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1 Introduction

Majority voting is one of the oldest pastimes of social choice theorists starting with Condorcet

(1785). It is well known that majority voting may lead to intransivities in the social preference.

This situation is often referred to as a Condorcet paradox. The evaluation of the likelihood

of the Condorcet paradox under various probabilistic assumptions has been the subject of an

important literature (Gehrlein (2006), Gehrlein and Lepelley (2010)).

The purpose of this note is to examine the likelihood of a Condorcet paradox in a specific

setting. Precisely, the set of alternatives X is given by {0, 1}k and the preferences of the

voters are postulated to be separable linear orders. This setting underlies all the analysis

of logrolling and vote trading in committees/legislatures (Miller (1994)). An alternative is a

sequence of k distinct bills where each bill has two possible outcomes: “passage” (1) or “defeat”

(0). Separability simply means that preferences on each bundle of issues are independent of

what could be decided on the remaining issues.

In that setting, there is a Condorcet winner on each individual issue. In our note, the vector

whose coordinates are these local Condorcet winners is called the componentwise Condorcet

winner. Of course, the componentwise Condorcet winner does not need to be a Condorcet

winner. If so, by construction, any alternative dominating the componentwise Condorcet winner

must differ from it on at least two coordinates. In terms of interpretation, this means that among

the majority coalition of voters who have this preference, some voters will vote against their

preference on a specific bill in exchange of other(s) going against their preference on some other

bill(s). This arrangement is referred to as logrolling or vote trading. The equivalence between

logrolling and the non-existence of a Condorcet winner has been noted my many scholars

including Bernholz (1973), Kadane (1972), Koehler (1975), Miller (1975,1977) and Schwartz

(1975)1.

In this note, we revisit the estimation of the likelihood of a Condorcet paradox in this

logrolling setting. Since the domain of admissible preferences domain is restricted, the result

cannot be obtained as a corollary of existing frequency results. Precisely, we compute, for three

probabilistic models, the likelihood of a Condorcet paradox (or equivalently of logrolling) when

two or three bills are under scrutiny. We compare the derived frequencies with the frequencies

which are obtained in the unrestricted case.

1Agreements are not binding. Building on early work by Riker and Brams (1973) and Ferejohn (1974),
Casella and Palfrey (2015) challenge this equivalence. They look at a specific trading mechanism and exhibit
examples where coalitional stability is not equivalent to the non-existence of a Condorcet winner.

2



2 The Setting

The set of voters/Committee/legislature is denoted by N = {1, ..., n} and the set of alternatives

(Hypercube) by X = {0, 1}k where k ≥ 2. Therefore the number m of alternatives is equal

to 2k. Here an alternative is a sequence of yes/no or accept/reject answers describing the

decisions of the legislators/voters in the committee to a sequence of k bills/questions/pieces of

legislation/issues on which they are deliberating.

We assume that the preferences of the members of the committee are restricted to belong

to a subset of the set of linear orders over X. Precisely, we assume that for all i ∈ N , the

preference Pi is a separable linear order. By separable, we mean that the following holds true.

For all a, b ∈ X and all S ⊂ {1, ..., k}, if aPib and aS = bS, then (aN\S, cS)Pi(b
N\S, cS) for all

cS ∈ {0, 1}S. (Here dT stands for the restriction of the vector d ∈ X to the subset of coordinates

T ). We denote by LSk the set of separable linear orders over X and by ϕ(k) their number2.

A profile of preferences is a vector P = (P1, P2, ..., Pn) in (LSk)
n where for all i ∈ N ,

Pi denotes the preference of voter i. The anonymous pattern attached to P is the vector

n(P) = (n1(P), n2(P), ...nϕ(k)(P)) describing how many voters have each of the ϕ(k) conceivable

separable preferences3. The anonymous pattern of a profile just keep track of the number of

voters for each conceivable preference but forget their names. Of course:

ϕ(k)∑
j=1

nj(P) = n for all P ∈ (LSk)
n

Given a profile P in (LSk)
nand x, y ∈ X with x ̸= y, x majority dominates y for P if:

ϕ(k)∑
j=1

nj(P,x,y) >
n

2

where:

nj(P,u,v) =

{
nj(P,u,v) if uPjv

0 if vPju
for all u, v in X, u ̸= v and all j = 1, ..., ϕ (k)

For every P ∈ (LSk)
n , majority domination defines a strict binary relation MD(P ) over

X. If n is odd, then MD(P ) is complete. It is therefore a tournament. Note however,

as first pointed out by Hollard and Le Breton (1996), that this tournament is separable in

the following sense. For all a, b ∈ X and all S ⊂ {1, ..., k}, if aMD(P )b and aS = bS,

2We note that ϕ (k + 1) ≥ 2(k + 1)ϕ (k).
3Each conceivable preference is identified by an index ranging from 1 to ϕ(k).
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then (aN\S, cS)MD(P )(bN\S, cS) for all cS ∈ {0, 1}S. We denote by TSk the set of separa-

ble tournaments4 and by ψ(k) the number of separable tournaments over X5.

Given a profile P in (LSk)
n, x ∈ X is a Condorcet winner for P if for every y ∈ X, y ̸= x,

x majority dominates y. Condorcet winner does not always exist but note that for each of

the k questions/issues, there is a Condorcet winner since we have only two possible answers

(by separability, any voter can answer any question without needing to know what has been

decided on the other questions). The vector x such that xj is the Condorcet winner on the

jth component will be called the componentwise Condorcet winner. Note that if there is a

Condorcet winner, it must be the componentwise Condorcet winner.

In what follows, we will make use of the following three probabilistic models over (LSk)
n.

IC (Impartial Culture) will denote the model where each profile P in (LSk)
n is drawn with

equal probability. Since there are ϕ (k)m such profiles, this means that each P has a probability

equal to 1
ϕ(k)m

.

IAC (Impartial Anonymous Culture) will denote the model where each anonymous pattern

is drawn with equal probability. Since there are
(
n+ϕ(k)−1
ϕ(k)−1

)
such patterns6, this means that each

anonymous pattern has a probability equal to 1

(n+ϕ(k)−1
ϕ(k)−1 )

. Note that strictly speaking IAC does

not define a probability distribution over P. In fact, any arbitrary assignment of probabilities

to specific profiles will work in the computations that follow, as long as the overall likelihood

for observing each of the anonymous patterns remains the same. For example, since for each

anonymous pattern n = (n1, n2, ..., nϕ(k)), there are n!
n1!n2!...nϕ(k)!

attached profiles, we could

assume for instance that they are all equally likely.

