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together, these results suggest that we should not combine DID with conditioning
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1 Introduction

This paper studies the conditions under which the combination of Difference In Differences

(DID) with conditioning on pre-treatment outcomes is a valid estimator of the effect of

an intervention.1 Combining DID with conditioning on pre-treatment outcomes is often

used in empirical studies when evaluating Job Training Programs (JTPs),2 but also other

types of programs.3. This approach is especially used when the Parallel Trend Assumption

(PTA) of DID fails, that is when the pre-treatment trends in outcomes between the treated

and control groups are not parallel.

There are two informal arguments in favor of combining DID with conditioning on

pre-treatment outcomes when the PTA fails, a theoretical one and an empirical one. The

theoretical argument suggests that combining DID with conditioning on pre-treatment

outcomes combines the strengths of both methods: DID differences out the permanent

confounders while conditioning on pre-treatment outcomes captures the transitory ones.4 A

case in point is the evaluation of Job Training Programs (JTPs). Participants in JTPs have

permanently lower earnings than non-participants but also experience a transitory decrease

in earnings just before entering the program – a stylized fact known as Ashenfelter’s dip.5

Conditioning on pre-treatment outcomes captures these time varying confounders, the

argument goes, while DID differences out the permanent fixed confounders, if there are

any. The empirical argument is based on the fact that combining DID with conditioning on

pre-treatment outcomes has been found to reproduce the results of Randomized Controlled

Trials (RCTs) well, at least when evaluating the effect of JTPs on earnings (Heckman,

Ichimura, Smith, and Todd, 1998; Smith and Todd, 2005; Mueser, Troske, and Gorislavsky,

2007).

1In this paper, I only consider the case where conditioning and differencing use pre-treatment outcomes
observed at different dates. When conditioning and differencing use pre-treatment outcomes observed at
the same date, the DID estimator converges to a simple matching estimator. The question then simplifies
to whether we should use matching or DID, which is examined by Chabé-Ferret (2015).

2See e.g. Heckman, Ichimura, Smith, and Todd (1998); Smith and Todd (2005); Mueser, Troske, and
Gorislavsky (2007)

3See e.g. Galiani, Gertler, and Schargrodsky (2005); Pufahl and Weiss (2009); Fowlie, Holland, and
Mansur (2012); Chabé-Ferret and Subervie (2013)

4See Abadie (2005) for a statement of this informal theoretical argument.
5See Heckman, LaLonde, and Smith (1999) for a survey of the evidence on this phenomenon.
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Despite the increasing use of DID combined with conditioning on pre-treatment out-

comes in applied work, there exists no assessment of the soundness of the theoretical and

empirical arguments on which it rests. In this paper, I make a careful assessment of this

approach, both in theory and in practice. First, I build a simple model that exhibits se-

lection on both permanent and transitory confounders. I derive necessary and sufficient

conditions on the parameters of this model for the combination of DID with condition-

ing on pre-treatment outcomes to be consistent. Second, I run simulations of a model of

earnings dynamics and self-selection into a JTP in order to assess the size of the bias in

a realistic application. Third, I revisit experimental estimates of the performance of DID

conditioning on pre-treatment outcomes in order to compare them with the predictions

from my model.

In my simulations, I focus on the example of the effect of JTPs on earnings for several

reasons. First, JTPs are crucial components of the modern welfare state, especially in

a context in which innovations and trade disrupt entire sectors in developed countries

and require the retooling of millions of workers. Second, earnings are the main outcome

that a JTP seeks to influence, especially by increasing the human capital of workers.

Third, earnings dynamics are described extensively by some well-known processes whose

parameters have been estimated in labor economics. Fourth, both observational methods

and RCTs have been and still are extensively used to evaluate JTPs. Fifth, empirical

results comparing the bias of observational methods to an experimental benchmark are

available for the effect of JTPs on earnings and their results can be contrasted with the

predictions of the model.

The main result of this paper is that both the theoretical and the empirical arguments

in favor of combining DID with conditioning on pre-treatment outcomes are incorrect. My

main theoretical result shows that there is no configuration in which the combination of

DID with conditioning on pre-treatment outcomes is consistent in a model that exhibits

selection on both permanent and transitory confounders. The only configurations where

the combination of DID with conditioning on pre-treatment outcomes is consistent is when

there is either no selection on a fixed confounder – and matching conditioning on pre-
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treatment outcomes is consistent – or no selection on transitory ones – and DID without

conditioning on pre-treatment outcomes is consistent. The intuition for this result is that

conditioning on pre-treatment outcomes generates time varying selection bias while the

validity of DID is predicated upon the assumption that selection bias is constant over

time.

Worse, I find two cases where combining DID with conditioning on pre-treatment out-

comes can generate bias for an otherwise consistent DID estimator. These are, to my

knowledge, the first concrete examples of the fallacy of alignment, a term coined by Heck-

man and Navarro-Lozano (2004) to describe situations where conditioning on observed co-

variates might actually increase the bias of an estimator. The first instance of the fallacy of

alignment in my results appears when selection is only due to permanent confounders and

transitory shocks are persistent. In that case, DID without conditioning on pre-treatment

outcomes is consistent but DID conditioning on pre-treatment outcomes is not. The sec-

ond theoretical instance of the fallacy of alignment appears when selection is due to both

permanent and transitory confounders. In that case, under conditions made precise in

Chabé-Ferret (2015),6 selection bias is symmetric around the treatment date and DID

applied symmetrically around the treatment date without conditioning on pre-treatment

outcomes is consistent. Under these conditions, conditioning on pre-treatment outcomes

generates bias for the DID estimator. The intuition for this result is that conditioning on

pre-treatment outcomes breaks the symmetry of selection bias around the treatment date.

Although interesting, these results are mainly theoretical. It is possible that the bias of

DID combined with conditioning on pre-treatment outcomes is small in actual applications

and that this approach, although theoretically inconsistent, is approximately valid. This

might explain why it has been found to reproduce the results of RCTs very well in the case

of JTPs. I use a model of self-selection and earnings dynamics calibrated with realistic

parameter values taken from the literature to gauge how the the bias of DID varies as we

condition on pre-treatment outcomes. There are two main results from the simulations.

