory, 99, 115-137 (2019)

[2] A. Agarwal and P. L. Bartlett and P. Ravikumar and M. J. Wainwright, Information-Theoretic Lower
Bounds on the Oracle Complexity of Stochastic Convex Optimization, IEEE Transactions on Information
Theory, 58(5), 3235-3249 (2012)

[3] F. Bach, Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression,
Journal of Machine Learning Research, 15, 595-627 (2014)

[4] N. Flammarion and F. Bach, From Averaging to Acceleration, There is Only a Step-size, Proceedings of the
International Conference on Learning Theory (COLT) (2015)

[5] F. Bach, Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression.
J. Mach. Learn. Res. 15 5957627 (2014)

[6] F. Bach and E. Moulines, Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine
Learning, Advances in Neural Information Processing Systems (2011)

[7] D.P. Bertsekas, Nonlinear programming, Athena Scientific Optimization and Computation Series, Belmont,
MA, xiv+777 (1999)

[8] J. Bolte and A. Daniilidis and O. Ley and L. Mazet, Characterizations of Lojasiewicz inequalities: sub-
gradient flows, talweg, convexity, Transactions of the American Mathematical Society, 362(6), 3319-3363
(2010)

[9] J. Bolte and P. Nguyen and J. Peypouquet and B. W. Suter, From error bounds to the complexity of
first-order descent methods for convex functions, Math. Program. (A), 165(2), 471-507 (2017)

[10] A. Cabot and H. Engler and S. Gadat, On the long time behavior of second order differential equations
with asymptotically small dissipation, Trans. Amer. Math. Soc., 361(11), 5983-6017 (2009)

[11] H. Cardot and P. Cenac and P.A. Zitt, Efficient and fast estimation of the geometric median in Hilbert
spaces with an averaged stochastic gradient algorithm, Bernoulli, 19(1), 18-43 (2013)

[12] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games, Cambridge University Press, Cambridge,
xii+394 (2006).

26



[13] M. Duflo, Random Iterative Models, Adaptive algorithms and stochastic approximations, Springer-Verlag,
New-York, Applications of Mathematics, (1997)

[14] S. Gadat and L. Miclo, Spectral decompositions and L2-operator norms of toy hypocoercive semi-groups,
Kinetic and Related Models, 6(2), 317-372 (2013)

[15] S. Gadat and F. Panloup and S. Saadane, Stochastic Heavy Ball, Electronic Journal of Statistics, 12(1),
461-529 (2018)

[16] H. Cardot and P. Cénac and A. Godichon-Baggioni, Online estimation of the geometric median in Hilbert
spaces: Nonasymptotic confidence balls, The Annals of Statistics, 45(2), 591-614 (2017)

[17] A. Godichon-Baggioni, Estimating the geometric median in Hilbert spaces with stochastic gradient algo-
rithms: LP and almost sure rates of convergence, J. Multivar. Anal. 146 2097222 (2016)

[18] A. Godichon-Baggioni, L? and almost sure rates of convergence of averaged stochastic gradient algorithms:
locally strongly convex objective. ESAIM: Probability and Statistics, 23:8417873 (2019)

[19] P. Huber, Robust Estimation of a Location Parameter. The Annals of Statistics. 53 (1): 73-101 (1964)

[20] G. Fort, Central limit theorems for stochastic approximation with controlled Markov chain dynamics,
ESAIM. Probability and Statistics, 19, 60-80 (2015)

[21] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble),
48(3), 769-783 (1988)

[22] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Editions du CNRS, Paris,
Les Equations aux Dérivées Partielles, 87-89 (1963)

[23] A. Nemirovski and D. Yudin, Problem complexity and method efficiency in optimization, Wiley-Interscience
Series in Discrete Mathematics (1983)

[24] Y. Nesterov, Introductory Lectures on Convex Optimization. A basic course, Kluwer Academic Publishers,
Series: Applied Optimization, Boston, MA (2004)

[25] M. Pelletier, Asymptotic almost sure efficiency of averaged stochastic algorithms. SIAM J. Control Optim.
39 49772 (2000)

[26] B. T. Polyak and A. Juditsky, Acceleration of Stochastic Approximation by Averaging, SIAM Journal on
Control and Optimization, 30(4), 838-855 (1992)