ITC (Impartial Tournament Culture)7 will denote the model where each separable tourna-

ment is drawn with equal probability. Since there are ψ (k) such tournaments8, this means that

each tournament has a probability equal to 1
ψ(k)

. As above, we can then split the probability

mass attached to any tournament equally across the profiles compatible with that tournament.

4The set of separable tournaments is the superset of separable linear orders which is obtained when we delete
the transitivity requirement while keeping the separability one

5Hollard and Le Breton (1996) have proved that every separable tournament can be obtained through
majority aggregation of separable preferences if the number of voters is large enough.

6The number of ordered decompositions of the integer n into r integers is equal to
(
r+n−1
r−1

)
. In our case, r

is the number of separable linear orderings.
7This wording is ours. To the best of our knowledge, there is no name for this probabilistic model. It has

been used fo instance by Bell (1981) and Fey (2008).
8To the best of our knowledge, nor the values of the function ψ have been tabulated, neither its asymptotic

behavior has been studied.
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3 The Case k=2

When k = 2, there are 8 separable linear orders over a total of 24 linear orders. Therefore, an

anonymous pattern for n voters is a 8−dimensional vector n = (n1, n2, ..., n8) of integers:

n1 n2 n3 n4 n5 n6 n7 n8

(0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 0) (1, 1) (1, 1)
(0, 1) (1, 0) (0, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0)
(1, 0) (0, 1) (1, 1) (0, 0) (1, 1) (0, 0) (1, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 0) (0, 0)

such that: n = n1 + n2 + ...+ n8

(0, 0) is a Condorcet winner iff:

n1 + n2 + n3 + n5 >
n

2
(1)

n1 + n2 + n3 + n4 >
n

2

n1 + n2 + n5 + n6 >
n

2

Probability that there exists a Condorcet winner for ITC

It is straightforward to show that there are 4 tournaments for which (1, 1) is the compo-

nentwise Condorcet winner. This means that we have 16 separable tournaments (out of9 the

242 = 64 tournaments). Among those, only 8 have a Condorcet winner. So, we obtain the ITC

probability of having a Condorcet winner is equal to 50%.

Probability that there exists a Condorcet winner for IC

Here IC means that for each voter, the 8 possible linear orders are drawn with probability
1
8
.

Therefore the distribution of the random vector n is a multinomial distribution π =
(
1
8
, 1
8
, ..., 1

8

)
.

From the multivariate central limit theorem, we deduce that when n is large n−nπ√
n

converges to

the 8-dimensional gaussian N(0,Ω) where:

Ω =


7
64

−1
64

. −1
64

−1
64

7
64

. −1
64

. . . .
−1
64

−1
64

. 7
64


Then, when n is large, the distribution of the 3−dimensional vector (n1 + n2 + n3 + n5 −

n
2
, n1 + n2 + n3 + n4 − n

2
, n1 + n2 + n5 + n6 − n

2
) is the 3−dimensional gaussian Z ≡ N(0,∆)

where:

9The number of tournaments over m vertices is equal to 2(
m
2 ).
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∆ =

 1
4

0 1
8

0 1
4

1
8

1
8

1
8

1
4


We deduce that if n is large, the probability of the event described by inequalities (1) is the

the probability that Z ∈ R3
+. This probability is equal to:

1

8
+

1

4π

(
2 arcsin

(
1

2

))
≃ 20.833%

The probability of the existence of a Condorcet winner is 4 times this number. This number

83.332% is slightly larger than the number that we obtain when there are no separability

restrictions (i.e. 24 linear orders instead of 8). In that case the probability is (Garman and

Kamien (1968):

1

2

[
1 +

6

π
arcsin(

1

3
)

]
≃ 82.45%

Probability that there exists a Condorcet winner for IAC

Here, the number of possible realizations of the integer valued random vector n is:

n∑
i1=0

×
n−i1∑
i2=0

×
n−i1−i2∑
i3=0

×
n−i1−i2−i3∑

i4=0

×
n−i1−i2−i3−i4∑

i5=0

×
n−i1−i2−i3−i4−i5∑

i6=0

×
n−i1−i2−i3−i4−i5−i6∑

i7=0

The IAC model assumes that all these10
(
n+7
7

)
= 1

5040
(n+ 1) (n+ 2) (n+ 3) (n+ 4) (n+ 5)

(n+ 6) (n+ 7) realizations are equally likely. Solving (1) amounts to counting the number of

integer solutions to a system of linear inequalities. This can be done efficiently using the theory

of Ehrhart’s polynomials. After solving this combinatorial step, we obtain a number which has

to be divided by the number above. The IAC probability of a Condorcet winner is 4 times this

number.

We obtain
7(n+ 5)(n+ 3)

8(n+ 2)(n+ 6)

for n odd and
7n(2n+ 11)(n+ 4)(n+ 2)

16(n+ 1)(n+ 3)(n+ 5)(n+ 7)

10The number of ordered decompositions of the integer n into m integers is equal to
(
m+n−1
m−1

)
. Here m is the

number of separable linear orderings.
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for n even.

For n tending to infinity, we find that the IAC probability of a Condorcet winner is 7
8
=

87.5%: this number is larger that the IAC number in the unrestricted case which is 83.84% (see

Gehrlein, 2006).

4 The Case k=3

The number of alternatives is equal to 23 = 8. Therefore, the total number of linear orders

is 8! = 40320. Let us enumerate the number of separable linear orders. Without loss of

generality by symmetry, it is enough to count the number of separable orders with (1, 1, 1)

on top. Note that separability implies immediately that in such case, (0, 0, 0) is the bottom

alternative. we are left with counting the number of orderings of the 6 intermediate alter-

natives. Note first that there are 6 ways to order the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Consider a separable linear order P such that (1, 0, 0)P (0, 1, 0)P (0, 0, 1). By separability,

we deduce that (1, 1, 0)P (1, 0, 1)P (0, 1, 1). Indeed from separability (1, 0, 0)P (0, 1, 0) implies

that (1, 0, 1)P (0, 1, 1) and (0, 1, 0)P (0, 0, 1) implies (1, 1, 0)P (1, 0, 1). Further, from separabil-

ity again: (1, 1, 0)P (1, 0, 0) and (1, 0, 1)P (1, 0, 0). Therefore the only degree of freedom concerns

the two necessarily adjacent alternatives (0, 1, 1) and (1, 0, 0). The two choices are compatible

with separability. We conclude that there are 6×2 = 12 separable linear orders with (1, 1, 1) on

top. Since there are 8 possibilities to pick the top element, we conclude that there are 8× 12 =

96 separable linear orders.