6These conditions are that the agents have full information on transitory shocks when they select into
the treatment, that transitory shocks are stationary and that the conditional expectation of transitory
shocks conditional on the net utility of entering the program is linear.
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First, when the conditions for selection bias to be symmetric are fulfilled, the bias of DID

conditioning on one pre-treatment outcome is sizable: it is in absolute value of the order

of magnitude of the treatment effects of JTPs usually found with RCTs. The bias of

combining DID with conditioning on one observation of pre-treatment outcomes is thus

large enough to mask the effects of most JTPs. Second, even when selection bias is not

symmetric around the treatment date, the bias of DID conditioning on one pre-treatment

outcome is still generally larger in absolute value than the bias of DID not conditioning

on pre-treatment outcomes and applied symmetrically around the treatment date.

Both the theoretical and simulation results suggest that combining DID with condi-

tioning on one observation of pre-treatment outcomes might not be the reason why DID

matching performs so well at reproducing the results of RCTs. Both results suggest that

it is rather DID applied symmetrically around the treatment date not conditioning on pre-

treatment outcomes that might be the reason for the good performance of DID matching

against RCTs. In order to check these predictions, I take a closer look at the original stud-

ies comparing DID matching with RCTs: Heckman, Ichimura, Smith, and Todd (1998) and

Smith and Todd (2005).7 I separate the estimates depending on whether they condition or

not on pre-treatment outcomes and whether or not they are applied symmetrically around

the treatment date. In both papers, I find that it is the application of DID symmetri-

cally around the treatment date rather than the combination of DID with conditioning on

pre-treatment outcomes that performs well, in agreement with both my theoretical and

simulation results.

Taken together, these results suggest that we should not combine DID with conditioning

on pre-treatment outcomes. Indeed, not only do the theoretical and empirical arguments

in favor of this approach not hold, but there are theoretical and empirical arguments

suggesting that conditioning on pre-treatment outcomes might increase the bias of DID.

What to do then when the PTA does not hold and what we thought was a silver bullet

– combining DID with conditioning on pre-treatment outcomes – actually does not work?

7I do not include Mueser, Troske, and Gorislavsky (2007) in this analysis since this paper compares the
observational estimates to experimental estimates on a different out-of-state population, thereby suggesting
that differences between both approaches might stem from differences in populations.
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Results in this paper suggest two possible approaches. First, DID applied symmetrically

around the treatment date performs well in simulations and when compared with RCTs

when estimating the effect of JTPs on earnings. Second, matching on several observations

of pre-treatment outcomes performs well in simulations, but evidence on its empirical

performance is lacking.

The approach of using a model of outcome dynamics and selection in a program to study

the properties of observational estimators is rooted in an ancient literature. Ashenfelter

(1978) formalizes the evaluation problem as a combination of selection on a fixed effect and

on transitory shocks. Heckman (1978), Heckman and Robb (1985) and Ashenfelter and

Card (1985) combine the selection equation with the outcome dynamics equation and in-

troduce DID applied symmetrically around the treatment date. Bassi (1984) acknowledges

that combining differencing with conditioning on pre-treatment changes in outcomes suf-

fers from Nickell (1981)’s problem: pre-treatment changes in outcomes are correlated with

transitory shocks. LaLonde (1986) tests whether observational estimators, among them

DID combined with conditioning on pre-treatment outcomes, reproduce the results of an

RCT. Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith, and Todd (1998)

introduce the DID matching estimator. Abadie (2005) develops the informal theoretical

argument in favor of combining DID with conditioning on pre-treatment outcomes and in-

troduces a new DID matching estimator. Heckman and Navarro-Lozano (2004) show that

the bias of matching might increase when conditional on additional covariates and coin the

term “fallacy of alignment.” Chabé-Ferret (2015) studies the bias of matching condition-

ing on pre-treatment outcome and of DID not conditioning on pre-treatment outcomes but

does not study the combination of DID with conditioning on pre-treatment outcomes. He

derives sufficient conditions for the estimators to be consistent in a model similar to the

one in this paper, but does not derive necessary and sufficient conditions as in this paper.

This paper is structured as follows: Section 2 presents the theoretical results on when

DID conditioning on one observation of pre-treatment outcomes is consistent; Section 3

presents the results of simulations of a model of earnings dynamics and selection in a JTP

calibrated with realistic parameter values; Section 4 summarizes evidence from comparisons
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of observational methods to an experimental benchmark. Section 5 concludes.

2 Theoretical results

In this section, I formally derive theoretical results for the consistency of DID conditioning

on one observation of pre-treatment outcomes in a simple model exhibiting selection both

on a fixed effect and on transitory shocks. I also derive instances where conditioning on

pre-treatment outcomes generates bias for an otherwise consistent DID estimator. I first

present the model and then the main theoretical results.

Setting

The outcomes in the absence of the treatment depend on time and individual fixed effects

and on transitory shocks (Equation (1a)). Transitory shocks are persistent: they follow an

AR(1) process with |ρ| < 1 (Equation (1b)).

Y 0
i,t = δt + µi + Uit (1a)

with Ui,t = ρUi,t−1 + vi,t (1b)

Di,k = 1[t ≥ k]1[θi + γYi,k−1︸ ︷︷ ︸
D∗
i,k

≥ 0]. (1c)

Treatment is offered at period k. Selection into the program depends on an individual

fixed effect θi and on outcomes at date k− 1 (Equation (1c)). The two critical parameters

for selection are γ and ρθ,µ (the correlation of the fixed effect µi with the unobserved shifter

of participation θi). When γ = 0, selection is due to the fixed effect only. When ρθ,µ = 0,

selection is on the observed pre-treatment outcome Yi,k−1 only.

I make the following assumptions: σ2 > 0, σ2
U0 > 0, σ2

µ > 0, σ2
θ > 0. vi,t are i.i.d.

mean-zero shocks with finite variance σ2 and Ui,0 is a mean-zero shock with variance

σ2
U0 . vi,t ⊥⊥ (µi, θi),∀t and Ui,0 ⊥⊥ (µi, θi, vi,t),∀t. I finally assume that the conditional

expectations E[Y 0
i,k+τ |D∗i,k] and E[Y 0

i,k+τ |D∗i,k, Yk−1] are linear. This assumption simplifies a
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lot the analysis of the biases. It holds for example when all the error terms are normal.

