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Introduction (version française)

Les constructeurs automobiles dépensent des montants considérables en publicité pour
promouvoir leur image et pour stimuler leurs ventes. La mesure de l’impact des in-
vestissements media sur la performance des marques est donc un sujet d’intérêt pour le
marché automobile. La société d’étude et conseil BVA a décidé d’aborder cette ques-
tion, en finançant cette thèse CIFRE1. Cette question peut paraitre simple en apparence
mais plusieurs particularités du marché automobile doivent être prises en compte pour
y répondre.

Premièrement, il est important de tenir compte du fait que les investissements media
ont peu de chance d’impacter significativement le volume du marché global. Le marché
automobile est un marché de biens durables et chers, dont la taille est principalement
déterminée par la demande (la taille et la richesse de la population, les habitudes en
termes de mobilité et de transport, les aides gouvernementales pour l’achat de véhicules
écoresponsables, etc.), plus que par l’offre. Par exemple, pendant la crise économique,
les volumes de ventes ont chuté. Ainsi, les marques essaient d’avoir la plus grosse part
du gâteau, dans un marché de taille donnée, en utilisant les investissements media no-
tamment.

Deuxièmement, le marché des véhicules particuliers est généralement divisé en cinq
segments principaux en Europe, nommés de A à E en fonction de la taille du châssis, et
également appelés “urbaines”, “citadines”, “compactes”, “berlines familiales”, “berlines
routières”. Par exemple, les véhicules les plus populaires en France pour chacun de ces
segments sont la Renault Twingo, la Renault Clio, la Renault Mégane, la Peugeot 508
et la Mercedes-Benz Classe E. Chacun de ces segments peut être considéré comme un
ensemble de choix homogènes pour le consommateur. De plus, à l’intérieur d’un segment
donné, une marque ne propose en principe qu’un véhicule phare. C’est pourquoi il est
courant d’analyser le marché automobile au niveau “marque × segment”.

Troisièmement, le marché automobile est un marché très compétitif où l’image des
marques est capitale. Lorsque les consommateurs investissent dans un bien durable et
coûteux, ils ont besoin d’être confiants en la marque qu’ils choisissent en plus d’être
confiants en les caractéristiques techniques du véhicule. Cela justifie les millions d’euros
dépensés par les marques pour promouvoir la qualité de leurs véhicules, mais également
leur qualité de services, leurs valeurs, leur identité et leur image. Cependant, l’impact

1CIFRE signifie contrat industriel de formation par la recherche et désigne un type de contrat de
thèse particulier en France, financé et réalisé en collaboration avec une entreprise.
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publicitaire d’une marque dépend également de la publicité faite par ses concurrents. En
effet, la situation dans laquelle Renault dépense 10 alors que ses concurrents dépensent 1,
et la situation dans laquelle Renault dépense toujours 10 mais ses concurrents dépensent
100, n’ont pas le même impact sur Renault. De plus, certains concurrents sont plus
néfastes pour une marque donnée que d’autres, et on peut imaginer que des synergies
peuvent exister entre certains constructeurs.

Quatrièmement, l’impact des investissements media n’est pas seulement instantané
mais il se diffuse au cours du temps, très probablement de manière décroissante. Chaque
canal de communication (e.g. affichage, télévision, presse, radio) est susceptible d’avoir
son propre “taux de rétention”, et des interactions entre les canaux peuvent exister.

Pour prendre en compte ces éléments, nous allons considérer les hypothèses suivantes.
Le marché automobile est tel que chaque marque essaye de maximiser sa part de marché,
au sein d’un segment, en utilisant les investissements media comme outil. Nous allons
donc favoriser la modélisation des parts de marché à celle des volumes de ventes. La
concurrence et les effets croisés entre marques doivent être intégrés dans l’analyse de
l’impact publicitaire. Chaque canal de communication doit être traité de façon propre,
mais au sein d’une approche multivariée.

L’approche marketing classique

Beaucoup de biens de consommation appartiennent à des marchés où la performance
finale d’une marque ne dépend pas uniquement du produit proposé et des actions mar-
keting de ladite marque, mais également des actions de ses concurrents (côté offre), et
du contexte socio-économique (côté demande). Danaher et al. montrent que les effets
d’interférence de la concurrence sur les ventes sont forts et diminuent l’élasticité2 relative
à la publicité. Il est donc indispensable de considérer les effets croisés de la publicité
entre les marques.

L’effet des variables du mix marketing (publicité, prix, promotion, distribution) a été
modélisé depuis les années 50 en utilisant les modèles dits de réponse au marché (market
response models), où la variable de réponse est habituellement les ventes ou les parts de
marché d’une marque ou d’un produit (voir Hanssens et al. [27] pour une revue des mod-
èles existants). La mesure de ces effets se fait généralement en termes d’élasticités. Dans
le cas du marché automobile par exemple, Glerant [21] mesure l’évolution de l’élasticité
des ventes aux éléments du mix marketing, selon les phases du cycle de vie des véhicules.
Modéliser les parts de marché plutôt que les ventes a l’avantage de prendre en consid-
ération la concurrence et les effets croisés entre marques.

Trois principales catégories de modèles de réponse au marché sont utilisées dans la
pratique : les modèles linéaires, multiplicatifs et d’attraction. Les modèles d’attraction
sont en général inspirés d’une version agrégée du modèle multinomial logit (MNL), très

2L’élasticité mesure la variation relative d’une variable (e.g. les ventes) provoquée par la variation
relative d’une autre variable (e.g. la publicité). C’est une mesure de sensibilité souvent utilisée en
économie et en marketing.
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répandu en économétrie pour la modélisation de choix discrets (voir par exemple Train
[64]). Cependant, d’après Hanssens et al. [27] (p.124), le modèle d’interaction con-
currentielle multiplicative (MCI) qui est le plus connu des modèles d’attraction, est en
principe préféré au MNL parce que ce dernier ne permet pas d’avoir des rendements
d’échelle décroissants pour la publicité lorsque les marques ont moins de 50% de part de
marché (voir Gruca et Sudharsan [25] pour une preuve mathématique). Parmi les trois
catégories de modèles de réponse au marché, seuls les modèles d’attraction permettent
de modéliser les parts de marché correctement parce qu’ils sont compatibles avec les
contraintes de positivité et de somme unitaire des données de parts de marché, comme
l’explicitent Cooper et Nakanishi [10] (p.28). Néanmoins, les modèles d’attraction ne
sont pas systématiquement utilisés dans cette situation, et ce pour trois raisons.

1. La première raison est que certains auteurs ont montré empiriquement que les
modèles d’attraction ne donnent pas des résultats significativement meilleurs que
les autres modèles en termes de qualité d’ajustement et de prédiction (voir par
exemple Ghosh et al. [20] et Leeflang et Reuyl [36]). Cependant, Naert et al. [51]
ont montré l’inverse quelques années avant, suggérant que cette affirmation dépend
de l’application considérée.

2. La deuxième raison est que l’estimation d’un modèle d’attraction n’est pas évi-
dente : c’est un modèle non linéaire qui peut être linéarisé par une transformation,
généralement la transformation log centrée, également appelée transformation log
ratio centrée (CLR) dans la littérature de l’analyse des données de composition
(voir Aitchison [1]). Une simple estimation par moindres carrés ordinaires est
généralement utilisée sur les coordonnées ainsi obtenues, bien qu’il soit évident
que les termes d’erreur log centrés ne peuvent être indépendamment distribués.
Les moindres carrés généralisés (GLS) et les moindres carrés généralisés itératifs
(IGLS) ont également été considérés par plusieurs auteurs, mais sans conclure à
une amélioration significative de l’estimation (voir par exemple Ghosh et al. [20],
Leeflang et Reuyl [36], et Cooper et Nakanishi [10], p.128).

3. La troisième raison est que ces modèles sont souvent surparamétrisés. Le modèle
MCI classique suggère que l’impact d’un instrument marketing est le même pour
toutes les marques, ce qui est souvent trop restrictif. Le modèle MCI différentiel
(DMCI) incluant des paramètres spécifiques aux marques, donne lieu à la spé-
cification de D + KD paramètres, où D est le nombre de marques et K est le
nombre de variables explicatives, mais il ignore les effets croisés entre les marques.
La spécification supplémentaire de paramètres pour les effets croisés, faite dans le
modèle appelé modèle MCI étendu (FEMCI), augmente le nombre de paramètres
à D(1 + DK). Avec l’estimation habituelle faite sur les coordonnées CLR, seules
les versions centrées des paramètres du FEMCI sont identifiables.

Un autre sujet important qui a été abordé dans la littérature marketing est l’effet
dynamique de la publicité. Certains auteurs ont mis en évidence l’existence d’effets de
court terme et d’effets de long terme de la publicité sur les ventes (voir par exemple
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Assmus et al. [2] et Lodish et al. [39]). Dans le cas de biens durables et coûteux comme
l’automobile, on peut s’attendre à ce que l’impact de la publicité se propage sur plusieurs
périodes, avec des rendements décroissants sur les ventes.

C’est ce que l’on appelle l’effet retard de la publicité (advertising carryover effect)
et il est en général intégré dans les modèles de réponse de marché en utilisant une
variable de stock, construite en utilisant un taux de rétention qui peut être estimé
économétriquement. Dans le cas de la publicité, cette notion est appelée “adstock” et
a été introduite par Broadbent [5] en 1979. Le modèle d’adstock le plus courant est le
modèle de Koyck, défini comme Qt = µ + βAdstockt + ǫt, où la fonction d’adstock est
égale à Adstockt = (1 − λ)(Mt + λMt−1 + λ2Mt−2 + . . . ), Qt est la quantité demandée
au temps t, Mt est l’investissement media au temps t, et λ est son taux de rétention.
β(1 − λ) peut alors être interprété comme l’effet courant (court terme) de la publicité
et β comme l’effet de report (long terme) de la publicité, et on peut dire que θ% the
l’impact publicitaire a lieu dans les log(1 − θ)/log(λ) − 1 périodes après la diffusion de
la publicité.

Vaktratsas et Ambler [66] déclarent que des études de type méta analyse, faites
par Clarke [9] en 1976 et par Assmus, Farley, et Lehmann [2] en 1984, suggèrent que
90% des effets de la publicité se dissipent après trois à quinze mois. Ils ajoutent que
dans une étude empirique, Leone [37] en 1995 suggère que cet intervalle peut être ré-
duit à six à neuf mois. Cependant, Leone [37] met également en avant le fait que le
paramètre de rétention λ augmente lorsque le niveau d’agrégation augmente. Notons
que les campagnes publicitaires sont le plus souvent analysées au niveau hebdomadaire
et pour des produits de grande consommation (appelés FMCG3 en anglais), tandis que
dans notre application nous analysons les budgets publicitaires mensuels pour un bien
durable. Nous pouvons alors nous attendre à obtenir de larges taux de rétention de la
publicité. Habituellement, les effets publicitaires au cours du temps sont estimés sur les
ventes et pour un seul instrument marketing (la publicité dans la plupart des cas), et
non sur les parts de marché avec une publicité multicanale. Récemment, Zantedeschi
et al. [72] ont modélisé l’impact des variables d’adstock en multicanal sur des volumes
de ventes. Pour autant que nous sachions, il n’existe pas d’application considérant un
modèle d’attraction incluant des effets de report de la publicité, en multicanal.

L’approche par analyse des données de composition

Les données de parts de marché sont avant tout des données de parts, caractérisées par
les contraintes suivantes : elles sont positives et somment à 1. Par définition, ce sont des
“données de composition” : une composition est un vecteur de parts d’un certain en-
semble qui porte une information relative. Pour une composition de D parts de marché,
si D − 1 parts sont connues, la Dème part est simplement égale à 1 moins la somme des
D−1 autres parts. Une D-composition appartient à un espace appelé le simplexe SD. Le
simplexe peut être considéré comme une généralisation du triangle : une 2-composition

3Fast-Moving Consumer Goods.
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peut être représentée sur un segment, une 3-composition peut être représentée dans un
triangle, une 4-composition peut être représentée dans un tétraèdre, etc. A cause de ces
contraintes, les modèles de régression classiques ne peuvent pas être directement utilisés
pour la modélisation de données compositionnelles.

Beaucoup de champs d’application sont concernés par l’analyse des données de parts.
En économie politique, Elff [15] étudie les comportements de vote et analyse les relations
entre les parts de votes des partis politiques et leurs positions politiques dans différents
groupes de votants. En géologie, Solano-Acosta et Dutta [62] se sont intéressés à la com-
position lithologique du grès en termes de quartz, de feldspath et de fragments rocheux.
Pour les aménagements environnementaux, l’utilisation des sols est modélisée pour con-
naître la proportion des différents types d’usages (forêt, agriculture, zone urbaine, etc.)
sur une parcelle donnée (voir Chakir et al. [7]).

Deux types de modèles statistiques sont adaptés au cas où la variable dépendante
est une composition : le modèle de Dirichlet et le modèle de régression compositionnel.

Bien que connu dans la littérature marketing, le modèle de Dirichlet (DIR) est peu
utilisé pour modéliser des parts de marché. Hanssens et al. [27] (p.128) déclare que la
distribution de Dirichlet, qui est la distribution d’une composition obtenue par la clôture
de variables indépendamment distribuées selon des lois Gamma, semble être adaptée aux
cas où il n’y a pas d’erreur d’échantillonnage dans les données. Ce cas est peut-être rare
en marketing, mais c’est le cas de notre application comme nous le verrons plus tard.

Au contraire, les modèles compositionnels provenant de l’analyse des données de com-
position et dénotés modèles CODA, semblent méconnus dans la littérature marketing.
L’inverse est également vrai : l’analyse des données de composition, qui est un domaine
de recherche récent en statistique dont le premier champ d’application a été la géologie,
n’a pas été appliquée au marketing avant cette thèse.

L’analyse des données de composition a été initiée par Aitchison [1] qui a notamment
développé la géométrie du simplexe, également appelée géométrie d’Aitchison depuis
2001 par Pawlowsky-Glahn et Egozcue [55]. Elle est basée sur une approche de trans-
formation de type log ratio : une composition qui appartient à l’espace du simplexe
est transformée en coordonnées en utilisant une transformation log ratio, de manière à
pouvoir utiliser n’importe quelle méthode statistique classique (la régression linéaire par
exemple) sur les coordonnées ainsi obtenues. Les résultats peuvent ensuite être retrouvés
dans le simplexe par transformation inverse.

Les modèles de régression compositionnels ont été récemment explorés d’un point de
vue théorique, dans les ouvrages suivants : Pawlowsky-Glahn et Buccianti [54] en 2011,
Van Den Boogaart et Tolosana-Delgado [68] en 2013, et Pawlowsky-Glahn, Egozcue et
Tolosana-Delgado [56] en 2015. Mais très peu d’articles les utilisent en pratique : Hron
et al. [30] présentent un cas où les variables explicatives sont compositionnelles, et
Egozcue et al. [13] se concentrent sur le cas où la variable dépendante est une composi-
tion. Pour autant que nous sachions, le cas où une variable dépendante compositionnelle
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est expliquée par des variables explicatives prenant des valeurs différentes pour chaque
composant (ou par des variables compositionnelles) comme dans notre situation4, a
uniquement été abordé dans deux articles récents : Wang et al. [70] en 2013, et Chen et
al. [8] en 2016. Cependant, le premier article présente un modèle simplifié comparé au
deuxième article, qui n’a pas été abordé dans les ouvrages précédemment cités. Notons
que Kynclova et al. [35] ont aussi modélisé une composition par des compositions mais
dans le cas particulier d’un modèle autorégressif.