[27] H. Robbins and S. Monro, A Stochastic Approximation Method, Annals of Mathematical Statistics, 22,
400-407 (1951)

[28] D. Ruppert, Technical Report, 781, Cornell University Operations Research and Industrial Engineering
(1988)

[29] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202(950), (2009)

Appendix A: Technical lemmas for Theorem 2

In the next lemma, we study some properties of (€,,n)n>1 involved in the change of basis related to the evolution

of (0,)n=1 (see Proposition 6). Roughly speaking, we quantify the effect and variability of this change of basis.
Without loss of generality, we assume in the following proofs that u <1,y =1 et ¢ > 1, |[D? L, > 1.
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Lemma 12. Assume that v, = yn~? with B € (0,1). Let u>0. For any pu > p,

Vn = No (2[[ ) 1/(1 ) | I 12 | pS n ( )
= : ) €u,n €unt1| Jid 45
i l ' 124

and |€,n| Sid (E'ynn)’l.
Proof: First, remark that for n = ng, py,n—1= %;wnn, so that €, , is well-defined for any n > ny and,

2 20UYn 2 1
l€nl < TR LAt ( + 1> <id

pnn’

since py, < 1 for every n > 1. As concerns (45), we observe that for n > ng,

L—pyn 1= pymn ’
L—pyan 1= pynsi(n+1)
_ ’ (1= pyn) (L = pynsr(n + 1)) = (1 = pyns1) (1 = pynn)
(1 = pyan)(1 — pyns1(n + 1))
(vn = Mnt1) + [0+ D)yns1 — nyn|+p9m 01
(Hymn = 1) (pynsr(n +1) — 1)

n=h 1Y\ o

R T Dy (1 i u) e

|€,u,n - 6,u,n+1| = ’

< n

N

which yields the result since p < 1.

Lemma 13. Set ny :=ng v [cé/ﬂ] Vv [|D?f|Lip|- Under the assumptions of Proposition 7, we have:
i) For anyie{1,....d}, wa(i) = E[(Z{)i(ZP):] satisfies ¥n = nq,

Tn >
SiCo + 1| D f|LipEl16n P Z7]]-
n

() = (1= ) (1= 77 a0

d(|S* ||+ S| D2f |
where C,, = USF+1SLip) +eal f”Lp).

I
1) Set

[AZ7 | = ‘

2 *
52 27 (1 1 @221 N4 o Te(EF)
BIZS P - (1 iy ) BUZOP - X aken(i) - (o

+1 (n+1)2

We have:

5 ~ d
AZZ, | Sun * PR ZP P + S5 Cs O (n_%_ﬁ v n_3+ﬁ)
Jd

where Cs = |S*| + |[S|Lip + 1 and o, defined by (29), satisfies |of|<ia(p) 'nP~2, i =1,....d.

Proof: First, remark that under the definition of n;, we have for all n > ny, py,n —1 = %/yynn, c2Yn < 1 and
|D?f|Lipn~! < 1. Then, for all n > ng, T, and €, are well-defined deterministic matrices and by Lemma 12,
we can verify that

1 L1
Yot1]| Tl Sid o and V41|20l < Yn+1l€n 0+ — Env1, 04| {a — 1 D7 < 2 (46)
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i) Now, let us prove the first statement and let n > ny. Using (27), we have

. N 1 . >
a9 = (= ) (1= 7 ) a0 < a0 1B, P22

+ ’Yn+1]E[{QAMn+1}i{TnQAMnH}i] + ’Yn+17“7(11)a
where,

E Z(l) 2 -~
O] <ia |9 (7' " E[|D2f|mp|en|22£”u>

n+1
10l (ID2FIipEUZD 10012 + 11 D2 F 135, 1)

The Cauchy-Schwarz inequality and \Z(Ll)| = |0, yield

~ 1/2 3/2
B0, 212000 < (B00.°) 7 {EIZOP) T < Ve, < end.
Therefore, using 1 < ¢2 < /¢4 < ¢4 and |D? f||Lipn™" < 1, (46) implies:

sl D*flu,
g
3
cal| D% f s 2 cal| D% f s
A2 b (v:ﬂg) s i 2o

(1) 1 2 3 3 2 3
T S (02 D i) + (31 + 1D i )

where we used that 5 > 1/2. In the meantime, under (Hg) and because @ € O4(R) and c27y, < 1 when n = nq,
we have Vi e {1,...,d},

