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Abstract
This paper is devoted to the non-asymptotic analysis of the Ruppert-Polyak averaging method introduced

in [26] and [28] for the minimization of a smooth function f with a stochastic algorithm. We first establish
a general non-asymptotic optimal bound: if θ̂n is the position of the algorithm at step n, we prove that

E|θ̂n ´ arg minpfq|2 ď
TrpΣ‹q

n
` Cd,fn

´rβ ,

where Σ‹ is the limiting covariance matrix of the CLT demonstrated in [26] and Cd,fn
´rβ is a new state-

of-the-art second order term that translates the effect of the dimension. We also identify the optimal gain
of the baseline SGD γn “ γn´3{4, leading to a second-order term with r3{4 “ 5{4. Second, we show that
this result holds under some Kurdyka- Lojiasewicz-type condition [21, 22] for function f , which is far more
general than the standard uniformly strongly convex case. In particular, it makes it possible to handle some
pathological examples such as on-line learning for logistic regression and recursive quantile estimation.

1 Introduction

We consider the problem of minimizing f : Rd Ñ R when f P C2pRd,Rq, lim|θ|Ñ`8 fpθq “ `8 and θ‹ is the
unique critical point of f , so that θ‹ “ argminpfq. Let us assume that ∇f admits the following representation:
a measurable function Λ : Rd ˆ Rp Ñ Rd and a random variable Z with values in Rp exist such that:

@θ P Rd, ∇fpθq “ EZ„µrΛpθ, Zqs. (1)

Without loss of generality, we assume in the paper that fpθ‹q “ 0.

1.1 Averaging principle for stochastic algorithms

Stochastic Gradient Descent The Robbins-Monro procedure (see [27]) is built with an i.i.d. sequence of
observations pZiqiě1 distributed according to µ. Under some mild assumptions, the minimizers of f can be
approximated with a stochastic gradient descent (SGD) pθnqně0 defined by: θ0 P Rd and

@n ě 0, θn`1 “ θn ´ γn`1Λpθn, Zn`1q, (2)

where pγnqně1 is a non-increasing gain sequence of positive numbers such that:

γn “ γn´β withβ P r1{2, 1q and Γn “
n
ÿ

k“1

γk „
γ

1´ β
n1´β .

Equation (2) is sometimes written as a noisy gradient descent:

@n ě 0 : θn`1 “ θn ´ γn`1∇fpθnq ` γn`1∆Mn`1, (3)

where p∆Mn`1qně0 stands for a sequence of noises (martingale increments), i.e. @n ě 1, E r∆Mn`1|Fns “ 0,
where pFnqně0 is the filtration defined by Fn “ σpZ1, . . . , Znq for n ě 1, F0 is the trivial σ-field and for a given
σ-field G, Er . |Gs stands for the related conditional expectation.
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Averaging The Ruppert-Polyak averaging procedure (referred to as RP below) consists in introducing a
Cesaro average over the past iterations of the SGD:

θ̂n “
1

n

ÿn

k“1
θk, n ě 1.

This averaging procedure is a way to improve the convergence properties of the original SGD pθnqně1. We recall

the CLT associated with pθ̂nqně0, the statement is adapted from [26]1 in the strongly convex situation SCpαq:

SCpαq :“
 

f P C2pRdq : D2f ´ αId ě 0
(

(4)

where D2f stands for the Hessian matrix of f and inequality A ě 0 for any matrix A has to be understood in
the sense of quadratic forms.

Theorem 1 (Ruppert-Polyak CLT). Assume f P SCpαq, }D2f}8 ă 8 and limnEr∆Mn`1∆MT
n`1|Fns “ S‹

in probability, then:

?
npθ̂n ´ θ

‹q
L

ÝÝÝÝÝÑ
nÑ`8

N p0,Σ‹qwith Σ‹ “ tD2fpθ‹qu´1S‹tD2fpθ‹qu´1. (5)

This result is achieved asymptotically in the situation where f is assumed to be strongly uniformly convex
(For the sake of simplicity, we will only write strongly convex in the rest of the paper). We refer to [26] for
the initial asymptotic description and to [20] for some more general results. In [6], a non-asymptotic result is
obtained in the strongly convex situation under restrictive moment assumptions on the noisy gradients. The
problem is also tackled non asymptotically in some specific cases when the strong convexity property fails (on-
line logistic regression [3], recursive median estimation [11, 16] for example). But a non-asymptotic result for a
more general class of functions that preserves a sharp optimal Opn´1q rate of the L2-risk is missing yet.

Lp rates Beyond the L2-risk of the original SGD and of the averaged sequence, a popular alternative is also to
study some more general Lp-risk for a general p ě 2. Of course, such results are interesting by themselves and we
refer to [17] for a specific study of the geometric median estimation problem, and to [18] for a more general study
in locally strongly convex problems. But Lp-risks represent also a common intermediary step to derive some
L2-risk results for the averaged sequence with the help of a linearization of the drift term induced by averaging.
This is for example the case when looking for either asymptotic results (see e.g. [25]) or non-asymptotic ones
in specific situations (in the case of the logistic regression, we refer to [5] for instance).

Optimality and dimensional effect The bias-variance decomposition of the mean square error (M.S.E.)
associated with Theorem 1 induces that we cannot expect a behaviour of the M.S.E. lower than TrpΣ‹qn´1,
which is the variance brought by the Gaussian limit. Therefore, we will refer to a non-asymptotic optimal
M.S.E. upper bound as soon as we obtain an upper bound that holds for any n such that the first order term
is TrpΣ‹qn´1:

Er|θ̂n ´ θ‹|2s ď TrpΣ‹qn´1 ` a2n
´ρ. (6)

We emphasize that the leading term TrpΣ‹qn´1 corresponds to the Cramer-Rao lower-bound in some specific
cases of statistical models, so that it is also commonly admitted that the RP averaging cannot be improved to
obtain a lower variance (asymptotically or not) with any other estimation method.

Finally, we observe that TrpΣ‹q generally grows with the dimension of the ambient space d (of course it
depends on the nature of Σ‹), and so is expected the second order term with a2 in (6). As a common nowadays
statistical paradigm, we will pay a specific attention to the effect of d on the second order term in (6).

Below, we will obtain an optimal upper bound with the desired and unimprovable TrpΣ‹qn´1 leading term.
Nevertheless, we do not know at this stage whether the second order term essentially parametrized by a2 and
ρ ą 1 is also optimal or not.

1In [26], the result is stated in a more general framework with the help of a Lyapunov function. We have chosen to simplify the
statement for the sake of readability.
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1.2 Main contribution of the paper

We will prove a non-asymptotic result on a large set of functions that satisfy a Kurdyka- Lojasiewicz inequality:

Global KL inequality pHr
KLq The function f is C2pRd,Rq with D2f bounded and Lipschitz, D2fpθ‹q invertible

and for r P r0, 1{2s:
lim inf
|x|ÝÑ`8

f´r|∇f | ą 0 and lim sup
|x|ÝÑ`8

f´r|∇f | ă `8 (7)

We establish the next result (whose statement will be more general later on):

Theorem 2. Assume pHr
KLq. Suppose that the covariance of the martingale increment is Lipschitz continuous

and that Er|∆Mn`1|
6ep1`|∆Mn`1|

4
q
1{2´r

|Fns ă `8 a.s.. Then, a constant Cr exists such that:

Ep|θ̂n ´ θ‹|2q ď
TrpΣ‹q

n
` Cr

˜?
d

µ

¸3

n´pβ`1{2q^p2´βq,

where µ is the lowest eigenvalue of D2fpθ‹q.

Our main result is therefore an optimal non-asymptotic bound of the L2-risk for the RP-algorithm under
some very general assumptions beyond the traditional convexity point of view. Our bound is optimal at the first
order since it attains the Cramer-Rao lower bound (i.e. rate in OpTrpΣ‹qn´1q with the lowest possible variance)
and provides a second order term which is better than other results of the literature (see Table 1 for details).

Our proof strategy will be splitted into two steps. In a first stage, we obtain a general theorem under a
so-called consistency assumption on the original SGD pθnqně0 (see Section 2.2). In a second stage, we show
that this consistency assumption holds in the strongly convex case but also under the Kurdyka-  Lojasiewicz
inequality pHr

KLq (see [21, 22]), which is a much weaker situation than the traditionnal strongly convex settings.
This second part leads to some considerable improvements of state of the art results since important applica-
tions are not tackled by the strongly convex setting: typically on-line logistic regression or recursive quantile
approximation (among others). A range of applications are listed in the next table, enriched by a comparison
with existing results in the literature:

Setting Cramer-Rao 2nd order υn γn “ γ1n
´β Anytime

Our work

Strong. Convex
Convex (Smooth KL)
Logist. Reg. (KL)
Recurs. Quantile (KL)

Yes : TrpΣ‹q
n

n´pβ`
1
2
q^p2´βq,

υ‹n “ Opn´
5
4 q

β P p1{2, 1q
β‹ “ 3{4

Yes

BM(11) [6] Strong. Convex Yes : TrpΣ‹q
n

n´pβ`
1
2
q^p 3

2
´βq,

υ‹n “ Opn´
7
6 q

β P p1{2, 1q
β‹ “ 2{3

Yes

BM(11) [6]
Convex
Logist. Reg.
Recurs. Quantile

No: Opn´1{2
q

No: Opn´1{2
q

H

H β “ 1{2 Yes

B(14) [3] Logist. Reg. No: O
´

1
nλ2
mintD

2fpθ‹qu

¯

H β “ 1{2 No

CCGB(17) [16] Recurs. Quantile No: O
`

1
n

˘ n´pβ`
1
2
q^p 3

2
´βq,

υ‹n “ Opn´
7
6 q

β P p1{2, 1q
β‹ “ 2{3

Yes

Table 1: Overview of our results and comparisons with the literature. υ‹n refers to the optimal (smallest) size
of the second-order term when β is chosen equal to β‹.
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2 Main results

This section presents our main notations and our precise statements.

2.1 Notations

For any vector y P Rd, yT is the transpose of y and |y| is the Euclidean norm. The set MdpRq refers to the set
of squared real matrices of size dˆd and the tensor product b2 is used to refer to the following quadratic form:

@M PMdpRq @y P Rd Myb2 “ yTMy.

Id is the identity matrix and OdpRq denotes the set of orthonormal matrices:

OdpRq :“
 

Q PMdpRq : QTQ “ Id
(

.

Finally, the notation } . } corresponds to the operatorial norm on MdpRq:

}A} “
b

ρpATAq,

where ρpATAq refers to the largest eigenvalue of ATA. In the meantime, for any twice differentiable function
f , we introduce the following notation:

ρ8pfq :“ sup
xPRd

}D2fpxq},

which is the largest eigenvalue of D2f over the state space. We also define µ “ minp1, SppD2fpθ‹qqq and the
Lipschitz constant:

}D2f}Lip :“ inftc ě 1 : @px, yq P Rd }D2fpxq ´D2fpyq} ď c |x´ y|u.

For two positive sequences panqně1 and pbnqně1, the notation anÀidbn refers to a domination relationship,
i.e. an ď c bn where c ą 0 is independent of n and of the dimension of the ambient space d. The
binary relationship an “ Oidpbnq then holds if and only if |an|Àid|bn|.

2.2 Non asymptotic adaptive and optimal inequality

We state our main general result (Theorem 3) under some general assumptions on the noise part and on the
behavior of the Lp-norm of the SGD procedure pθnqně1 (pLp,

?
γnq-consistency). We introduce the next

property:

Definition 1 (pLp,
?
γnq-consistency). A SGD sequence pθnqně1 satisfies the pLp,

?
γnq-consistency if:

D cp ě 1, @n ě 1 E|θn|p ď cptγnu
p
2 .

Note that according to the Jensen inequality, the pLp,
?
γnq-consistency implies the pLq,

?
γnq-consistency for

any 0 ă q ă p with cq ď tcpu
q{p.

The above definition refers to the behaviour of the SGD pθnqně1 defined by Equation (2). We will prove

that it is a key property to derive sharp non-asymptotic bounds for the RP-algorithm pθ̂nqně1 (see Theorem 3
below).

We introduce an assumption on the covariance of the martingale increment:

Assumption pHSq The covariance of the martingale (3) satisfies:

E
“

∆Mn`1∆Mt
n`1|Fn

‰

“ Spθnq a.s.
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where S : Rd ÑMdpRq is a Lipschitz continuous function:

DL ą 0 @pθ1, θ2q P Rd }Spθ1q ´ Spθ2q} ď L|θ1 ´ θ2|.

The smallest value of L is denoted by }S}Lip.
When compared to Theorem 1, Assumption pHSq is more restrictive but in fact corresponds to the usual

framework. Under additional technicalities, this assumption may be relaxed to a local Lipschitz behaviour of
S. For reasons of clarity, we preferred to reduce our purpose to this reasonable setting.