Les principaux obstacles à l’utilisation des modèles compositionnels sont les suivants.
Les notations des opérateurs dans la géométrie du simplexe peuvent sembler fastidieuses
et sont inhabituelles. En effet, l’opération d’addition dans l’espace euclidien classique est
“remplacée” par une opération de perturbation dénotée ⊕, et la multiplication est “rem-
placée” par l’opération puissance dénotée ⊙. De plus, les modèles compositionnels sont
difficilement interprétables puisqu’ils sont ajustés dans un espace transformé, et peu de
recherche a été faite pour explorer ce sujet. Ils sont habituellement interprétés en termes
d’effets marginaux sur les parts transformées, ce qui est compliqué à utiliser en pratique.
Cependant, l’avantage des modèles compositionnels est qu’ils permettent d’introduire
facilement des effets croisés entre les composants et qu’ils prennent en compte de façon
rigoureuse la nature des données de parts.

Notre contribution

Cette thèse traite la question suivante : “Quel est l’impact des investissements media
sur les parts de marché des marques du marché automobile ?”. Dans cette optique, nous
allons combiner les atouts de l’approche marketing et de l’approche compositionnelle, de
manière à élaborer un nouveau modèle d’attraction performant capable d’expliquer les
parts de marché des marques d’un segment donné du marché, en fonction des investisse-
ments publicitaires multicanaux, et tenant compte des effets retard de la publicité et des
effets croisés entre les marques. Le modèle final sera cohérent avec la géométrie dans le
simplexe.

La première étape est de comparer les différents modèles en fonction de leurs pro-
priétés. Nous montrons qu’ils peuvent être tous écrits sous une forme similaire, sous
forme d’attraction, ce qui facilite leur comparaison, et est particulièrement appréciable
pour le modèle CODA puisque cela permet de se débarrasser des notations complexes
de la géométrie du simplexe. Nous expliquons pourquoi les modèles CODA et Dirich-
let peuvent être plus performants que les modèles de parts de marché habituels. Nous
prouvons également que le modèle MCI peut être considéré comme un cas particulier
du modèle CODA, et nous mettons en avant les similarités entre le modèle CODA et
le “modèle MCI étendu” (fully extended MCI model, un modèle MCI incluant des effets
croisés entre les marques) utilisé en marketing.

4Les variables explicatives seront les investissements media qui prennent des valeurs différentes pour
chaque marque.
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Puis, nous prouvons que le modèle MCI et le modèle CODA peuvent être combiné et
nous développons une procédure de sélection de modèles pour déterminer quelle spécifi-
cation choisir. Nous proposons plusieurs types d’interprétations pour le modèle CODA,
directement liés aux parts et inspirés de ceux utilisés en marketing. Les élasticités sont
utiles pour isoler l’impact d’une variable explicative sur une part donnée, puisqu’elles
correspondent à la variation relative d’un composant induite par la variation relative
d’une variable explicative, ceteris paribus (au sens du simplexe). Nous prouvons que
cette mesure est cohérente avec la géométrie du simplexe. Nous expliquons aussi que
l’estimation des modèles d’attraction peut être améliorée en utilisant une transformation
développée en analyse des données de composition.

Le modèle final que nous proposons inclut les effets retard de chaque canal de com-
munication (affichage, presse, radio, télévision). Nous expliquons comment déterminer
les taux de rétentions correspondants d’une manière multivariée, et comment interpréter
ce modèle de manière à en tirer des enseignements pratiques sur les stratégies de mix
marketing des constructeurs automobiles.

Pour finir, nous commençons à adapter le théorème de Dorfamn et Steiner sur
l’optimisation du budget publicitaire au cas concurrentiel (attraction) et multicanal.

Données

Les données nécessaires pour réaliser ce travail de recherche ont été mises à disposition
par la direction marketing de Renault dans le cadre d’un accord de confidentialité entre
Renault et BVA. Trois bases de données ont été fournies :

• la base mensuelle des immatriculations contenant les informations suivantes : le
segment, la marque, le modèle, la version, le mois, l’année, et le nombre de véhicules
immatriculés correspondant, pour tous les véhicules particuliers neufs immatriculés
en France de janvier 2000 à août 2015,

• la base mensuelle des prix catalogue contenant les informations suivantes : la mar-
que, le modèle, la version, les options, le mois, l’année, le nombre de véhicules
immatriculés et le prix catalogue correspondants, pour tous les véhicules partic-
uliers neufs immatriculés en France de janvier 2000 à août 2015,

• la base mensuelle des investissements media contenant les informations suivantes :
la marque, le modèle, le type de media (canal), le mois, l’année, et le montant
investi correspondant, pour tous les véhicules particuliers neufs ayant fait l’objet
d’investissements publicitaires en France de janvier 2000 à août 2015.

Un travail minutieux de rapprochement des bases a été effectué, en collaboration avec
l’équipe marketing de Renault (Philippe Devailly et Matthias Guegan). La base de
référence est la base des immatriculations, contenant l’information du segment qui est
une information importante dans le cadre de notre recherche. La base des prix a été
agrégées au niveau “modèle × marque × segment × date” en pondérant les prix des
différentes versions par les volumes d’immatriculations correspondants. Nous n’avons
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conservé de la base des investissements media que ceux associés à un modèle de véhicule
en particulier, les dépenses institutionnelles associées à une marque ou un groupe de
marques sont omises.

Les principaux types de difficultés rencontrés lors de ce rapprochement de bases sont
les suivants : les modèles ou les marques ne sont pas homogènes dans les différentes
bases ; les modèles ou les marques ont changé de nom au cours du temps ; les modèles
ont changé de segment au cours du temps ; les modèles étant la suite directe d’un modèle
précédent doivent être considérés comme une seule lignée de véhicules (e.g. Peugeot 206,
Peugeot 207, Peugeot 208) ; certains prix sont exprimés en francs et d’autres en euros
sur la même période, etc.

Nous obtenons à la fin de cette étape une base mensuelle au niveau “modèle × marque
× segment × date” contenant le volume d’immatriculations, le prix catalogue moyen et
les dépenses publicitaires en affichage, presse, radio, télévision, cinéma et internet. Notre
objectif n’étant pas de mesurer l’impact des campagnes publicitaires sur les ventes de
chaque modèle de véhicules à un niveau micro, mais plutôt d’apprécier l’impact struc-
turel des investissements media des marques sur leur niveau de part de marché à un
niveau macro, nous agrégeons cette base au niveau “marque × segment × date”. Cette
agrégation a des avantages : elle nous permet d’être à un niveau où la confidentialité des
données est moindre, et d’être sur une base de données avec beaucoup moins de “trous”
(e.g. apparition ou disparition d’un modèle de véhicule, mois sans vente pour un modèle
donné, etc.) ce qui sera appréciable pour la modélisation.

Par ailleurs, notre objectif étant de mesurer l’impact de la publicité sur les ventes
relatives, il est important de tenir compte du fait que nous observons les immatriculations
du mois t et non les ventes du mois t. Il peut s’écouler plusieurs semaines voire plusieurs
mois entre l’acte d’achat qui nous intéresse et l’immatriculation d’un véhicule, en grande
partie à cause du délai de livraison du véhicule neuf. C’est pourquoi dans le Chapitre 1
nous avons considéré les investissements media du mois t − 4 et dans le Chapitre 2 ceux
des mois t − 3, t − 4, t − 5. Dans le Chapitre 3, pour le modèle final, nous avons proposé
un calage des investissements media sur les immatriculations en utilisant la distribution
empirique des délais de livraison (cf. Section 3.2.3).

Structure de la thèse

Cette thèse est écrite en anglais, à l’exception de la présente introduction, de la con-
clusion et des résumés long et court qui sont traduits en français. Les chapitres 1, 2
et 3 sont des adaptations d’articles en cours de publication, dont les coauteurs sont les
professeurs Christine Thomas-Agnan and Michel Simioni, directeurs de cette thèse.

Le premier chapitre de cette thèse présente les modèles de parts de marché usuels
provenant de la littérature marketing et économétrique, et d’autres modèles de régres-
sion, issus de l’analyse des données de composition principalement, permettant plus
généralement de modéliser des données de parts, en tenant compte des particularités
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de ces données qui sont positives et somment à 1 à chaque observation. Les quatres
grands types de modèles considérés sont le modèle MNL, le modèle GMCI, le modèle
DIR et le modèle que nous nommons CODA. Une comparaison théorique approfondie
des modèles met en évidence leurs points communs et leurs différences, ainsi que leurs
avantages et leurs inconvénients. Une application empirique est présentée pour le seg-
ment B du marché automobile français pour la sous-composition Dacia/Nissan/Renault,
de juin 2005 (apparition de Dacia) à août 2015, en utilisant le prix catalogue moyen et
les dépenses publicitaires en affichage, presse, radio, télévision, cinéma et internet du
mois t − 4, ainsi que la prime à la casse en variables explicatives. Les modèles sont
comparés en terme de qualité d’ajustement en validation croisée de manière à identifier
le modèle donnant les meilleures estimations des parts de marché.

Le deuxième chapitre se concentre sur l’interprétation des modèles de parts de
marché, en particulier du modèle MCI et du modèle CODA, qui est complexifiée par
le fait qu’une part de marché ne peut évoluer sans que les autres soient impactées.
Plusieurs types d’interprétation sont proposés, dont les effets marginaux, les élasticités
et les rapports de cotes. Les élasticités se révèlent être particulièrement intéressantes car
elles sont directement liées aux dérivées dans le simplexe et offrent une interprétation des
effets directs et croisés entre les marques qui est pertinente d’un point de vue pratique.
Une application au segment B du marché automobile de 2003 à août 2015 est présentée,
en considérant les trois leaders français Citroën, Peugeot et Renault séparément et en
agrégeant les autres marques. Les variables explicatives utilisées sont cette fois-ci le total
des dépenses publicitaires des mois t − 3, t − 4, t − 5, le prix catalogue moyen et la prime
à la casse. L’application met en avant d’intéressantes interactions entre les marques.

Le troisième chapitre présente le modèle final retenu pour répondre à notre prob-
lématique de départ, et les interprétations concrètes de celui-ci. Nous proposons un
modèle de type CODA intégrant les principaux canaux de communication (affichage,
presse, radio et télévision) séparément et tenant compte de l’effet de report de l’impact
publicitaire à travers des variables dites d’adstock. On explique comment déterminer
le taux de rétention de la publicité des différents canaux de façon simultanée. Le mod-
èle final est choisi à l’issue d’une comparaison de différentes spécifications de modèles
de types MCI, DIR ou CODA, sur des critères de qualités explicative et prédictive.
Un diagnostic des résidus et des ellipsoïdes de confiance et de prédiction sont réalisés.
L’application finale porte, comme dans le Chapitre 2 sur les marques Citroën, Peugeot,
Renault, et le groupe des autres marques, mais sur la période de 2005 à août 2015. Les
variables explicatives sont les adstocks des dépenses publicitaires par canal, et à nouveau
le prix catalogue moyen et la prime à la casse. Les élasticités directes et croisées des
différents canaux sont très différentes d’une marque et d’un media à l’autre, et donnent
des informations sur de possibles stratégies de mix marketing pour les acteurs du marché.

Le quatrième et dernier chapitre de cette thèse ouvre sur les pistes à explorer pour
améliorer le modèle proposé et apporter des réponses complémentaires à notre problé-
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matique. Nous évoquons notamment la possibilité de réaliser des modélisations sup-
plémentaires sur les autres segments et autres marques, ainsi que des modélisations
complémentaires pour analyser par exemple l’impact du contexte socio-économique sur
les parts de marché des différents segments du marché automobile, ou encore l’impact
de la composition des dépenses publicitaires (mix marketing) sur les ventes d’un cer-
tain véhicule. La construction de variables d’adstock reflétant au mieux l’effet retard
de la publicité peut probablement être améliorée. Pour finir, nous avons commencé à
examiner l’utilisation des élasticités des parts de marché aux dépenses publicitaires dans
l’optimisation du budget publicitaire en multicanal.
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Introduction (English version)

Car manufacturers spend a lot of money on advertising in order to enhance their image
and to stimulate their sales. The measure of the impact of the media investments on
the brand performance is therefore a subject of major interest for the automobile mar-
ket. The consulting and research company BVA has decided to investigate this question,
funding this CIFRE5 thesis. This question may seem simple in appearance but some
features of the automobile market need to be considered to answer it.

Firstly, it is important to understand that media investments have little chance
to significantly impact the global market size. The automobile market is a market of
expensive and durable goods, whose size is mainly determined by the demand (the size
and the wealth of the population, people’s transportation behavior and mobility habits,
governmental incentives to purchase a new environmentally-friendly car, etc.), more than
by the supply. For example, during an economic crisis, the sales volumes usually fall.
Then, brands try to get the largest share of a given market, using media investments
notably.

Secondly, the market of personal-use vehicles is usually divided into five main seg-
ments in Europe, denoted by A to E according to the size of the chassis, also called
minicompact, subcompact, compact, mid-size and large segments in the USA. For ex-
ample the most popular vehicles in France for each segment are the Renault Twingo,
the Renault Clio, the Renault Megane, the Peugeot 508 and the Mercedes-Benz E-Class.
Each of these segments can be considered as an homogeneous set of choices for customers.
Moreover, inside a given segment, a brand usually proposes only one main vehicle. Then,
it is usual to analyze the automobile market at the “brand × segment” level.

Thirdly, the automobile market is a very competitive market where the brand image
is very important. For the purchase of an expensive and durable good, customers need
to trust the brand they choose in addition to having confidence in the technical charac-
teristics of the vehicle. This explains why car manufacturers spend millions of euros on
outdoor advertising displays, television, radio, press and so on, in order to promote the
quality of their vehicles, but also to enhance their quality of service, values, identity and
image. However, the advertising impact of a brand depends also on the advertising of its
competitors. Indeed, the situation where Renault spends 10 while its competitors spend

5CIFRE means industrial training contract by research, and corresponds to a particular French type
of thesis contract, supported by a company.
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1, and the situation where Renault still spends 10 but its competitors spend 100, will
not have the same impact on Renault. Moreover, some competitors are more harmful
than others, and we can imagine that synergies exist between some brands.

Fourthly, the impact of media investments is not only contemporaneous but spreads
out over time, certainly in a decreasing way. Each advertising channel (e.g. outdoor,
television, press, radio) is likely to have its own “retention rate”, and interactions be-
tween channels may exist.

To take into account these elements, we consider the following assumptions. The
automobile market is such that each brand tries to maximize its market share, inside
a given segment, using media investments. Thus, we are going to promote a brands’
market shares modeling instead of a classical sales volume modeling. Competition and
cross effects between brands must be included in the advertising impact analysis. Each
communication channel should be addressed individually but with a multivariate ap-
proach.

The classical marketing approach

A lot of consumer goods belong to competitive markets where the final performance of
a brand does not only depend on the supplied product and marketing actions of the
brand but also on competitors actions (supply side), and on the socioeconomic context
(demand side). Danaher et al. [11] show that the competitive interference effects on sales
are strong and diminish the advertising elasticity6. It is therefore essential to consider
advertising cross effects between brands.

The effect of marketing mix variables (advertising, price, promotion, distribution)
have been modeled since the 50’s using the so-called market response models, where the
response variable is usually the sales or the market shares of products or brands (see
Hanssens et al. [27] for a review of existing models). The measurement of these effects is
generally done in terms of elasticities. In the case of the automobile market for example,
Glerant [21] measures the evolution of the elasticity of sales relative to the elements of
the marketing mix, according to the phases of a vehicle life cycle. Modeling market
shares instead of sales has the advantage of taking into account the competition and the
cross effects between brands.

Three main categories of market response models are used in practice: linear, mul-
tiplicative and attraction models. Attraction models are generally inspired from an ag-
gregated version of the multinomial logit model (MNL), widely used in econometrics for
discrete choice modeling (see for example Train [64]). However, according to Hanssens
et al. ([27], p.124), the multiplicative competitive interaction (MCI) model, which is
the most famous attraction model, is usually preferred to the MNL model because the
latter does not allow “for decreasing returns to scale for advertising [...] for any brand
with less than a 50 percent share of the market”, as proved in Gruca and Sudharsan

6The elasticity measures the relative variation of a variable (e.g. sales) implied by the relative variation
of another variable (e.g. advertising). It is a sensitivity measure often used in economics and marketing.
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[25]. Among the three categories of market response models, only the attraction models
allow to model market shares in a proper way because they comply with the constraints
of positivity and summing up to one of market shares data, as emphasized by Cooper
and Nakanishi [10] (p.28). Nevertheless, attraction models are not used systematically
for market shares modeling, because of three main reasons.