Although admittedly very simple, the model described by equation (1) has several

virtues. First, it encapsulates in the simplest possible setting the problem that combining

DID with conditioning on pre-treatment outcomes is trying to solve: selection on a fixed

effect and on transitory shocks. Second, this model also accounts for various types of

realistic selection processes: namely self-selection in a JTP and a cutoff eligibility rule.

Assuming no idiosyncratic trend, no MA terms and limited information, setting γ = −ρ

and θi = αi
r
−ci, the model of earnings dynamics and entry into a JTP presented in Section 3

simplifies to the model described by Equation (1). As argued in Chabé-Ferret (2015), a

program allocated when a running variable falls below some eligibility threshold can also

be described by Equation (1c). In that case, γ = −1 and θi accounts for measurement

error in the variable determining eligibility.

I study the asymptotic bias of three estimators of the average effect of the treatment

on the treated (ATT) on outcomes observed τ periods after the treatment date: matching

(M), DID and DID matching conditioning on one observation of pre-treatment outcomes

(DIDM).

B(Mk,τ,1) = E[E[Y 0
i,k+τ |Di,k = 1, Yi,k−1]− E[Y 0

i,k+τ |Di,k = 0, Yi,k−1]|Di,k = 1] (2a)

B(DIDk,τ,τ ′) = E[Y 0
i,k+τ − Y 0

i,k−τ ′ |Di,k = 1]− E[Y 0
i,k+τ − Y 0

i,k−τ ′|Di,k = 0] (2b)

B(DIDMk,τ,1,τ ′) = E
[
E[Y 0

i,k+τ − Y 0
i,k−τ ′|Di,k = 1, Yi,k−1]

− E[Y 0
i,k+τ − Y 0

i,k−τ ′ |Di,k = 0, Yi,k−1]|Di,k = 1
]
. (2c)

The matching estimator compares the expected outcomes of the treated τ periods after

the treatment to those of the untreated conditional on Yi,k−1. Yi,k−1 is the last pre-treatment

outcome observed before the treatment is taken and intuitively the one containing the

most relevant information for selection. The bias of matching is the expected difference in

potential outcomes in the absence of the treatment between the treated and the untreated

groups, conditional on Yi,k−1, integrated over the distribution of Yi,k−1 conditional onDi,k =

1 (Equation (2a)).
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The DID estimator compares the change in outcomes over time in the treated group

to the change in outcomes over time in the untreated group. The change over time is

computed by comparing outcomes τ periods after the treatment to outcomes τ ′ periods

before the treatment. The bias of DID is equal to the difference in the change over time in

potential outcomes in the absence of the treatment between the treated and the untreated

groups (Equation (2b)).

The DIDM estimator compares the change in outcomes over time in the treated group

to the change in outcomes over time in the untreated group conditional on Yi,k−1. The

bias of DIDM is equal to the difference in the change over time in potential outcomes in

the absence of the treatment between the treated and the untreated groups conditional on

Yi,k−1, integrated over the distribution of Yi,k−1 conditional on Di,k = 1 (Equation (2c)).

Basic results

In this section, I derive necessary and sufficient conditions for M, DID and DIDM to be

consistent in the model defined by Equation (1). As I want to state general results on the

model parameters for each of the estimators to be consistent, I have to define the sets of

periods k, τ and τ ′ for which I want the biases of the various estimators to cancel. The usual

practice is to use these estimators without restricting their validity to any particular subset

of the possible treatment dates (k) or lag between treatment and observation of outcomes

(τ). Thus, I will define consistency in this model as requiring that the estimators are valid

for all k > 0 and for all τ ≥ 0. Similarly, for DID and DIDM, I define consistency as the

fact that the bias of the estimator is zero regardless of the pre-treatment period k−τ ′ used

to construct the estimator, with τ ′ > 1.8

Theorem 1 is the main result of this section. It shows that the intuitive story that

combining DID with conditioning on pre-treatment outcomes combines their strengths –

DID differencing out the fixed effect and conditioning on pre-treatment outcomes capturing

the transitory shocks – is wrong. Indeed, Theorem 1 shows that there is no configuration of

the parameter space such that the combination of DID with conditioning on pre-treatment
8I do not include the case where τ ′ = 1 since B(DIDMk,τ,1,1) = B(Mk,τ,1) by construction.
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outcomes is consistent, apart from when either ρθ,µ = 0 (and there is no selection on the

fixed effect) or ρ = 0 (and there is no selection bias due to transitory shocks). Theorem 1

also means that combining DID with conditioning on one observation of pre-treatment

outcomes does not add any identifying power to simple matching and simple DID: it is

consistent only if one of them also is. Worse, Theorem 1 also implies that there are

instances (γ = 0 and ρ 6= 0) when DID not conditioning on pre-treatment outcomes is

consistent while DID conditioning on one observation of pre-treatment outcomes is not.

This is an instance of the fallacy of alignment, where conditioning on observed covariates

actually increases the bias of an otherwise consistent estimator.

Theorem 1 (Consistency of M, DID and DIDM) The following three statements hold

in the model defined in Equation (1):

(i) ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0 ⇔ ρθ,µ = 0

(ii) ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDk,τ,τ ′) = 0 ⇔ γ = 0 or ρ = 0

(iii) ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDMk,τ,1,τ ′) = 0 ⇔ ρθ,µ = 0 or ρ = 0

Proof: see Section A in the Appendix.

Part (i) of Theorem 1 shows that matching is consistent if and only if there is no

selection on the fixed effect. Part (ii) of Theorem 1 shows that DID not conditioning on

pre-treatment outcomes is consistent if and only if there is either no selection on transitory

shocks or transitory shocks are not persistent. Part (iii) of Theorem 1 shows that combining

DID with conditioning on pre-treatment outcomes is consistent if and only if either there

is no selection on the fixed effect or temporary shocks are not persistent.

The intuition for Theorem 1 is that conditioning on pre-treatment outcomes generates

time varying selection bias while the validity of DID is predicated upon the assumption

that selection bias is constant over time. The only settings in which conditioning on

pre-treatment outcomes generates selection bias that is constant over time is either when

selection bias after conditioning is zero, and thus simple conditioning is also consistent or

when temporary shocks are not auto-correlated, in which case simple DID is also consistent.
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Figure 1 illustrates the results of Theorem 1. It shows the results of simulations of

the model described in equation 1 using the formulae derived in Chabé-Ferret (2015)’s

Appendix B. Figure 1 shows the expected value of the outcomes in the absence of the

treatment around the treatment date for the treated (circles), the untreated (crosses) and

the matched untreated (triangles), i.e. the untreated with the same distribution of Yi,k−1

as the treated. The difference between treated and untreated measures selection bias. The

difference between treated and matched untreated measures the bias of matching. The

difference between the bias of matching before and after the treatment date measures the

bias of DID matching.