Theorem 3 (Optimal non-asymptotic bound ). If pθnqně1 is pL4,
?
γnq-consistent, if pHSq holds and D2fpθ‹q

is positive-definite, then for any n:

E|θ̂n ´ θ‹|2 ď
TrpΣ‹q

n
` Cβpc4, f, Sq

˜?
d

µ

¸3

n´rβ with rβ “

ˆ

β `
1

2

˙

^ p2´ βq , (8)

and Σ‹ is defined in Equation (5) (with S‹ “ Spθ‹q). In particular, rβ ą 1 for all β P p1{2, 1q and β ÞÝÑ rβ
attains its maximum for β “ 3{4 and r3{4 “ 5{4.

The quantity Cβpc4, f, Sq is made precise in Proposition 7 . Theorem 3 deserves several remarks.

‚ Sharpness of the first order term: we obtain the exact optimal rate Opn´1q with the sharp constant TrpΣ‹q
as shown by Theorem 1. At the first order, Theorem 3 shows that the averaging is minimax optimal with respect
to the Cramer-Rao lower bound. The result is adaptive with respect to the value of the Hessian D2fpθ‹q: any
sequence γn “ γn´β with β P p1{2, 1q and γ ą 0, regardless the value of β or γ, produces the result of Theorem
3. Such an adaptive property does not hold for the initial sequence pθnqně1 as proved by the CLT satisfied by
the SGD pθnqně1 (see [13] for example).

‚ Second order term: Even though any value of β P p1{2, 1q yields a TrpΣ‹q
n leading term, the “optimal”

choice of β remains unclear. In [6] and [16], β “ 2{3 is motivated by the optimization of the second order term.

In particular, [6] obtains in the strongly convex case an upper bound of the order TrpΣ‹q
n `Opn´7{6q: Theorem

3 of [6] ensures that:
b

E|θ̂n ´ θ‹|2 ď
c

TrpΣ‹q

n
` Cn´2{3,

which in turn implies that E|θ̂n ´ θ‹|2 ď TrpΣ‹q
n ` 2C

a

TrpΣ‹qn
´2{3
?
n
` C2n´4{3 “

TrpΣ‹q
n `O

`

n´7{6
˘

.

Our Theorem 3 improves this second order term: β “ 3{4 leads to an upper bound of the order TrpΣ‹q
n `

Opn´5{4q. Moreover, for any value of β P p1{2, 1q, the second order term Opn´pβ`1{2q^p2´βqq in Theorem 3
is always better than Opn´pβ`1{2q^p3{2´βqq, the one of [6]. For further comments on this topic (including the
particular case of null third derivatives), we refer to Section 3.3.

Our result is also related to some recent works on some Berry-Esseen upper bounds derived for the CLT
stated in Theorem 1. Corollary 5 of [1] shows that for any Lipschitz and twice differentiable function h:

ˇ

ˇ

ˇ
Ehr

?
npθ̂n ´ θ

‹qs ´ EhpZq
ˇ

ˇ

ˇ
ď C

d2

?
n
,

where Z is a multivariate Gaussian random variable N p0,Σ‹q. However, this result is not exactly of the same
nature. Actually, in order to derive M.S.E. bounds (or at least L1-bounds), this would involve to apply the
above result to hpzq “ |z|2 (or to hpzq “ |z| for the L1-error). But this is not possible since hpzq “ |z|2 is
not Lipschitz and hpzq “ |z| is not differentiable everywhere. Furthermore, the bounds obtained in [1] seem to
strongly depend on these assumptions and it is not clear that technical extensions would allow to include such
types of functions. Thus, even though these techniques lead to sharp bounds, they seem to not be adapted to
derive second-order bounds for the M.S.E. of the L1-error.

Finally, we point out that the effect of the dimension d and of the lowest eigenvalue µ is sligthly stronger

on the second order term (proportional to n´rβ up to d3{2µ´3) than on the first order one (proportional to
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n´1 up to dµ´2). To the best of our knowlegde, Theorem 3 is the first non-asymptotic regret analysis of the
Ruppert-Polyak algorithm for a large classe of functions and identifies a dimension-dependent upper bound
d3{2µ´3n´rβ .
‚ Idea of the proof : the proof of Theorem 3 is achieved through a spectral analysis of the (non-homogeneous)

second-order Markov chain induced by pθn, θ̂nqně1. This spectral analysis requires a preliminary linearization

step of the drift from θ̂n to θ̂n`1. The cost of this linearization is absorbed by a preliminary control of the initial
sequence pθnqně1, obtained with the pLp,

?
γnq-consistency for p “ 4 (see Proposition 1 and Theorem 5). We

emphasize that this linearization applies regardless the global assumptions on the objective function: we only
impose a local curvature near θ‹.
‚ Anytime strategy : an important feature of on-line optimization algorithm is the anytime property, i.e., the

ability of the algorithm to produce an optimal performance regardless the choice of the stopping iteration time
since in many situations the final number of iterations is not known in advance. In general, such an anytime
property fails when the step-size sequence depends on the final horizon. One way to bypass this issue is to use
the doubling trick strategy (see, e.g. [12]) , which produces an anytime algorithm and that degrades the final
rate with a multiplicative log term. However, for the RP algorithm, such a doubling trick on the initial SGD
sequence is questionable: there is no recursive expression for the RP averaging associated with the doubling
trick strategy.

As indicated in our Theorem 3, in [6] (for strongly convex function) and [16] (quantile estimation), the
sequence pγnqně1 is chosen independently of the final horizon time, and the procedure is therefore anytime.
Oppositely, the step-size sequence proposed in [3] highly depends on the final number of iterations (the proposed
sequence is proportional to 1

2R2
?
n

where n is the stopping time: i.e. the strategy of [3] for on-line logistic

regression is not anytime).

2.3 pLp,
?
γnq-consistency

In Theorem 3, the control of the moments of the SGD sequence pθnqně1 is fundamental to derive (8). We first
deal with the strongly convex case.

2.3.1 pLp,
?
γnq-consistency with strong convexity

Here, we introduce an additional condition on the noise, denoted by pHSC
Σp
q.

Assumption pHSC
Σp
q For a given p P N‹, a constant Σp exists such that

@n ě 0 Er|∆Mn`1|
2p|Fns ď Σpp1` pfpθnqq

p a.s.

We emphasize that even though SCpαq is a potentially restrictive assumption on f , pHSC
Σp
q is not restrictive

and allows a polynomial dependency in fpθnq of the moments of ∆Mn, which is much weaker than the bounded
increments used in [6]. For example, such an assumption holds in the case of the recursive linear least square
problem. In that case, we retrieve the baseline assumption introduced in [13] that only provides an almost sure
convergence of pθnqně1 towards θ‹ without any rate. In this setting, we can state the following proposition.

Proposition 1. Assume that f is SCpαq, x ÞÝÑ D2fpxq is Lipschitz bounded and p∆Mnqně1 satisfies pHSC
Σp
q.

Then pθnqně1 is pLp,
?
γnq-consistent, i.e.

@p ě 1 D cp ą 0 E|θn ´ θ‹|p ď cptγnu
p{2.

The proof works using an induction on p, initialized at p “ 1 for integer values of p, and then may be
generalized to any p ě 1 thanks to the Jensen inequality. The proof of this result is well known in the strongly
convex situation and is left to the reader. Up to some minor modifications, the main arguments are also contained
in the more general result stated in Theorem 11 whose proof is given in Section 4.2. A direct consequence of
Proposition 1 and Theorem 3 is the next corollary.
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Corollary 4. If pHSq and the assumptions of Proposition 1 hold, then:

@n P N‹ E
”

|θ̂n ´ θ
‹|2

ı

ď
TrpΣ‹q

n
` Cβpc4, f, Sq

˜?
d

µ

¸3

n´rβ

where rβ is defined in Theorem 3 and Cβpc4, f, Sq in Proposition 7.

2.3.2 pLp,
?
γnq-consistency without strong convexity

In some interesting cases, the latter SCpαq is not suitable because the repelling effect towards θ‹ of ∇fpxq is not
strong enough for large values of |x|: this is the case for the logistic regression and the recursive quantile where
the function ∇f is asymptotically flat for large values of |x|. Motivated by these examples, we generalize the
class of functions f for which the pLp,

?
γnq-consistency property holds. For this purpose, we define Assumption

pHφq by:

Assumption pHφq D2f is bounded and Lipschitz, D2fpθ‹q invertible and:

• iq φ is C2pR`,R`q non-decreasing and Dx0 ě 0 : @x ě x0, φ2pxq ď 0.

• iiq Two positive numbers m and M exist such that @x P Rdztθ‹u:

0 ă m ď φ1pfpxqq|∇fpxq|2 ` |∇fpxq|
2

fpxq
ďM. (9)

Roughly speaking, φ quantifies the deficit of convexity far from θ‹.
When φ ” 1, we recover the previous case: SCpαq ùñ pHφq with φ ” 1. Actually, in this case, α1 ą 0 and
α2 ą 0 exist such that

α1

2
|x´ θ‹|2 ď fpxq ď

α2

2
|x´ θ‹|2, and α1|x´ θ

‹| ď |∇fpxq| ď α2|x´ θ
‹|.

But pHφq is more general since it can be true even when D2f vanishes.

The opposite case is φpxq “ x. In this setting, pHφq is satisfied when m ď |∇fpxq|2 ď M with some positive
m and M . Note that this framework includes the logistic regression and the recursive quantile (see Subsection
2.5).

For practical purposes, we introduced in Section 1.2 a parametric version of Assumption pHφq denoted by
pHr

KLq, which may be seen as a global Kurdyka- Lojasiewicz gradient inequality (see, e.g. [21, 22] and Subsection
2.4 for details). pHφq and pHr

KLq are linked by the following proposition.

Proposition 2. pHr
KLq ùñ pHφq for any non-decreasing C2-function φ : R` Ñ R` such that φpuq “ u1´2r on

r1,`8q. Furthermore,

lim inf
|x|Ñ`8

fpxq|x|´
1

1´r ą 0. (10)

The implication is easy to prove: near θ‹, fpxqÀid|x ´ θ‹|2 and |x ´ θ‹| À |∇fpxq| since ∇fpθ‹q “ 0 and

D2fpθ‹q ą 0 (in the sense of symmetric matrices) so that x ÞÑ |∇fpxq|2
fpxq is lower-bounded by a positive constant

near θ‹. Since θ‹ is the unique critical point of f , we can also repeat the same argument on any compact set of
Rd since f is twice differentiable and ∇f a continuous function. For large values of |x|, the lower-bound of (9)
is a direct consequence of (7). Finally, the upper-bound is a consequence of the fact that }D2f}8 ă `8 and
from (7) again. The proof of (10) is postponed to Appendix 4.2. Note that this property will be important to
derive the pLp,

?
γnq-consistency (see Theorem 5). Further comments are postponed to Subsection 2.4 and the

rest of this paragraph is devoted to the main consequences of pHφq and pHr
KLq .

As in SCpαq, Assumptions pHφq and pHr
KLq need to be combined with some (more stringent) assumption

on the martingale increment:
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Assumption pHφ

Σ̄p
q A constant Σ̄p exists such that:

@n ě 0, Er|∆Mn`1|
2p`2eφpγ1|∆Mn`1|

2
q|Fns ď Σ̄p a.s. (11)

Remark 1. The general form of this assumption can be roughly explained as follows: the main idea of Theorem
5 below is to use the function x ÞÑ fppxqeφpfpxqq to obtain a contraction property. When p∆Mnqně1 is bounded,

pHφ

Σ̄p
q is automatically satisfied (this is the case for the recursive quantile and for the logistic regression of

bounded variables: see Subsection 2.5). In some cases, Assumption pHφ

Σ̄p
q may appear a little bit restrictive

since it asks for some exponential moment on the noise ∆Mn`1 that applies at each iteration of the algorithm.
However, note that in [Bach, 2014], the assumption is clearly stronger since the work requires that the noisy
gradients are bounded almost surely. In particular, the assumption of [Bach, 2014] relies on ∇fpθnq `∆Mn`1

and not simply on ∆Mn`1. Implicitely, it introduces a kind of boundedness assumption on the sequence pθnqně1

itself. Secondly, our assumption pHφ

Σ̄p
q introduces a kind of continuum effect between strongly and weakly convex

cases through the effect of the function φ, which typically evolves like φpuq “ u1´2r with r between 0 (very weakly
convex case) and 1{2 (strongly convex case).

We state the main result for a potentially non-convex function f .

Theorem 5. For any p ě 1, if f satisfies pHφq and pHφ

Σ̄p
q holds, then:

iq A constant cp exists such that:

Erfppθnqeφpfpθnqqs ď cptγnu
p.

iiq If lim inf |x|Ñ`8 |x|
´2pfppxqeφpfpxqq ą 0, then pθnqně1 is pL2p,

?
γnq-consistent:

E|θn ´ θ‹|2p ď cptγnu
p.

iiiq If pHr
KLq holds, pθnqně1 is pL2p,

?
γnq-consistent.