1. The first one is that some authors have shown empirically that attraction models
do not give significantly better results than the others in terms of fitting and
prediction accuracy (see for example Ghosh et al. [20] and Leeflang et al. [36]).
Nevertheless, Naert et al. [51] have made the opposite claim a few years ago,
suggesting that the conclusion can depend on the considered application.

2. The second reason is that the estimation of an attraction model is not straight-
forward: it is a non-linear model which can be linearized by a transformation,
generally the log-centering transformation, also called centered log-ratio transfor-
mation (CLR) in the compositional data analysis literature (see Aitchison [1]).
A simple estimation by ordinary least squares is generally run on the resulting
coordinates, while it is obvious that the log-centered error terms cannot be inde-
pendently distributed. Generalized least squares (GLS) and iterative generalized
least squares (IGLS) have also been considered by several authors, but without
concluding to a significant improvement of the estimation (see for example Ghosh
et al. [20], Leeflang and Reuyl [36], and Cooper and Nakanishi [10], p.128).

3. The third reason is that they are often overparametrized. The classical MCI model
suggests that the impact of a marketing instrument is the same for all brands,
which is often too restrictive. The differential MCI model (DMCI) includes brand
specific parameters, leading to D + DK parameters, where D is the number of
brands and K the number of explanatory variables, but it ignores the potential
cross effects between brands. The additional specification of cross effects, done
in the so-called fully extended MCI model (FEMCI), leads to a huge number of
parameters: D(1 + DK). With the estimation on the CLR transformed model,
only the centered version of these coefficients can be identified.

Another important concern which has been addressed in the marketing literature is
the dynamic effect of the advertising. Some authors have emphasized the existence of
short term and long term effect of advertising on sales (see for example Assmus et al. [2]
and Lodish et al. [39]). In the case of durable and expensive goods like automobile, we
can expect the advertising impact to be spread over several periods, with diminishing
returns effect on sales.

This is called the carryover effect of advertising and it is usually integrated in mar-
ket response models using a stock variable, built using a retention rate which can be
estimated econometrically. For advertising, this notion is also called “adstock” variable
and was initiated by Broadbent [5] in 1979. The most commonly used adstock model
is the Koyck model, defined as Qt = µ + βAdstockt + ǫt where the adstock function is
equal to Adstockt = (1 − λ)(Mt + λMt−1 + λ2Mt−2 + . . . ), Qt is the demand at time t,
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Mt is the media investment at time t, and λ is its retention rate. Then, β(1 − λ) can be
interpreted as the current (short term) effect of advertising and β as the carryover (long
term) effect of advertising, and we can say that θ% of the advertising impact occurs in
the log(1 − θ)/ log(λ) − 1 periods after advertising.

Vakratsas and Ambler [66] report that “Clarke [9] (1976) and Assmus, Farley, and
Lehmann [2] (1984), in meta-analytic studies, suggest that 90% of the advertising effects
dissipate after three to fifteen months. Leone [37] (1995), in an empirical generalizations
study, suggests that the range be narrowed to six to nine months”. However, Leone [37]
also emphasizes the fact that the retention parameter λ “should increase as the level of
aggregation increases”. Note that advertising campaigns are most often analyzed at the
week level and for FMCGs (fast moving consumer goods), whereas in our application we
are analysing the monthly advertising budgets for a durable good. Then we can expect
to find larger carryover effects of advertising. Usually advertising carryover effects are
estimated on sales and for only one marketing instrument (advertising in most of the
cases), not on market share for multi-channel advertising. Recently, Zantedeschi et al.
[72] have modeled the impact of multi-channel adstock variables on sales. As far as we
know, there is no existing application of an attraction model including a multi-channel
advertising carryover effects.

The compositional data analysis approach

Above all, market shares are shares data characterized by the following constraints:
they are positive and sum up to 1. By definition shares are “compositional data”: a
composition is a vector of shares of some whole which carries relative information. For a
composition of D market shares, if D−1 market shares are known the Dth market shares
is simply 1 minus the sum of the D − 1 other parts. A D-composition lies in a space
called the simplex SD. The simplex can be considered as a generalization of the triangle:
a 2-composition can be represented in a segment, a 3-composition in a triangle, a 4-
composition in a tetrahedral, and so on. Because of the relative information carried by
compositions, classical regression models cannot be used directly to model compositional
data.

A large number of fields are concerned by the analysis of share data. In political
economy, Elff [15] studies voting behaviors and analyzes the relationship between the
shares of political parties and their policy positions in different groups of voters. In
geology, Solana-Acosta and Dutta [62] are interested in the lithologic composition of
sandstone according to whether it is quartz, feldspar or rock fragments. For environ-
mental planning purposes, land use models focus on the proportions of different types
of uses (forest, agriculture, urban, etc.) on a given piece of land (see for example Chakir
et al. [7]).

Two types of statistical models are adapted to the case where the dependent variable
is a composition: the Dirichlet covariate model and the compositional regression model.

Although known in the marketing literature, the Dirichlet model (DIR) is rarely used
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to model market shares. Hanssens et al. [27] (p.128) argue that the Dirichlet distribution,
which is the distribution of a composition obtained as the closure of independent Gamma-
distributed variables, seems to be adapted to the case of no sampling error in the data.
This case may be rare in this type of application, but it is actually our case.

By contrast, compositional models coming from the compositional data analysis and
thus denoted CODA models, seem to be totally ignored by the marketing literature.
The inverse is also true: the compositional data analysis, which is a quite recent field in
statistics where the initial application area was geology, has not been applied to mar-
keting before this thesis.

Aitchison [1] can be considered as the father of compositional data analysis, hav-
ing developed the simplicial geometry, also called Aitchison geometry since 2001 by
Pawlowsky-Glahn and Egozcue [55]. Compositional data analysis is based on a log-ratio
transformation approach: a composition lying in the simplex is transformed in coordi-
nates using a log-ratio transformation, such that any classical statistical method (linear
regression for example) can be used on coordinates, and then the results in the simplex
can be recovered by inverse transformation.

The compositional regression models have been recently investigated from a theoret-
ical perspective, in the following books: Pawlowsky-Glahn and Buccianti [54] in 2011,
Van Den Boogaart and Tolosana-Delgado [68] in 2013, and Pawlowsky-Glahn, Egozcue
and Tolosana-Delgado [56] in 2015. But very few articles are applying them in practice:
Hron et al. [30] present a case where the explanatory variables are compositional, and
Egozcue et al. [13] focus on the case where the dependent variable is a composition.
To the best of our knowledge, the case where a compositional dependent variable is
explained by component-dependent (or compositional) explanatory variables as in our
situation7, has only been addressed in two recent articles: Wang et al. [70] in 2013,
and Chen et al. [8] in 2016. However, the former article presents a simplified model
compared to the later, which has not been mentioned in the books we cite above. Note
that Kynclova et al. [35] are also modeling a composition by compositions but in the
particular case of an autoregressive model.

The main obstacles to use compositional regression models are the following. The
notations of operators in the simplicial geometry can be confusing and cumbersome as
they are unusual. Indeed, the addition operation in the classical Euclidean space is
“replaced” by a perturbation operation denoted ⊕, and the multiplication is replaced
by a powering operation denoted ⊙. Moreover, the resulting compositional models are
complicated to interpret as they are fitted in a transformed space, and little research
has been carried out investigating this issue. They are usually interpreted in terms
of marginal effects on the transformed shares, which are complicated to use in practice.
However, the positive point of the compositional models is that they can easily introduce
all cross effects between components and that they take into account rigorously the

7Explanatory variables will be media investments which have different values for each component of
the dependent market shares composition, that is for each brand.
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compositional nature of share data.

Our contribution

This thesis addresses the following question: “What is the impact of media investments
on the brands’ market shares in the automobile market?”. In order to do so, we are going
to combine the best part of the marketing approach and of the compositional approach,
in order to build a new performing attraction model able to explain brands’ market
shares of a given segment of the market, as a function of multi-channel advertising in-
vestments, accounting for the advertising carryover effect and the cross effects between
brands. This final model will be consistent with the simplicial geometry.

The first step is to compare the different models according to their properties. We
show that they can all be written in a similar formulation, the attraction formulation,
which eases the comparison and is particularly valuable for the CODA model because it
allows to get rid of the cumbersome notations of simplicial operations. We explain why
the CODA and the Dirichlet models can outperform traditional market share models.
We also prove that the MCI model can be considered as a particular case of the CODA
model.

Then we prove that the MCI and the CODA models can be mixed and we develop
a model selection procedure to determine which specification should be chosen. We
propose several types of interpretations for the CODA model directly linked to the
shares and inspired from those used in marketing. Elasticities are useful to isolate the
impact of an explanatory variable on a particular share as they correspond to the relative
variation of a component with respect to the relative variation of an explanatory variable,
ceteris paribus (in a simplex sense). We prove that this measure is consistent with the
simplicial geometry. We also explain how the estimation of attraction models can be
improved using a transformation developed in the compositional data analysis.

The final model we propose includes the carryover effect of each advertising channel
(outdoor, press, radio, television). We explain how to determine the corresponding
retention rates in a multivariate way, and how to interpret this model in order to get
practical findings on marketing mix strategies for automobile manufacturers.

Finally, we start to adapt the Dorfman-Steiner theorem about the advertising bud-
geting optimization to the multi-channel attraction case.

Data

The data required for this research work have been provided by the marketing direction of
Renault under a confidentiality agreement between Renault and BVA. Three databases
have been used:

• the monthly registrations database containing the following information: the seg-
ment, the brand, the model, the version, the month, the year, and the number
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of corresponding registered vehicles, for all new personal-use vehicles registered in
France from January 2000 to August 2015,

• the monthly catalogue prices database containing the following information: the
brand, the model, the version, the options, the month, the year, and the number of
corresponding registered vehicles and their catalogue price, for all new personal-use
vehicles registered in France from January 2000 to August 2015,

• the monthly media investments database containing the following information: the
brand, the model, the media channel, the month, the year, and the corresponding
advertising expenses, for all new personal-use vehicles which are subject to media
investments in France from January 2000 to August 2015.

The merger of the three databases has been carefully done, in collaboration with the Re-
nault marketing team (Philippe Devailly and Matthias Guegan). The reference database
is the registrations database, including the segment level information, which is important
in our case. The prices database has been aggregated at the “model × brand × segment
× date” level, weighting the different versions’ prices by the corresponding registration
volumes. We only consider the media investments which are associated to a particular
vehicle, not the institutional expenses linked to a brand or a group of brands.

The main difficulties we have met for this merger are the following: the vehicle
models or the brands are not homogenous in the different data sources, the models or
the brands have been renamed across time, the model’s segment has changed across
time, the models being the direct follow-up of one previous vehicle have to be considered
as a unique vehicle line (e.g. Peugeot 206, Peugeot 207, Peugeot 208), some prices are
in francs and others in euro over the same period, etc.

We obtain at the end of this merger a monthly database at the “model × brand ×
segment × date” level, containing the registrations volumes, the average catalogue price
and the advertising expenses in outdoor, press, radio, television, cinema and internet.
As our aim is not to measure the advertising campaigns’ impact on sales for each vehi-
cle model at a micro level, but rather to assess the structural impact of brands’ media
investments on their market shares at a macro level, we aggregate this database at the
“brand × segment × date” level. This aggregation has several advantages: it allows us
to deal with data with a lower level of confidentiality, and to get a database with less
“holes” (e.g. creation or disappearance of a vehicle model, month without sales for a
particular vehicle, etc.) which will be valuable for modeling.

Furthermore, our aim being to measure the impact of advertising on relative sales,
it is important to take into account that we observe registrations at month t, not sales
at month t. Several weeks, or several months can separate the purchase act and the
registration, mainly because of delivery times. That is why in Chapter 1, we consider
media investments at t − 4 and in Chapter 2 those of t − 3, t − 4, t − 5. In Chapter 3,
for the final model, we propose to align media investments on registrations using the
empirical delivery times distribution (see Section 3.2.3).
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Structure of the thesis

This thesis is written in English, with the exception of this introduction, the conclusion
and long and short resumes which are translated into French. Chapters 1, 2 and 3 are
adaptations of working papers under publication, whose coauthors are professors Chris-
tine Thomas-Agnan and Michel Simioni, advisors of this thesis.

The first chapter of this thesis presents the usual market share models coming from
the marketing and econometric literatures, and other regression models mainly coming
from compositional data analysis, which allow more generally to model share data, tak-
ing into account the specificity of these positive and summing up to one data. The four
types of models we considered are the MNL model, the GMCI model, the DIR model
and what we call the CODA model. An in-depth theoretical comparison of these models
highlights their common points and their differences, along with their strengths and their
weaknesses. An empirical application is presented for the B segment of the French auto-
mobile market for the subcomposition Dacia/Nissan/Renault, from June 2005 to August
2015, using the average catalogue price, the media investments in outdoor, press, radio,
television, cinema and internet at time t − 4 and the scrapping incentive as explanatory
variables. The models are compared in terms of cross-validated quality measures in or-
der to identify the model giving the best fitted market shares.

The second chapter focuses on the interpretation of market share models, in particu-
lar for the MCI and the CODA models, which is complexified by the fact that a market
share cannot evolve without affecting the others. Several types of interpretations are
proposed: marginal effects, elasticities and odds ratios. Elasticities come out to be
particularly interesting because they are directly linked to simplicial derivatives and be-
cause they provide an interpretation for direct and cross effects between brands, which
is meaningful from a practical point of view. An application to the B segment of the
French automobile market from January 2003 to August 2015 is displayed, considering
separately the three French leaders Citroën, Peugeot and Renault, and aggregating the
other brands. The explanatory variables we have used are the total media investments
at time t − 3, t − 4, t − 5, the average catalogue price and the scrapping incentive. The
application notably reveals interesting positive interactions between brands.

The third chapter presents the final model selected to answer our initial question,
and its practical interpretations. We propose a CODA type model integrating separately
the different communication channels (outdoor, press, radio, television) and accounting
for the carryover effect of the advertising impact through the so-called adstock functions.
We explain how to determine the channels’ advertising retention rate in a multivariate
way. The final model is chosen according to a comparison of different model specifica-
tions (MCI, DIR or CODA types) using goodness-of-fit and prediction accuracy criteria.
A residuals diagnostic is done, along with confidence and prediction ellipsoids. The fi-
nal application concerns the brands Citroën, Peugeot, Renault, and the group of other
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brands, as in Chapter 2, but on the period from January 2005 to August 2015. The
explanatory variables are the adstock variables by channel, and again the average cata-
logue price and the scrapping incentive. The direct and cross elasticities of advertising
channels differ a lot from one brand to another, and from one channel to another, and
they give information on the possible mix marketing strategies for the market players.

The fourth and final chapter of this thesis opens a discussion on avenues to be
explored in order to improve the proposed model and to bring complementary answers
to our initial problem. We talk about the possibility to make complementary modelings
on other segments and on other brands, or to build a model to measure the impact of
the socioeconomic context on segments’ market shares, or even to measure the impact
of the advertising budget composition (marketing mix) on vehicle sales. Moreover, the
construction of adstock variables that best reflect the carryover effect of the advertising
could probably be improved. Models distributional assumptions could also be challenged.
Lastly, we made preliminary attempts at investigating the use of advertising elasticities
of market shares in the multi-channel advertising budget optimization.
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Chapter 1

A tour of regression models for
explaining shares

The aim of the first chapter is to make a presentation and a comparison of the different
models we found in the literature for modeling market shares. Some of these models,
found in the marketing and in the econometrics literature, are directly intended to model
market shares, whereas other regression models are simply adapted to fit a compositional
response variable, that is a vector of shares data, for whatever application. As a result
of this comparison, we highlight the links between existing models which have been de-
veloped contemporaneously in different literatures and for different applications. This
chapter will be useful in the following chapters as it emphasizes the best aspect of each
model, the theoretical side or the application side, that we will combine to built a per-
forming market share model able to answer our question.