In Figure 1(a), selection is on transitory shocks only (ρθ,µ = 0). As expected from

part (i) of Theorem 1, simple matching is consistent since treated and matched untreated

are aligned at every period after the treatment date: the matched untreated perfectly

proxy for the counterfactual outcomes of the treated. DID conditioning on one observation

of pre-treatment outcomes is consistent when matching is consistent since pre-treatment

outcomes are also aligned before period k − 1, despite the fact that they have not been

explicitly conditioned on. This is because Yi,k−1 is a sufficient statistics for selection in

that case.

In Figure 1(b), selection is on the fixed effect only (γ = 0) and transitory shocks are

not persistent (ρ = 0). As expected from part (ii) of Theorem 1, DID not conditioning

on pre-treatment outcomes is consistent as selection bias is constant over time. DID

conditioning on one observation of pre-treatment outcomes is also consistent, because

the bias of matching is constant over time, except at period k − 1 where it is zero by

construction.

Figure 1(c) illustrates the main result of Theorem 1: contrary to the intuitive idea

that they combine their strengths, combining DID with conditioning on pre-treatment

outcomes does not get rid of selection bias when it is due to both a fixed effect and

transitory shocks. Indeed, Figure 1(c) selection is both on the fixed effect and on transitory

shocks. As expected from Theorem 1, simple matching is biased, which is apparent because

treated and matched untreated are not perfectly aligned after the treatment date. DID not
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conditioning on pre-treatment outcomes is also biased since selection bias varies over time.

DID conditioning on one observation of pre-treatment outcomes is also biased because the

difference between treated and matched untreated varies over time.

Figure 1(d) illustrates one instance of the fallacy of alignment. In Figure 1(d), selection

is on the fixed effect only (γ = 0) and thus DID is consistent. Selection bias is constant over

time in that case and the difference between treated and untreated at any pre-treatment

date is a consistent proxy for post-treatment selection bias. Unlike in Figure 1(b), though,

transitory shocks are persistent (ρ 6= 0), the bias of simple matching is not constant

over time, and thus DID conditioning on one observation of pre-treatment outcomes is

inconsistent.

Results under full information

In the selection model under full information studied by Chabé-Ferret (2015), DID applied

symmetrically around the treatment date is consistent while DID conditioning on pre-

treatment outcomes is not, as Theorem 2 shows. In this model, agents select into the

program based on their outcomes at period k. It is the case for example if agents anticipate

their future earnings shocks (bonus decrease, layoff, etc) and decide to enter a JTP as a

consequence. In the selection model under full information, the selection Equation (1c) is

replaced by:

Df
i,k = 1[t ≥ k]1[θfi + γfY 0

i,k︸ ︷︷ ︸
D∗f
i,k

≥ 0]. (3)

Theorem 2 In the model under full information (where Equation (3) substitutes for Equa-

tion (1c)), the following two statements hold when σ2
U0 = σ2

1−ρ2 :

(i) ∀k > 0, ∀τ > 0, B(DIDk,τ,τ ) = 0,

(ii) ∀k > 0, ∀τ > 0, B(DIDMk,τ,1,τ ) 6= 0 except if aσµ = −γfρ(σ2
µ + σ2

1−ρ2 ).
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Proof: see Section A in the Appendix.

Theorem 2 shows that when the outcome process is stationary,9 DID applied symmetri-

cally around the treatment date not conditioning on pre-treatment outcomes is consistent

while combining DID with conditioning on one observation of pre-treatment outcomes is

not. The result in Theorem 2 is important since it shows that there exists an estimator

that is consistent even when there is selection both on a fixed effect and on transitory

shocks. Figure 1(e) illustrates this case: selection bias forms and dissipates at the same

pace and is thus symmetric around the treatment date k. Conditioning on Yi,k−1 breaks the

symmetry of the dip and renders DID inconsistent. On Figure 1(e), the bias of matching

decreases as it gets closer to k − 1, increases sharply at date k because of the last shock

before selection (vi,k), and decreases thereafter. DID conditioning on Yi,k and applied sym-

metrically around the treatment date would be consistent, but it is infeasible since the

potential outcomes of the participants are unobserved.

3 Simulation results

In this section, I use simulations a model of earnings dynamics and selection into a JTP

calibrated with realistic parameter values in order to gauge the likely size of the bias of

DID conditioning on pre-treatment outcomes and how it compares with DID and matching

in real applications.

The model used in the simulations combines an equation for earnings dynamics and a

selection equation (see Chabé-Ferret (2015) for a detailed discussion of this model). The

process for the log-earnings of individual i at time t in the absence of the treatment (Y 0
i,t)

9Because σ2
U0

is equal to its long run value of σ2

1−ρ2 .
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has the following form:

Y 0
i,t = a+ b

18 + t

10 + c
(18 + t

10

)2
+ (δ + rtd)Ei + µi + βit+ Uit (4a)

with Ui,t = ρUi,t−1 +m1vi,t−1 +m2vi,t−2 + vi,t (4b)

vi,t i.i.d. mean-zero shocks with finite variance σ2, (4c)

vi,t ⊥⊥ (Ei, βi, µi),∀t, (4d)

(Ui,0, vi,0, vi,−1) mean-zero shocks with covariance matrix Σ0, (4e)

(Ui,0, vi,0, vi,−1) ⊥⊥ (Ei, βi, µi, vi,t),∀t. (4f)

The main parameters used to calibrate the model are presented in Table 1, while the

full list of parameter values is presented in Table 2 in Appendix B. This model encapsulates

Table 1 – Parameters values used for the earnings process
RIP HIP

(MaCurdy, 1982) (Guvenen, 2007, 2009)
ρ 0.99 0.821
m1 -0.4 0
m2 -0.1 0
σ2 0.055 0.055
σ2
µ 0 0.022
σ2
β 0 0.00038
σµ,β 0 -0.002
Note: σ2

µ (resp. σ2
β) is the variance of µi (resp. βi).