Proof. The proof of iq is postponed to Section 4 and is stated in Theorem 11.
iiq is a consequence of iq: actually, we only need to prove that the function τpxq “ fppxqeφpfpxqq, x P Rd,
satisfies infxPRdzt0u τpxq|x´ θ

‹|´2p ą 0. Near θ‹, D2fpθ‹q is positive-definite and x ÞÑ τpxq|x´ θ‹|´2p is lower-

bounded by a positive constant. Since τ is positive on Rd, the result follows from the additional assumption
lim inf |x|Ñ`8 τpxq|x|

´2p ą 0.
Finally, for iiiq, we have to prove that the additional assumption of iiq holds under pHr

KLq. It is a consequence

of (10) and φpxq “ p1` |x|2q
1´2r

2 . ˝

Theorem 3 allows to derive non-asymptotic bounds under pHφq.

Corollary 6. Assume pHSq, pHφq and pHφ

Σ̄p
q with p “ 2, then:

@n P N‹ E
”

|θ̂n ´ θ
‹|2

ı

ď
TrpΣ‹q

n
` Cβpc4, f, Sq

˜?
d

µ

¸3

n´rβ ,

where c4 is given in Theorem 11 and rβ is defined in Theorem 3.

At first sight, the result brought by Corollary 6 may appear surprising: we obtain a Op1{nq rate for the
mean-squared error of the averaged sequence towards θ‹ without strong convexity, including, for example, some
situations where fpxq „ |x| as |x| Ñ `8. However, this result does not contradict the minimax rate of
convergence Op1{

?
nq for stochastic optimization problems in the simple convex case (see, e.g. [2] or [23]). The

above minimax result Op1{
?
nq simply refers to the worst situation in the class of convex functions that are
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not necessarily differentiable, whereas pHφq describes a set of functions that are not necessarily strongly convex
or even simply convex, but all these functions belong to C2pRd,Rq and have a positive curvature around θ‹.
In particular, the worst case is attained in [2] through linear combinations of shifted piecewise affine functions
x ÞÝÑ |x` 1{2| and x ÞÝÑ |x´ 1{2|, functions for which Assumption pHφq is obviously not satisfied. According
to the results in Appendix H of [4], the local curvature near θ‹ makes it possible to obtain a Opn´1q rate whereas
the smoothness assumption allows to obtain a precise constant, leading to the Cramer-Rao lower bound in the
specific setting of [4].

2.4 Comments on pHφq and link with the Kurdyka- Lojasiewicz inequality

To the best of our knowledge, this is the first work that uses this in stochastic optimization and it thus deserves
several comments.

f does not necessarily need to be convex It is important to notice that the function f itself is not
necessarily assumed to be convex. The minimal requirement is that f possesses a unique critical point. Our
analysis will be based on a descent lemma for the SGD pθnqně0. We will use a Lyapunov analysis that will
involve fpeφpfq instead of f itself for the sequence pθnqně0. The descent property will then be derived from
Equation (9) in iiq of pHφq. Thereafter, we will be able to exploit a spectral analysis of the dynamical system

that governs pθ̂nqně0. We stress that usually the results without any convexity assumption are usually limited
to almost sure convergence with the help of the Robbins-Siegmund Lemma (see, e.g. [13]). As will be shown

later on, pHφq will be sufficient to derive efficient convergence rates for the averaged sequence pθ̂nqně0 without
any strong convexity.

f is necessarily sub-quadratic and L-smooth pHφq entails an a priori upper bound for f that cannot
increase faster than a quadratic form. We have:

@x P Rd
|∇fpxq|2

fpxq
ďM ùñ |∇p

a

fq| ď

?
M

2

ùñ fpxq ď
M

4
}x´ θ‹}2.

However, we also need a slightly stronger condition with D2f bounded over Rd, meaning that f is L-smooth
for a suitable value of L (with an L-Lipschitz gradient). We refer to [24] for an introduction to this class of
functions. Even in deterministic settings, the L-smooth property is a minimal requirement for good convergence
rates in smooth optimization problems (see, e.g. [7]).

About the Kurdyka- Lojasiewicz inequality pHφq should be related to the KL inequalities. The  Lojasiewicz
gradient inequality [22] with exponent r is:

Dm ą 0 D r P r0, 1q @x P Rd fpxq´r|∇fpxq| ě m, (12)

while a generalization (see, e.g., [21]) is governed by the existence of a concave increasing “desingularizing”
function ψ such that: |∇pψ ˝ fq| ě 1. The  Lojasiewicz gradient inequality is then just a particular case of
the previous inequality while choosing ψptq “ ct1´r. We refer to [8] that characterizes some large families of
functions f such that a generalized KL-inequality holds.

In this paper, the KL-type gradient inequality appears through pHr
KLq with r P r0, 1{2s, which implies pHφq

(see Proposition 2). However, it should be noticed that pHr
KLq is slightly different from (12) since we only

enforce the function f´r|∇f | to be asymptotically lower-bounded by a positive constant.
In fact, in our setting where f has only one critical point and where D2fpθ‹q ą 0, it is easy to prove that

pHr
KLq implies (12) everywhere: around θ‹, D2fpθ‹q is positive definite so that we could choose r “ 1{2 and
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then satisfy the  Lojasiewicz gradient inequality (12) near θ‹ so that the link between pHr
KLq given in (7) and

(12) has to be understood for large values of |x|.
Moreover, Proposition 2 states that the classical  Lojasiewicz gradient inequality (12) associated with the

assumption of local invertibility of D2fpθ‹q implies pHφq. The choice r “ 1{2 in Equation (12) corresponds to
the strongly-convex case with φ “ 1 and ψptq “

?
t. Conversely, the  Lojasiewicz exponent r “ 0 corresponds to

the weak repelling force |∇fpxq|291 as |x| Ñ `8 and φptq “
?

1` t2, leading to ψptq “ t.
Finally, the interest of pHφq in the stochastic framework is related to the behavior of the algorithm when

pθnqně1 is far from θ‹, whereas in the deterministic framework, the main interest of the desingularizing function
ψ is used around θ‹ to derive fast linear rates even in non strongly convex situations (see e.g. [9]). The difficulty
to assert some good properties of stochastic algorithms is not the same as the one for deterministic problems: it
is more difficult to control the time for a stochastic algorithm to come back far from θ‹ than for a deterministic
method with a weakly reverting effect of ´∇f because of the noise on the algorithm. In contrast, the rate of a
deterministic method crucially depends on the local behavior of ∇f around θ‹ (see, e.g. [9]).

Dissipative condition We also observe from Proposition 2 that pHφq has no prior link with a dissipativity
condition standardly used in theory of P.D.E. and stochastic processes for assessing trend to equilibrium of
dynamical systems

fpxq ě α|x|2 ´ β.

Consider fpxq “ |x|ρ, we verify easily that dissipativity holds for ρ ě 2 whereas pHφq is verified when ρ ď 2.

Counter-examples of the global KL inequality Finally, we should have in mind what kind of functions
do not satisfy the global  Lojasiewicz inequality (12). Since we assumed f to have a unique minimizer θ‹ with
D2fpθ‹q invertible, f´r|∇f | ě m ą 0 should only fail asymptotically. From Equation (10) of Proposition 2,
we know that |x|Àidfpxq for large values of |x|. As a consequence, any function f with logarithmic growth
or comparable to |x|r growth with r P p0, 1q at infinity can not be managed by this assumption. Another
counter-example occurs when f exhibits an infinite sequence of oscillations in the values of f 1 ě 0 with longer
and longer areas near f 1 “ 0 when |x| is increasing. We refer to [9] for the following function that does not
satisfy KL for any r ě 2: fpxq “ x2rr2` cospx´1qs if x ‰ 0 and fp0q “ 0.

2.5 Applications

Strongly convex situation First, Corollary 4 provides a very tractable criterion to assess the non-asymptotic
first-order optimality of the averaging procedure since SCpαq is easy to check. For example, considering the
recursive mean square estimation problem (see, i.e., [13]), θ ÝÑ fpθq is quadratic. In that case, the
problem is strongly convex, and the noise increment satisfies:

Er|∆Mn|
2p|Fns ď Σpp1` pfpθnqq

p a.s.

Then Proposition 1 yields the pLp,
?
γnq consistency rate of pθnqně1, which implies a first-order optimal excess

risk for pθ̂nqně1 with a Opn´5{4q second-order term. We stress that [6] also proves a sharp non-asymptotic
Op1{nq rate of convergence with a Opn´7{6q second-order term and a more restrictive assumption on ∆Mn.
Hence, Corollary 4 yields a stronger result in that case.

Assumptions pHφq and pHφ

Σ̄p
q hold in many situations

‚ Semi-algebraic case Before explicit examples, an argument relies on the statement of Theorem 2 of [8]:
a coercive convex proper and semi-algebraic continuous function f (see [8] for some details), satisfies the KL
inequality.
‚ On-line logistic regression The logistic regression corresponds to:

fpθq :“ E
“

log
`

1` e´YăX,θą
˘‰

(13)
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where X is a Rd random variable and Y |X takes its value in t´1, 1u with:

P rY “ 1 |X “ xs “
1

1` e´ăx,θ‹ą
. (14)

We then observe a sequence of i.i.d. replications pXi, Yiq and the SGD is:

θn`1 “ θn ` γn`1
YnXn

1` eYnăθn,Xną
“ θn ´ γn`1∇fpθnq ` γn`1∆Mn`1. (15)

We state the following result:

Proposition 3. If the law of X is compactly supported and elliptic: for any e P Sd´1pRdq, V arpă X, e ąq ą 0.
Then

iq f defined in (13) is convex with D2f bounded and Lipschitz continous, D2fpθ‹q is invertible and f satisfies
pHr

KLq with r “ 0.

iiq If Σ‹ is defined in (5), the averaged sequence pθ̂nqně1 satisfies:

DCd ą 0 @n ě 1 E|θ̂n ´ θ‹|2 ď
TrpΣ‹q

n
` Cdn

´5{4.

Proof: We study iq. Some straightforward computations yield:

∇fpθq “ E

«

X
“

eăX,θą ´ eăX,θ
‹
ą
‰

r1` eăX,θąs r1` eăX,θ‹ąs

ff

and D2fpθqk,l “ E
„

XkXle
ăX,θą

p1` eăX,θąq2



We deduce that ∇fpθ‹q “ 0 and that (see [3] for example) f is convex with

ă θ ´ θ‹,∇fpθq ą“ E

«

ră X, θ ą ´ ă X, θ‹ ąs
“

eăX,θą ´ eăX,θ
‹
ą
‰

r1` eăX,θ‹ąs r1` eăX,θąs

ff

ě 0,

because px ´ yqrex ´ eys ą 0 for every pair px, yq such that x ‰ y. It implies that θ‹ is the unique minimizer

of f . Moreover, D2fpθ‹q “ E
”

XXT eăX,θ
‹ą

p1`eăX,θ‹ą

ı

is invertible as soon as the design matrix is invertible. This

property easily follows from the ellipticity condition on the distribution of the design:

@e P Sd´1pRdq V arpă X, e ąq “ eTErXXT se ą 0,

which proves that the Hessian D2fpθ‹q is invertible. Regarding now the asymptotic norm of |∇fpθq|, the
Lebesgue Theorem yields, @e P Sd´1pRdq:

limtÝÑ`8|∇fpteq| “

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

X1ăX,eąě0 ´Xe
ăX,θ‹ą1ăX,eąă0

1` eăX,θ‹ą

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

C

E

«

X1ăX,eąě0 ´Xe
ăX,θ‹ą1ăX,eąă0

1` eăX,θ‹ą

ff

, e

Gˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ă X, e ą 1ăX,eąě0´ ă X, e ą eăX,θ
‹ą1ăX,eąă0

1` eăX,θ‹ą

ffˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

E
„

ă X, e ą 1ăX,eąě0

1` eăX,θ‹ą

ˇ

ˇ

ˇ

ˇ

^

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ă X,´e ą eăX,θ
‹ą1ăX,´eąě0

1` eăX,θ‹ą

ffˇ

ˇ

ˇ

ˇ

ˇ

11



where we used the orthogonal decomposition on e and eK. Hence for any e, limtÝÑ`8|∇fpteq| ą 0. The
Cauchy-Schwarz inequality | ă X, θ‹ ą | ď |X||θ‹| yields:

ă X, e ą 1ăX,eąě0

1` eăX,θ‹ą
ěă X, e ą e´|X||θ

‹
|1ăX,eąě0

2
.

In a same way, we also observe that

ă X,´e ą eăX,θ
‹
ą1ăX,´eąě0

1` eăX,θ‹ą
“
ă X,´e ą 1ăX,´eąě0

1` e´ăX,θ‹ą
ěă X,´e ą e´|X||θ

‹
|1ăX,´eąě0

2
.

The assumption on the ellipticity of the design X yields @e P Sd´1pRdq:
ˇ

ˇ

ˇ

ˇ

E
„

ă X, e ą 1ăX,eąě0

1` eăX,θ‹ą


ˇ

ˇ

ˇ

ˇ

ą 0 and

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ă X,´e ą eăX,θ
‹
ą1ăX,´eąě0

1` eăX,θ‹ą

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ą 0.