E{QAM i1} {TnQAM 1 }]| < [Tol B[ AMy 1 [2] < [T [E[TE(S (6:))]

< Tl (dELIS(0n)1]) < dlTnl(1SOF)] + [SLipElonl)
Sid ATl (1% + 5] Lip)-

since ¢y, < 1 for n = ny. We therefore deduce from (46) and from the previous lines that

d([S* ] + [SllLip)vn
np

Vi e {15 LR d} 71'27,+1 |E[{QAMTL+1}’L {TnQAMnJFl}Z“ <

A compilation of the previous bounds (taking into accounts only non-universal constants) leads to

a9 = (1= ) (1= g

Jon)|<urrner L L1, P22

d(|S* | + |S|Lip) + ca|D? fllLip n
I n

ii) We set AN, 41 = Y,QAM,, 41 and recall that of, is defined in (29) by of, = 2(1 — (n + 1)71)(Qn)i4-

Starting from (27) and \Z(Ll)| = |0, | with a conditional expectation argument, we use that Q,, is diagonal to
obtain

E[|Z3),[?] = <1 ) [1Z2))2] +Z ol wn (i) + 72 E|AN, 1|2
* E[mnsz 21+ Oia (1 I Tl ELOL 21 2] (47)
+Oia (it 1D Fliip | Tl 19 [BOZE0100 1) + Oia(y1 1D 15| T P10 ]).
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First, by (46),

—4
~ ~ Ccon Cy _
E[[2.ZV1°] < 2Bl ZV ] < e2yalQal? < 27— 2Y (n="*7) (I1)

In the meantime, (46) yields
Y, T |E[6,.21Z22]] = —1 Oia (E[16,]?|2

1, (El6ul'oz" + vuBl Z57)]
np id 2 '

Choosing v,, = un'/*=#, we obtain
O (mer CalBLONPIZ) = 501 (n7377) + n= PRI ZP P (12)

The (L?, /) consistency property associated to the Cauchy-Schwarz inequality and the fact that co < (/¢4 <
¢4 imply that

>~ ca| D? f s 3
T I TallD sy 10 B 20002 = L2 W 0, (5m3-972) 1)

Finally, we also obtain that

cq| D? f3; Y
——— 20 (077

Vns1 Tal*1 D2 FIE i Ell0n]*]) .

D*f|1
ca 2fHL P 0,4 (281,
2

where we used that |D? f||Lipn =t < 1.
To achieve the proof, it remains to study 2, ;E|AN,,1|?. First, set B, = QT T2Q. Using that Y,, is a diagonal
matrix, we have

7721+1|ANn+1|2 = %%HTT(‘ANnH\Q) = ’YTZLHTY(ANgHANnH)
= 772L+1TY(AM£+1BHAMH+1)
= 7721+1TI‘(BnAMn+1AM3;+1)

Since the trace is a linear application and B,, is a deterministic matrix,
72+1E[|ANH+1}|2|fn] = 7721+1Tr(BnE[AMn+1AMZ+1|]:n]> = 'yiHTr(BnS(@n)) (48)
where we applied Assumption (Hg). For B,,, we first remark that
1T = (n+ 1D} + Apyy

where (A, )n>0 is a sequence of matrices defined by:

1+(n + 1){r )22
AnzDiag{ Tt Dl e den izl,...,d}.