σµ,β is the covariance between µi and βi. The values
of the parameters of the yearly earnings process come
from MaCurdy (1982) and Guvenen (2007, 2009). The
only exception is the estimate of σ2 in the HIP: for sim-
plicity, it is set to the same value as the one estimated
by MaCurdy (1982). Guvenen (2007, 2009) estimates
the HIP model with a measurement error term on top
of the AR(1) component. The sum of the variances of
these two shocks is of the same order of magnitude as
σ2 estimated by MaCurdy (1982).

the two leading views on the process of earnings dynamics: the Restricted Income Profile

(RIP) and the Heterogeneous Income Profile (HIP).

The equation for modeling the net utility of entering a JTP at period k has the following
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shape:

D∗ιi,k = αi
r
− ci,k − E[Y 0

i,k|Iιi,k], (5)

ci,k = ci + βxEi −

a+ b
18 + k

10 + c

(
18 + k

10

)2

+ (δ + rkd)Ei

 (6)

D∗ιi,k has three components. The first part is the discounted gains from entering the pro-

gram. The second part is the direct cost of participation to the program ci,k. The third

part is the opportunity cost of entering the program (expected foregone earnings). ci,k has

itself two parts. The first part is composed of administrative costs which depend partly

on education (ci + βxEi). The second part is income support from the government that is

equal to experience and education rated average earnings. Iιi,k denotes agents’ information

set when computing the expected foregone earnings. I consider three distinct assumptions

on Iιi,k:

Full information: Ifi,k =
{
Xi, αi, ci, µi, βi, {δj}kj=1 , {vi,j}

k
j=1

}
. Agents know all the shocks

up to period k and can perfectly forecast their foregone earnings (E[Y 0
i,k|I

f
i,k] = Y 0

i,k).

Limited information: I li,k =
{
Xi, αi, ci, µi, βi, {δj}kj=1 , {vi,j}

k−1
j=1

}
. Agents do not know

the last idiosyncratic shock to their earnings.10 Limited information can arise because

agents have to decide whether or not to enter the program at the end of period k− 1

before observing the change to their earnings that occurs at period k. Their expected

foregone earnings are E[Y 0
i,k|I li,k] = Y 0

i,k − vi,k.

Bayesian updating: Ibi,k =
{
Ei, αi, ci, µ

o
i , β

o
i , {δj}

k
j=1 , {Yi,j}

k−1
j=1

}
. In this setup, the id-

iosyncratic intercept and slope terms are the sum of two components: µi = µoi + µui

and βi = βoi + βui . Agents observe {µoi , βoi } at period 0 but have no information on

{µui , βui , Ui,0}. They thus start with a prior on {µi, βi, Ui,0} centered at {µoi , βoi , 0}.

They then observe Yi,1, Ei and δ1 and use Kalman filtering to form a posterior on

{µi, βi, Ui,1}. Expected foregone earnings at period k (E[Y 0
i,k|Ibi,k]) are formed us-

10Note that agents know the shock to the overall economy δk. This is for comparability with the full
information case.
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ing the posterior distribution of {µi, βi, Ui,k} given Ibi,k (see Chabé-Ferret (2015)’s

Appendix C for a complete description).

Figure 2 presents the results of three simulations that are representative of the overall

behavior of the estimators under various configurations of the model presented just above.

Additional simulation results can be found in Appendix C.

The main results out of the simulations are the following. First, DID applied symmet-

rically around the treatment date not conditioning on pre-treatment outcomes is generally

less biased than DID combined with conditioning on one observation of pre-treatment

outcomes. DID applied symmetrically around the treatment date not conditioning on

pre-treatment outcomes is also generally less biased than matching on one observation of

pre-treatment outcomes. Second, DID applied symmetrically around the treatment date

not conditioning on pre-treatment outcomes is generally more biased than by DID condi-

tioning on three observations of pre-treatment outcomes. Third, DID and matching are

close to each other when conditioning on three observations of pre-treatment outcomes.

Figure 2(a) shows that DID applied symmetrically around the treatment date not

conditioning on pre-treatment outcomes is consistent when selection bias is symmetric

around the treatment date, as expected from Theorem 2. Figure 2(a) also shows that the

bias of combining DID with conditioning on one observation of pre-treatment outcomes is

roughly equal to -0.06, which is in absolute value in the ballpark of the estimates of the

causal effects of JTPs on (log-)earnings. The bias of combining DID with conditioning

on one observation of pre-treatment outcomes is thus in this case large enough to mask

the effects of most JTPs. Two additional results are noteworthy on Figure 2(a). The

bias of matching on a single observation of pre-treatment outcomes is much larger than

that of DID with the same conditioning set, so that differencing does bring something

in that configuration. This is because the bias of matching before the treatment date is

of the same sign as and of half the size of the bias of matching after the treatment date

(see Figure 1(e)). Also, conditioning on additional observations of pre-treatment outcomes

makes DID and matching more similar.
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Figure 2(b) shows the results of simulations where selection bias is not symmetric

around the treatment date. This is due to a combination of two phenomena: first, agents

have limited information, in that they do not know the last shock to their earnings when

deciding to enter the treatment; and second, the earnings process is not stationary, since

it starts with a very small variance for the initial shock. An asymmetric selection bias

generates bias for the DID estimator applied symmetrically around the treatment date not

conditioning on pre-treatment outcomes. The size of the bias decreases in absolute value

as individuals gain experience and the variance of the shocks increases. The DID estima-

tor applied symmetrically around the treatment date not conditioning on pre-treatment

outcomes does pretty well after the middle of the career, and actually better than the

alternatives in terms of MSE. Figure 2(b) also shows that conditioning on additional ob-

servations of pre-treatment outcomes improves both DID and matching and makes them

closer to each other and more stable along the life-cycle. Conditional on three observations

of pre-treatment outcomes, DID and matching perform as well as DID applied symmetri-

cally around the treatment date not conditioning on pre-treatment outcomes late in the

life-cycle and better early in the life-cycle.