Since Sd´1pRdq is a compact space and that e ÞÝÑ
ˇ

ˇ

ˇ
E
”

ăX,eą1ăX,eąě0

1`eăX,θ‹ą

ı
ˇ

ˇ

ˇ
^

ˇ

ˇ

ˇ

ˇ

E
„

ăX,´eąeăX,θ
‹ą1ăX,´eąě0

1`eăX,θ‹ą


ˇ

ˇ

ˇ

ˇ

is a

continuous function (by the Lebesgue continuity theorem), we thus obtain that:

inf
ePSd´1pRdq

ˇ

ˇ

ˇ

ˇ

E
„

ă X, e ą 1ăX,eąě0

1` eăX,θ‹ą


ˇ

ˇ

ˇ

ˇ

^

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ă X,´e ą eăX,θ
‹
ą1ăX,´eąě0

1` eăX,θ‹ą

ffˇ

ˇ

ˇ

ˇ

ˇ

ą 0.

We then deduce that:

lim inf
|θ|ÝÑ`8

|∇fpθq| ě 1

2
inf

ePSd´1pRdq
E
”

ă X, e ą` e
´|X||θ‹|

ı

ą 0.

It is straightforward to check that lim sup|θ|ÝÑ`8 |∇fpθq| ă `8, which concludes the proof of iq.
We now prove iiq and apply Corollary 6. In that case, Assumption pHr

KLq holds with r “ 0. Regarding

Assumption pHφ

Σ̄p
q, we can observe that the martingale increments are bounded owing to the boundedness of

X (see [3], for example) and Inequality (11) is satisfied. Hence, Corollary 6 implies that pθnqně1 is a Lp-t
?
γnu

consistent sequence for any p ě 2. We can therefore apply Theorem 3 for the averaging procedure pθ̂nqně1, with
Σ‹ given in (5). This ends the proof. ˝

Recursive quantile The recursive quantile estimation problem is a standard example that may be stated
as follows (see, e.g. [13] for details). For a given cumulative distribution G defined over R, the problem is to
find qα such that Gpqαq “ 1 ´ α. We assume that we observe a sequence of i.i.d. pXiqiě1 distributed with a
cumulative distribution G. The recursive quantile is then:

θn`1 “ θn ´ γn`1 r1Xnďθn ´ p1´ αqs “ θn ´ γn`1rGpθnq ´ p1´ αqs ` γn`1∆Mn`1,

In that situation, the function f 1 is defined by:

f 1pθq “

ż θ

qα

ppsqds “ Gpθq ´Gpqαq,

where p is the density with respect to the Lebesgue measure such that Gpqq “

ż q

´8

p. Below, we consider

the case where p is a Lipschitz continuous function with ppqαq ą 0. To satisfy fpqαq “ 0, we define f by:

fpθq :“
şθ

qα

şu

qα
ppsqdsdu, whose minimum is 0 and is attained when θ “ qα. It can immediately be checked that

f2pqαq ‰ 0 as soon as ppqαq ą 0 and f 1pθq ÝÑ 1 ´ α when θ ÝÑ `8 while f 1pθq ÝÑ ´α when θ ÝÑ ´8.
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Therefore, f satisfies pHφq since pHr
KLq and Equation (12) hold with r “ 0 and φptq “ t. Again, regarding

Assumption pHφ

Σ̄p
q, we can observe that the martingale increments are bounded. Therefore, Inequality (11) is

obviously satisfied since φ is a monotone increasing function. Corollary 6 implies that pθ̂nqně1 satisfies:

@n ě 1 E|θ̂n ´ qα|2 ď
αp1´ αq

ppqαqn
`O

ˆ

n´5{4

ppqαq3

˙

2.6 Organization of the paper

The rest of the paper is dedicated to the proofs, organized as follows.
In Section 3, we detail our spectral analysis of the behavior of pθ̂nqně1 and we provide the main tools for the
proof of Theorem 3, that we conclude in Section 3.1. In particular, Proposition 7 provides the main argument
to derive the sharp exact first-order rate of convergence, and the results postponed below in Section 3 only
represent technical lemmas that are useful for the proof of Proposition 7. Section 4 is dedicated to the proof of
the pLp,

?
γnq-consistency under pHφq (proof of Theorem 5 iq). The generalization to the stronger situation of

strong convexity (Proposition 1) is left to the reader (it only requires slight changes).

3 Non asymptotic optimal averaging procedure

We first assume without loss of generality that θ‹ “ 0 and that fpθ‹q “ 0. Our proof relies on a spectral
strategy developed by [15] for the study of the Heavy Ball with Friction stochastic algorithm. For the sake of
convenience, we assume below that γ “ 1, which means that γn “ n´β .

3.1 Proof of Theorem 3

The starting point is to exhibit the coupled dynamics of pθn, θ̂nq. For this purpose, we introduce the notation
for the drift at time n:

Λn :“

ż 1

0

D2fptθnqdt so that Λnθn “ ∇fpθnq, (16)

using the Taylor formula and the fact that ∇fpθ‹q “ 0. The recursive evolution of pθn, θ̂nq is then precised in
the next proposition.

Proposition 4. If Zn “ pθn, θ̂nq, then:

Zn`1 “

ˆ

Id ´ γn`1Λn 0
1

n`1 pId ´ γn`1Λnq p1´ 1
n`1 qId

˙

Zn ` γn`1

ˆ

∆Mn`1
∆Mn`1

n`1

˙

. (17)

Proof: We start from θ̂n`1 “ θ̂n `
1

n`1

´

θn`1 ´ θ̂n

¯

. Now, Equation (2) yields:

@n P N
"

θn`1“ θn ´ γn`1∇fpθnq ` γn`1∆Mn`1

θ̂n`1“ θ̂np1´
1

n`1 q `
1

n`1 pθn ´ γn`1∇fpθnq ` γn`1∆Mn`1q .

The result then follows from (16). ˝

The next result describes the linearization (Λn is replaced by Λ‹ :“ D2fpθ‹q).

Proposition 5. Q P OdpRq exists such that Žn “

ˆ

Q 0
0 Q

˙

Zn satisfies:

Žn`1 “ AnŽn ` γn`1

ˆ

Q∆Mn`1
Q∆Mn`1

n`1

˙

` γn`1

ˆ

QpΛ‹ ´ Λnqθn
QpΛn ´ Λ‹q θnn`1

˙

looooooooooooooomooooooooooooooon

:“υ̌n

, (18)

13



where D‹ is the diagonal matrix associated to the eigenvalues of Λ‹ and

An :“

ˆ

Id ´ γn`1D
‹ 0

1
n`1 pId ´ γn`1D

‹q p1´ 1
n`1 qId

˙

. (19)

Proof: We write Λn “ D2fpθ‹q
looomooon

:“Λ‹

`pΛn ´D
2fpθ‹qq and use the spectrum of Λ‹.

Zn`1 “

ˆ

Id ´ γn`1Λ‹ 0
1

n`1 pId ´ γn`1Λ‹q p1´ 1
n`1 qId

˙

Zn ` γn`1

ˆ

∆Mn`1
∆Mn`1

n`1

˙

` υn, (20)

where the term υn will be shown to be negligible and is defined by

υn :“ γn`1

ˆ

pΛ‹ ´ Λnqθn
pΛn ´ Λ‹q θnn`1

˙

.

The matrix Λ‹ is the Hessian of f at θ‹ and is a symmetric positive matrix, which may be reduced into a diagonal
matrix D‹ “ Diagpµ‹1, . . . , µ

‹
dq with positive eigenvalues in an orthonormal basis: DQ P OdpRqΛ‹ “ QTD‹Q

with QT “ Q´1. The new sequence adapted to the spectral decomposition of Λ‹ is:

Žn “

ˆ

Q 0
0 Q

˙

Zn “

ˆ

Qθn
Qθ̂n

˙

. (21)

Using QΛ‹ “ D‹Q, we obtain the equality described in Equation (18). ˝

An important feature about pŽnqně1q is the blockwise structure of An:

An “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

–

1´ γn`1µ
‹
1 0 . . . 0

0 1´ γn`1µ
‹
2 . . .

...
... . . .

. . .
...

0 . . . 0 1´ γn`1µ
‹
d

fi

ffi

ffi

ffi

ffi

fl

0d

»

—

—

—

—

—

—

–

1´γn`1µ
‹
1

n`1
0 . . . 0

0
1´γn`1µ

‹
2

n`1
. . .

...
... . . .

. . .
...

0 . . . 0
1´γn`1µ

‹
d

n`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

p1´ 1
n`1

qId

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (22)

The matrices made of components pi, iq pi, d` iq, pd` i, iq and pd` i, d` iq have a similar form, which is the
object of the next proposition.

Proposition 6. For µ P R and n ě 1, set Eµ,n :“

ˆ

1´ γn`1µ 0
1´µγn`1

n`1 1´ 1
n`1

˙

.

‚ If 1´ µγn`1pn` 1q ‰ 0, define εµ,n`1 by:

εµ,n`1 :“
1´ µγn`1

1´ µγn`1pn` 1q
, (23)

The eigenvalues of Eµ,n are then given by SppEµ,nq “
!

1´ µγn`1, 1´
1

n`1

)

, whereas the associated eigenvectors
are:

uµ,n “

ˆ

1
εµ,n`1

˙

and v “

ˆ

0
1

˙

.

‚ If 1´ µγn`1pn` 1q “ 0, Eµ,n is not diagonalizable in R.
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At this stage, we point out that the eigenvectors are modified from one iteration to another in our spectral
analysis of pθ̂nqně1 (see Lemma 12).

Remark 2. The spectral decomposition of Eµ,n will be important below.

• Eµ,n (and An) is not symmetric (see Equation (22)), leading to a non-orthonormal change of basis and

some difficulties for the study of pŽnqně1.

• To a lesser extent, it is also interesting to point out that this “no self-adjointness” property of An is a
new example of acceleration of convergence rates with the help of non symmetric dynamical systems. (see
[29, 14, 10, 15]).

• The first eigenvalue of Eµ,n is 1´ µγn`1, and essentially acts on the component θn of the vector Zn. We
recover a standard contraction on the SGD.

• Interestingly, the second eigenvalue of Eµ,n is 1 ´ pn ` 1q´1, which is independent of the value of µ.

This eigenvalue acts on the component brought by θ̂n in the vector Zn, and is at the core of our study of
pθ̂nqně1.

From the factorization Eµ,n “

ˆ

1 0
εµ,n`1 1

˙ˆ

1´ µγn`1 0
0 1´ 1

n`1

˙ˆ

1 0
´εµ,n`1 1

˙

, we define the diagonal

matrix En,D‹ by:
En,D‹ “ Diagpεµ‹1,n`1, . . . , εµ‹d,n`1q, (24)

we then deduce the spectral decomposition of An:

An “

ˆ

Id 0
En,D‹ Id

˙ˆ

Id ´ γn`1D
‹ 0

0 p1´ 1
n`1 qId

˙ˆ

Id 0
´En,D‹ Id

˙

. (25)

We introduce the last change of basis as:

rZn :“

ˆ

Id 0
´En,D‹ Id

˙

Žn “:

˜

rZ
p1q
n

rZ
p2q
n

¸

. (26)

For the sequence p rZnqně1, the following proposition holds:

Proposition 7. Assume pHSq and pθnqně1 is a pL4,
?
γnq-consistent:

• iq A constant c4 exists such that: @n ě 1 E
ˇ

ˇ

ˇ

rZ
p1q
n

ˇ

ˇ

ˇ

4

ď c4γ
2
n.

• iiq Let β P r1{2, 1s, rβ “ tpβ ` 1{2q ^ p2´ βqu ą 1 and n1 be the positive integer defined in Lemma 13.
For any n ě n1:

E
ˇ

ˇ

ˇ

rZp2qn

ˇ

ˇ

ˇ

2

ď
TrpΣ‹q

n
` Cβpc4, f, Sq

˜?
d

µ

¸3

Oid
`

n´rβ
˘

.

where Cβpc4, f, Sq “ c4p1´ βq
´1Cf,S with Cf,S “ }D

2f}Lip ` }S
‹} ` }S}Lip.

We are driven to the “optimal” choice β “ 3{4, which in turns implies that:

@n P N‹ E| rZp2qn |2 ď
TrpΣ‹q

n
` c4Cf,S

˜?
d

µ

¸3

Oid
´

n´5{4
¯

.
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Proof. Proof of iq: By Equations (21) and (26), rZ
p1q
n “ Qθn. The pLp,

?
γnq-consistency of p rZ

p1q
n qně1 then comes

from the one of pθnqně1.

Proof of iiq: We pick n0 such that @n ě n0 : εµ,n ă 0 for any µ P SppΛ‹q.

Step 1: Recursion formula. In order to study the behavior of the L2-norm of p rZ
p2q
n qně0, we first precise the

relationship between rZn and rZn`1. Equations (18) and (20) combined with definitions (21) and (26) yield:

rZn`1 “

ˆ

Id 0
´En`1,D‹ Id

˙

Žn`1

“

ˆ

Id 0
´En`1,D‹ Id

˙ˆ

AnŽn ` γn`1

ˆ

Q∆Mn`1
Q∆Mn`1

n`1

˙

` υ̌n

˙

“

ˆ

Id 0
´En`1,D‹ Id

˙ˆ

Id 0
En,D‹ Id

˙ˆ

Id ´ γn`1D
‹ 0

0 p1´ 1
n`1

qId

˙

rZn

` γn`1

„ˆ

Q∆Mn`1

p´En`1,D‹ `
Id
n`1

qQ∆Mn`1

˙

`

ˆ

QpΛ‹ ´ Λnqθn
pEn`1,D‹ ´

Id
n`1

qQpΛ‹ ´ Λnqθn

˙

,

where we used the eigenvalues of An in (25). D2f is Lipschitz so that:

}Λ‹ ´ Λn} ď

ż 1

0

}D2fptθnq ´D
2fp0q}dt ď

1

2
}D2f}Lip|θn|.