(n+ D ((n+ Dyngap; —1)  n+ 1
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For n > ny and every i € {1,...,d}, ufyn—1= %u;fynn (by the beginning of the proof of Lemma 12) so that

+ (n+ D{p P*vi < 2 + 2Yn41
0 D+ Dot 1)~ 0 D2 Pmms it 1

Using the diagonal structure of A,,, we get for n > nq,

2 Tn+1 1
Al <. <. 49
H nH ~id n27nﬁ2 + n+ lwldn27nﬁ27 ( )

since 8 > 1/2. Then, using that B, = QTY2Q and that QT{D*}72Q = {A*}71, it follows from (48) that

'772z+1E[|ANn+1}|2] = ’7721+1E[Tr(3n5(9n))]
:ﬁHE[(quDv*+AHQWﬂ%»]

! o2 9 5o Ti(Z) i
_(n+1)2Tr({A @s(07) +; (n+1)2 ZER
with,
Tr ({A*}72(S(6,) — S(6
) = UL 500 Z SOy~ 2t (@707} 8,01080),

and R2 =Tr ((QT{A,+1}°QS(6,)) -

Note that for R2, we used that {D*}~! and A,; commute. It remains to bound the remainder terms R},
i =1,2,3. To this end, let us denote by | .| the Frobenius norm defined for a square matrix A by |A|r =
A/Tr(ATA). Owing to the sub-multiplicativity of this norm and to the fact that |A|r < Vd|A| (where

|All = +/p(AT A)), we obtain:

- 1 < USILipBl6al] _ dllSlLipy/e27n
E[R]] < {A*} 2 £ [S(8,) — SO r e < 55 (50)
wn n2n
Using (49), one can check that
- S*[ + [S]Lip)
E R2 < D* 1An E[lS 071 (H 1p
BIRAI < g HD™) B L ES @) ] < *H0 50
Finally,
2d(|S*| + 15]Lip) . d(1S* | + S ]lip)
EURI < [l ELS )] < i 7 S = e
where in the second inequality, we used that n'=# > 2&‘1 for n = ny.
A combination of the above upper bounds of R, i = 1,2,3 yields:
Tr(3*) d(|S*| + 15| ip) _ _
2 21 _ p) o~ 245/2 3+8
¥ E[|AN,1}?] = CESIThie 7 Oya (n @+6/2) |, ) (15)

Keeping in mind the expansion (47), we now compare the above control with (I1), (I2), (I3) and (I4). First,
we can omit (I1) which is controlled by the above r.h.s since 4 — 8 > 3 — 3. Second, we compare the first term
of the r.h.s. of (I2) with the terms involved in (I3), (I4) and (I5) and remark that

VBe (1/2,1) w32y n T2y 8272 — 0, (),
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Considering the worst constant of each term, we obtain that:
cad —3.8 348 R ACIE
AZ2, 1l = P —5C5,50ia (n 2P vn ) +n 2 PE|ZP).

where Cy s is defined in the statement of the lemma. o

Lemma 14. Assume that (up)n>0 S a real sequence that satisfies for all n = ng and for a given p > 0:

——Un + ﬂn-ﬁ-la

n
Un+1 = (1 - 'Yn-&-lﬂ) ntl

m]
with By, < & Then, a constant C independent on o exists such that
n

Uy < % (nouno + ,u_l) .

Proof: With the convention [ [, =1 and }, = 0, we have for every n > no:

Up = < [T a- 7’“’”1%1) Ung +Zk:n0+16k []« V)T

k=no+1 l=k+1

Using that for any = > —1, log(1 + ) < x, we obtain for every n = ng + 1

n
k ng  _ _ no
1— < — u(Ty Fno)gi
I ¢ W T S riC n+1’
k=no+1

where ', = 3}/’ vk Concerning the second term, we have

L / 1 n
— < —pl'y Mrk> .
Zk 77,0+1 :1;[ 1 AMM 1 n + 1 (6 Zkzno-‘rlﬁk(k + 1)6

Since Sk (k + 1) < o7yg+1, the monotonicity of x — xel® yields:

n F'rH»l

n
k4 1)ettr < DZ e"E < o e*dx.
Zk}=n0+lﬂk( ) = k=n0+1’7k+1 =

Thg+1

We deduce that:
1 o

—uln N kE+1 ”Fk) < - .
n+1 (e Ek:mﬁ—lﬂk( et ) < u(n +1)

o

Remark 3. Using log(1 + x) = x + c(x)x? where ¢ is bounded on [—1/2,1/2], a modification of the proof leads
to liminf,, 1o nu, > 0 when Y77 < +o0.