For subsequent use, it is useful to index these 96 linear orders. An anonymous pattern is

now a 96−dimensional integer valued vector

Suppose that we want to look at those for which (1, 1, 1) is a Condorcet winner. We will have

7 linear inequalities and the unique question is to write them in a regular way. One possibility

for a nice coding would be the following.

Start with (1, 1, 1) and then (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0) i.e.

rank the blocks from low index to high index according to the number of 1 in the top vector

and in case of ties, order lexicographically from the first coordinate to the third.

In the first block, rank the six orderings of the three vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1)

lexicographically with respect to the order of components from first to sixth according and for

each ordering rank the ordering where the top vector with a single 1 dominates a vector with

two 1 just before the ordering where the top vector with a single 1 is dominated by a vector

with two 1.

Doing so, we obtain the following indexation of any anonymous pattern n = (n1, n2, ..., n96):
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n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12
(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
(1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1)
(1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0)
(0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1)
(0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)
(0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(1, 1, 1) on top

n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24
(1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
(1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)
(1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1)
(0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0)
(0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

(1, 1, 0) on top

n25 n26 n27 n28 n29 n30 n31 n32 n33 n34 n35 n36
(1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1)
(1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1)
(1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1)
(1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0)
(0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0)
(0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0)
(0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

(1, 0, 1) on top
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n37 n38 n39 n40 n41 n42 n43 n44 n45 n46 n47 n48
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1)
(0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1)
(0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0)
(1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1)
(1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0)
(1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)

(0, 1, 1) on top

n49 n50 n51 n52 n53 n54 n55 n56 n57 n58 n59 n60
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0)
(1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0)
(1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1)
(0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0)
(0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1)
(0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)

(1, 0, 0) on top

n61 n62 n63 n64 n65 n66 n67 n68 n69 n70 n71 n72
(0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
(0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1)
(1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 1)
(1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1)

(0, 1, 0) on top
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n73 n74 n75 n76 n77 n78 n79 n80 n81 n82 n83 n84
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1)
(0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 0, 0) (0, 0, 0) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0)
(1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
(1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)
(1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)

(0, 0, 1) on top

n85 n86 n87 n88 n89 n90 n91 n92 n93 n94 n95 n96
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
(0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)
(0, 1, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 1, 0) (0, 0, 1)
(1, 0, 0) (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0)
(1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1)
(1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1)
(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

(0, 0, 0) on top

(1, 1, 1) is a Condorcet winner iff the following seven inequalities hold true

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36

+n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48

+n73 + n74 + n75 + n76 + n77 + n78 + n79 + n80 + n81 + n82 + n83 + n84

>
n

2
;

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24

+n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48
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+n61 + n62 + n63 + n64 + n65 + n66 + n67 + n68 + n69 + n70 + n71 + n72

>
n

2
;

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24

+n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36

+n49 + n50 + n51 + n52 + n53 + n54 + n55 + n56 + n57 + n58 + n59 + n60

>
n

2
;

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n17 + n18 + n19 + n20

+n27 + n28 + n33 + n34 + n35 + n36

+n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48

+n61 + n62 + n65 + n66 + n67 + n68

n75 + n76 + n81 + n82 + n83 + n84

>
n

2
;

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18

+n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36

+n49 + n50 + n51 + n52 + n53 + n54

+n79 + n80 + n81 + n82 + n83 + n84

>
n

2
;

(2)

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n23 + n24

+n25 + n26 + n27 + n28 + n33 + n34

+n41 + n42 + n43 + n44 + n47 + n48

+n49 + n50 + n51 + n52 + n57 + n58
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+n65 + n66 + n67 + n68 + n71 + n72

>
n

2
;

and

n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n23 + n24

+n25 + n26 + n27 + n28 + n30 + n32 + n33 + n34 + n35 + n36

+n38 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48

+n49 + n51

+n65 + n67

+n81 + n83

>
n

2
.

Probability that there exists a Condorcet winner for ITC

It is easy to show that he number of separable tournaments ith (1, 1, 1) as a componentwise

Condorcet winner is equal to 45 = 1024. This implies that we have 8× 1024 = 8192 separable

tournaments (out of the 282 = 268 435 456 tournaments !). Further among those, only 8 ×
43 = 512 have a Condorcet winner. This implies that the ITC probability that there exists a

Condorcet winner is equal to 512
8192

= 1
16

= 6.25%.

Probability that there exists a Condorcet winner for IC

Here IC means that for each voter, the 96 possible linear orders are drawn with probability
1
96
.

Therefore, the distribution of the random vector n is a multinomial distribution π =(
1
96
, 1
96
, ..., 1

96

)
. From the multivariate central limit theorem, we deduce that when n is large

n−nπ√
n

converges to the 96−dimensional gaussian N(0,Ω) where:

Ω =


95

9216
−1
9216

. −1
9216

−1
9216

95
9216

. −1
9216

. . . .
−1
9216

−1
9216

. 95
9216


Then, when n is large, the distribution of the 7−dimensional vector(

N1 − n
2√

n
,
N2 − n

2√
n

,
N3 − n

2√
n

,
N4 − n

2√
n

,
N5 − n

92√
n

,
N6 − n

2√
n

,
N7 − n

2√
n

)
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where:

N1 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36 +

n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48 +

n73 + n74 + n75 + n76 + n77 + n78 + n79 + n80 + n81 + n82 + n83 + n84

N2 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24 +

n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48 +

n61 + n62 + n63 + n64 + n65 + n66 + n67 + n68 + n69 + n70 + n71 + n72

N3 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24 +

n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36 +

n49 + n50 + n51 + n52 + n53 + n54 + n56 + n56 + n57 + n58 + n59 + n60

N4 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n17 + n18 + n19 + n20 +

n27 + n28 + n33 + n34 + n35 + n36 +

n37 + n38 + n39 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48 +

n61 + n62 + n65 + n66 + n67 + n68 +

n75 + n76 + n81 + n82 + n83 + n84

N5 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n15 + n16 + n17 + n18 +

n25 + n26 + n27 + n28 + n29 + n30 + n31 + n32 + n33 + n34 + n35 + n36 +

n43 + n44 + n45 + n46 + n47 + n48 +

n49 + n50 + n51 + n52 + n53 + n54 +

n79 + n80 + n81 + n82 + n83 + n84
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N6 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24 +

n25 + n26 + n27 + n28 + n33 + n34 +

n41 + n42 + n43 + n44 + n47 + n48 +

n49 + n50 + n51 + n52 + n57 + n58 +

n65 + n66 + n67 + n68 + n71 + n72

N7 = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 + n11 + n12 +

n13 + n14 + n15 + n16 + n17 + n18 + n19 + n20 + n22 + n24 +

n25 + n26 + n27 + n28 + n30 + n32 + n33 + n34 + n35 + n36 +

n38 + n40 + n41 + n42 + n43 + n44 + n45 + n46 + n47 + n48 +

n49 + n51 +

n65 + n67 +

n81 + n83

is approximatively the 7−dimensional gaussian Z ≡ N(0,∆) where:

∆ =



1
4

0 0 1
8

1
8

0 5
48

0 1
4

0 1
8

0 1
8

5
48

0 0 1
4

0 1
8

1
8

5
48

1
8

1
8

0 1
4

4
48

4
48

7
48

1
8

0 1
8

4
48

1
4

4
48

7
48

0 1
8

1
8

4
48

4
48

1
4

7
48

5
48

5
48

5
48

7
48

7
48

7
48

1
4


According to Niemi and Weisberg (1968), the probability of having a Condorcet winner

when there are 8 alternatives is equal to 58.49%. Here, by using the R program the codes

of which are reproduced together with one simulation output in appendix 1, we obtain with

106 simulations, a bootstrap of 2000 and 1000 draws, an average empirical probability equal

to 0.07382304, a variance equal to 3.20618927327327 × 10−7 and a 95% empirical confidence

interval equal to [0.072654875, 0.074935125].

We deduce that the IC probablity of having a Condorcet winner is here around 0.07382304×
8 = 0.590 58 with a 95% chance of being in the interval [0.581 24, 0.599 48]. It seems that the

14



probability is higher than in the unrestricted case but given the random estimate, we cannot

claim that it holds true with probability 1.

Another approach could consist in the computation of the multiple integral expressing the

orthant probability. We just provide a sketch in appendix 2.

Probability that there exists a Condorcet winner for IAC

Here, all
(
n+95
95

)
possible realizations of the integer valued random vector Pn are assumed

to be equally likely. Solving (2) amounts to count integer solutions to a system of linear

inequalities. This can be done efficiently using the theory of Ehrhart’s polynomials. After

solving this combinatorial step, we obtain a number which has to be divided by the number

above. The IAC probability of a Condorcet winner is 8 times this number.

When n tends to infinity, the probability 96−dimensional vector describing the proportions

(after division by n) of voters in each of the 96 groups is the uniform law on the 96−dimensional

unitary simplex. Further, the 7 inequalities describing the constraints on the proportions pi =
ni

n

(instead of the integers ni) for (1, 1, 1) to be a Condorcet winner are linear cuts. Of course,

p = (p1, p2, ..., p96) is a vector in the 96−dimensional unitary simplex S96 i.e. p is such that:

pi ≥ 0 for all i = 1, 2, ..., 96 and
96∑
i=1

pi = 1.

The probability that (1, 1, 1) is a Condorcet winner with an infinitely large population is the

volume of a convex polytope, denoted H, in S96 described by the following 7 linear inequalities

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36

+p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48

+p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84

≥ 1

2
;

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24

+p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48

+p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72

≥ 1

2
;
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p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24

+p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36

+p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60

≥ 1

2
;

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p17 + p18 + p19 + p20

p27 + p28 + p33 + p34 + p35 + p36

+p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48

+p61 + p62 + p65 + p66 + p67 + p68

p75 + p76 + p81 + p82 + p83 + p84

≥ 1

2
;

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16 + p17 + p18

+p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36

p43 + p44 + p45 + p46 + p47 + p48

+p49 + p50 + p51 + p52 + p53 + p54

+p79 + p80 + p81 + p82 + p83 + p84

≥ 1

2
;

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24

+p25 + p26 + p27 + p28 + p33 + p34

+p41 + p42 + p43 + p44 + p47 + p48

+p49 + p50 + p51 + p52 + p57 + p58

+p65 + p66 + p67 + p68 + p71 + p72
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≥ 1

2
;

and

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p22 + p24

+p25 + p26 + p27 + p28 + p30 + p32 + p33 + p34 + p35 + p36

+p38 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48

+p49 + p51

+p65 + p67

+p81 + p83

≥ 1

2
.

The codes of the R program to compute the volume of an arbitrary polytope are described

in appendix 3. Having to deal with S96 raises a curse of dimensionality. To deal with it, we

may want to exploit the symmetries of the polytope11. Indeed a careful inspection of these

7 inequalities show that many variables come together and can be aggregated to form new

variables. The process of aggregation as well as the new variables are described in appendix

4 for the cases k = 3 and k = 2. By doing so, we move from 96 to 32 variables in the case

k = 3 and from 8 to 6 variables in the case k = 2. Of course, the probability law on the

lower dimensional vector is not anymore uniform. However, we show in appendix 4 that it

belongs to the Dirichlet family. This parametric class of probabilities can be emulated in R

programs.12 We have performed several ”bootstrap” simulations13. Unsurprisingly, they do not

deliver really different results. For one of them, we have obtained a mean estimated volume

equal to 0.074301, a variance equal to 6.99583573573574×10−5, and a 95% empirical confidence

interval equal to [0.058975, 0.092].

We deduce that the IAC probability of having a Condorcet winner is here around 0.074301×
8 = 59.44% (quite close to the IC one) with a 95% chance of being in the interval [47.18%,

73.6%].14

11The idea of exploiting symmetries already appear in Schürmann (2013).
12The codes of the R program to compute the probability of a polytope for a Dirichlet distribution is available

from the authors upon request.
13i.e. volume estimator bootstrap(N = ..., n = 96, n par bootstrap = ..., A = A, n simu = ...).
14As compared to IC, the bootstrap has been performed for N = 105 (instead of N = 106 simulations) with

a bootstrap of 1000 (instead of 2000) and 1000 draws.
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5 Conclusion

The computed probability values that are of primary interest from this study are summarized

in Table 1.15 Results are most evident for the case of two issues where the degree of dependence

that IAC-based assumptions are known to introduce beyond the complete independence of IC-

based assumptions causes a predictable increased likelihood for observing a Condorcet winner

for both the unrestricted case and when separable preferences are introduced.