This chapter is linked with working papers which have already been published (see
Morais, Thomas-Agnan and Simioni [46], [50] and [49]). A final version will be published
soon in Journal of Applied Statistics (accepted on the 27th of September 2017).
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1.1 Introduction

Share data are characterized by the following constraints: they are positive and sum
up to 1. By definition shares are “compositional data”: a composition is a vector of
parts of some whole which carries relative information. For a composition of D parts,
if D − 1 parts are known the Dth part is simply 1 minus the sum of the D − 1 other
parts: D-compositions lie in a space called the simplex SD. Because of these constraints,
classical regression models cannot be used directly.

A large number of fields are concerned by the analysis of share data. In political
economy, Elff [15] studies voting behaviors and analyzes the relationship between the
shares of political parties and their policy positions in different groups of voters. In
geology, Solana-Acosta and Dutta [62] are interested in the lithologic composition of
sandstone according to whether it is quartz, feldspar or rock fragments. For environ-
mental planning purposes, land use models focus on what are the proportions of different
types of uses (forest, agriculture, urban, etc.) on a given piece of land, see for example
Chakir et al. [7].

When the aim is to model market shares as a function of explanatory variables (mar-
keting factors like advertising or price for example), the marketing literature proposes
some regression models which can be qualified as attraction models (Cooper and Nakan-
ishi [10]). They are generally inspired from an aggregated version of the multinomial
logit models, widely used in econometrics for discrete choice modeling. But aggregated
multinomial logit models (MNL) and market share models (GMCI) are very simple
and present some limitations: for example they are not including cross effects between
brands.

In this chapter, we also present two other models adapted to model market shares:
the Dirichlet covariate model (DIR) and the compositional model (CODA). These mod-
els consider the vector of shares as a “composition” lying in the simplex. DIR allows to
estimate brand-specific parameters and CODA allows to estimate additionally cross ef-
fect parameters. We show that these last two models can be written in a similar fashion,
called attraction form, as the MNL and the GMCI models. This is particularly valuable
for the CODA model because it allows to get rid of the notations of simplicial opera-
tions. We compare the main properties of the models in order to explain why CODA
and DIR models can outperform traditional market share models. We also prove that
the GMCI model can be considered as a particular case of the CODA model, and we
highlight the similarities between the CODA model and the fully extended MCI model
used in marketing, which is a MCI model including cross effects.

Finally, an application to the automobile market is presented where we model brands’
market shares as a function of media investments in six channels (television, press, radio,
outdoor, digital, cinema), controlling for the brands’ average price and a scrapping in-
centive dummy variable. We compare the goodness of fit of the various models by cross
validation in terms of quality measures adapted to share data. The direct elasticities of
market shares relative to the television advertising are computed for each model.

24



The present chapter is organized as follows: the models adapted to model share
data are presented in Section 1.2, and theoretically compared in Section 1.3. Section
1.4 presents an application to an automobile market data set, along with an empirical
comparison of the models in terms of cross-validated goodness-of-fit measures, and an
example of elasticity interpretation. Finally, the last section concludes on the findings
and on further directions to be investigated.
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1.2 Models for explaining shares

1.2.1 Notations

The notations used in this thesis are standardized in Table 1.1 depending on whether
the variables are considered in volume or in share, as either dependent or explanatory
variable, and if they are component and/or observation dependent.

For example, in the case we use for illustration, we are interested to model the
market shares Sjt of D brands, computed using the closure (see the definition below) of
the corresponding sales volumes Šjt, for j = 1, . . . , D. The media investments Mcjt and
the prices Pjt are component and observation dependent because they have a different
value for each brand at each time, while the scrapping incentive is only an observation
dependent variable (the same for all brands). Advertising and price variables can be
considered either in volume (in euro) or in shares (shares-of-voice and relative prices).

Table 1.1: Notations

Variable Volumes Shares Coordinates

Dependent Šjt St = (S1t, . . . , SDt)
′ = C(Š1t, . . . , ŠDt)

′ ilr(S) = S∗
t = Š∗

t

Explanatory (observation and
component characteristic)

X̌jt Xt = (X1t, . . . , XDt)
′ = C(X̌1t, . . . , X̌Dt)

′ ilr(X) = X∗
t = X̌∗

t

Explanatory (observation
characteristic only)

Zt

General notations

D Number of components (3 in this application)
j, l, m = 1, . . . , D Index of components or coordinates (brands in this application)
T Number of observations (123 in this application)
t = 1, . . . , T Index of observations (time in this application)
K, KX , KZ Number of explanatory variables / of type X / of type Z
k = 1, . . . , K Index of explanatory variables (by default)
k = 1, . . . , KX Index of explanatory variables of type X
κ = 1, . . . , KZ Index of explanatory variables of type Z
sj Theoretical mean share (expected value of Sj)

Notations for the application

C Number of media channels (6 in this application)
c = 1, . . . , C Index of media channels
Mcjt Media investment in channel c at time t for brand j
Pjt Average price at time t of brand j
SIt Scrapping incentive dummy at time t

A composition S is a vector of D shares Sj potentially coming from the closure of D
positive numbers Šj and belongs to the simplex SD:

SD =



S = (S1, . . . , SD)′ = C(Š1, . . . , ŠD)′ : Sj > 0, j = 1, . . . , D;

D∑

j=1

Sj = τ





where the closure operation C(y1, . . . , yD)′ =

(
τy1∑D

j=1
yj

, . . . , τyD∑D

j=1
yj

)′

normalizes any

vector y to a constant sum τ . In the case of market shares, τ = 1.

26



1.2.2 Multinomial logit models

In econometrics, multinomial logit (MNL) models are widely used to model discrete
choices of individuals, i.e. to model the probability that an individual i chooses an
alternative j, using individual data. Sometimes these data are aggregated using a group
variable (e.g. time, space, age group) and then the counts for each alternative and the
covariates are recorded for each group. We are going to describe how an individual-level
MNL model can be adapted to aggregated data, provided that the explanatory variables
are either describing the alternatives (and are constant for all decision makers in a group)
or are group characteristics.

Discrete choice model: a random utility model for individual data

Multinomial logit models (MNL) are widely known by statisticians because they are a
generalization of the famous binary logistic regression model. MNL is a particular case
of discrete choice models, used to explain and predict polytomous, discrete or quali-
tative, response variable (a finite set of mutually exclusive and collectively exhaustive
alternatives) by a set of explanatory variables (see Koppelman and Bhat [33]).

In econometrics, random utility models are based on the idea that decision makers
are choosing the alternative that maximizes their utility. For an introduction to utility in
econometrics, see for example McFadden [43]. Thus, the probability for decision maker
i to choose alternative j at choice situation t is defined as

pijt = P(Choiceit = j) = P[Uijt ≥ Uilt, ∀ l 6= j], (1.1)

where Choiceit is the variable of choice of individual i at choice situation t, and Uijt is
the utility associated to alternative j for decision maker i at choice situation t.

Random utility models decompose the utility Uijt as a sum of a deterministic part
Vijt and a random part ǫijt:

Uijt = Vijt(Xt) + ǫijt,

where X is a set of explanatory variables for the deterministic part of the utility.
If error terms are extreme-value (Gumbel) distributed, the computations of proba-

bilities from equation (1.1) have a closed form leading to the multinomial logit model,
also called random coefficient logit model (see Koppelman and Bhat [33]):

pijt =
exp(Uijt)∑D
l=1 exp(Uilt)

,

which can be estimated by maximum likelihood using the density of the multinomial
distribution on individual-level data.

Conditional logit model: alternative-specific explanatory variables

If explanatory variables only characterize alternatives (and not individuals), MNL is
called “conditional logit model”. If alternative characteristics do not change across de-
cision makers, the conditional logit model can be expressed in an aggregated way, using
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count data instead of individual data, which means that only the numbers of individuals
who have chosen each alternative are needed instead of the individual choices. This is
the case for our illustration data: it allows us to estimate the market share of a brand
(probability to be chosen) depending on the characteristics of this brand relatively to
the characteristics of other brands in competition.

The expected share of alternative j at choice situation t (e.g. market share of brand
j at time t) corresponds actually to the probability of j to be chosen by an individual,
and is expressed as

sjt = E(Sjt|X̌t) =
exp(aj +

∑K
k=1 bkX̌kjt)∑D

l=1 exp(al +
∑K

k=1 bkX̌klt)
, (1.2)

with aD = 0 for identifiability reasons.

Estimation by maximum likelihood for aggregated data

The multinomial distribution is a generalization of the binomial distribution. For Š
independent individuals who choose exactly one of D alternatives, with each alternative
having a given probability to be chosen (s1, . . . , sD), the multinomial distribution gives
as a result a vector containing the volumes of choices for each alternative (Š1, . . . , ŠD),
where Š =

∑D
j=1 Šj . We denote (Š1, . . . , ŠD) ∼ MN (Š; s1, . . . , sD), such that:

E(Šj) = Šsj , V ar(Šj) = Šsj(1 − sj), Cov(Šj , Šl) = −Šsjsl

If the explanatory variables characterizing the alternatives do not change across
individuals (for example the price of the vehicle j is the same for all individuals i), then
the utility for alternative j, and thus the probability to choose the alternative j, will
be the same for all individuals i. Therefore, the log likelihood is only a function of the
counts Šjt of individuals for each alternative.

In the aggregated case, it is needed to observe several choice situations t in order
to estimate the model, that is to have a group variable. In our illustrative application,
the different choice situations are the months of observation. The corresponding log-
likelihood function (up to a constant) which has to be maximized is

log L =
T∑

t=1

D∑

j=1

Šjt log(sjt) =




T∑

t=1

D∑

j=1

Šjt(X̌jtb)


−




T∑

t=1

Št log




D∑

j=1

exp(X̌jtb)




 ,

with X̌jtb =
∑K

k=1 bkX̌kjt.

Implementation in R: the package mclogit developped by Martin Elff [16] allows to
fit conditional logit models with count data, using the Fisher-scoring/IWLS algorithm1.

1For details on IWLS algorithm, see for example Green [22].
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1.2.3 Market share models

Market share models were developed in the 80’s, mainly by Cooper and Nakanishi [10].
To take into account the competition between brands in a market, it is often of interest
to model market shares instead of sales volumes directly. Thus, this type of models is
widely used in marketing. The aim is to model market shares of D brands using their
marketing instruments (e.g. price, advertising) as explanatory variables, with aggregated
data (market-level data rather than individual-level data). These models are called gen-
eralized multiplicative competitive interaction (GMCI) models. They are inspired from
an aggregated version of the conditional multinomial logit (MNL) model (see Section
1.2.2).

GMCI attraction model

The concept of “attraction” of a brand is central in this literature, and is comparable to
the “utility” concept in discrete choice models for individual data. The specification of
the attraction of brand j is a function of the explanatory variables (marketing variables
usually, like price and media for example) describing this brand. The market share of
brand j is defined as its relative attraction compared to competitors, i.e. as its attraction
divided by the sum of attractions of all the brands of the market:

0 < Sjt =
Ajt∑D
l=1 Alt

< 1,

where Ajt is the attraction of brand j at observation t such that Ajt > 0.

Cooper and Nakanishi [10] (p.36) defined a general model for market shares, called
the generalized multiplicative competitive interaction model (GMCI). It is defined as
follows:

Ajt = exp(aj)
K∏

k=1

fk(X̌kjt)
bk exp(εjt) and Sjt =

Ajt∑D
l=1 Alt

, (1.3)

where exp(εjt) is a multiplicative random error term and fk is a monotonic transforma-
tion of X̌k such that fk(.) > 0. If all fk are the identity function (resp. the exponential
function), it leads to the MCI specification (resp. the MNL specification):

MNL spec.: Sjt =
exp(aj +

∑K
k=1 bkX̌kjt + εjt)∑D

l=1 exp(al +
∑K

k=1 bkX̌klt + εlt)
(1.4)

MCI spec.: Sjt =
exp(aj)

∏K
k=1 X̌bk

kjt exp(εjt)
∑D

l=1 exp(al)
∏K

k=1 X̌bk
klt exp(εlt)

(1.5)

The MNL specification of the GMCI is similar to the conditional multinomial logit
model (MNL), except that in the MNL model an intercept has to be fixed to zero for
identifiability reason (see equation 1.2). Note however that the attraction formulation
of the MNL model differs from that of the GMCI models: the GMCI attraction contains
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the random component εjt whereas the MNL does not since the attraction form in that
case corresponds to the expected share. We will further develop this aspect in Section
1.3.2.

Estimation by OLS

Contrary to the MNL model which is estimated by maximum likelihood based on the
multinomial distribution, Nakanishi and Cooper [52] (p.109) propose an estimation
method relying on a log linearization that they call “log-centering transformation” which
is actually the log ratio between a share Sjt and the geometric mean of all shares at obser-

vation t, S̃t. This transformation is also called CLR (centered log-ratio) transformation
in the compositional data analysis literature. The log-centered formulations are given
by:

MNL spec.: log

(
Sjt

S̃t

)
= a1 +

D∑

l=2

(aj − a1)dl +
K∑

k=1

bk(X̌kjt − X̌kt) + (εjt − εt),

MCI spec.: log

(
Sjt

S̃t

)
= a1 +

D∑

l=2

(aj − a1)dl +
K∑

k=1

bk log

(
X̌kjt

˜̌Xkt

)
+ (εjt − εt),

where dl = 1 if l = j, 0 otherwise (brand dummy). St and S̃t are respectively the
arithmetic and the geometric means of Sjt.

This OLS estimation would be correct if error terms ε∗
jt = (εjt−εt) had a multivariate

distribution with diagonal variance covariance matrix, but indeed the ε∗
jt can only follow

a degenerate multivariate normal distribution. This issue has not been clearly raised in
the marketing literature. However, Nakanishi and Cooper [10] (p.125) suggest to use a
generalized least squares (GLS) estimation instead of an OLS estimation because of the
potential heteroscedasticity and/or correlation of error terms (if observations are time
periods for example). But as stated in Cooper and Nakanishi [10] (p.128), we found
that the GLS procedure, which is quite heavy in terms of implementation for this kind
of models, does not give empirically better results than the OLS procedure. We will
explain later in Chapter 2, Section 2.2.1 how to properly estimate this model using an-
other transformation than the CLR transformation.

Implementation in R: the function lm() allows to fit the log-centered GMCI model
by ordinary least squares.

1.2.4 Dirichlet covariate models

The Dirichlet distribution is the distribution of a composition obtained as the closure of
a vector of D independent gamma-distributed variables with the same scale parameter.
Thus, it is another distribution adapted for variables lying in the simplex.
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Dirichlet distribution

Let S = (S1, . . . , SD) ∼ D(α1, . . . , αD) where Sj > 0 and
∑D

j=1 Sj = 1, αj > 0 and∑D
j=1 αj = α0. α0 is called the precision parameter (when this value increases, the

concentration around the expected value increases, the variance and covariance decrease).
The density function of the Dirichlet distribution is defined by

f(S) =

(
Γ(α0)

∏D
j=1 Γ(αj)

)
D∏

j=1

S
αj−1
j ,

with Γ the Euler Gamma function. The expected value, the variance and the covariance
of components are such that:

E(Sj) =
αj

α0
, V ar(Sj) =

αj(α0 − αj)

α2
0(α0 + 1)

, Cov(Sj , Sl) = − αjαl

α2
0(α0 + 1)

An alternative parametrization can be considered, using the parameters µj = E(Sj) to
account for the expected values of the shares, and φ = α0 to account for the precision.
The correspondence between this parametrization and the previous one is based on the
fact that αj = µjφ and α0 = φ.