Then, we deduce that:
#

rZ
p1q
n`1 “ pId ´ γn`1D

‹
q rZ
p1q
n ` γn`1

`

Q∆Mn`1 `Oid

`

}D2f}Lip|θn|
2
˘˘

rZ
p2q
n`1 “ p1´

1
n`1

q rZ
p2q
n ` Ωn rZ

p1q
n ` γn`1Υn

`

Q∆Mn`1 `Oid

`

}D2f}Lip|θn|
2
˘˘

,
(27)

with Ωn “ pEn,D‹ ´ En`1,D‹qpId ´ γn`1D
‹q and Υn “ En`1,D‹ ´

Id
n`1 .

Step 2: Er|Z̃p2qn |2s “ Oidpn
´1q We introduce the covariance:

@i P t1, . . . , du ωnpiq “ Erp rZnqip rZnqd`is “ Erp rZp1qn qip rZ
p2q
n qis, (28)

and the useful coefficient:

@i P t1, . . . , du αin “ 2

ˆ

1´
1

n` 1

˙

tΩnui,i. (29)

We use the Young inequality ab ď ε
2a

2 ` 1
2εb

2 with ε “ nβ´
1
2 .

Er|θn|2|Z̃p2qn |s

n
ď
nβ´

1
2

2n
Er|θn|4s `

n´β`
1
2

2n
Er|Z̃p2qn |2s ď

c4
2
γn

´

n´
3
2 ` n´

1
2Er|Z̃p2qn |2s

¯

.

Second, Lemma 13 implies that i P t1, . . . , du : |αin| Àid µ
´1nβ´2. Hence

ÿd

i“1
|αinωnpiq| ď

1

µγnn2

´

pµn
1
2´

β
2 q´1E| rZp1qn |2 ` µn

1
2´

β
2 E|Z̃p2qn |2

¯

ď
c2n

´ 5
2`

β
2

µ2
` n

β
2´

3
2E|Z̃p2qn |2.
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We use this inequality into Lemma 13 iiq, an integer n1 exists (see Lemma 13):

@n ě n1 Er| rZp2qn`1|
2s ď

˜

ˆ

1´
1

n` 1

˙2

`

”

n´β´
1
2 ` n

β
2´

3
2

ı

¸

Er| rZp2qn |2s

`
TrpΣ‹q

pn` 1q2
`Oid

˜

c2n
´ 5

2`
β
2

µ2
`
c4d

µ3
CS

´

n´
3
2´β _ n´3`β

¯

¸

ď

˜

ˆ

1´
1

n` 1

˙2

` C1n
´r

¸

Er| rZp2qn |2s `
TrpΣ‹q

pn` 1q2
` C2n

´q,

where CS is defined in Lemma 13, C1 :“ 2, r “ pβ ` 1{2q ^ p3{2 ´ β{2q, q “ p3{2 ` βq ^ p5{2 ´ β{2q and

C2 “ Oid
´

c4d
µ3 CS

¯

. Setting N “ n1 and un “ Er| rZp2qn |2s, we apply Lemma 16 and deduce that:

@n ě N Er| rZp2qn |2s ď
TrpΣ‹q

n
`Oid

ˆ

un1
n2

1

n2
` TrpΣ‹qn´r ` C2n

´q

˙

.

Using the arguments of (50), TrpΣ‹q ď dµ´2}S‹}. The definition of CS yields:

@n ě n1, Er| rZp2qn |2s Àid
c4d

µ3
CSn

´1 `
un1

n1

n
.

Remark that Lemma 15 entails un1
Àid

c2
1´βn

´β
1 so that:

un1
n1 Àid

c2
1´ β

n1´β
1 Àid

c2
1´ β

ˆ

n1´β
0 ` c

1´β
β

2 ` }D2f}1´βLip

˙

Àid
c2

p1´ βqµ
`

c22
1´ β

`
}D2f}Lip

1´ β
Àid

c4d

p1´ βqµ3
CS ,

using in particular that c2 ď
?
c4. As a conclusion, we finally get:

@n ě n1, Er| rZp2qn |2s Àid
c4d

p1´ βqµ3
CSn

´1. (30)

Step 3: Control of the covariance Inequality (30) yields for n ě n1:

Er|θn|2|Z̃p2qn |s ď
a

Er|θn|4s
b

Er|Z̃p2qn |2s “ c4

d

dCS
p1´ βqµ3

Oid
ˆ

γn
?
n

˙

. (31)

Plugging this control into Lemma 13 iq, we obtain that for all i P t1, . . . , du:

ˇ

ˇ

ˇ

ˇ

ωn`1piq ´ p1´ γn`1µ
‹
i q

n

n` 1
ωnpiq

ˇ

ˇ

ˇ

ˇ

Àid Cω
γn
n
` c4}D

2f}Lip

d

dCS
p1´ βqµ3

γ2
n?
n
.

Now, remark that γnÀidn
´1{2 so that we conclude that Er|θn|2|Z̃p2qn |s shall be neglected in pωnpiqqně1. Now,

set
Cf,S “ }D

2f}Lip ` CS ` 1.

We have

@n ě 1

ˇ

ˇ

ˇ

ˇ

ωn`1piq ´ p1´ γn`1µ
‹
i q

n

n` 1
ωnpiq

ˇ

ˇ

ˇ

ˇ

ď Oid

˜

c4
?
dCf,S
µ3{2

γn
n

¸

.
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From Lemma 14 stated in Appendix 4.2, we conclude that:

@i P t1, . . . , du |ωnpiq| ď Oid

˜

c4
?
dCf,S
µ3{2

1

n

¸

. (32)

Step 4: Conclusion of the proof From (32) and (31), we have:

ÿd

i“1
αinωnpiq “

c4d
3{2Cf,S
µ5{2

Oid
ˆ

1

n3γn

˙

and

Er|θn|2|Z̃p2qn |s

n
“ c4

?
d

µ3{2Cf,S
Oid

´ γn
n3{2

¯

.

We use these bounds in the statement of Lemma 13 iiq and deduce that:

Er| rZp2qn`1|
2s ď

ˆ

1´
1

n` 1

˙2

Er| rZp2qn |2s `
TrpΣ‹q

pn` 1q2

`
c4d

3{2Cf,S
µ3

Oid
´

n´3`β _ n´3{2´β
¯

,

where we used that γn “ n´β so that
?
γnn

´2 “ opγnn
´3{2q regardless the value of β P p1{2, 1q. Applying again

Lemma 16 with C1 “ 0 and qβ “ p
3
2 ` βq ^ p3´ βq, we obtain the desired result. ˝

3.2 End of the proof of Theorem 3

To end the study of pθ̂nqně1, we first remark that for n ě n1:

|θ̂n|
2 ď 2

´

|Z̃p2qn |2 ` ρ pEn,D‹q2 |Žp1qn |2
¯

,

which in turn implies the desired inequality when n ě n1. When n ď n1, we deduce from Lemma 15 that

E|θ̂n|2 ď
c2n

´β

1´ β
ď

c2
1´ β

n
rβ´β
1 n´rβ .

Since rβ ´ β “
1
2 ^ t2p1´ βqu and:

n1 Àid µ
´ 1

1´β ` c
1
β

2 ` }D
2f}8,

we get

c2n
rβ´β
1 Àid

c2
1´ β

`

µ´2 ` c2 ` }D
2f}8

˘

.

Up to a universal constant, this last upper bound is smaller than
c4d

3{2Cf,S
p1´βqµ3 . ˝

3.3 Further remarks on the second order term

When x ÞÝÑ D2fpxq is constant (or also when the function f to minimize is C3 with third partial derivatives
Lipschitz and null at θ‹q, we remark that Λn´Λ‹ “ Op|θn|

2q. Following the proof of Lemma 13, the error term

is replaced by n´1OidpEr|θn|3|Z̃p2qn |sqÀidpn
´1γnq

3
2 if the pL6,

?
γnq-consistency holds. Hence, we obtain:

Er| rZp2qn`1|
2s ď

ˆ

1´
1

n` 1

˙2

Er| rZp2qn |2s `Opn´3γ´1
n q `O

ˆ?
γn

n2

˙

,
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which is a better upper bound (from the point of view of the exponent on n only) comparing to the recursion
obtained in the end of the previous proof. The rate is then optimized with β “ 2{3 and rβ “

4
3 .

The previous remark shows that we may obtain a different size of the second order terms when f is locally
symmetric around θ‹ (which occurs when D3fpθ‹q “ 0) whereas when f is not locally symmetric, Theorem
3 proves that this second order term may be fixed of size Opn´5{4q. We have computed (with a Monte-Carlo

approximation) n ÞÑ nρ
´

Er|θ̂n ´ θ‹|2s ´ TrpΣ‹q
n

¯

with ρ “ 5
4 and β “ 3

4 for a locally non-symmetric f1 around

θ‹ and n ÞÑ nρ
´

Er|θ̂n ´ θ‹|2s ´ TrpΣ‹q
n

¯

with ρ “ 4
3 and β “ 2

3 for a locally symmetric f2. We have used

f1pxq “
x2

2 e
´ arctanpxq and f2pxq “

x2

2 , which trivially fall into the two different cases (see Figure 1): our
simulations confirm that the second-order terms are of the right sizes and cannot be improved.

0 2 4 6 8 10

10
5
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1.8

2

Figure 1: n ÞÑ nρ
´

Er|θ̂n ´ θ‹|2s ´ TrpΣ‹q
n

¯

. Blue curve: ρ “ 5
4 and β “ 3

4 for a non locally symmetric function

f1. Red curve: ρ “ 4
3 and β “ 2

3 for a locally symmetric function f2.

4 Proof of the pLp,
?
γnq-consistency - (Theorem 5)

The main objective of this section is to prove Theorem 5. Our analysis is based on a Lyapunov-type approach
with the help of Vp : Rd Ñ R defined as:

@p ě 1 Vppxq “ fppxq exppφpfpxqq.

4.1 Taylor’s expansion on Vp

To prove our main result (Theorem 11), we need to establish some technical results related to φ and Vp. The
first result is a simple sub-additive property on φ that essentially relies on the concavity property on rx0,`8q.

Lemma 7. If φ satisfies pHφqpiq, then a constant cφ exists such that:

@px, yq P R` φpx` yq ď φpxq ` φpyq ` cφ.

Proof: Since φ2 ď 0 on rx0,`8q, the function φ is concave on rx0,`8q. Hence, the function x ÞÑ φpx`yq´φpxq
is decreasing on rx0,`8q so that:

@x ě x0 φpx` yq ď φpxq ` φpx0 ` yq ´ φpx0q.
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Since φ1 is decreasing on rx0,`8q, then φ1 is upper-bounded and a constant C ą 0 exists such that φpy`x0q ď

φpyq ` Cx0. We then deduce that:

@x ě x0 @y ě 0 φpx` yq ď φpxq ` φpyq ` Cx0 ´ φpx0q. (33)

In the other situation when x ď x0, the fact that φ is non-decreasing yields and Equation (33) applied at point
x0 yields:

φpx` yq ď φpx0 ` yq ď φpyq ` Cx0 ď φpxq ` φpyq ` Cx0.

We then obtain the desired inequality for any value of x and y in R`. ˝

The next result is a straightforward computation left to the reader.

Lemma 8. For any p P N‹ and any x P Rdztθ‹u, we have:

iq

∇Vppxq “ Vppxq

ˆ

p
∇fpxq
fpxq

` φ1pfpxqq∇fpxq
˙

.

iiq
D2Vppxq “ Vppxq

“

ψ1pxq∇fpxq b∇fpxq ` ψ2pxqD
2fpxq

‰

,

where ψ1 and ψ2 are given by:

ψ1pxq :“

ˆ

p

fpxq
` φ1pfpxqq

˙2

´
p

f2pxq
` φ2pfpxqq and ψ2pxq :“

p

fpxq
` φ1pfpxqq.

The next lemma translates the effect of the drift of the algorithm on the exponential function introduced in
the definition of Vp.

Lemma 9. If f satisfies pHφq: 0 ă m ď φ1pfq|∇f |2 ` |∇f |2
f ďM , then

iq
@x P Rd x∇Vppxq,∇fpxqy ě mVppxq.

iiq

@ξ P Rd ρpD2VppξqqÀidp1`M
2 ` ρ8pfqq

ˆ

Vp´1pξq `
Vppξq

1` |∇fpξq|2

˙

.

Proof: iq We apply Lemma 8 iq and obtain that:

@x P Rdztθ‹u
x∇Vppxq,∇fpxqy

Vppxq
“ p

|∇fpxq|2

fpxq
` φ1pfpxqq|∇fpxq|2.