Table 1: Probability of a Condorcet Winner with Separable Preferences
Distribution Issues

k = 2 k = 3
IC .8245 .58

IC-Separable .8333 .59
IAC .8384 .58

IAC-Separable .8750 .59

It is particularly of interest to note that the introduction of the condition of Separable Pref-

erences also increases the probability of observing a Condorcet winner from the unrestricted

cases for both IC and IAC. So, the addition of this simple model to restrict preferences to be in

accord with the logically consistent behavior of separable preferences creates enough additional

structure among voters’ preferences rankings to increase the likelihood that a Condorcet winner

will exist with both IC and IAC-based scenarios. These probabilities all predictably decrease

and trend toward a common value for the case of three issues, but the critical point is that the

same patterns consistently emerge.

6 Appendices

6.1 Appendix: 1 The R Program to Compute an Orthant Probabil-
ity in the Gaussian Case

1 #We try to install the packages required to simulate multivariate

gaussians and to do parallel computing

2 # If they are installed, we load them

3 neededPkgs ¡-c(”foreach”, ”doParallel”, mvtnorm”)

4 for(pkg in neededPkgs) {
5 if (require (pkg, character. only=TRUE)) {
6 print (paste(pkg, ”is loaded correctly”))

15This Table displays exact values for k = 2 and rounded estimates for k = 3. The IAC value for k = 3 comes
from Feix and Rouet (1999).
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7 } else {
8 print (paste(”trying to install”, pkg))

9 install. packages (pkg)

10 library (pkg)

11 }
12 }
13 rm (neededPkgs, pkg)

14

15

16 Simulation all ¡-function (n,k, mu=rep(0,k), sigma= diag(k)) {
17 # Simulates and returns a named table of length 2ˆk with the empirical

probabilities of every case

18 # n is the number of gaussian r.v. to simulate

19 # k is the size of one gaussian r.v.

20 # mu is the vector of means for the gaussian r.v., of length k, default

set to 0

21 # sigma is the varaince-covariance matrix for the gaussian r.v., default

is identity matrix (unitary independent gaussians)

22 if (length (mu) !=k) {stop(”k different from the length of mu”)}
23 # We initialize the counting vector with every case

24 Y ¡- expand.grid(rep(list(0:1),k))

25 # We create a column saying to which case each row corresponds, we set it

as the index of the table

26 Y[,”hash”] ¡-apply (Y,1,function(x){return(paste(x,sep=””,collapse=””))

})
27 row.names(Y) ¡- Y$hash

28 Y$hash ¡- NULL

29 # We initialize the counting column in our table by setting it to 0 fpr

each row

30 Y[,”total”] ¡-0

31 # We simulate all the gaussians first

32 input ¡- rmvnorm (n, mean=mu, sigma=sigma)

33

34 # sub-function that updates the counting table by adding +1 to the value

of a case

35 ’updt ¡-’ ¡- function (x, ...,value){
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36 x[value,”total”] ¡-x[value, ”total”]+1

37 x

38 }
39 # sub-function that reads a gaussian r.v; observation and returns the

corresponding case

40 one pass ¡- function (value){
41 y ¡- sapply (value, function (i) {return (max(0, sign(i)))})
42 code ¡- paste (y,sep=””,collapse=””)

43 return (code)

44 }
45 # We read all gaussians and update the table each time, job’s done !

46 for (i in 1:n) {
47 updt (Y) ¡- one pass (input [i,])

48 }
49 Y$total ¡- Y$total/n

50

51 return (Y)

52 }
53

54 simulation one ¡- function (n,k,mu=rep(0,k), sigma=diag(k), case=

paste (rep(1,k), sep=””, collapse=””)){
55 # Simulates and returns the empirical probability of one particular case

56 # n is the number of gaussians r.v. to simulate

57 # k is the size of the gaussian r.v.

58 # mu is the vector of means for the gaussian r.v., of length k, default

set to 0

59 # sigma is the variance-covariance matrix for the gaussian r.v., default

is identity matrix (unitary independent gaussians)

60 # case is the case that we want to study ( default is ”all positive”),

61 # defined as a charcater string of 0s and 1s corresponding to the

components of the gaussian r.v. which are negative/positive

62 # ex : for k=4, case =”0001” means that every component except the last

one is negative

63 # so default is coded to be ”11...1”

64 if (length(mu) !=k) {stop (k different from the length of mu”)}
65
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66 # We simulate all the gaussian r.v.

67 input ¡- rmvnorm (n,mean=mu, sigma=sigma)

68

69 # Sub-function that reads a gaussian r.v. observation and returns

corresponding case

70 one pass ¡- function (value){
71 y ¡- sapply (value, function (i),{return (max(0,sign(i)))})
72 code ¡- paste (y,sep=””,collapse=””)

73 return (code)

74 }
75 # We convert all our simulated gaussians r.v. into a vector of the

corresponding cases

76 codes ¡- apply(input, 1,function(i){one pass(i)})
77

78 # We are only interested in one case, we get the empirical mean of this

case appearing and the job’s done !