Two main criticisms of the Dirichlet model can be found in the literature: its negative
covariance structure, and the strong independence between the initial gamma-distributed
variables.

However, Campbell and Mosimann [6] show that the negative covariance structure is
not an issue for Dirichlet covariate models, contrary to the simple Dirichlet distribution.
Each observation indexed by t follows a different Dirichlet distribution. The fact that
the negative correlation happens between the shares of a same Dirichlet distribution
does not imply that the vectors of shares coming from different Dirichlet distributions
are negatively correlated. Indeed, the formula of generalized covariance proves that

Cov(X, Y ) = E[Cov(X, Y |Z)] + Cov[E(X|Z), E(Y |Z)]

Thus, if the covariance between the conditional expected values of two vectors of shares
is positive and larger than the negative expected value of the conditional covariance
between these two shares, then the unconditional covariance between the two shares can
be positive2.

In addition, Brehm et al. [4] show in a simulation study that the strong independence
between the initial gamma-distributed variables (before closure) is not a problem: the
Dirichlet covariate model successfully fits data with or without strong independence of
variables before closure.

2The same argument can be used for the multinomial model.
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Dirichlet model

Campbell and Mosimann [6] developed the Dirichlet covariate model (called DIR here-
after) to explain a compositional dependent variable, supposed to be Dirichlet dis-
tributed, by classical (non compositional) covariates. Two parametrizations of this type
of models exist. Hanssens et al. [27] (p.128) argue that the Dirichlet distribution seems
to be adapted to the case of no sampling error in the data, which is true for our data
base (we have the complete data base of registrations).

Common parametrization Under the common parametrization, the parameters of
the Dirichlet distribution, the αj ’s, are allowed to depend on the explanatory variables
X̌k in a GLM (generalized linear model) fashion with a log link:

log(αj(X̌t)) = aj +
K∑

k=1

bkjX̌kjt and E(Sj) =
αj(X̌t)∑D
l=1 αl(X̌t)

(1.6)

The components, indexed by j = 1, . . . , D, may have different explanatory variables
(a different number of explanatory variables and/or explanatory variables which take
different values for the different components), but for the sake of simplicity X̌ denotes
the vector of explanatory variables for all components.

Alternative parametrization Under the alternative parametrization, the model is
defined by two equations:

log

(
µj

1 − µj

)
= aj +

K∑

k=1

bkjXk and log(φ) = γ0 +
K∑

k=1

γkZk

However, the alternative parametrization does not allow to use different explanatory
variables for each component. Thus the common parametrization is preferred in our
illustrative application.

Estimation by maximum likelihood

As explained in Hijazi and Jernigan [29], “a different Dirichlet distribution is modeled for
every value of the explanatory variables, resulting in a conditional Dirichlet distribution”.
The conditional distributions St|X̌t are mutually independent. We assume St|X̌t ∼
D(α1(X̌t), . . . , αD(X̌t)), with unknown parameters. The log-likelihood to maximize is:

log L(S|α(X̌)) =
T∑

t=1


log Γ




D∑

j=1

αj(X̌t)


−

D∑

j=1

log Γ(αj(X̌t)) +
D∑

j=1

(αj(X̌t) − 1) log Sjt




Implementation in R: the package DirichReg created by Maier [40] allows to fit
Dirichlet model for the common or alternative parametrization, by maximum likelihood.
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1.2.5 Compositional models

Compositional data analysis was developed in the 80’s by John Aitchison [1]. The first
applications were in the geological field, with the objective to analyze the composition
of a rock sample in terms of the relative presence of different chemical elements. More
generally, CODA aims to analyze relative information between the components (parts)
of a composition, where the total of the components is not relevant or is not of interest,
taking into account the constraints of the simplex space.

The log-ratio transformation approach

As it is not possible to use properly classical statistical methods (e.g. linear regression
models) on constrained data like compositions, a log-ratio transformation of composi-
tions can be used in order to obtain unbounded coordinates in R. Then, usual tools
can be used on coordinates, and results in the simplex can be recovered by inverse
transformation, thus enforcing the simplex constraints. Several transformations are pro-
posed: notably the ALR (additive log-ratio), the CLR (centered log-ratio) and the ILR
(isometric log-ratio) transformations (see Egozcue et al. [13]).

• The ALR transformation is the first transformation proposed by Aitchison in 1986.

It is defined as alr(S) =
(
log S1

SD
, . . . , log

SD−1

SD

)′
. Its inverse transformation is

S = alr−1(alr(S)) = C(exp(alr(S)1), . . . , exp(alr(S)D−1, 1)′.

• The CLR transformation leads to D coordinates which satisfy the constraint of zero
sum (it is not reducing the dimension of the composition). It is defined as clr(S) =(
log S1

S̃
, . . . , log SD

S̃

)′
, where S̃ is the geometric mean of the D components. Its

inverse transformation is S = clr−1(clr(S)) = C(exp(clr(S)1), . . . , exp(clr(S)D))′.

• The ILR transformation consists in a projection of components in an orthonormal
basis of SD in order to obtain D − 1 orthonormal coordinates. Let {v1, . . . , vD−1}
be an arbitrary orthonormal basis in R

D−1, then el = clr−1(vl), for l = 1, . . . D −
1, represent an orthonormal basis in the simplex SD equipped with its “natural
geometry” (see Pawlowsky-Glahn et al. [56]). Considering the D × (D − 1) matrix
V with columns vl = clr(el), the ILR coordinates are defined as ilr(S) = S∗ =
V′clr(S) = V′ log(S). The inverse transformation is given by S = ilr−1(S∗) =
C(exp(VS∗))′.

Example of ILR transformation: A possible ILR transformation is defined by

S∗
l =

√
D − l

D − l + 1
log

Sl

(
∏D

l′=l+1 Sl′)
1

D−l

, l = 1, . . . , D − 1,

where S∗
1 contains all the relative information of the share S1 to the shares S2, . . . , SD (S∗

1

is the only coordinate which includes S1 and compares it to the rest of the composition).
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If D = 3 for example, it leads to S∗
1 =

√
2
3 log S1√

S2S3
=
√

2
3 log S1 − 1√

6
(log S2 +log S3)

and S∗
2 =

√
1
2 log S2

S3
= 1√

2
(log S2 − log S3). Thus, the balance matrix V is equal to

V =




√
2/3 0

−1/
√

6 1/
√

2

−1/
√

6 −1/
√

2




For regression as well as for some other statistical analysis, the results are the same
after inverse transformation regardless of the chosen transformation. However, as ALR
is isomorphic but not isometric, and CLR introduces collinearity between coordinates,
ILR is preferred for compositional regression models.

CODA regression models

Compositional regression models are of different types depending on whether the re-
sponse variable and/or the explanatory variables are compositional. We focus here on
the case where the dependent as well as the explanatory variables are compositional
and of same dimension D (for example, market shares of D brands are explained by the
corresponding media investments)3.

CODA models can be expressed either in terms of the initial compositional obser-
vations in the simplex (equation (1.7)) or alternatively in terms of the corresponding
transformed coordinates in the Euclidean space (equation (1.8)), as explained below.

- Linear CODA model in the simplex (in terms of compositions):

St = a
K⊕

k=1

Bk ⊡ Xkt ⊕ εt, (1.7)

with S, a, Xk, ε ∈ SD and Bk ∈ RD×D such that row and column sums are equal to
zero4. The following operations are used in the simplex:

• ⊕ is the perturbation operation, corresponding to the addition operation in the real (Eu-
clidean) geometry: x ⊕ y = C(x1y1, . . . , xDyD)′ with x, y ∈ SD

• ⊙ is the power transformation, corresponding to the multiplication operation in the real
geometry: x ⊙ λ = C(xλ

1 , . . . , xλ
D)′ with λ ∈ R, x ∈ SD

• ⊡ is the compositional matrix product, corresponding to the matrix product in the real

geometry: B ⊡ x = C
(∏D

j=1 x
b1j

j , . . . ,
∏D

j=1 x
bDj

j

)′
with B ∈ RD×D, x ∈ SD

• The simplicial inner product is given by: < x, y >= 1
D

∑D
j=1

∑D
l=1 log

xj

xl
log

yj

yl

3The dependent and the explanatory compositions can be of different dimensions (Chen et al. [8]).
4Under these conditions, B ⊡ X is an endomorphism of the simplex SD (See Kynclova et al. [35]).

Thus model (1.7) is a linear model in the simplex.
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- Linear CODA model in the Euclidean space (in terms of ILR coordi-
nates):

S∗
jt = a∗

j +
K∑

k=1

D−1∑

m=1

b∗
kjmX∗

kmt + ε∗
jt ∀ j ∈ 1, . . . , D − 1, (1.8)

where, the stars denote the ILR transformed version of variables, j is the index of S’s
ILR coordinates, m is the index of X’s ILR coordinates and ε∗

j ∼ N (0, σ2
j ). Equation

(1.8) corresponds to a system of D − 1 linear models, one for each ILR coordinate of
S. Note here that compositional explanatory variables coordinates can be equivalently
calculated using X̌ (volumes) or X (shares), idem for the dependent variable.

The second presentation of the CODA model (equation (1.8)) has the advantage
to be a system of classical linear models but its connection with the original data is
obscured by the ILR transformation. On the other hand, the first presentation in terms
of the original share data (equation (1.7)) is obscured by the simplex operations involved
in the model equation. However, we show in 1.3.2 that this model can be expressed in
a so-called attraction formulation so that it is not needed to be familiar with simplex
notations detailed above to understand and use this compositional model.

Estimation by OLS

After log-ratio transformation, the estimation is usually done with the OLS method
separately on the D − 1 linear models expressed in coordinates (equation (1.8)). The
orthonormality of coordinates allows us to estimate the D − 1 models separately. Then,
the estimated model can be back transformed into the simplex using the inverse trans-
formation which transforms a∗ into a, b∗ into b, S∗ into S and X∗ into X:

a = ilr−1(a∗
1, . . . , a∗

D−1) = C(exp(Va∗))

BD,D = VB∗
D−1,D−1V′

S = ilr−1(S∗
1 , . . . , S∗

D−1) = C(exp(VS∗))

with B∗ =




b∗
1,1 . . . b∗

1,D−1

. . . b∗
j,l . . .

b∗
D−1,1 . . . b∗

D−1,D−1


, and B =




b1,1 . . . b1,D

. . . bj,l . . .
bD,1 . . . bD,D


 where b∗

j,l is the pa-

rameter corresponding to the impact of X∗
l on S∗

j , and bj,l is the parameter corresponding
to the impact of Xl on Sj .

Implementation in R: the packages compositions [67] and “robCompositions” [63]
allow to transform compositional data, to fit the compositional model by OLS on the
coordinates and to back transform the results into compositions. Implementation of
the CODA model using R is presented in the book of Van den Boogaart and Tolosana-
Delgado [68].
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1.2.6 Alternative models

In the literature, some articles mix compositional data analysis and aggregated choice
models. In Bechtel [3] and in Fry and Chong [19], the shares are specified according to
a nested multinomial logit model which does not embody the IIA property (see Section
1.3.3). They use an additive log-ratio transformation of their model (ALR) as can be
found in the compositional analysis, in order to be able to estimate the model by OLS
or GLS.

Some authors propose to transform compositional data to directional data by the
square root transformation mapping the simplex into the unit hypersphere. Wang et al.
[70] further use classical regression models for the polar coordinates, whereas Scealy and
Welsh [59] use the additive Kent regression model.
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1.3 Theoretical comparison of share models

In this section, we highlight the similarities and differences of the presented models
from a theoretical perspective. Because these models are deeply linked with the type
of applications they have been proposed for, the following comparison refers not only
to statistical properties, but also to econometric and marketing properties. Table 1.2
summarizes the distributional assumptions, the estimation methods, the properties and
the complexity of each model5. These items are discussed in detail below. Finally we
highlight the relationship between the GMCI and the CODA models, notably the fact
that GMCI can be expressed in a compositional way and that it is a particular case of
the CODA model.

1.3.1 Distributional assumptions

In the MNL model the dependent variable is a vector of positive numbers Šj which follow
a multinomial distribution. In the other three models the dependent variable is directly
the vector of shares Sj which are Dirichlet distributed in the case of DIR and Gaussian
in the simplex distributed for GMCI and CODA (the coordinates are Gaussian in the
transformed space). Note that the MNL model differs from the MNL specification of
the GMCI model by its underlying distributional assumptions.

MNL and Dirichlet models belong to the family of GLM (generalized linear models):
see Peyhardi et al. [57] for MNL and Maier [40] for DIR. GMCI and CODA models
belong to the family of transformation models (TRM hereafter) in which a classical
linear model is postulated in the transformed space.

1.3.2 Expected shares and attraction formulation

Expected value of shares

Let us notice that the model formulation of the two GLM models - MNL (1.2) and
DIR (1.6) - involves the expected shares E(Sjt|X̌t), while the two transformation models
formulation - GMCI (1.3) and CODA (1.7) - involves the random shares Sjt and a
random error term. The usual expected value cannot be analitically computed for the
GMCI and the CODA models. For this reason, we turn attention to the “expected value
in the simplex”, defined as follows (see Theorem 6.10 p.109 in Pawlowsky-Glahn et al.
[56]):

E
⊕S = C(exp(E log S)) = clr−1(Eclr(S)) = ilr−1(Eilr(S)) = ilr−1(ES∗)

This means that the expected value in the simplex of the composition of shares, E
⊕S,

coincides with the ILR back transformation of expected values of the random coordi-
nates, ES∗.

5Here the GMCI model is presented with the MCI specification. Note that if X̌ is replaced by exp X̌,
it corresponds to the MNL specification.
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Remark: If the explanatory variables only consist of intercepts, what we call “con-
stant model” in Chapter 3, the fitted shares are not the same across the four models.
In the case of the CODA and the GMCI models, they correspond to the center of the
compositional data (the closed vector of geometric means of each component), while in
the case of the MNL and the DIR models, fitted shares are linked to the arithmetic
means of components (weighted in the case of MNL). The geometric mean, which is
coherent with the simplex geometry, can be more adapted than the arithmetic mean
to summarize shares data, as illustrated in Figure 1.1. This is an argument in favor of
CODA and GMCI models.

Figure 1.1: Arithmetic and geometric means of a compositional data set in a ternary
diagram

Attraction formulation of share models

As seen before, the attraction formulations in MNL and GMCI are different (in GMCI
it includes a random error term). In order to unify the presentation, we introduce
a deterministic attraction Ajt and a random attraction ujt such that Ajt = Ajtujt.
According to equations (1.2), (1.4), (1.5), the deterministic attraction formulations of
MNL and of the two GMCI models (GMNL for the MNL specification and GMCI for the
MCI specification) are

AMNL
jt = exp(aj +

K∑

k=1

bkX̌kjt) with aD = 0 ⇔ ESjt =
AMNL

jt∑D
m=1 AMNL

mt

AGMNL
jt = exp(aj +

K∑

k=1

bkX̌kjt) ⇔ E
⊕Sjt =

AGMNL
jt∑D

m=1 AGMNL
mt

AGMCI
jt = exp(aj)

K∏

k=1

X̌bk
kjt ⇔ E

⊕Sjt =
AGMCI

jt∑D
m=1 AGMCI

mt
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This emphasizes the fact that the type of expected shares involved in the attraction
formulation are different between MNL and the MNL specification of GMCI.

The Dirichlet model can also be expressed with an attraction formulation:

ADIR
jt = exp(aj +

K∑

k=1

bkjX̌kjt) = αjt ⇔ ESjt =
ADIR

jt∑D
m=1 ADIR

mt

This highlights the fact that the parameters of the DIR model are alternative-specific
(they depend on j), contrary to the GMCI and MNL models.