Lemma 15. Assume that (0,,) is (L?,\/vn) consistent. Then, for alln >0,

A C2 _
Elf,]* < A, 51
00 S0 725 (51)
Let ny be defined in Lemma 18. Under the assumptions of Proposition 7:
C2 —
E|ZP? Sia 1_57116. (52)
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Proof: Under the assumption, E|0,,|* < ¢27,. Keeping in mind that §* = 0, we deduce from the Jensen inequality
that

A C2 S C2 _
(2 - D1 Sia 3"
k=1
For the second part of the proof, we use that:
20~ g, 20 4 2O

Thus,
. . .
ZOB < p(Eap )P 1ZOR+ (2P

<
< lewnl®10al® + 1617,

where in the second line, we used that ) is an orthogonal matrix. By Lemma 12, for every n > ny > ng,

Vi e Sp(D*), en,u] Sia ™ "7 5o that

K
2
—1+8
5(2) 2 n €2 B 2 3
E|IZDP Sia l i ] —p™ Tiogm
where in the second line, we used that nf“ﬁ < naHB < /2. o

Lemma 16. Let N be a positive integer and (un)n>0 be a sequence which satisfies

1 2
1— Cin™"
( n+1) +oun

with r € (1,2] and q € (2,3]. Assume that (C1, N) satisfies: C;N'~" < 1, Then,

v
[ C —-q
+ (n+ 1)2 + Can 7,

Yn>=N Upt1 < Unp

N2
Vn=N  u,< % + Oia (uNnQ +C1VnT" + Czn(q1)>

< % + n_TA(q_l)Oid (uNNTA(q_l) + C1V + CQ) .

Proof: For the sake of simplicity, in whole the proof, we will denote by ¢ any universal constant (i.e independent
of whole the parameters of the problem). An iteration of the inequality yields for all n > N

n n V B n

un <uny || T+ )] <k2+021<: Q> [T (53)
k=N+1 k=N+1 L=k+1

with Yy = (1 —1/¢)*> + C1(¢ — 1)™" and the conventions 2. =0and [[, = 1. Remark that

[l v ] (e () )

L=k+1 l=k+1

k2 = k2 20, -
nzexp<201€2€ )énQexp(Tl(k—l) ),

=k

N
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where in the last line, we used the inequality log(1l + x) < « for x > —1 and a comparison between series and
integrals. Now, a constant c exists such that exp(z) < 1 + cz on [0, 2] and with the condition C; N'=" < 1, we
get for every ke {N +1,...,n— 1},

< k2 k?
[T Te< =5 (Q+cCik'™) <.
l=k+1 n n

Plugging this inequality into (53) leads to: for all n > N,

2 _ n "
UNN T V(n N) T CClV Z klir + CCQ Z kg,q

Uy < C
n? n? n?

2
k=N+1 =N+

\%
gi
n

N2
+c (UN2 +C1 VT + an_(q_1)> .
n

This yields the first inequality. The second one follows easily.

Appendix B: Growth at infinity under the KL gradient inequality
In this section, we prove the property (10) of Proposition 2. Without loss of generality, we can assume that
0* = f(6*) = 0.

Proof: Consider 0 < t < s and € R?. We then associate the solution of the differential equation associated to
the flow —V f initialized at x:

Xz (0) = and Xa = _vf(Xac)
The length of the curve L(xz,t,s) is defined by

Lxast,5) = j e (7).

Under Assumption (Hicy ), we can consider ¢(a) = §—- and we have that

@' (f(@)[Vf(x)] =m>0.

We now observe that e : s — o(f(xz(s))) satisfies:

6/(7') = (p/(f(Xx (T)))<vf(Xw<7—))7 XI(T)>
=~ (fOONIV )P
—m|Xa(7)|

N

We deduce that:

t

eft) ~el) = |

S

¢(r)dr > mj e (P)ldr = mL(xa t,5) (54)
t

Now choosing ¢ = 0 and s — 400, we have e(0) —lims_,; e(s) = o(f(x)) —¢(min f) = ¢(f(z)), and Equation
(54) yields
o(f(z)) = mL(xz,0, +0) = m|z|

because x,(+00) = argmin f = 0. We deduce that
1

(@) = ¢ mle]) = {m - )}

which is the desired conclusion. o

34