Figure 2(c) shows the results of a simulation of the HIP model with Bayesian learning

and initial conditions for the Ui,t process different from the long run ones, where selec-

tion bias is also asymmetric around the treatment date. We can see the same features

as in the previous configuration: DID applied symmetrically around the treatment date

not conditioning on pre-treatment outcomes dominates both matching and DID match-

ing conditioning on one observation of pre-treatment outcomes, but is dominated by DID

and matching conditioning on three observations of pre-treatment outcomes. Additionally,

both DID matching and matching conditioning on three observations of pre-treatment

outcomes are close to each other.
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4 Revisiting experimental estimates

This section revisits the results of Heckman, Ichimura, Smith, and Todd (1998) and Smith

and Todd (2005), that compare DID and matching to an experimental benchmark.11 Fol-

lowing the approach initiated by LaLonde (1986), these studies compare experimental esti-

mates of the effects of JTPs stemming from RCTs to observational estimates of the effects

of the same program, using as much as possible the same data. These studies have found

that DID matching is the method that reproduces best the results of RCTs. Revisiting

the results of these studies in detail, I find support for the main prediction from Section 3:

DID applied symmetrically around the treatment date not conditioning on pre-treatment

outcomes performs better at reproducing the experimental results than DID conditioning

on one observation of pre-treatment outcomes. Figure 3 summarizes the main results of

these two studies.

Heckman, Ichimura, Smith, and Todd (1998) compare nonexperimental estimates of

the effect of the Job Training Partnership Act (JTPA) obtained with matching and DID

matching to the experimental benchmark, making use of the random allocation of the

program. They implement DID symmetrically around the treatment date. They vary

the set of control variables when assessing the performance of DID matching. Heckman,

Ichimura, Smith, and Todd (1998)’s results suggest that conditioning on pre-treatment

earnings increases the bias of DID. With a coarse set of predictors (only variables that

are constant over time like age, schooling and marital status), the bias of DID applied

symmetrically around the treatment date is equal to 73% of the experimental treatment

effect. When conditioning on one observation of pre-treatment earnings (model PII), the

bias of DID applied symmetrically around the treatment date increases and equals 332%

of the treatment effect.

11Mueser, Troske, and Gorislavsky (2007) provide a similar analysis but their experimental benchmark
stems from a different population and thus differences between the estimates might be due to differences
in populations. Mueser, Troske, and Gorislavsky (2007) nevertheless provide two results that are in line
with the results in this paper. First, combining DID and conditioning on pre-treatment outcomes is
less biased than matching on pre-treatment outcomes, a result apparent in Figure 2(a). Second, DID
applied symmetrically around the treatment date without conditioning on pre-treatment outcomes is in
the ballpark of the experimental estimate.
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Smith and Todd (2005) compare the ability of matching and DID matching to reproduce

the results of the famous National Supported Work (NSW) experiment already analyzed

by LaLonde (1986). They apply DID roughly symmetrically around the treatment date,

since the outcomes are measured in 1975 and 1978, and the treatment is allocated between

1976 and 1977. They vary the set of control variables when assessing the performances of

matching and DID matching. Smith and Todd (2005)’s results show again that condition-

ing on pre-treatment earnings increases the bias of DID. With a coarse set of controls not

including pre-treatment outcomes, the bias of DID matching is of 22% of the experimental

treatment effect, with the smaller (and most efficient) bandwidth. On the same sample,

the bias of DID matching conditioning on pre-treatment outcomes is of -137%.

Figure 3 – Empirical estimates of the absolute value of the bias of matching and
DID relative to RCTs for two JTPs
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Sym. DID Matching on pre-
treat. Outcomes
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Bias (% of the treatment effect) 
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Note: the figure presents the bias of various observational estimators esti-
mated relative to an experimental estimate obtained using randomly allocated
JTPs. HIST stand for Heckman, Ichimura, Smith, and Todd (1998) and ST
for Smith and Todd (2005). The results of the bias of Matching and DID
Matching from HIST are from their Table XIII on p.1062. The coarse set
of predictors does not condition on pre-treatment earnings while the set PII
does. The results of the bias of Matching from ST are from their Table 5 p.336
and the bias of DID Matching is from their Table 6 p.340. The LaLonde set
of predictors does not contain pre-treatment earnings while the DW set does.
The sample is the full LaLonde sample. The Matching estimator used for the
comparisons is the local linear Matching with a small bandwidth (1.0).

It is more difficult to find support for the prediction that conditioning on additional

observations of pre-treatment outcomes reduces the bias of DID matching, and dominates

DID not conditioning on pre-treatment outcomes. Indeed, to my knowledge, most available
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studies comparing RCTs to DID matching do not have several observations of pre-treatment

outcomes or do not use them. Dehejia and Wahba (2002) find that matching on two

observations of pre-treatment earnings has a negligible bias relative to an experimental

estimate. Smith and Todd (2005) criticize this result on the grounds that the second

observation of pre-treatment earnings is only available for a very specific subgroup and

that selection bias on this specific subgroup is actually zero without conditioning on any

covariate. Andersson, Holzer, Lane, Rosenblum, and Smith (2013) do not directly test the

prediction but find that adding more observations than two years of pre-treatment earnings

does not change the matching estimator much.

5 Conclusion

Taken together, the results presented in this paper cast doubt on the theoretical and em-

pirical arguments in favor of combining DID with conditioning on pre-treatment outcomes

when estimating the effect of an intervention. Indeed, the intuitive story that DID and

conditioning on pre-treatment outcomes combine their strengths – DID differencing out

the fixed effect and conditioning on pre-treatment outcomes capturing transitory shocks –

is not valid theoretically. Worse, there are cases in which conditioning on pre-treatment

outcomes actually generates bias for an otherwise consistent DID estimator, an instance of

Heckman and Navarro-Lozano (2004)’s fallacy of alignment. It is especially the case when

DID is applied symmetrically around the treatment date: under certain conditions, this

estimator is consistent not conditioning on pre-treatment outcomes even when there is se-

lection both on a fixed effect and on transitory shocks, while it is biased when conditioning

on pre-treatment outcomes.

When estimating the effect of a JTP on earnings, the results presented in this paper

suggest to use DID applied symmetrically around the treatment date not conditioning

on pre-treatment outcomes when a few observations of pre-treatment outcomes are avail-

able and to use matching conditioning on all available pre-treatment earnings when there

are at least three observations of pre-treatment outcomes. In simulations of a model of
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earnings and self-selection in a JTP, the bias of DID conditioning on one observation of

pre-treatment outcomes is indeed sizable (of the order of magnitude of treatment effects

usually estimated in the literature) and DID applied symmetrically around the treatment

date performs better even when it is not consistent. Results of studies comparing observa-

tional estimators to an experimental benchmark confirm that the bias of DID conditioning

on one observation of pre-treatment outcomes is actually higher than the bias of DID

applied symmetrically around the treatment date not conditioning on pre-treatment out-

comes. When conditioning on three observations of pre-treatment outcomes, simulations

show that matching and DID matching are actually very close and dominate DID applied

symmetrically around the treatment date not conditioning on pre-treatment outcomes.