We now derive the attraction form of the CODA model, using equation (1.7). We
first express the market share of brand j in the CODA model as

St = at

K⊕

k=1

Bk ⊡ Xkt ⊕ εt = C
(

a1

K∏

k=1

D∏

l=1

X̌bk1l
klt ε1t, . . . , aD

K∏

k=1

D∏

l=1

X̌bkDl
klt εDt

)

Note that the market share Sjt is expressed as a function of volumes X̌klt directly and
not as a function of shares Xklt: it turns out that it is exactly equivalent because Sjt is
obtained by a closure operation.

Let us now define the deterministic attraction of the CODA model:

ACODA
jt = aj

K∏

k=1

D∏

l=1

X̌
bkjl

klt = exp(log(aj))
K∏

k=1

D∏

l=1

X̌
bkjl

klt (1.9)

Then, we have:

E
⊕Sjt =

ACODA
jt∑D

m=1 ACODA
mt

The attraction formulation of the CODA model is very close to the MCI attraction, but
it includes cross effects between components: in the CODA model, the attraction of the
component j does not depend only on explanatory variables relative to the component
j but also on explanatory variables of other components l 6= j. See Section 1.3.5 for a
deeper comparison of the GMCI and the CODA models.

1.3.3 Properties

We now discuss whether the properties that have been introduced and established in the
literature for a given model are valid for the other ones.

IIA and subcompositional coherence

In the econometric literature, an important question often discussed is whether or not a
choice model satisfies the IIA (independence from irrelevant alternatives) property. IIA
means that the ratio of shares of an alternative j with respect to an alternative l only
depends on the characteristics of j and l and is not affected by the presence or absence of
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irrelevant alternatives. This property allows to simplify the models but it is not always
realistic (see the famous red bus - blue bus example of McFadden [43]). MNL, GMCI
and DIR models satisfy IIA but the CODA model does not because of the cross effects
between brands.

In the CODA literature, the subcompositional coherence property (see Pawlowsky-
Glahn [56]) means that the results of an analysis made on a subcomposition (i.e. remove
some alternatives) should not contradict the results of the analysis made on the whole
composition. This is coming from the fact that compositional data analysis is based
on the use of log ratios. However, if we look at equation (1.9), we can see that the
market share of brand j is determined by the explanatory variables of all the brands.
Thus, subcompositional coherence does not imply IIA, but the reciprocal is true. In the
econometrics literature, it is considered that IIA can be a severe limitation, which is a
positive point for CODA models.

Invariance

The scale invariance is the fact that multiplying the count data by a constant does
not affect the estimation results. It is a desirable property satisfied by the four models.

The permutation invariance is a desirable property corresponding to invariance through
a permutation of the components of a composition. It is clearly satisfied by all the de-
scribed models.

The perturbation invariance corresponds to coherence when performing a change
of units possibly different for each component of a composition. For example, we can
model brands’ market shares in terms of sales volumes or in terms of sales values (that
is sales volumes perturbed by the vector of prices). The estimated market shares and
parameters from the “volume” model should be equal to those of the “value” model after
perturbation by the vector of prices. This property is satisfied by CODA and GMCI
models. We can show empirically that it is not satisfied by MNL and DIR.

1.3.4 Model complexity

In MNL, GMCI and DIR models, the deterministic attraction Ajt is a function of the
explanatory variables characterizing the alternative j only, leading to the absence of cross
effects. However in the DIR model, parameters are alternative-specific, which increases
the complexity of the model. In the CODA model, the attraction may depend on all
alternative characteristics, inducing alternative-specific and cross effect parameters. This
is why CODA is the most complex model with the higher number of parameters.

It is not possible to estimate all cross effects in the MNL model (see So and Kuhfeld
[61]). Cross effects can be incorporated in the GMCI model (in a so-called fully extended
MCI model, see Cooper and Nakanishi [10], p.61) and in the Dirichlet models but the
number of parameters to be estimated dramatically increases. CODA is relatively par-
simonious in the sense that it allows to incorporate all cross effects with a number of
parameters relatively lower than the other models (proportional to (D − 1)2 versus D2

for others), thanks to the dimension reduction of the ILR transformation.
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It is interesting to see that using the same dependent and explanatory variables,
the complexity is totally different from one model to another. For example (as in our
application, see Section 1.4), if the number of components of the dependent variable is
D = 3, explained by KX = 7 compositions of size D = 3 and KZ = 1 time-dependent
variable, the number of estimated parameters are the following: 11 for MNL, 13 for
GMCI, 27 for DIR and 32 for CODA. With 32 parameters, the CODA model reflects
all the cross effects between shares whereas the DIR and the GMCI models with cross
effects would require 69 parameters (D(1+D×KX +KZ)). Note also that the number of
parameters increases dramatically with the number of components (brands), especially
in the CODA model. For example if D becomes equal to 5 (with KX and KZ fixed), the
number of parameters become 15, 17, 45, and 120, which can be a serious limitation for
the CODA model.

1.3.5 Relationship between GMCI and CODA models

Compositional form of the GMCI model

Even though the GMCI estimation procedure uses a log-ratio transformation as the
CODA model, the two models are different and we are now going to express the GMCI
model in a compositional form, which will reveal this difference.

Wang et al. [70] propose in 2013 a compositional regression model for the case where
both dependent and explanatory variables are compositional, but their model is simpler
than the CODA model presented in paragraph 1.2.5: this model does not include cross
effects between components contrary to the CODA model.

Actually Wang et al.’s model is exactly similar to the MCI model proposed by Cooper
and Nakanishi in 1988 [10] (p.6), except that they use ILR coordinates for the estimation
while CLR coordinates are used in the MCI model. From this correspondence we derive
a compositional form for the GMCI model:

St = a
K⊕

k=1

bk ⊙ Xkt ⊕ εt (1.10)

⇔ Sjt =
aj
∏K

k=1 X̌bk
kjtεjt

∑D
l=1 al

∏K
k=1 X̌bk

kltεlt

=
exp(log aj +

∑K
k=1 bk log X̌kjt + log εjt)∑D

l=1 exp(log al +
∑K

k=1 bk log X̌klt + log εlt)

Note that the previous equation is derived for the MCI specification, but the expression
can be recovered for the MNL specification if X̌ = exp x̌.

Equation (1.10) highlights the similarities and differences between GMCI and CODA
models: in place of the Bk matrix in equation (1.7) of the CODA model, we have a single
bk parameter for all components of the explanatory composition in the GMCI model.

GMCI model: a particular case of the CODA model

One can show that the MCI model, when estimated using the ILR transformation, is a
particular case of the CODA model where the dimension of the dependent variable and

41



those of compositional explanatory variables are equal (DS = DX), and where B∗ is a
diagonal matrix with b∗ = b on the diagonal and 0 otherwise, that is where only the jth

ILR coordinates of compositional explanatory variables are relevant to explain the jth

ILR coordinates of the dependent variable (see the appendix A.1.1 for a proof in the
case of D = 3).

However, the so-called differential MCI (DMCI) model in marketing (see Cooper and
Nakanishi [10], p.58), where brand specific parameters without cross effect are specified,
is not a particular case of the CODA model and we can prove that it is not scale invariant
(see the appendix A.1.2). This means that fitting the DMCI model using explanatory
variables in euro or in thousands euros does not give the same estimated market shares,
which is not acceptable. Then, the DMCI model is not consistent with the simplicial
geometry and we strongly recommend not to use it.

Concerning the fully extended MCI model (FEMCI) which is a MCI model with
cross effects between brands (see Cooper and Nakanishi [10], p.61), it is interesting to
highlight the fact that it is similar to the CODA model in the sense that the determin-
istic attraction of the two models is the same (equation (1.9)). However, the estimating
method is different: they suggest to estimate the FEMCI model by OLS on the CLR co-
ordinates using dummy variables (see equations (5.27) and (5.28) in [10], p.144) implying
constant variance of error terms across the CLR coordinates, whereas the CODA model
is usually estimated by OLS, separately on the different ILR coordinates, allowing non
constant variance across the ILR coordinates. Note that the issue raised in Section 1.2.3
concerning the independence of error terms when CLR coordinates are used still holds
here. Moreover, Cooper and Nakanishi pointed out the fact that their method can only
lead to the estimation of centered coefficients, b∗

kjl = bkjl − b̄k.l, but they argued that the
b∗

kjl are sufficient for interpreting the model. In the CODA model, the estimation allows
to obtain the estimated coefficients directly. Thus, we strongly support the use of the
CODA model when cross effects are considered.
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Table 1.2: Benchmark of models for explaining shares

Name Expected shares Distribution Estimation Properties∗∗ Nb
param.

MNL
GLM∗

type ESjt =
exp(aj+

∑
KX

k=1
bkX̌kjt+

∑
KZ

κ=1
bκjZκt)∑

D

l=1
exp(al+

∑
KX

k=1
bkX̌klt+

∑
KZ

κ=1
bκlZκt)

with a1 = 0 for identifiability reasons.

(Š1t, . . . ŠDt) ∼
MN (Št, s1t, . . . , sDt)

Indep. distributed across t

Maximum
Likeli-
hood

Permutation in-
variance,
Scale invariance,
Perturbation in-
variance,
IIA, Subcompo.
coherence

(D − 1)

×(1 + KZ)

+KX

GMCI
(MCI
spec.)
TRM∗

type

Share:

E
⊕Sjt =

aj

∏
KX

k=1
X̌

bkl
kjt

∏
KZ

κ=1
b

Zκt
κj∑

D

m=1
am

∏
KX

k=1
X̌

bk
kmt

∏
KZ

κ=1
b

Zκt
κm

Equivalently in terms of CLR coordinate:

E log
(

Sjt/S̃t

)
= Eclr(Sjt) =

a1 +
∑D

j′=2 a′
j′dj′ +

∑KX

k=1 bk log
(

X̌kjt/
˜̌Xkt

)

+
∑KZ

κ=1

(
bκ1Zκt +

∑D
j′=2 b′

κj′Zκtd
′
j

)

clr(St) ∼ ND(µt, Σ)

with ND the multivariate normal
distribution (degenerate here).
Indep. distributed across t

OLS on
coordi-
nates

Permutation in-
variance,
Scale invariance,
Perturbation in-
variance,
IIA, Subcompo.
coherence

D×

(1 + KZ)

+KX

DIR
GLM
type

With the common parametrization:

ESjt =
exp(aj+

∑
KX

k=1
bkjX̌kjt+

∑
KZ

κ=1
bκjZκt)∑

D

l=1
exp(al+

∑
KX

k=1
bkjX̌klt+

∑
KZ

κ=1
bκlZκt)

log αjt = aj +
∑KX

k=1 bkjX̌kjt +
∑KZ

κ=1 bκjZκt

(S1t, . . . SDt) ∼ D(α1t, . . . , αDt)

Indep. distributed across t

Maximum
likelihood

Permutation in-
variance,
Scale invariance,
Perturbation in-
variance,
IIA, Subcompo.
coherence

D×

(1 + KX

+KZ)

CODA
TRM
type

Composition in the simplex:

E
⊕St = a

⊕KX

k=1 Bk ⊡ Xkt

⊕KZ

κ=1 Zκt ⊙ bκ

Equivalently in terms of share in the simplex:

E
⊕Sjt =

aj

∏
D

l=1

∏
KX

k=1
X̌

bkjl

klt

∏
KZ

κ=1
b

Zκt
κj∑

D

m=1
am

∏
D

l=1

∏
KX

k=1
X̌

bkml
klt

∏
KZ

κ=1
b

Zκt
κm

Equivalently in terms of ILR coordinates:

ES∗
jt = aj +

∑KX

k=1

∑D−1
m=1 b∗

kjmX∗
kmt +

∑KZ

κ=1 b∗
κ,jZκt

St ∼ NSD (µt, Σ)

with NS the normal distribution
on the simplex, µ a mean vector,
Σ a diagonal variance matrix.

S∗ = ilr(St) ∼ ND−1(µt, Σ)

OLS on
coordi-
nates

Permutation in-
variance,
Scale invariance,
Perturbation in-
variance,
IIA, Subcompo.
coherence

(D − 1)×
((D −

1)KX

+KZ + 1)

∗GLM: generalized linear model; TRM: transformation model. ∗∗ Properties is black are satisfied and properties in grey are not.
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1.4 Empirical comparison of share models

In this section, we use the MNL, GMCI, DIR and CODA models for a concrete case
study and we demonstrate that DIR and CODA models can outperform usual market
share models. After presenting the application and the data of our illustrative example, a
cross-validation process is proposed based on quality measures adapted for shares models
for the four types of models. Finally, we compare the interpretation of the parameters
of the four models in terms of elasticities.

1.4.1 Application and data

The main objective of this application is to understand the impact of media investments
on brands’ market shares controlling for other factors like price and scrapping incentive.
In each model specification, the interest is on the marginal impact of each media channel
on relative sales, that is on the elasticities of market shares relative to media investments
by channel.

The French automobile market is segmented in five segments, from A to E, according
to the size of the chassis. We focus here on the B segment, which represents half of the
sales in France in terms of volume. The B segment corresponds to small mainstream
vehicles, like the Renault Clio which is the most famous vehicle of this segment in France.
More precisely, following the subcompositional coherence property of the compositional
data analysis, we focus on three particular brands of this segment: Renault, Nissan and
Dacia (D = 3).

The studied period, running from June 2005 to August 2015, is characterized by the
birth of Dacia on the French automobile market, a low-cost brand belonging to Renault,
at the beginning of 2005. It is also characterized by the economic crisis which has hurt
the French automobile market a lot from 2008 to 2012. The French government tried to
help this market setting up a scrapping incentive from December 2008 to December 2010,
to promote the replacement of old vehicles with new environmentally-friendly vehicles,
which has artificially boosted the sales during 2009 and 2010. Note that Dacia increased
a lot its market share during the crisis thanks to its low price. These facts have to be
kept in mind in order to understand the evolution of market shares, and it justifies the
use of a scrapping incentive dummy as control variable.

The ternary diagram allows to represent compositions of 3 components in the simplex
(see Van den Boogaart and Tolosana-Delgado [68]). Figure 1.2 represents for example
the annual market shares of Dacia, Nissan and Renault from 2005 to 2014. We can see
easily that Dacia increases its market share easily at the expense of Renault from 2005
to 2010.

The four models are applied to an automobile market data set containing for each
brand of the B segment the sales volume in units Šjt, the catalog price in euro Pjt, the
media investments by channel in euro at time t − 4, Mcj,t−4 (television, press, radio,
outdoor, digital, cinema), and the periods of scrapping incentive SIt (dummy variable),
monthly from June 2005 to August 2015 (T = 123 periods of observation). According
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Figure 1.2: Ternary diagram of annual market shares of Dacia, Nissan and Renault

to the marketing literature, it is preferable to use the logarithm of price instead of the
raw price. The reason of that is linked to the shape of the elasticity of market shares
to the price. Moreover, to keep the market shares equal, the logged variables have to
increase in the same proportion while the non-logged variables have to increase by the
same amount. Indeed, for our application, using the log of price instead of the price gives
best in-sample fits for the four models. The media investments have to be considered
with a lag with respect to sales. Statistically in this application, a lag of four months
gave the best results on the four models. To avoid the problem of zeros due to the use
of logarithm, when media investments are equal to zero, we replace them by one euro,
which is a very small amount compared to the non-zero investments (see A.1.3 in the
appendix). Table 1.3 summarizes the four models.

1.4.2 A cross-validation comparison

The repeated random sub-sampling cross-validation process described below is used to
compute out-of-sample prediction accuracy measures on the four considered models, in
order to avoid an over-fitting effect and to compare the considered models which do not
have the same number of parameters.