79 y ¡- mean(codes == case)

80 print (paste (”empirical probability of case”, case, ”is :”, y))

81 return (y)

82 }
83

84 simulation parallel ¡- function (n par simu, k, n simu =100, mimax = c(0,

1), mu=rep(0,k), sigma = diag(k),

85 case = paste (rep(1,k), sep=””, collapse=””)){
86 # simulation one can get pretty slow if n is too big

87 # This function overcomes this by computing in parallel several instances

of simulation one with a smaller n

88 # n simu is the number of instances of simulation that we compute

89 # n par simu is the number of gaussians that we simulate in each instance

90 # In total, we simulate n par simu*n simu gaussians

91 # The fact that we get an estimate of our probability for each instance

means that we can build empirical confidence intervals

92 #and compute the varaince of our estimate

93 # also the argument minmax corresponds to a range we want to know the

probability for our estimate to be into

94 # default is (0,1) so the empirical probability will be 1, you can change
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it to get different probabilities

95

96 # Setup parallel backend to use many pocessors

97 cores=detectCores()

98 cl ¡- makeCluster (cores [1)-1) # We eave one idle core to not overload

your computer

99 registerDoParallel (cl)

100

101 final ¡- foreach (i=1:n simu, .combine= ’c’, .export =c(”simulation one”,

”rmvnorm”)) %dopar% {
102 y = simulation one (n par simu, k,mu=mu, sigma=sigma, case=case)

103

104 y

105 }
106 stopCluster (cl)

107

108 print(paste(”Empirical probability of case”, case, ”is : ”, mean(final)))

109 print (paste (”The variance of our estimate is”, var(final)))

110 q ¡- quantile (final, probs = c(0.025, 0.975))

111 print (paste (95% Empirical confidence interval is [”, q[1], ”,”,q[2],”]”)

)

112 print (paste (”Empirical probability of being in range [”,minmax [1],”,”,

minmax [2],”] is :”,

113 mean ((final ¿ minmax[1] &(final ¡ minmax[2]))))

114 plot . new ()

115 hist (final, prob=TRUE, col=”grey”, xlab =”probability of case”, ylab =”

frequency”,

116 main =”Distribution of the estimates”)

117 lines (density (final), col=”blue”, lwd=2)

118

119 return (final)

120 }
121

122 simulation bootstrap ¡- function (n,k,n par bootstrap = min (c(1, floor(0.5*

n))) , n simu =100, minmax =c(0,1), mu = rep (o,k), sigma = diag (k),

123 case = paste (rep(1,k), sep=””,collapse=””)){
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124 # simulation one can get pretty slow if n is too big

125 # This function overcomes this by first simulating a lot of gaussian r.v.

126 # and then computing several estimates of our probbaility by boostraping

several samples (bootstrap is sampling with replacement)

127 # This avoids having to simulate a lot of gaussian r.v.

128 # n is the number of gaussian r.v. to simulate

129 # n simu is the number of bootstraped samples that we’ll use

130 # n par bootstraped is the size of each bootstraped sample

131 # The fact that we get an estimate of our probbaility for each instance

means that we can build empirical confidence intervals

132 # and compute the variance of our estimate

133 # also the argument minmax corresponds to a range we want to know the

probability of our estimate to be into

134 # default is (0,1) so the empirical probability will be 1, you can change

it to get different probabilities

135

136 if (length (mu) !=k){stop (”k different from the length of mu”)}
137

138 # Setup parallel backend to use many processors

139 cores=detectCores()

140 cl ¡-makeCluster (cores [1]-1) # We leave one idle core to not overload

your computer

141 registerDoParallel (cl)

142

143 # We fist simulate all the gaussians r.v.

144 input ¡- rmvnorm (n,mean=mu, sigma =sigma)

145

146 #Sub-function that reads a gaussian r.v. observation and returns the

corresponding case

147 one pass ¡- function (value){
148 y ¡- sapply(value, function (i){return (max (0, sign (i)))})
149 code ¡- paste (y,sep=””,collapse=””)

150 return (code)

151 }
152

153 final ¡- foreach (i=1:n simu, . combine= ’c’) %dopar% { {
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154 x ¡- input[sample (nrow(input), size=n par bootstrap, replace=T,]

155 # We convert all our simulated gausian r.v. into a vector of this

corresponding cases

156 codes ¡- apply (x, 1, function (i) {one pass(i)})
157

158 # We are only interested in one case , we get the empirical mean of this

case appearing and the job’s done !

159 y ¡- mean (codes == case)

160

161 y

162 }
163 stopCluster (cl)

164

165 print (paste (”Empirical probability of case”, case, ”is : ”, mean(final)))

166 print (paste (”The variance of our estimate is”, var(final)))

167 q ¡- quantile (final, probs= c(0.025, 0.975))

168 print (paste (””95% Empirical confidence interval is [”, q[1],”,”,q[2],”]”)

169 print (paste(”Empirical probability of being in range [”, minmax [1],”,”,

minmax [2],”] is : ”,

170 mean (( final ¿ minmax[1] & (final ¡ minmax [2]))))

171 plot.new()

172 hist(final,prob=TRUE, col=”grey”, xlab =”Probbaility of case ”, ylab =”

Frequency”,

173 main =”Distribution of the estimates”)

174 lines (density (final), col=”blue”, lwd=2)

175

176 return (final)

177 }
178

179 # NB 1: simulation all is slower than simulation one because it does more

operations on a 2ˆk-sized table

180 # If you are only interested in a few values of if k is too big, use

simulation one

181

182 # NB 2/ simulation parallel and simulation-bootstrap both use parallel

computing to speed up computations
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183 # simulation bootstrap should be faster than simulation parallel in general

because we tend to simulate less gaussian r.v. for the bootstrap

184 # Also bootstraping reduces variance for the same bias (0 here) in theory

185 # However, bootstraping in practice can be tricky when you want to estimate

a case where probability is low :

186 # The chance of getting the case when simulating the r.v. is low and the

the chance of getting that case when bootstraping is also low

187 # Therefore you should use simulation bootstrap when you’are estimating a

probability which you think is high, simulation parallel otherwise

188

189

190 # # # # EXAMPLES # # #

191 sigma-sept2 ¡-matrix (c(12,0,0,6,6,0,5,

192 0,12,0,6,0,6,5,

193 0,0,12,0,6,6,5,

193 6,6,0,12,4,4,7,

195 6,0,6,4,12,4,7,

196 0,6,6,4,4,12,7,

197 5,5,5,7,7,7,12) , nrow=7, ncol=7)

198 test ¡- simulation all (1000,3)

199 test ¡- simulation one (100000,3)

200

201 sigma test ¡- matrix (c(1,0.5,0,0.5, 1,0,0,0,1), nrow=3, ncol=3)

202 test all ¡- simulation all (n=100, k=3,sigma=sigma test)

203

204 test one ¡- simulation one (n=1000, k=7, sigma=sigma sept, case =”

1111111”)

205

206 test ¡- simulation bootstrap (n=100000, 7, n par bootstrap =10000, n simu

=100, sigma =sigma sept2, minmax=c(0.07, 0.08))

207

208 test ¡- simulation parallel (n par simu =10000, 7, n simu =10000, sigma=

sigma sept2)