The result then follows from Assumption pHφq iiq.
iiq We apply Lemma 8 iiq. We have that @y P Rd:

xy,D2Vppξqyy

}y}2
“
Vppξq

}y}2
“

ψ1pξqxy,∇fpξq b∇fpξqyy ` ψ2pξqxy,D
2fpξqyy

‰

ď Vppξq

ˆ„

2p2

f2pξq
` 2tφ1pfpξqqu2 ´

p

f2pξq
` φ2pfpξqq



|∇fpξq|2 `
„

p

fpξq
` φ1pfpξqq



ρ2
8pfq

˙

.

We now use the constant M involved in Assumption pHφq:

|∇fpξq|2

f2pξq
ď

M

fpξq
and φ1pfpξqq2|∇fpξq|2 ďMφ1pfpξqq.
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Using the definition of M , we deduce that:

xy,D2Vppξqyy

}y}2

Àid MVppξq

„

1

fpξq
` φ1pfpξqq ` φ2pfpξqqfpξq



` rρ8pfqVppξq

„

1

fpξq
` φ1pfpξqq



Àid pM ` ρ8pfqqVp´1pξq `MVppξq
`

φ1pfpξqq ` φ2pfpξqqfpξq
˘

.

Hφ implies that φ2 is negative for u ě x0 so that φ1 is bounded (it is a non-negative function and non-increasing
on rx0,`8q). Now, Hφ(ii) yields

sup
ξPRd

`

φ1pfpξqq ` φ2pfpξqqfpξq
˘

p1` |∇fpξq|2q

ď p}φ1}8 `M ` sup
xPr0,x0s

φ2pxqpx0p1`Mx0qq

Àid 1`M.

We then deduce that

@y P Rd
xy,D2Vppξqyy

}y}2
Àidp1`M

2 ` ρ8pfqq

ˆ

Vp´1pξq `
Vppξq

1` }∇fpξq}2

˙

.

The second assertion follows. ˝

Lemma 10. Suppose that Hφ holds and consider r P r0, 1s. For any δ ą 0, ε ą 0 define ξδ,ε,x,` “ x `
`δ p´∇fpxq ` εq with ` P r0, 1s. Then,

iq Assume that δ ą 0 is such that ρ8pfqδ ď 1{2, then:

fpξδ,ε,x,`q ď fpxq ` δ|ε|2.

iiq Assume that ρ8pfqδ ď 1{2, then qppφq exists such that for all @x P Rd :

D2Vppξδ,ε,x,`qp´∇fpxq ` εqb2 ď qppφqΣ̄
´1
p p1` }ε}

2pp`1qqeφpδ}ε}
2
q

ˆ pVp´1pxq ` Vppxq ` δ
p´1q,

with qppφq “ Oidp1`M3 ` ρ8pfqqΣ̄p.

iiiq When φ “ 0, if ρ8pfqδ ď 1{2, then a qppφq exists such that @x P Rd,

D2fppξδ,ε,x,`qp´∇fpxq ` εqb2 ď qppφqp1` Σpq
´1

ˆ u
`

fppxq ` fp´1pxq|ε|2 ` δp´1|ε|2p
˘

.

Furthermore, qppφq “ Oid
`

p1`M2 ` ρ8pfqqp1` Σpq
˘

.

Proof:
Proof of iq Using the Taylor formula, ξ̃ P rx, ξδ,ε,x,`s exists such that:

fpξδ,ε,x,`q “ fpxq ´ `δ}∇fpxq}2 ` `δx∇fpxq, εy ` `2δ2

2
D2fpξ̃q p´∇fpxq ` εqb2

.

From }a` b}2 ď 2p}a}2 ` }b}2q and the definition of ρ8pfq, we get:

D2fpξ̃q p´∇fpxq ` εqb2
ď 2ρ8pfq

`

}∇fpxq}2 ` }ε}2
˘

.
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The elementary inequality |xu, vy| ď 1
2 p}u}

2 ` }v}2q yields:

fpξδ,ε,x,`q ď fpxq ´ `δ}∇fpxq}2 ` `δx∇fpxq, εy ` `2δ2ρ8pfq
`

}∇fpxq}2 ` }ε}2
˘

ď fpxq ` `δ

„

´
1

2
` `δρ8pfq



}∇fpxq}2 `
„

`δ

2
` ρ8pfq`

2δ2



}ε}2 (34)

ď fpxq ` `δ}ε}2 ď fpxq ` δ}ε}2,

where in the last line we use that ` ď 1 and the condition δρ8pfq ď 1{2.

Proof of iiq We divide the proof into 3 steps.
‚ Step 1: Comparison between Vrpξδ,ε,x,`q and Vrpxq. We consider r ě 0 and write ξ “ ξδ,ε,x,` for the sake of

convenience. Since φ is non-decreasing, one first deduces from piq that:

Vrpξq ď pfpxq ` δ}ε}
2qr exp

`

φpfpxq ` δ}ε}2q
˘

.

Lemma 7 and p|a| ` |b|qr ď 2r´1p|a|r ` |b|rq yields:

Vrpξq ď 2r´1
`

frpxq ` δr}ε}2r
˘

eφpfpxqq`φpδ}ε}
2
q`cφ .

Setting Tε,γ,r “ p1` }ε}
2rq exppφpδ}ε}2q, and using that V0 “ eφpfq:

@r ě 0 DCr ą 0 Vrpξq Àid exppφpδ}ε}2qq
“

Vrpxq ` δ
r
}ε}2rV0pxq

‰

Àid exppφpδ}ε}2qq
“

p1` }ε}2rqVrpxq ` δ
r
}ε}2r

‰

Àid Tε,γ,r rVrpxq ` δ
r
s . (35)

where in the second line, we used that V0 ď eφp1q ` Vr.
‚ Step 2: Upper bound of ρpD2Vppξqq.|∇fpxq|2. We apply Lemma 9 iiq. Setting q1 “ 1`M2` ρ8pfq, we get:

ρpD2Vppξqq.|∇fpxq|2Àidq1

ˆ

Vp´1pξq `
Vppξq

1` }∇fpξq}2

˙

|∇fpxq|2

Àidq1

ˆ

Tε,δ,p´1rVp´1pxq ` δ
p´1s `

Tε,δ,prVppxq ` δ
ps

1` }∇fpξq}2

˙

|∇fpxq|2

Àidq1

´

Tε,δ,p´1rVp´1pxq|∇fpxq|2 ` δp´1|∇fpxq|2s

` Tε,δ,p
|∇fpxq|2

1` }∇fpξq}2
rVppxq ` δ

ps

¯

.

Under Assumption pHφq, Vp´1pxq|∇fpxq|2 ď MVppxq and δp´1|∇fpxq|2 ď Mδp´1fpxq ď Mδp´1p1 ` Vppxqq.
Inequality Tε,δ,p´1 ď 2Tε,δ,p leads to:

}D2Vppξq}.|∇fpxq|2

Àid q1MTε,δ,p´1rVppxq ` δ
p´1s ` q1

Tε,δ,prVppxq ` δ
ps|∇fpxq|2

1` }∇fpξq}2

Àid p1`M3 ` ρ8pfqqTε,δ,p

„

rVppxq ` δ
p´1s `

rVppxq ` δ
ps|∇fpxq|2

1` }∇fpξq}2



. (36)

To handle Equation (36), we are driven to derive an upper bound of |∇fpxq|2
1`|∇fpξq|2 . According to the Taylor formula,

a ξ1 exists in rx, ξs such that:

∇fpxq “ ∇fpξq ´ `δD2fpξ1q p´∇fpxq ` εq ,
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and the triangle inequality associated with ` P r0, 1s yields:

|∇fpxq| ď |∇fpξq| ` ρ8pfqδp|∇fpxq| ` }ε}q.

Gathering all the terms with |∇fpxq| on the left hand side and using ρ8pfqδ ď 1{2, we obtain that:

|∇fpxq| ď p1´ ρ8pfqδq´1 p|∇fpξq| ` }ε}q ď 2 p|∇fpξq| ` }ε}q .

The elementary inequality pu` vq2 ď 2pu2 ` v2q leads to |∇fpxq|2 ď 8p}∇fpξq}2 ` }ε}2q. As a consequence,

|∇fpxq|2

1` }∇fpξq}2
ď 8p1` }ε}2q.

We use this last inequality into (36) and obtain that:

ρ pVppξqq .|∇fpxq|2Àidp1`M3 ` ρ8pfqqTε,δ,p
`

δp´1 ` rVppxq ` δ
psp1` }ε}2q

˘

.

Finally, since Tε,δ,pp1` }ε}
2q ď 3Tε,δ,p`1, we conclude that:

ρ pVppξqq .|∇fpxq|2Àidp1`M3 ` ρ8pfqqTε,δ,p`1

`

δp´1 ` Vppxq
˘

, (37)

‚ Step 3: Upper bound of }D2Vppξδ,ε,x,`q}s.}ε}
2. (35) and Lemma 9 iiq yield:

ρ
`

D2Vppξδ,ε,x,`q
˘

.}ε}2Àidq1Tε,δ,p`1

`

Vp´1pxq ` Vppxq ` δ
p´1

˘

. (38)

The result then follows from the combination of Equations (37) and (38).

Proof of iiiq Finally, let us consider the particular case φ “ 0 that corresponds to the situation where SCpαq.

Going back to Lemma 8 iiq and noting that pHφq in this case reads mfpxq ď |∇fpxq|2 ď Mfpxq, we deduce
that:

ρpD2fppξqq ď pM ` ρ8pfqqf
p´1pξq. (39)

Using Lemma 10 iq, we have, if δρ8pfq ď 1{2:

ρpD2fppξqqÀidpM ` ρ8pfqq
´

fp´1pxq ` δp´1|ε|2pp´1qq

¯

,

so that:

ρpD2fppξqq
`

|∇fpxq|2 ` |ε|2
˘

ÀidpM ` ρ8pfqq
`

Mfppxq ` fp´1pxq|ε|2

`δp´1pMfpxq|ε|2pp´1q ` |ε|2pq
¯

.

The inequality follows when p “ 1. When p ą 1, we deduce from the Young inequality that fpxq|ε|2pp´1q Àid

fppxq ` |ε|2p and deduce the result. ˝

4.2 Main result

We have the following result on the convergence rate of the SGD pθnqně1.

Theorem 11. Let p ě 1, if pHφq and pHφ

Σ̄p
q when φ ‰ 0 (or pHφq and pHSC

Σp
q if φ “ 0) hold. Consider qppφq

from Lemma 10 and:

n0 :“ inf

#

n : γn`1qppφq ď
m

4
and @q ď p :

˜

γqn ´ γ
q
n`1

mγq`1
n`1

¸

ď
1

8

+

.
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iq For all n ě n0,

ErVppθn`1qs

ď
`

1´ 3m
4 γn`1

˘

ErVppθnqs `Oid
´

qppφq
´

ErVp´1pθnqsγ
2
n`1 ` γ

p`1
n`1

¯¯

. (40)

iiq pC̄pqpě1 exists such that for all n ě n0, E rVppθnqs ď C̄ptγnu
p with

C̄1 “ ErV1pθn0
qs
q1pφq

m
`Oid

ˆ

q1pφq

m

˙

and for every integer p ě 2,

C̄p “ ErVppθn0qs

ˆ

qppφq

m

˙p

`Oid
ˆ

pC̄p´1 ` 1q
qppφq

m

˙

. (41)

Proof of Theorem 11 iq: We apply the Taylor formula to Vp and obtain that:

Vppθn`1q “ Vppθnq ´ γn`1x∇Vppθnq,∇fpθnqy ` γn`1xVppθnq,∆Mn`1y

`
γ2
n`1

2
D2Vppξn`1qp´∇fpθnq `∆Mn`1q

b2,

where ξn`1 “ θn ` `n∆θn`1, where `n P r0, 1s. Using Lemma 9 iq, we get

@n P N‹ Vppθnq ´ γn`1x∇Vppθnq,∇fpθnqy ď Vppθnqp1´mγn`1q. (42)

Now, we need to consider separately the cases φ “ 0 and φ ‰ 0.
‚ Case φ ‰ 0: Since γnρ8pfq ď γnqppφq ď 1{2 for all n ě n0, pHφ

Σ̄p
q yields

Erp1` |∆Mn`1|
2pp`1qq exppφpγ|∆Mn`1|

2qq|Fns ď Σ̄p.

Thus, we deduce from Lemma 10 iiq that for every n ě n1

E rVppθn`1q |Fns
ď p1´mγn`1qVppθnq ` qppφq

`

γ2
n`1pVppθnq ` Vp´1pθnqtγn`1u

p`1
˘

.

This yields

E rVppθn`1q |Fns (43)

ď
`

1´mγn`1 ` qppφqγ
2
n`1

˘

Vppθnq ` qppφqpγ
2
n`1Vp´1pθnq ` tγn`1u

p`1q.