1. Randomly draw a sub-sample of 100 observations among 123, resulting in 81% (100) in-
sample observations and 19% (23) out-of-sample observations

2. Fit the 4 models to the sub-sample, store the fitted parameters

3. Apply the 4 models to the out-of-sample observations, store the fitted values of the shares

4. Compute the quality measures using the out-of-sample predicted share values

5. Iterate 100 times steps 1 to 4

6. Compute the average quality measures using the out-of-sample predicted share values over
the 100 iterations
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Table 1.3: MNL, GMCI, DIR and CODA fitted models

Name Model
MNL Estimation by ML using the Šjt

E(Sjt|Mt−4, Pt, SIt) =
exp(aj +

∑C
c=1 bcMcj,t−4 + bP log Pjt + bSIjSIt)∑D

l=1 exp(al +
∑C

c=1 bcMcl,t−4 + bP log Plt + bSIlSIt)

with a1 = bSI1 = 0 for identifiability reasons
GMCI Estimation by OLS on the CLR coordinates

Sjt =
exp(aj +

∑C
c=1 bcMcj,t−4 + bP log Pjt + bSIjSIt + εjt)∑D

l=1 exp(al +
∑C

c=1 bcMcl,t−4 + bP log Plt + bSIlSIt + εlt)

CLR coordinates:

log
(

Sjt

S̃t

)
= a1 +

∑D
j′=2 a′

j′dj′ +
∑C

c=1 bc(Mcj,t−4 − Mc,t−4)

+bP log
(

Pjt

P̃t

)
+ bSI1SIt +

∑D
l=2 b′

IlSItdl + (εjt − εt)

DIR Estimation by ML using the Sjt (common parametrization)

E(Sjt|Mt−4, Pt, SIt) =
exp(aj +

∑C
c=1 bcjMcj,t−4 + bP j log Pjt + bSIjSIt)∑D

l=1 exp(al +
∑C

c=1 bclMcl,t−4 + bP l log Plt + bSIlSIt)

log αjt = aj +
∑C

c=1 bcjMcj,t−4 + bP j log Pjt + bSIjSIt

CODA Estimation by OLS on the (D − 1) ILR coordinates separately

St = a
⊕C

c=1 Bc ⊡ Mct−4 ⊕ bP ⊡ log Pt ⊕ bSI ⊙ SIt ⊕ εt

⇔ Sjt =
aj

∏D
l=1

∏C
c=1 M

bcjl

cl,t−4 log P
bP jl

lt bSIt

SIjεjt
∑D

m=1 am

∏D
l=1

∏C
c=1 M bcml

cl,t−4 log P bP ml

lt bSIt

SImεmt

ILR coordinates:

S∗
j′t = a∗

j′ +
∑C

c=1

∑D−1
l′=1 b∗

cj′l′M∗
cl′,t−4 +

∑D−1
l′=1 b∗

P j′l′(log P )∗
l′t

+b∗
SIj′SIt + ε∗

j′t ∀j′ = 1, . . . , D − 1

Note that here we want to have an efficient model throughout the studied period, the aim
is not to have a good predictive model for the future. Moreover the presented models are
not taking into account the time dimension. That explains why we choose an iterative
random draw of observations, instead of dividing the sample into a learning sample and
a validation sample according to time.
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1.4.3 Out-of-sample accuracy

The out-of-sample accuracy of the four models is compared according to different indi-
cators adapted to share data that we found in the literature. The considered quality
indicators are the following:

• R2
T : the R-squared based on the total variability, widely used in the compositional

literature (positive but can be larger that 1; should be larger as possible),

• R2
A: the R-squared based on Aitchison distance, used in Hijazi [28] and Monti et

al. [44] (it can be smaller than 0 and larger than 1; should be larger as possible),

• KLC : the compositional Kullback-Leibler divergence defined by Martin-Fernandez
et al. [42] (positive; should be lower as possible)

For more information about these quality measures, see the appendix A.1.4.
Table 1.4 presents the averages, over the 100 cross validation trials, of the out-of-

sample quality measures for the MNL, GMCI, DIR and CODA models. The best result
for each measure is in bold.

Table 1.4: Average out-of-sample quality measures

MNL GMCI DIR CODA

R2
T 0.425 (0.164) 0.462 (0.179) 0.622 (0.224) 0.647 (0.227)

R2
A 0.196 (0.270) 0.155 (0.325) 0.373 (0.235) 0.084 (0.433)

KLC 0.139 (0.034) 0.137 (0.032) 0.117 (0.071) 0.134 (0.034)

Figures in parentheses indicate the standard deviations.

The out-of-sample average quality measures suggest that DIR is the most adapted
model to fit our data (27 parameters). However, according to the R2 based on total
variability (R2

T ), CODA (32 parameters) is better than the Dirichlet model. The GMCI
model and the MNL model without cross effects are almost systematically the worst
models, certainly due to their simplicity and low number of parameters.

1.4.4 Interpretation of parameters

MNL and GMCI models are usually interpreted in terms of direct and cross elasticities
(see Cooper and Nakanishi [10], p.34). In Section 2.3.2 in Chapter 2, we adapt this
notion to compositional models using the attraction formulations presented in Section
1.3.2. The (direct) elasticity of the share Sjt relative to the media M̌kj,t−4 is equal to

(1 − Sjt)bkM̌kj,t−4 in the MNL model, DIR model and MNL specification of the GMCI
models, whereas it is equal to (1 − Sjt)bk in the MCI specification for the GMCI, and to
bkjj −∑D

m=1 Smtbkmj for the CODA model.
For example, the direct elasticities of market shares of the three considered brands are
computed for the television. As elasticities are time dependent, they are computed for
the 123 observed periods, and the average is presented in Table 1.5. These elasticities
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Table 1.5: Average direct elasticities for TV investments

MNL GMCI DIR CODA

DACIA 0.0019 0.0028 -0.0068 -0.0046
NISSAN 0.0101 0.0152 0.0389 -0.0022

RENAULT 0.0058 0.0088 0.0145 -0.0038

can be interpreted as the average relative impact on the brand j market share, Sj , of a
1% increase of the brand j advertising investments in television.

We observe that elasticities are not the same across models, and can even be of
opposite sign. For example, the DIR model concludes that, on average over the period
2005-2015, if Nissan increases its TV investment by 1% in t−4, it will increase its market
share by 0.04% in t, whereas in CODA, it will have a small negative impact. The CODA
model, which includes all cross effects, suggests that the impacts of TV investments of
Dacia, Nissan and Renault tend to “cancel each other”, in the sense that all impacts are
very close to zero. However, all models except CODA agree on the fact that Nissan has
the highest TV’s elasticities (in bold in the table).
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1.5 Conclusion

Because of the constraints of shares data, classical regression models cannot be used
directly to model market shares. Market share models have been developed in the
marketing literature, but other models can be adapted to this type of applications.

In this chapter, we present four types of models adapted to model market shares, or
share data in general: the multinomial logit model (MNL), the generalized multiplica-
tive competitive interaction model (GMCI), the Dirichlet model (DIR) and the linear
compositional model (CODA). We express all of them in attraction form to ease their
comparison. We highlight the similarities and the differences of these models from a
theoretical point of view. MNL and DIR are generalized linear models estimated by
maximum likelihood and centered on the arithmetic mean shares, whereas GMCI and
CODA are transformation models estimated by OLS, centered on the geometric mean
shares. We prove that GMCI can be written as a particular compositional model, and
that it can be considered as a particular case of the CODA model. The CODA model
comes out to be similar to the fully extended attraction model used in marketing, but
with several advantages: for example, it manages to capture all cross effects with a rel-
ative parsimony, thanks to the isometric log-ratio (ILR) transformation involved in the
estimation. All these models can be implemented using R, and can be interpreted in
terms of elasticities.

We use these models to understand the impact of media investments by channel on
brands’ market shares in the automobile market, controlling for price and scrapping in-
centive. We base our model choice on cross-validation using quality measures adapted
for shares data. In our application, DIR and CODA models, which are not usually used
in this context, outperform the usual market share models, thanks to their higher flex-
ibility. Indeed, MNL and GMCI models are very parsimonious models and they fail to
capture the variability of the considered data.

In the following chapters, we are going to focus on the interpretability of the CODA
model, especially on the direct and cross effects, and on the relationship between the
CODA and the MCI model. As the latter is a particular case of the former, we can
imagine that an intermediate specification is possible (see Chapter 2). Concerning our
application, it would be more useful in a practical sense to consider an example such that
the market shares are the real market shares in the B segment, not the market shares
inside a subcomposition of the B segment. Moreover, it would be valuable to consider
the carryover effect of advertising, using several lags of media investments or creating
a cumulative variable of media investments, such as the so-called adstock variables (see
Chapter 3).
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Chapter 2

Interpretation of market share
models

The second chapter of this thesis aims to improve the interpretability of CODA models.
In order to do that, we adapt the types of interpretation measures which are used in
marketing: the marginal effects, the elasticities and the odds ratios. We also explain
how the MCI model can be estimated in a proper manner using the ILR transformation,
and how we can combine the CODA and the MCI in order to get an intermediate spec-
ification, more parsimonious than the CODA model, what we call the MCODA model.
We develop an adapted Fisher test allowing to test whether the unconstrained model
(CODA) is better than the constrained models (MCI and MCODA).

This chapter is linked to two working papers which have already been published
(see Morais, Thomas-Agnan and Simioni [48] and [47]). A final version of [47] is under
submission to the Austrian Journal of Statistics (first version sent on the 19th of July
2017).
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2.1 Introduction

In the existing literature, we find different types of models to explain shares data, also
called compositional data (see Chapter 1 for a comparison). On the one hand, the
compositional models, what we call CODA models, come out to be very flexible as they
introduce component-specific and cross-effect parameters, resulting in a high complexity.
However, their interpretation is not straightforward and little research has been carried
out investigating this issue in the dedicated compositional data analysis literature. They
are usually interpreted in terms of marginal effects on the transformed shares, which is
complicated to use in practice. On the other hand in the marketing literature, market
share models, among which the most commonly used is the MCI model1, are usually
interpreted in terms of elasticities. But these models are very simple and the estimation
process is questionable.

In this chapter, we combine the best part of each type of models, in order to improve
the interpretability of CODA models and the estimation procedure of MCI models. As
we prove in Chapter 1 that the MCI model is a particular case of the CODA model, we
develop here an intermediate specification, the MCODA model, allowing to have a simple
specification for some explanatory variables and a complex specification for others. A
model selection procedure is proposed using an adapted Fisher test, considering that the
CODA model is the unconstrained model to be compared to the constrained models, the
MCI model or the MCODA model.

We propose several types of interpretations directly linked to the shares, in terms of
marginal effects, elasticities and odds ratios. We show that marginal effects on shares
may not be well adapted to interpret these models because they depend a lot on the
considered observation. Elasticities are useful to isolate the impact of an explanatory
variable on a particular share as they correspond to the relative variation of a component
with respect to the relative variation of an explanatory variable, ceteris paribus (in
a simplex sense). We show that they can be computed from the transformed model
or equivalently from the model in the simplex, and that they are consistent with the
simplicial derivatives. Other types of elasticities and odds ratios can be computed for
ratios of shares, having the advantage to be observation independent, but they can be
complicated to interpret in practice.

The MCI model, the CODA model and the MCODA model are applied to the B
segment of the French automobile market from 2003 to 2015. The aim is to explain the
brands’ market shares of the three leaders: Citroën, Peugeot and Renault, against the
group of other brands, using the brands’ media investments (all channels taken together),
the price and the scrapping incentive. The models are interpreted using marginal effects,
elasticities and odds ratios, and they are compared using the Fisher test and in terms
of out-of-sample quality measures.

1Note that in this chapter we are going to focus on the MCI model which is one of the specifications
of the GMCI models presented in Chapter 1 because it is directly a particular case of the CODA model.
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This chapter is organized as follows. The second section presents the two types of
models (CODA and MCI), their intermediate specification (MCODA), along with the
adapted Fisher test for model selection. The third section explains the different ways to
interpret them. The fourth section presents the results of the estimation of the models
for the application along with interpretations, Fisher tests and quality measures. Finally,
the last section concludes on the findings and on further directions to be investigated.
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2.2 Compositional regression models

2.2.1 Two types of compositional models

We prove in Chapter 1 that the MCI model can be written in a compositional way. From
now on, we will use the denomination compositional models for the CODA model and the
MCI model. They are adapted to model a compositional dependent variable using com-
positional explanatory variables denoted X (and potentially classical variables denoted
Z) as explanatory variables. The difference between the two models is about the speci-
fication of the relationship between compositional explanatory and dependent variables:
in contrast with the CODA model, the MCI model does not allow for component-specific
and cross effect parameters associated to a compositional explanatory variable. There
is no difference between MCI and CODA with regard to classical variables: component-
specific parameters are specified in both cases.

Table 2.1 reminds the characteristics of the MCI and CODA models. For simplicity,
models are presented with a single explanatory random compositional X and a single
explanatory real random variable Z, but of course several ones can be used like in the
examples presented in Section 2.4.

The MCI model (without component-specific and cross-effect parameters)

The classical MCI model, as presented in the marketing literature, suffers from an esti-
mation procedure which is questionable. Indeed, as highlighted in Chapter 1, this model
is usually estimated by OLS after a CLR transformation, which prevents the error terms
to be independently distributed or orthonormal, as required by the OLS estimation. In
2013, Wang et al. [70] present a model which we have demonstrated to be similar to
the MCI model in the sense that they have the same attraction formulation (see Section
1.3.5), but they use an ILR transformation for the estimation, which is a proper way to
estimate it. Therefore, in this chapter, contrary to Chapter 1, we use the ILR transfor-
mation for the MCI model, as well as for the CODA model.

In the MCI model, a compositional explanatory variable is associated to a unique
parameter b ∈ R (see Table 2.1, equation (2.1)). Thus, cross-effects2 are not modeled
directly, but indirectly through the shares closure. Indeed, we show in Chapter 1 that
the MCI model in equation (2.1) can be written in attraction form like in equation
(2.3). This equation contains a closure, and we can see that a change of Xl will have
an indirect impact on Sj through the denominator. We remind here that equation (2.3)
can be expressed either in terms of shares Xj or in terms of volumes X̌j thanks to the
scale invariance property, as constants cancel out.

If a classical explanatory variable Z is used in the MCI model, it is associated to a
composition of parameters c. It can be surprising to see that in the attraction form of
the MCI model, the variable Z is powering the intercept cj , but this corresponds to the
term Zt ⊙ c. The intercept of the MCI model is also a composition, a.

2We denote by cross-effect the effect of a variation of Xl on Sj , where l 6= j.
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The ILR transformation of the MCI model is presented in equation (2.5). Assuming
that the transformed error terms are normal (implying that the non-transformed com-
positional error terms are “normal in the simplex”), we can use OLS to estimate the
model.

An important feature of the MCI model is that compositional explanatory variables
X have to be of the same dimension that the compositional dependent variable S, such
that S, X ∈ SD. This model is adapted when compositions X and S refer to variables
associated to the same components in the same order, for example S can be the com-
position of brands’ market shares and X the composition of brand media investments
(where brands are in the same order in S and X) (see Section 2.4), or S can be the
composition of GDP from three sectors and X the composition of labor force of these
three sectors. Otherwise, this model makes no sense. Then, equation (2.5) is estimated
using (D − 1) × T observations (the number of ILR coordinates D − 1 times the number
of observations T ).

The CODA model (with component-specific and cross-effect parameters)

The CODA model where dependent and explanatory variables are compositional is used
by Van Den Boogaart and Tolosana-Delgado [68] in a toy example, and by Chen et al.
[8] in an article, but to our knowledge it has not been applied elsewhere. Using exactly
the same dependent and explanatory variables as the MCI model (see equation (2.2)),
it allows each component Xl of X to have a specific impact on each component Sj of
S. This is particularly visible in the attraction form of the CODA model (equation
(2.4)): instead of having a unique parameter b ∈ R associated to X, we have a matrix
of parameters B ∈ RDS ,DX

. If the dimensions of the dependent composition S and of
the explanatory composition X are equal (DS = DX) and if they refer to the same
components in the same order, then B is a square matrix with direct effects on the
diagonal and cross-effects outside of the diagonal. There is no difference between the
MCI model and the CODA model for the specification of the intercept and classical
explanatory variables. The same remark as for the MCI model can be done concerning
the attraction form of the CODA model: equation (2.4) can be expressed either in terms
of shares Xj or in terms of volumes X̌j thanks to the closure operation.