25



6.2 Appendix 2: The Exact Orthant Probability for IC and k = 3

Consider a 7-dimensional gaussian vector X with zero mean and matrice of variance-covariance

∆ defined as follows:

∆ =



1
4

0 0 1
8

1
8

0 5
48

0 1
4

0 1
8

0 1
8

5
48

0 0 1
4

0 1
8

1
8

5
48

1
8

1
8

0 1
4

4
48

4
48

7
48

1
8

0 1
8

4
48

1
4

4
48

7
48

0 1
8

1
8

4
48

4
48

1
4

7
48

5
48

5
48

5
48

7
48

7
48

7
48

1
4


We derive:
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anddeterminant∆ =
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Therefore the density of X is:
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We deduce that the probability that (1, 1, 1) is a Condorcet winner is equal to:∫ 1
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6.3 Appendix 3 : The R Program to Compute the Volume of a
Polytope

1# We try to install the packages required to do parallel computing

2 # If there are installed, we load them

3 neededPkgs ¡- c(”foreach”,”doParallel”, ”hitandrum”)

4 for (pkg in neededPkgs) {
5 if (require (pkg, character.only=TRUE)) {
6 print (paste(pkg, ”is loaded correctly”))

7 } else {
8 print (paste(”trying to install”, pkg))

9 install . packages (pkg)

10 library (pkg)

11 }
12 }
13 rm (neededPkgs , pkg)

14

15 volume estimator ¡-function (N,n,A=diag(n),b=c(1/2,rep(nrow(A)/2, (

nrow(A)-1))), data=NULL){
16 gen simplex ¡- function(n){
17 #This function generates a random point in the positive simplex of Rˆn,

that is, (x1,...,xn) such that

18 #0¡=xi¡=1 for all i

19 #Sum(xi) ¡=1

20 if (n¡2) {stop(”n must be higher than 2 !”)}
21 x¡ - runif (n)

22 while (sum (x) ¿ 1) {
23 x ¡- runif (n)

24 }
25 return (x)

26 }
27

28 is in h ¡- function (x, A, b){
29 #Tests if a point of the simplex is in the subspace defined by Ax ¿ b

30 y ¡- as.vector (A %*%, x)

31 return ( as.integer (all(y ¿= as.vector (b))))
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32 }
33

34 if (is. null(data)){
35 X ¡- sapply(rep(n,N), gen simplex) # simulated simplex points

36 }else{
37 X ¡ -data # If we’ve already simulated the points, we just import them

from the argument

38 }
39

40

41 Y ¡- apply (X, 2, function (x){return (is in h(x, A,b))})
42

43 return (mean(Y))

44 }
45

46 volume estimator bootstrap ¡-function (N,n,n par bootstrap = min(c(1,

floor (0.5*N))) , n simu =100, minmax = c(0,1) ,

47 A, b =c(1/2, rep(n/2, (n-1))))}
48 #volume estimator ca get pretty slow if N is too big

49 # This function overcomes this by first simulating a lot simplex points

50 # and then computing several estimates of our volume by bootstrapping

several samples (bootstrap is sampling with replacement )

51 # This avoids having to simulate a lot of simplex points

52 # N is the number of points to simulate

53 # n is the dimension of the space

54 # n simu is the number of bootstraped samples that we’ll use

55 # n par bootstraped is the size of each bootstraped sample

56 # The fact thatwe get an estimate of our voume for each instance means

that we can build empirical confidence intervals

57 # and compute the variance of our estimate

58 # also the argument minmax corresponds to a range we want to know the

probability of our estimate to be into

59 # default is (0,1) so the empirical probability will be 1 , you can change

it to get different probabilities

60 # A and b are the same as before

61
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62 # Setup parallel backend to use many processors

63 cores=detextCores()

64 cl¡- makeCluster (cores(1]-1) # We leave one idle core to not overload

your computer

65 registerDoParallel (cl)

66

67 input ¡-sapply (rep(n,N), gen simplex) # Simulated simplex points

68

69 final ¡- foreach (i=1:n simu, .combine=’c’, .export=c(”volume estimator

”)) %dopar% {
70 x ¡- input [, sample(ncol(input), size=n par bootstrap, replace=T)]

71 # We sample with replacement from our simulated simplex points

72 volume ¡- volume estimator (n par bootstrap, n, A, b, data=x)

73

74 volume

75 }
76 stopCluster (cl)

77

78 print (paste (”Mean estimated volume is /”, mean (final)))

79 print (paste(”The variance of our estimate is”, var(final)))

80 q¡-quantile(final, probs=c(0.025, 0.975))

81 print(paste(”95% Empirical confidence interval is [ ”,q[1],”,”,q[2],”]”)

)

82 print(paste(” Empirical probability of the volume being in range [”,

minmax[1],”,”,minmax[2],”] is : ”,

83 mean((final¿minmax[1]&(final ¡minmax[2]))))

84 plot.new()

85 hist(final, prob=TRUE, col=”grey”, xlab=”Estimated volume”, ylab=”

Frequency”,

86 main = ” Distribution of the estimates”)

87 lines(density(final), col=”blue”, lwd=2)

88

89 return (final)

90 }
91

92
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93 # # # # EXAMPLES # # #

94

95 A ¡-matrix (0,nrow=7, ncol=96) #We’ll build the matrix in the paper

to get a working example

96 for (i in c(1 :12, 25:48, 73:84)) {A[1,i] ¡-1}
97 for (i in c(1 :24, 37:48, 61:72)) {A[2,i] ¡-1}
98 for (i in c(1 :36, 49:60,)) {A[3,i] ¡-1}
99 for (i in c(1 :14, 17:20, 27:28,33:48,61:62,65:68,75:76,81:84)) {A[4,i] ¡-1}
100 for (i in c(1 :18, 25:36, 49:54,79:84)) {A[5,i] ¡-1}
101 for (i in c(1 :28, 33:34, 41:44, 47:52,57:58,65:68,71:72)) {A[6,i] ¡-1}
102 for (i in c(1 :20, 23:28,30, 32:36,38, 40:49,51,65,67,81,83)) {A[7,i] ¡-1}
103

104 #test volume ¡-volume estimator (1000, 96,A) # Too long, rejection metod

is useless for such a high dimension !