The result follows since n ě n0 so that 1´mγn`1 ` qppφqγ
2
n`1 ď 1´ 3m

4 γn`1.
‚ Case φ “ 0: By Lemma 10 iiiq and Assumption pHSC

Σp
q, we have for all n ě n0,

E
“

D2fppξn`1qp´∇fpθnq `∆Mn`1q
b2|Fn

‰

ď qppφqp1` Σpq
´1

´

fppθnq ` f
p´1pθnqΣ1p1` fpθnqq ` γ

p´1
n`1Σpp1` f

ppθnqq
¯

ď qppφq
1` Σ1 ` Σp

1` Σp
pfppθnq ` f

p´1pθnqq ` γ
p`1
n`1q

Since |x|2 ď 1` |x|2p for any p ě 1, Σ1 ď 1` Σp. Thus, at the price of replacing qppφq by 2qppφq (qppφq is
defined up to a universal constant), we get

γ2
n`1E

“

D2fppξn`1qp´∇fpθnq `∆Mn`1q
b2|Fn

‰

ď qppφq
´

γ2
n`1pf

ppθnq ` f
p´1pθnqq ` γ

p`1
n`1

¯

.
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Now, the initial Taylor formula with the previous inequality ends the proof.
Proof of Theorem 11 iiq: This result is obtained by an induction on p. We preliminary consider the situation
where p is an integer greater than 1. Then, a general result is deduced for any p ě 1 using the Jensen inequality:

Er|X|ps ď
´

Er|X|p
1

s

¯p{p1

,

where p1 is an integer larger than p since t ÞÑ |t|p{p
1

is a concave function.
‚ We first consider the case where p “ 1, we use the elementary inequality V0 ď 1` V1 and obtain that

@n ě n0, ErV1pθn`1qs ď p1´
3m

4
γn`1 ` q1pφqγ

2
n`1qErV1pθnqs ` 2q1pφqγ

2
n`1.

According to our choice on n, we deduce that

@n ě n0, ErV1pθn`1qs ď p1´
m

2
γn`1qErV1pθnqs ` 2q1pφqγ

2
n`1.

Set vn “ γ´1
n ErV1pθnqs. We obtain

@n ě n0, vn`1 ď p1´
m

2
γn`1qvn

γ´1
n`1

γ´1
n

` q1pφqγn`1.

According to the construction of n0, we can check that for all n ě n0,

ˆ

γn
γn`1

˙p

ď 1`
m

4
γn`1.

We then obtain
@n ě n0, vn`1 ď

´

1´
m

2
γn`1

¯

vn

´

1`
m

4
γn`1

¯

` q1pφqγn`1. (44)

Since p1´ m
2 γn`1qp1`

m
4 γn`1q ď 1´ m

4 γn`1, we deduce that for all n ě n0,

vn ď vn0

n
ź

k“n0`1

p1´
m

4
γkq ` q1pφq

ÿn

k“n0`1
γk

n´1
ź

`“k

p1´
m

4
γ`q

with the convention
ś

H “ 1. By the elementary inequality logp1` xq ď x for x ą ´1, this yields

vn ď vn0
e´

m
4 pΓn´Γkq ` q1pφq

ÿn

k“n0`1
γke

´m4 pΓn´1´Γk´1q.

On the one hand, e´
m
4 pΓn´Γkq ď 1, on the other hand, a series/integral comparison yields

ÿn

k“n0`1
γke

´m4 pΓn´1´Γk´1q ď e´
m
4 Γn´1

ż Γn

0

e
m
4 xdx

ď
4

m
e´

m
4 Γn´1

`

e´
m
4 Γn ´ 1

˘

ď
4e

m
4 γn0

m
ď

5

m
.

where we used in the last equality that mγn0 ď γn0q1pφq ď 1{2.
‚ Let us now assume that p is an integer greater than 2 and assume that C̄p´1 is finite. Then, for all n ě n0,

ErV p´1pθnqs ď C̄p´1γ
p´1
n and hence, by (40), we deduce that

@n ě n0, ErVppθn`1qs ď

ˆ

1´
3m

4
γn`1

˙

ErVppθnqs ` qppφq
´

C̄p´1γ
p
n`1 ` γ

p`1
n`1

¯

.
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As a consequence, by setting vn “ γ´pn ErVppθnqs and dividing the above inequality by γpn`1, we obtain

@n ě n0, vn`1 ď p1´
3m

4
γn`1qvn

γ´pn`1

γ´pn
` qppφqp1` C̄p´1qγn`1.

As in the case p “ 1, the definition of n0 implies that for all n ě n0,

@n ě n0, vn`1 ď p1´
m

4
γn`1qvn ` qppφqp1` C̄p´1qγn`1.

The end of the proof is identical to the case p “ 1. ˝
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Appendix A: Technical lemmas for Theorem 2

In the next lemma, we study some properties of pεµ,nqně1 involved in the change of basis related to the evolution

of pθ̂nqně1 (see Proposition 6). Roughly speaking, we quantify the effect and variability of this change of basis.
Without loss of generality, we assume in the following proofs that µ ď 1, γ “ 1 et c2 ě 1, }D2f}Lip ě 1.
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Lemma 12. Assume that γn “ γn´β with β P p0, 1q. Let µ ą 0. For any µ ě µ,

@n ě n0 :“

S

ˆ

2

µ

˙1{p1´βq
W

, |εµ,n ´ εµ,n`1| Àid
1

µ
nβ´2 (45)

and |εµ,n| Àid pµγnnq
´1.

Proof: First, remark that for n ě n0, µγnn´ 1 ě 1
2µγnn, so that εµ,n is well-defined for any n ě n0 and,

|εµ,n| ď
2

µγnn
`

2µγn
µγnn

ď
2

n

ˆ

1

µγn
` 1

˙

Àid
1

µγnn
,

since µγn ď 1 for every n ě 1. As concerns (45), we observe that for n ě n0,

|εµ,n ´ εµ,n`1| “

ˇ

ˇ

ˇ

ˇ

1´ µγn
1´ µγnn

´
1´ µγn`1

1´ µγn`1pn` 1q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

p1´ µγnqp1´ µγn`1pn` 1qq ´ p1´ µγn`1qp1´ µγnnq

p1´ µγnnqp1´ µγn`1pn` 1qq

ˇ

ˇ

ˇ

ˇ

ď µ
pγn ´ γn`1q ` |pn` 1qγn`1 ´ nγn|`µγnγn`1

pµγnn´ 1qpµγn`1pn` 1q ´ 1q

ď µp2` µq
n´β

nµγnpn` 1qµγn`1
Àid

ˆ

1`
1

µ

˙

n2´β ,

which yields the result since µ ď 1.
˝

Lemma 13. Set n1 :“ n0 _ rc
1{β
2 s_ r}D2f}Lips. Under the assumptions of Proposition 7, we have:

iq For any i P t1, . . . , du, ωnpiq “ Erp rZp1qn qip rZ
p2q
n qis satisfies @n ě n1,

ˇ

ˇ

ˇ

ˇ

ωn`1piq ´ p1´ γn`1µ
‹
i q

ˆ

1´
1

n` 1

˙

ωnpiq

ˇ

ˇ

ˇ

ˇ

ÀidCω
γn
n
` γn`1}D

2f}LipEr|θn|2| rZp2qn |s.

where Cω “
dp}S˚}`}S}Lipq`c4}D

2f}Lipq

µ .

iiq Set

{|∆Z2
n`1| :“

ˇ

ˇ

ˇ

ˇ

ˇ

Er| rZp2qn`1|
2s ´

ˆ

1´
1

n` 1

˙2

Er| rZp2qn |2s ´
ÿd

i“1
αinωnpiq ´

TrpΣ‹q

pn` 1q2

ˇ

ˇ

ˇ

ˇ

ˇ

.

We have:

{|∆Z2
n`1|Àidn

´ 1
2´βEr| rZp2qn |2 `

c4d

µ3
CSOid

´

n´
3
2´β _ n´3`β

¯

where CS “ }S
˚} ` }S}Lip ` 1 and αin, defined by (29), satisfies |αin|Àidpµq

´1nβ´2, i “ 1, . . . , d.

Proof: First, remark that under the definition of n1, we have for all n ě n1, µγnn´ 1 ě 1
2µγnn, c2γn ď 1 and

}D2f}Lipn
´1 ď 1. Then, for all n ě n0, Υn and Ωn are well-defined deterministic matrices and by Lemma 12,

we can verify that

γn`1}Υn} Àid
1

nµ
and γn`1}Ωn} ď γn`1}En,D‹ ´ En`1,D‹}}Id ´ γn`1D

‹} ď
1

µn2
. (46)
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iq Now, let us prove the first statement and let n ě n1. Using (27), we have

ˇ

ˇ

ˇ
ωn`1piq ´ p1´ γn`1µ

‹
i q

ˆ

1´
1

n` 1

˙

ωnpiq
ˇ

ˇ

ˇ
ď γn`1}D

2f}LipEr|θn|2| rZp2qn |s.

` γ2
n`1ErtQ∆Mn`1uitΥnQ∆Mn`1uis ` γn`1r

p1q
n ,

where,

|rp1qn | Àid }Ωn}

˜

E| rZp1qn |2

γn`1
` Er}D2f}Lip|θn|

2| rZp1qn |s

¸

` }Υn}

´

}D2f}LipEr| rZp1qn |.|θn|
2s ` γn`1}D

2f}2LipE|θn|4
¯

.

The Cauchy-Schwarz inequality and | rZ
p1q
n | “ |θn| yield

Er|θn|2| rZp1qn |s ď
 

Er|θn|4|
(1{2

!

Er| rZp1qn |2s

)1{2

ď
?
c2c4γ

3{2
n`1 ď c4γ

3{2
n`1.

Therefore, using 1 ď c2 ď
?
c4 ď c4 and }D2f}Lipn

´1 ď 1, (46) implies:

γn`1r
p1q
n Àid

1

n2µ

´

c2 ` c4}D
2f}Lipγ

3
2
n`1

¯

`
c4}D

2f}Lip

nµ

´

γ
3
2
n`1 ` }D

2f}Lipγ
3
n`1

¯

Àid
c4}D

2f}Lip

µ

˜

γ
3
2
n

n
` γ3

n

¸

Àid
c4}D

2f}Lip

µ

γn
n
,

where we used that β ě 1{2. In the meantime, under pHSq and because Q P OdpRq and c2γn ă 1 when n ě n1,
we have @i P t1, . . . , du,

ˇ

ˇ

ˇ
ErtQ∆Mn`1ui tΥnQ∆Mn`1uis

ˇ

ˇ

ˇ
ď }Υn}Er|∆Mn`1|

2s ď }Υn}ErTrpSpθnqqs

ď }Υn}pdEr}Spθnq}sq ď d}Υn}p}Spθ
˚q} ` }S}LipE|θn|q

Àid d}Υn}p}S
˚} ` }S}Lipq.

since c2γn ď 1 for n ě n1. We therefore deduce from (46) and from the previous lines that

@i P t1, . . . , du γ2
n`1 |ErtQ∆Mn`1ui tΥnQ∆Mn`1uis| ď

dp}S˚} ` }S}Lipqγn
nµ

.

A compilation of the previous bounds (taking into accounts only non-universal constants) leads to

ˇ

ˇ

ˇ
ωn`1piq ´ p1´ γn`1µ

‹
i q

ˆ

1´
1

n` 1

˙

ωnpiq
ˇ

ˇ

ˇ
Àidγn`1}D

2f}LipEr|θn|2| rZp2qn |s

`
dp}S˚} ` }S}Lipq ` c4}D

2f}Lip

µ

γn
n
.

iiq We set ∆Nn`1 “ ΥnQ∆Mn`1 and recall that αin is defined in (29) by αin “ 2p1 ´ pn ` 1q´1qpΩnqi,i.

Starting from (27) and | rZ
p1q
n | “ |θn| with a conditional expectation argument, we use that Ωn is diagonal to

obtain

Er| rZp2qn`1|
2s “

ˆ

1´
1

n` 1

˙2

Er| rZp2qn |2s `
ÿd

i“1
αinωnpiq ` γ

2
n`1E|∆Nn`1|

2

` Er|Ωn rZp1qn |2s `Oid
´

γn`1}Υn}Er|θn|2| rZp2qn |s

¯

(47)

`Oidpγn`1}D
2f}Lip}Υn}}Ωn}Er| rZp1qn ||θn|

2sq `Oidpγ2
n`1}D

2f}2Lip}Υn}
2Er|θn|4sq.

29



First, by (46),

Er|Ωn rZp1qn |2s ď }Ωn}
2Er| rZp1qn |2s ď c2γn}Ωn}

2 ď
c2n

´4

µ2γ2
n

“
c4
µ2
O
`

n´4`β
˘

(I1)

In the meantime, (46) yields

γn`1}Υn}Er|θn|2| rZp2qn |s “
1

nµ
Oid

´

Er|θn|2| rZp2qn |s

¯

“
1

nµ
Oid

˜

Er|θn|4υ´1
n ` υnEr| rZp2qn |2s

2

¸

.