Unfortunately, to my knowledge, there is no empirical result testing that prediction.

The results in this paper also cast doubt on the practice of combining DID with condi-

tioning on pre-treatment outcomes in applications other than the evaluation of the effect

of JTPs on earnings. Indeed, this paper shows that there is no sound theoretical basis for

combining DID with conditioning on pre-treatment outcomes. When few observations on

pre-treatment outcomes are available, I would advise for using DID without conditioning

on pre-treatment outcomes and, if possible, applied symmetrically around the treatment

date. When several observations of pre-treatment outcomes are available, I would advise

for conditioning on all of them non-parametrically, using matching. In order to strengthen

these suggestions, we are in dire need of simulations and of experimental results gauging

the bias of observational methods for interventions other than JTPs.
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A Proofs
I use σA,B to denote the covariance between random variables Ai and Bi and σ2

A for the
variance of Ai.

Lemma 1 ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0 ⇔ numk,τ = 0, with numk,τ = σYk+τ ,D
∗
k
σ2
Yk−1
−

σYk−1,D
∗
k
σYk−1,Yk+τ .

Proof: By linearity of conditional expectations:

E[Y 0
i,k+τ |D∗i,k, Yk−1] = E[Y 0

i,t] + θY 0
k+τ ,D

∗
k

(
D∗i,k − E[D∗i,k]

)
+ θY 0

k+τ ,Y
0
k−1

(
Y 0
i,k−1 − E[Y 0

i,k−1]
)
,

with θY 0
k+τ ,D

∗
k

= numk,τ
σ2
D∗
k
σ2
Yk−1

−σ2
Yk−1,D

∗
k

. As a consequence,

B(Mk,τ,1) = θY 0
k+τ ,D

∗
k
E[E[D∗i,k|Di,k = 1, Yk−1]− E[D∗i,k|Di,k = 0, Yk−1]|Di,k = 1].

The result follows because E[D∗i,k|Di,k = 1, Yk−1]−E[D∗i,k|Di,k = 0, Yk−1] > 0 and σ2
D∗
k
σ2
Yk−1
−

σ2
Yk−1,D

∗
k
> 0.

Lemma 2 ∀k > 0, ∀τ ≥ 0, numk,τ = σ2
Uk−1

σµa(1−ρτ+1), with a = ρθ,µσθ and b = a+γσµ.

Proof:

numk,τ =
[
bσµ + γρτ+1σ2

Uk−1

] [
σ2
µ + σ2

Uk−1

]
−
[
bσµ + γσ2

Uk−1

] [
σ2
µ + ρτ+1σ2

Uk−1

]
= γρτ+1σ4

Uk−1
− γρτ+1σ4

Uk−1

+ σ2
Uk−1

[
γρτ+1σ2

µ + bσµ − bσµρτ+1 − γσ2
µ

]
+ σ2

µ [bσµ − bσµ]
= σ2

Uk−1
σµ(b− γσµ)(1− ρτ+1)

= σ2
Uk−1

σµa(1− ρτ+1).

Lemma 3 ∀k > 0, ∀τ ≥ 0, B(Mk,τ,1) = 0 ⇔ ρθ,µ = 0.

Proof: Using Lemma 1 and 2, we have ρθ,µ = 0 ⇒ numk,τ = 0. The reciprocal follows
from the fact that σµ > 0, σθ > 0, σ2

Uk−1
> 0, ∀k > 0 and (1 − ρτ+1) > 0, ∀τ ≥ 0. Thus

numk,τ = 0 ⇒ ρθ,µ = 0.

Lemma 4 ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDMk,τ,1,τ ′) = 0 ⇔ numk,τ − numk,−τ ′ = 0.

Proof: This stems from the proof of Lemma 1.

Lemma 5 numk,−τ ′ = σµa(σ2
Uk−1
− ρτ ′−1σ2

Uk−τ ′
).
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Proof:

numk,−τ ′ =
[
bσµ + γρτ

′−1σ2
Uk−τ ′

] [
σ2
µ + σ2

Uk−1

]
−
[
bσµ + γσ2

Uk−1

] [
σ2
µ + ρτ

′−1σ2
Uk−τ ′

]
= γρτ

′−1σ4
Uk−τ ′

− γρτ ′−1σ4
Uk−τ ′

+ σ2
Uk−1

σµ [b− γσµ]− ρτ ′−1σ2
Uk−τ ′

σµ [b− γσµ]
+ σ2

µ [bσµ − bσµ]
= σµ(b− γσµ)(σ2

Uk−1
− ρτ ′−1σ2

Uk−τ ′
)

= σµa(σ2
Uk−1
− ρτ ′−1σ2

Uk−τ ′
).

Lemma 6 σ2
Ut = 1−ρ2t

1−ρ2 σ
2 + ρ2tσ2

U0.

Proof: The result follows from Equation (38) in Chabé-Ferret (2015) with m1 = m2 = 0.

Lemma 7 ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDMk,τ,1,τ ′) = 0 ⇔ ρθ,µ = 0.

Proof: Using Lemma 4, 5 and 6, we have that:

numk,τ − numk,−τ ′ = σµa(ρτ ′−1σ2
Uk−τ ′

− ρτ+1σ2
Uk−1

)

= σµa

(ρτ ′−1 − ρτ+1) σ2

1− ρ2︸ ︷︷ ︸
B(τ,τ ′)

+ρ2(k−τ ′)
(
σ2
U0 −

σ2

1− ρ2

)
(ρτ ′−1 − ρτ+1ρ2(τ ′−1))︸ ︷︷ ︸
C(τ,τ ′)


From this, we have that ρθ,µ = 0 or ρ = 0 ⇒ B(DIDMk,τ,1,τ ′) = 0.