105

106 gen simplexes ¡- function (N,N){
107 # This function generates N random points in the positive simplex of R ˆn,

that is, (x1, ..., xn) such that

108 # 0¡=xi¡=1 for all i

109 # Sum(xi) ¡=1

110 if (n¡2){stop(”n must be higher than 2 !”)}
111 M ¡- matrix (0,nrow=n+1, ncol=n)

112 M[n+1,] ¡-1

113 M[row(M) ==col(M)] ¡- -1

114 constraints ¡- list (constr =M,

115 dir =rep(”¡”,n+1),

116 rhs = c(rep(0,n),1))

117

118 y ¡- hitandrum (constraints,

119 n.samples =N ,

120 x0 = rep(1/(n+1),n))

121

122 return(y)

123 }
124

125
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126 #test gen ¡-gen simplexes (100,96) #Also way too long for n too big

6.4 Appendix 4 : Moving from Uniform to Dirichlet. How to deal
with the Curse of Dimensionality

Let Sm be the m−dimensional unit simplex i.e. the set of vectors p in Rm such that:

pi ≥ 0 for all i = 1, 2, ...,m and
m∑
i=1

pi = 1

The uniform distribution on Sm is a special case of a Dirichlet distribution. The Dirichlet

distribution of order m with parameters α1, ..., αm > 0 has a probability density function with

respect to Lebesgue measure defined by :

f(x;α) =
1

B(α)

m∏
k=1

xαk−1
k where α ≡ (α1, ..., αm)

with16:

B(α) =

m∏
k=1

Γ (αk)

Γ (
∑m

k=1 αk)

When α ≡ (1, ..., 1) , we obtain the uniform distribution. We know a lot of things on

this parametric family of distributions. For our purpose, we only need this property called

aggregation property. It asserts that if p follows a Dirichlet distribution of order m with pa-

rameters α, then if we sum the coordinates i and j leaving the others the same, the new

vector (p1, ..., pi + pj, ..., pm) follows a Dirichlet distribution of order m − 1 with parameters

(α1, ..., αi + αj, ..., αm).

How to use that in our case ? Here is the trick. We observe that in the seven inequalities

many variables always come together in each inequality. If we proceed to a complete description

of these symmetries, we create 32 new variables by adding old ones (either 2, 4 or 12) of them

as follows.

q1 = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

q2 = p19 + p20

q3 = p15 + p16

16Γ denotes the Gamma function. In particular if x is an integer Γ(x) = (x− 1)!
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q4 = p21 + p23

q5 = p22 + p24

q6 = p13 + p14 + p17 + p18

q7 = p25 + p26

q8 = p35 + p36

q9 = p29 + p31

q10 = p30 + p32

q11 = p27 + p28 + p33 + p34

q12 = p37 + p39

q13 = p38 + p40

q14 = p45 + p46

q15 = p41 + p42

q16 = p43 + p44 + p47 + p48

q17 = p49 + p51

q18 = p50 + p52

q19 = p53 + p54

q20 = p57 + p58

q21 = p55 + p56 + p59 + p60

q22 = p61 + p62

q23 = p65 + p67

q24 = p66 + p68

q25 = p71 + p72

q26 = p63 + p64 + p69 + p70
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q27 = p75 + p76

q28 = p79 + p80

q29 = p81 + p83

q30 = p82 + p84

q31 = p73 + p74 + p77 + p78

q32 = p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96

From the aggregation property, since the vector p follows a Dirichlet distribution of order

96 with parameter (1, 1, 1, ..., 1), we deduce that the vector q follows a Dirichlet distribution of

order 32 with parameters:

α = (12, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 12)

So, we have moved from 96 dimensions to 32 dimensions but at the cost of moving from

a simple Dirichlet (the uniform) to a more sophisticated one. The 7 inequalities with the 32

variables write as follows.

q1 + q7 + q8 + q9 + q10 + q11 + q12 + q13 + q14 + q15 + q16 + q27 + q28 + q29 + q30 + q31 ≥
1

2
;

q1 + q2 + q3 + q4 + q5 + q6 + q12 + q13 + q14 + q15 + q16 + q22 + q23 + q24 + q25 + q26 ≥
1

2
;

q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 + q17 + q18 + q19 + q20 + q21 ≥
1

2
;

q1 + q2 + q6 + q8 + q11 + q12 + q13 + q14 + q15 + q16 + q22 + q23 + q24 + q27 + q29 + q30 ≥
1

2
;

q1 + q3 + q6 + q7 + q8 + q9 + q10 + q11 + q14 + q16 + q17 + q18 + q19 + q28 + q29 + q30 ≥
1

2
;

q1 + q2 + q3 + q4 + q5 + q6 + q7 + q11 + q15 + q16 + q17 + q18 + q20 + q23 + q24 + q25 ≥
1

2
;
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q1 + q2 + q3 + q5 + q6 + q7 + q8 + q10 + q11 + q13 + q14 + q15 + q16 + q17 + q23 + q29 ≥
1

2
.

The matrix 7× 32 and the colum vector of this polytope, denoted HD, are respectively:

1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1
1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0
1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

1 0
0 0
0 0
0 0
0 0
0 0
0 0




1
2
1
2
1
2
1
2
1
2
1
2
1
2


The probability of being in HD when q is drawn over S32 according to the Dirichlet

(12, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 12) is the same as the prob-

ability of being in H when p is drawn uniformly over S96.

When k = 2, we could have done the same thing. With the original proportions, we would

have the following 3 inequalities where p is a vector in S8:

p1 + p2 + p3 + p5 >
1

2

p1 + p2 + p3 + p4 >
1

2

p1 + p2 + p5 + p6 >
1

2

This polytope is described by the foolowing matrix and right hand-side vector: 1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0


 1

2
1
2
1
2
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We can move to 6 new variables:

q1 = p1 + p2

q2 = p3

q3 = p4

q4 = p5

q5 = p6

q6 = p7 + p8

The system of equations writes now:

q1 + q2 + q4 >
1

2

q1 + q2 + q3 >
1

2

q1 + q4 + q5 >
1

2

The matrix and right-hand side are now: 1 1 0 1 0 0
1 1 1 0 0 0
1 0 0 1 1 0


 1

2
1
2
1
2


and the vector q displays a Dirichlet distribution with parameters (2, 1, 1, 1, 1, 2) over S6.

The probability of being inHD when q is drawn over S6 according to the Dirichlet (2, 1, 1, 1, 1, 2)

is the same as the probability of being in H when p is drawn uniformly over S8.
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