Choosing υn “ µn1{2´β , we obtain

O
´

γn`1}Υn}Er|θn|2| rZp2qn |

¯

“
c4
µ2
Oid

´

n´
3
2´β

¯

` n´
1
2´βEr| rZp2qn |2s. (I2)

The pLp,
?
γnq consistency property associated to the Cauchy-Schwarz inequality and the fact that c2 ď

?
c4 ď

c4 imply that

γn`1}Υn}}D
2f}Lip}Ωn}Er| rZp1qn ||θn|

2s “
c4}D

2f}Lip

µ2
Oid

´

n´3´β{2
¯

(I3)

Finally, we also obtain that

γ2
n`1}Υn}

2}D2f}2LipEr|θn|4sq “
c4}D

2f}2Lip

µ2
Oid

`

n´2β´2
˘

“
c4}D

2f}Lip

µ2
Oid

`

n´2β´1
˘

,

(I4)

where we used that }D2f}Lipn
´1 ď 1.

To achieve the proof, it remains to study γ2
n`1E|∆Nn`1|

2. First, set Bn “ QTΥ2
nQ. Using that Υn is a diagonal

matrix, we have

γ2
n`1|∆Nn`1|

2 “ γ2
n`1Trp|∆Nn`1|

2q “ γ2
n`1Trp∆NT

n`1∆Nn`1q

“ γ2
n`1Trp∆MT

n`1Bn∆Mn`1q

“ γ2
n`1TrpBn∆Mn`1∆MT

n`1q

Since the trace is a linear application and Bn is a deterministic matrix,

γ2
n`1Er|∆Nn`1u|

2|Fns “ γ2
n`1TrpBnEr∆Mn`1∆MT

n`1|Fnsq “ γ2
n`1TrpBnSpθnqq (48)

where we applied Assumption pHSq. For Bn, we first remark that

´γn`1Υn “ pn` 1q´1tD‹u´1 `∆n`1

where p∆nqně0 is a sequence of matrices defined by:

∆n “ Diag

"

1`pn` 1qtµ‹i u
2γ2
n`1

pn` 1qµ‹i ppn` 1qγn`1µ‹i ´ 1q
`
γn`1

n` 1
, i “ 1, . . . , d

*

.
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For n ě n1 and every i P t1, . . . , du, µ‹i γnn´ 1 ě 1
2µ
‹
i γnn (by the beginning of the proof of Lemma 12) so that

1` pn` 1qtµ‹i u
2γ2
n`1

pn` 1qµ‹i ppn` 1qγn`1µ‹i ´ 1q
ď

2

pn` 1q2tµ‹i u
2γn`1

`
2γn`1

n` 1
.

Using the diagonal structure of ∆n, we get for n ě n1,

}∆n} Àid
2

n2γnµ2
`
γn`1

n` 1
Àid

1

n2γnµ2
, (49)

since β ą 1{2. Then, using that Bn “ QTΥ2
nQ and that QT tD‹u´2Q “ tΛ‹u´1, it follows from (48) that

γ2
n`1Er|∆Nn`1u|

2s “ γ2
n`1ErTrpBnSpθnqqs

“ γ2
n`1E

“

Tr
`

QT ptD‹u´1 `∆n`1q
2QSpθnq

˘‰

“
1

pn` 1q2
TrptΛ‹u´2QSpθ‹qq `

3
ÿ

i“1

Rin “
TrpΣ‹q

pn` 1q2
`

3
ÿ

i“1

ErRins

with,

R1
n “

Tr
`

tΛ‹u´2pSpθnq ´ Spθ
‹qq

˘

pn` 1q2
, R2

n “
2

n` 1
Tr

`

QT tD‹u´1∆n`1QSpθnq
˘

,

and R3
n “ Tr

`

pQT t∆n`1u
2QSpθnq

˘

.

Note that for R2
n, we used that tD‹u´1 and ∆n`1 commute. It remains to bound the remainder terms Rin,

i “ 1, 2, 3. To this end, let us denote by } . }F the Frobenius norm defined for a square matrix A by }A}F “
a

TrpATAq. Owing to the sub-multiplicativity of this norm and to the fact that }A}F ď
?
d}A} (where

}A} “
a

ρpATAqq, we obtain:

|ErR1
ns| ď }tΛ

‹u´2}F }Spθnq ´ Spθ
‹q}F ď

d}S}LipEr|θn|s
µ2n2

ď
d}S}Lip

?
c2γn

µ2n2
, (50)

Using (49), one can check that

|ErR2
ns| ď

2

n` 1
}tD‹u´1∆n`1}FEr}Spθnq}F s ď

2dp}S˚} ` }S}Lipq

n3γnµ3
.

Finally,

|ErR3
ns| ď }∆

2
n`1}FEr}Spθnq}F s ď

2dp}S˚} ` }S}Lipq

n4γ2
nµ

4
Àid

dp}S˚} ` }S}Lipq

n3γnµ3
,

where in the second inequality, we used that n1´β ě 2µ´1 for n ě n0.

A combination of the above upper bounds of Rin, i “ 1, 2, 3 yields:

γ2
n`1Er|∆Nn`1u|

2s “
TrpΣ‹q

pn` 1q2
` c4

dp}S˚} ` }S}Lipq

γµ3
Oid

´

n´p2`β{2q _ n´3`β
¯

. (I5)

Keeping in mind the expansion (47), we now compare the above control with (I1), (I2), (I3) and (I4). First,
we can omit (I1) which is controlled by the above r.h.s since 4´ β ą 3´ β. Second, we compare the first term
of the r.h.s. of (I2) with the terms involved in (I3), (I4) and (I5) and remark that

@β P p1{2, 1q n´3´β{2 _ n´2β´1 _ n´β{2´2 “ Oidpn´
3
2´βq.
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Considering the worst constant of each term, we obtain that:

{|∆Z2
n`1| “

c4d

µ3
Cf,SOid

´

n´
3
2´β _ n´3`β

¯

` n´
1
2´βE| rZp2qn |2.

where Cf,S is defined in the statement of the lemma. ˝

Lemma 14. Assume that punqně0 is a real sequence that satisfies for all n ě n0 and for a given µ ą 0:

un`1 “ p1´ γn`1µq
n

n` 1
un ` βn`1,

with βn ď
˝γn
n

. Then, a constant C independent on ˝ exists such that

un ď
˝

n

`

n0un0
` µ´1

˘

.

Proof: With the convention
ś

H “ 1 and
ř

H “ 0, we have for every n ě n0:

un “

˜

n
ź

k“n0`1

p1´ γkµq
k

k ` 1

¸

un0 `
ÿn

k“n0`1
βk

n
ź

`“k`1

p1´ γ`µq
`

`` 1
.

Using that for any x ą ´1, logp1` xq ď x, we obtain for every n ě n0 ` 1

n
ź

k“n0`1

p1´ γkµq
k

k ` 1
ď

n0

n` 1
e´µpΓn´Γn0 q ď

n0

n` 1
,

where Γn “
řn
k“0γk. Concerning the second term, we have

ÿn

k“n0`1
βk

n
ź

`“k`1

p1´ γ`µq
`

`` 1
ď

1

n` 1

´

e´µΓn
ÿn

k“n0`1
βkpk ` 1qeµΓk

¯

.

Since βkpk ` 1q ď ˝γk`1, the monotonicity of x ÞÝÑ xeµx yields:

ÿn

k“n0`1
βkpk ` 1qeµΓk ď ˝

ÿn

k“n0`1
γk`1e

µΓk ď ˝

ż Γn`1

Γn0`1

eµxdx.

We deduce that:
1

n` 1

´

e´µΓn
ÿn

k“n0`1
βkpk ` 1qeµΓk

¯

ď
˝

µpn` 1q
.

˝

Remark 3. Using logp1` xq “ x` cpxqx2 where c is bounded on r´1{2, 1{2s, a modification of the proof leads
to lim infnÑ`8 nun ą 0 when

ř

γ2
k ă `8.

Lemma 15. Assume that pθnq is pL2,
?
γnq consistent. Then, for all n ě 0,

E|θ̂n|2 Àid
c2

1´ β
n´β . (51)

Let n1 be defined in Lemma 13. Under the assumptions of Proposition 7:

E|Z̃p2qn1
|2 Àid

c2
1´ β

n´β1 . (52)
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Proof: Under the assumption, E|θn|2 ď c2γn. Keeping in mind that θ‹ “ 0, we deduce from the Jensen inequality
that

E
”

|θ̂n|
2
ı

ď
c2
n

n
ÿ

k“1

γk Àid
c2

1´ β
n´β .

For the second part of the proof, we use that:

Z̃p2qn “ ´En,D‹Žp1qn ` Žp2qn .

Thus,

|Z̃p2qn |22 ď ρ pEn,D‹q2 |Žp1qn |2 ` |Žp2qn |2

ď |εµ,n|
2|θn|

2 ` |θ̂n|
2,

where in the second line, we used that Q is an orthogonal matrix. By Lemma 12, for every n ě n1 ě n0,

@µ P SppD‹q, |εn,µ| Àid
n´1`β

µ so that

E|Z̃p2qn1
|2 Àid

«

n´1`β
1

µ

ff2
c2

1´ β
n´β1 `

c2
1´ β

n´β1 ,

where in the second line, we used that n´1`β
1 ď n´1`β

0 ď µ{2. ˝

Lemma 16. Let N be a positive integer and punqně0 be a sequence which satisfies

@n ě N un`1 ď un

«

ˆ

1´
1

n` 1

˙2

` C1n
´r

ff

`
V

pn` 1q2
` C2n

´q,

with r P p1, 2s and q P p2, 3s. Assume that (C1, Nq satisfies: C1N
1´r ď 1, Then,

@n ě N un ď
V

n
`Oid

ˆ

uNN
2

n2
` C1V n

´r ` C2n
´pq´1q

˙

ď
V

n
` n´r^pq´1qOid

´

uNN
r^pq´1q ` C1V ` C2

¯

.

Proof: For the sake of simplicity, in whole the proof, we will denote by c any universal constant (i.e independent
of whole the parameters of the problem). An iteration of the inequality yields for all n ě N

un ď uN

n
ź

k“N`1

Υk `

n
ÿ

k“N`1

ˆ

V

k2
` C2k

´q

˙ n
ź

`“k`1

Υ` (53)

with Υ` “ p1´ 1{`q
2
` C1p`´ 1q´r and the conventions

ř

H “ 0 and
ś

H “ 1. Remark that

n
ź

`“k`1

Υ` “
k2

n2

n
ź

`“k`1

˜

1` C1

ˆ

`

`´ 1

˙2

p`´ 1q´r

¸

ď
k2

n2
exp

˜

2C1

n´1
ÿ

`“k

`´r

¸

ď
k2

n2
exp

ˆ

2C1

r ´ 1
pk ´ 1q1´r

˙

,

33



where in the last line, we used the inequality logp1 ` xq ď x for x ą ´1 and a comparison between series and
integrals. Now, a constant c exists such that exppxq ď 1` cx on r0, 2s and with the condition C1N

1´r ď 1, we
get for every k P tN ` 1, . . . , n´ 1u,

n
ź

`“k`1

Υ` ď
k2

n2

`

1` cC1k
1´r

˘

ď c
k2

n2
.

Plugging this inequality into (53) leads to: for all n ě N ,

un ď c
uNN

2

n2
`
V pn´Nq

n2
` c

C1V

n2

n
ÿ

k“N`1

k1´r ` c
C2

n2

n
ÿ

k“N`1

k2´q

ď
V

n
` c

ˆ

uNN
2

n2
` C1V n

´r ` C2n
´pq´1q

˙

.

This yields the first inequality. The second one follows easily.
˝

Appendix B: Growth at infinity under the KL gradient inequality

In this section, we prove the property (10) of Proposition 2. Without loss of generality, we can assume that
θ‹ “ fpθ‹q “ 0.

Proof: Consider 0 ď t ď s and x P Rd. We then associate the solution of the differential equation associated to
the flow ´∇f initialized at x:

χxp0q “ x and 9χx “ ´∇fpχxq.

The length of the curve Lpχx, t, sq is defined by

Lpχx, t, sq “

ż s

t

} 9χxpτq}dτ.

Under Assumption pHr
KLq, we can consider ϕpaq “ a1´r

1´r and we have that

ϕ1pfpxqq}∇fpxq} ě m ą 0.

We now observe that e : s ÞÝÑ ϕpfpχxpsqqq satisfies:

e1pτq “ ϕ1pfpχxpτqqqx∇fpχxpτqq, 9χxpτqy
“ ´ϕ1pfpχxpτqqq}∇fpχxpτqq}2

ď ´m} 9χxpτq}

We deduce that:

eptq ´ epsq “

ż t

s

e1pτqdτ ě m

ż s

t

} 9χxpτq}dτ ě mLpχx, t, sq (54)

Now choosing t “ 0 and s ÝÑ `8, we have ep0q´limsÝÑ`8epsq “ ϕpfpxqq´ϕpmin fq “ ϕpfpxqq, and Equation
(54) yields

ϕpfpxqq ě mLpχx, 0,`8q ě m}x}

because χxp`8q “ arg min f “ 0. We deduce that

fpxq ě ϕ´1pm}x}q “ tmp1´ rqu
1

1´r }x}
1

1´r .

which is the desired conclusion. ˝
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