Since σ2
µ > 0 and σ2

θ > 0, ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDMk,τ,1,τ ′) = 0 ⇒ either
ρθ,µ = 0 or ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, A(k, τ, τ ′) = B(τ, τ ′) + ρ2(k−τ ′)C(τ, τ ′) = 0. To prove
the final result, it remains to be shown that condition A(k, τ, τ ′) = 0 only implies that
ρ = 0. Let’s assume that ρ 6= 0 and show that this yields to a contradiction. Fix τ and
τ ′ such that τ + 2 6= τ ′. A(k, τ, τ ′) as a function of k has at most one real root as long as
B(τ, τ ′) 6= 0 or C(τ, τ ′) 6= 0. So A(k, τ, τ ′) = 0, ∀k > 0 ⇒ B(τ, τ ′) = 0 and C(τ, τ ′) = 0.
But B(τ, τ ′) = 0 ⇒ ρ = 0 or τ + 2 = τ ′ or σ2 = 0, a contradiction (since σ2 > 0 by
assumption). This proves the result.

Lemma 8 ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDk,τ,τ ′) = 0⇔ Cov(Y 0
i,k+τ , D

∗
i,k)−Cov(Y 0

i,k−τ ′ , D
∗
i,k) =

0.
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Proof:

E[Y 0
i,t|D∗i,k] = E[Y 0

i,t] +
Cov(Y 0

i,k+τ , D
∗
i,k)

Var(D∗i,k)
(
D∗i,k − E[D∗i,k]

)

E[Y 0
i,t|Di,k = 1] = E[Y 0

i,t] +
Cov(Y 0

i,k+τ , D
∗
i,k)

Var(D∗i,k)
(
E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k]

)

E[Y 0
i,t|Di,k = 1]− E[Y 0

i,t|Di,k = 0] =
Cov(Y 0

i,k+τ , D
∗
i,k)

Var(D∗i,k)
(
E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k|D∗i,k < 0]

)
The result follows because E[D∗i,k|D∗i,k ≥ 0]− E[D∗i,k|D∗i,k < 0] > 0.

Lemma 9 Cov(Y 0
i,k+τ , D

∗
i,k)− Cov(Y 0

i,k−τ ′ , D
∗
i,k) = −γA(k, τ, τ ′).

Proof:

Cov(Y 0
i,t, D

∗
i,k) = Cov(µi + Ui,t, θi + γµi + γUi,k−1)

= bσµ + γCov(Ui,t, Ui,k−1)
= bσµ + γρ|t−k+1|σ2

Umin{t,k−1}

= γ(ρτ+1σ2
Uk−1
− ρτ ′−1σ2

Uk−τ ′
).

Using the definition of A(k, τ, τ ′) completes the proof.

Lemma 10 ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 1, B(DIDk,τ,τ ′) = 0 ⇔ γ = 0 or ρ = 0.

Proof: From Lemma 8 and 9, we have γ = 0 or ρ = 0 ⇒ B(DIDk,τ,τ ′) = 0. Moreover,
∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDk,τ,τ ′) = 0 ⇒ γ = 0 or ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0,
A(k, τ, τ ′) = 0. The same reasoning as in the proof of Lemma 7 shows that the second
condition on A(k, τ, τ ′) implies that ρ = 0. This proves the result.

Proof of Theorem 1

Proof: Lemma 3, 7 and 10 prove the result.

Proof of Theorem 2

Proof: Using the same line of reasoning as the proof of Theorem 1, but modifying it
accordingly, yields the following result: ∀k > 0, ∀τ ≥ 0, ∀τ ′ > 0, B(DIDk,τ,τ ′) = 0 ⇒
−γfAf (k, τ, τ ′), with:

Af (k, τ, τ ′) =
(

(ρτ ′ − ρτ ) σ2

1− ρ2 + ρ2(k−τ ′)
(
σ2
U0 −

σ2

1− ρ2

)
(ρτ ′ − ρτρ2τ ′)

)
.

This proves the consistency of Symmetric DID when σ2
U0 = σ2

1−ρ2 .
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In order to derive the bias of DIDM, it is useful to rewrite D∗fi,k as a function of D∗i,k:

D∗fi,k = θfi + γfY 0
i,k

= θfi + γfµi(1− ρ)︸ ︷︷ ︸
θi

+ γfρ︸︷︷︸
γ

Y 0
i,k−1 + γfvi,k

= D∗i,k + γfvi,k.

Following the line of the proof of Theorem 1, we have that B(DIDMk,τ,1,τ ′) = 0 ⇔
aσµA(k, τ, τ ′) + γfρτσ2(σ2

µ + σ2
Uk−1

). When σ2
U0 = σ2

1−ρ2 , we have B(DIDMk,τ,1,τ ) = 0 ⇔
ρτ−1σ2

(
aσµ + γfρ(σ2

µ + σ2

1−ρ2 )
)
. This proves the result.

29



B Parameter values used in the simulations

Table 2 – Parameters used for the Monte-Carlo simulations
RIP, long run RIP, short run HIP, long run HIP, short run

Trimming level 0.4 0.4 0.4 0.4
Sample size 1000 1000 1000 1000
Number of periods 40 40 40 40
δ 0.08 0.08 0.08 0.08
d 0.02 0.02 0.02 0.02
a 8.83 8.83 8.83 8.83
b 0.56 0.56 0.56 0.56
c -0.057 -0.057 -0.057 -0.057
βx -0.001 -0.001 -0.001 -0.001
ρ 0.99 0.99 0.821 0.821
m1 -0.4 -0.4 0 0
m2 -0.1 -0.1 0 0
ᾱ 0.1 0.1 0.1 0.1
c̄ 3 3 3 3
r 0.1 0.1 0.1 0.1
µ̄ 0 0 0 0
β̄ 0 0 0 0
x̄ 2.3 2.3 2.3 2.3
σ2
x 0.2 0.2 0.2 0.2
σ2
µ 0 0 0.022 0.022
σ2
β 0 0 0.00038 0.00038
σ2 0.055 0.055 0.055 0.055
σ2
c 0.05 0.05 0.05 0.05
σ2
α 0 0 0 0
σµ,β 0 0 -0.002 -0.002
ρµ,c 0 0 0 0
ρµ,x 0 0 0 0
ρµ,α 0 0 0 0
ρβ,c 0 0 0 0
ρβ,x 0 0 0 0
ρβ,α 0 0 0 0
ρc,x 0 0 0 0
λ 0 0 0.6 0.6
σ2
U0

σ2
U∞ σ2 σ2

U∞ σ2
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C Additional simulation results
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