As in the MCI model, in order to estimate the CODA model, we transform it using
the ILR transformation (see equation (2.6)). But here, DS − 1 equations are estimated
separately (one for each coordinate of S) with T observations each. The complexity of
the CODA model is reflected by a large number of parameters. This can be an issue if
the number of observations T is too small.

Note that in the CODA model, X ∈ SDX and S ∈ SDS may have different dimen-
sions. For example, S can be the composition of GDP from three sectors and X the
composition of labor force for six occupation categories. In our application, DS = DX :
S is the composition of brands’ market shares and X is the composition of brand media
investments (see Section 2.4).
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Table 2.1: Two kinds of models for compositional dependent and explanatory variables

MCI CODA

In compositions
St = a ⊕ b ⊙ Xt ⊕ Zt ⊙ c ⊕ ǫ (2.1) St = a ⊕ B ⊡ Xt ⊕ Zt ⊙ c ⊕ ǫ (2.2)

In attraction form
Sjt =

ajXb
jtc

Zt

j ǫjt
∑D

m=1 amXb
mtc

Zt
m ǫmt

(2.3) Sjt =
aj

∏D
l=1 X

bjl

lt cZt

j ǫjt
∑D

m=1 am

∏D
l=1 Xbml

lt cZt
m ǫmt

(2.4)

In coordinates S∗
t = a∗ + X∗

t b + c∗Zt + ǫ∗
t (2.5)

with ǫ∗
jt ∼ N (0, σ2) ∀j, ∀t

S∗
t = a∗ + X∗

t B∗
k + c∗Zt + ǫ∗

t (2.6)

with ǫ∗
jt ∼ N (0, σ2

j ) ∀t
Component-specific
parameters for X

No Yes

Cross-effects for X No Yes
Dimension D for S and X DS for S ; DX for X
Nb. parameters (D − 1)(1 + KZ) + KX (DS − 1)(1 + KZ +

∑KX

k=1(Dk − 1))
Xt: compositional explanatory variable; Zt: classical explanatory variable.

DS : number of components of S; DX or Dk: number of components of Xk.

S, a, b, X, ǫ ∈ SD; b, X ∈ R; B ∈ R
DS×DX ; S∗, a∗, b∗, B∗, X∗, ǫ∗: ILR coordinates.

ǫ: normal in the simplex distributed error terms ; ǫ∗: normal distributed error terms.

KX and KZ : number of compositional and classical explanatory variables (KX = KZ = 1 in the table).

E
⊕: expected value in the simplex.

2.2.2 Intermediate specification (MCODA model) and model selection

We prove in Chapter 1 that the MCI model is a particular case of the CODA model.
Then, in a given model it is possible to mix the two specifications, if and only if DS = DX

for the explanatory variable with the MCI specification. This model, what we call
MCODA model, is defined as follows in the simplex:

St = a ⊕ β ⊙ Xt ⊕ B ⊡ χt ⊕ Zt ⊙ c ⊕ ǫ, (2.7)

where X are the compositional explanatory variables with a MCI specification and χ

are those with a CODA specification.

The MCODA model can be estimated by OLS using its expression in ILR coordinates:

S∗
jt =

D−1∑

d=1

1d=ja∗
d + βX∗

jt +
D−1∑

l=1

D−1∑

d=1

1d=jb∗
dl

χ∗
lt +

D−1∑

d=1

1d=jc∗
dZt + ǫ∗

jt (2.8)

with 1d=j = 1 if d = j and 0 otherwise, and ǫ∗
jt ∼ N (0, σ2) ∀j = 1, . . . , D − 1, ∀t =

1, . . . , T . However, the induced constant variance of transformed error terms across
coordinates, as in the MCI model, is questionable.

Note that the CODA model can also be estimated using dummy variables as in equa-
tion (2.8) leading to the same estimated coefficients but not to the same standard errors
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than in equation (2.6) because of the assumption on error terms.

As the MCI model and the MCODA model are constrained versions of the CODA
model, a model selection can be done using a Fisher test. We consider to test the
following null hypothesis : H0 : b∗

j,j = b∗, ∀j and b∗
j,l = 0, ∀j 6= l. The associated test

statistic is:

F =
SSE0 − SSE1

SSE1
× N − K

p
∼ F(p, N − K) under H0

=
SSE0 − SSE1

SSE1
× (D − 1)[T − K(D − 1) − KZ − 1]

p

with SSE0 and SSE1 the sum of squared errors of the constrained and unconstrained
models, T the number of observations, K the number of compositional explanatory vari-
ables, KZ the number of classical explanatory variables, and p the number of constraints.
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2.3 Interpretation of compositional models

As the estimation of compositional models is performed in the coordinate space, the
interpretation of the fitted parameters is difficult because parameters are linked to the
log-ratio transformation of shares, not directly to the shares. It is possible to derive
the coefficients in the simplex associated to shares using the inverse transformation, but
their interpretation is not straightforward either.

We are going to show that relative impacts, like elasticities or odds ratios, are more
natural than marginal effects, to interpret impacts on shares in compositional model (as
is the case in the classical logistic model).

Table 2.2 provides a summary of the different types of interpretation of compositional
and classical explanatory variables’ impacts, in the MCI and in the CODA models, which
are detailed below. Note that it is not possible to measure the impact of the Xlt’s share,
but only of the corresponding volume of X̌lt. Indeed, a share cannot increase ceteris
paribus because it implies a change in other shares. However, we can consider a change
in the volume of X̌lt, with all other volumes X̌mt, ∀m 6= l fixed.

Table 2.2: Impact assessment measures for compositional model

Var Measure Effect MCI CODA

X

me(Sjt, X̌lt)
Direct b(1 − Sjt)

Sjt

X̌lt (bjl −∑D
m=1 Smtbml)

Sjt

X̌ltIndirect (−bSlt)
Sjt

X̌lt

ME(St, X̌t) Matrix [Sjt] ⊙ Wtb ⊙ [1/X̌lt] [Sjt] ⊙ WtB ⊙ [1/X̌lt]

e(Sjt, X̌lt)
Direct b(1 − Sjt)

(bjl −∑D
m=1 Smtbml)Indirect −bSlt

E(St, X̌t) Matrix Wtb WtB

e
(

Sjt

Sj′t
, X̌lt

) Direct b
(bjl − bj′l)Indirect 0

OR
(

Sjt

Sj′t
, X̌lt, ∆

)
Direct (1 + ∆)b

(1 + ∆)(bjl−bj′l)

Indirect 0

e
(

Sjt

g(S−jt) , X̌lt

) Direct b
b

∗(j,l)
11

√
DX −1

DX
/
√

DS−1
DSIndirect 0

Z

me(Sjt, Zt) (log cj −∑D
m=1 Smt log cm)Sjt

ME(St, Zt) Vector [Sjt] ⊙ Wt log c
e(Sjt, Zt) (log cj −∑D

m=1 Smt log cm)Zt

E(St, Zt) Vector Wt log cZt

e(
Sjt

Sj′t
, Zt) log(cj/cj′)Zt

OR
(

Sjt

Sj′t
, Zt, ∆

)
(cj/cj′)∆Zt

In this table, E
⊕Sjt is denoted by Sjt to shorten notations, and ⊙ denotes the Hadamard product.

Moreover, these measures are estimated using observed shares Sjt in practice, not fitted shares.

Direct effect when l = j; indirect effect when l 6= j.

Wt contains 1 − Sit on the diagonal and −Sit otherwise.
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2.3.1 Marginal effect of a component

In classical linear models, coefficients are usually interpreted in terms of marginal effects:
if the explanatory variable increases by one unit, then the dependent variable increases
by the value of the coefficient. In the case of compositional models, we prove in this
chapter that it is possible to compute marginal effects, but it is not straightforward. The
marginal effect of the component X̌lt (in volume) on the dependent share Sjt is

me(E⊕Sjt, X̌lt) =
∂E

⊕Sjt

∂X̌lt

,

where E
⊕Sjt is the “expected value in the simplex” of Sjt (see Chapter 1, Section 1.3.2),

such that E
⊕Sjt =

ajXb
jtc

Zt
j∑D

m=1
amXb

jtc
Zt
m

for the MCI model and E
⊕Sjt =

aj

∏D

l=1
X

bjl
lt

c
Zt
j∑D

m=1
am

∏D

l=1
X

bml
lt

c
Zt
m

for the CODA model.
For the CODA model, we show that marginal effects are equal to

me(E⊕Sjt, X̌lt) =
∂E

⊕Sjt

∂ log E⊕Sjt

∂ log E
⊕Sjt

∂ log X̌lt

∂ log X̌lt

∂X̌lt

=

(
bjl −

D∑

m=1

Smtbml

)
E

⊕Sjt

X̌lt

(2.9)

Let us define ME(E⊕St, X̌t) the DS × DX matrix containing all marginal effects. It
can be computed as follows:

ME(E⊕St, X̌t) =
[
Sjt

]
⊙ WtB ⊙

[
1

X̌lt

]
=
[
Sjt

]
⊙ WtVB∗V′

⊙

[
1

X̌lt

]
,

where ⊙ denotes here the Hadamard product (term by term product)3,
[
Sjt

]
is a DS×DS

matrix with Sjt on the jth row,
[

1

X̌lt

]
is a DX × DX matrix with 1/X̌lt on the lth

column, B∗ and B denote respectively the parameters in the transformed space and in
the simplex, and Wt is a DS ×DS matrix composed of diagonal terms equal to 1−E

⊕Sj

and non-diagonal terms in column j equal to −E
⊕Sj . Similar results can be found for

the MCI model in Table 2.2, where B is replaced by b.
This marginal effect matrix can also be computed using ILR coordinates and Jacobian

matrices instead of using the attraction form of the model (see detail in the appendix
A.2.1).

2.3.2 Elasticity of a dependent share relative to a component

The marginal effect me(E⊕Sjt, X̌lt) depends on all shares Smt and on volumes X̌lt. We
can see in our application that it can vary a lot across observations (see Section 2.4.3),

3Note that ⊙ in bold denotes the Hadamard product whereas ⊙ denotes the power transformation.
It is in fact a perturbation of the matrices involved considered as compositions in a larger space.
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and therefore it is not a good measure to summarize the impact of a component X̌lt

on a share Sjt. We are going to show that elasticities are more natural to interpret
compositional models.

The first elasticity we may want to compute is the elasticity of the share Sjt relative
to the volume of X̌lt. It corresponds to the relative variation of Sjt induced by a relative
variation of 1% of the volume X̌lt (keeping all other volumes constant) or alternatively a
relative variation of 1% of the share Xlt (holding constant the ratios Xit

Xjt
of the remaining

components):

ejlt = e(E⊕Sjt, X̌lt) =

∂E
⊕Sjt

E⊕Sjt

∂X̌lt

X̌lt

=
∂ log E

⊕Sjt

∂ log X̌lt

(2.10)

Since both variables (dependent and independent) are compositions, we should con-
sider the notion of derivative of a simplex-valued function with respect to a compositional
variable. Egozcue et al. (in Pawlowsky-Glahn and Buccianti [54], chapter 12) treat the
case of the derivative of a simplex-valued function with respect to a real variable, and
Barcelo-Vidal et al. (in Pawlowsky-Glahn and Buccianti [54], chapter 13) the case of the
derivative of a vector-valued function with respect to a compositional variable. Combin-
ing the two notions, let us denote by ∂⊕h/∂⊕Xl the directional simplicial derivatives of
a function h from the simplex SDX of R

DX to the simplex SDS of R
DS . Using a result

linking the directional simplicial derivatives of the function h of shares with the semi-log
derivatives of the corresponding function of volumes (see appendix A.2.2), we can then
derive the relationship between the directional simplicial derivatives of the composition
St with respect to the shares Xlt and the above elasticities as follows:

e⊕
lt =

∂⊕
E

⊕St

∂⊕Xlt
= C

(
exp

(
∂ log E

⊕St

∂ log X̌lt

))′

= C (exp(e1lt), . . . , exp(eDlt))
′

We call e⊕
lt the simplicial elasticity of St relative to Xlt. The elasticities ejlt from equation

(2.10) are easy to compute from the attraction form of E
⊕Sjt, in a similar way than

marginal effects (see equation (2.9)). They can also be expressed in a matrix form
E(E⊕St, X̌t), as can be seen in Table 2.2. The relationship between marginal effects and
elasticities is the following:

ME(E⊕St, X̌t) =
[
Sjt

]
⊙ E(E⊕St, X̌t) ⊙

[
1/X̌lt

]
,

where ⊙ denotes the Hadamard product.

These elasticities allow to isolate the impact of the X̌ component on the S component
which is very useful. This impact is understood as the impact of a relative variation of the
volume (resp: the share) keeping all other volumes constant (resp: holding constant the
ratios of the remaining components). Compared to marginal effects, the e(E⊕Sjt, X̌lt)
still depend on observations through the shares Smt, but do not depend anymore on the
volumes X̌lt. Then, if shares are not varying too much, as it is the case in our example
(see Section 2.4.3), they can be a good measure of impact.
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As for marginal effects, the elasticity matrix can also be computed from ILR coordi-
nates (see detail in the appendix A.2.1).

Let us now consider making a first order Taylor approximation of the vector of shares

for a small relative change in volume Xl. For a small δ = ∆X̌lt

X̌lt
, we could write this first

approximation of the share:
S′

jt = Sjt(1 + δejlt) (2.11)

and it is easy to see that S′
t = (S′

1t, . . . , S′
Dt)

′ does belong to the simplex. Indeed, they
are summing up to one because

∑D
m=1 E

⊕Smtejlt = 0 and
∑D

m=1 E
⊕Smt = 1 (see the

proof in the appendix A.2.3).
Another first order Taylor approximation of the vector of shares (see equation (12.13),

p.168, in Pawlowsky-Glahn and Buccianti[54]) denoted S′′
t is

S′′
t = St ⊕ δ ⊙ e⊕

lt = C (S1t exp(δe1lt), . . . , SDt exp(δeDlt))
′ (2.12)

Note that when δ → 0, since exp(δejlt) ≃ 1 + δejlt, these two approximations are
equivalent at the first order, although the first one is simpler as it does not use the
Aitchison geometry:

S′′
t ≃ C (S1t(1 + δe1lt), . . . , SDt(1 + δeDlt))

′ = C (S′
1t, . . . , S′

Dt

)′
=
(
S′

1t, . . . , S′
Dt

)′
(2.13)

2.3.3 Elasticity and odds ratio of a ratio of dependent shares relative
to a component

In order to avoid being observation dependent, other measures can be computed for
interpreting the MCI and the CODA models. However, they are concerning ratios of
shares, not directly a single share. Then, they can be complicated to interpret in practice.

Elasticity of a ratio of dependent shares As compositional models are based on
a log-ratio approach, elasticities of ratios are easy to compute. We can be interested in
the elasticity of a ratio of shares (or volumes) E

⊕Sjt/E
⊕Sj′t relative to an infinitesimal

change in the volume of X̌lt for example:

e

(
E

⊕Sjt

E⊕Sj′t
, X̌lt

)
=

∂ log(E⊕Sjt/E
⊕Sj′t)

∂ log X̌lt

We see in Table 2.2 that the result for both compositional models is constant across
observations because it only depends on parameters. Note here that the MCI model
respects the IIA (independence from irrelevant alternatives) property, meaning that the
ratio of two shares E

⊕Sjt/E
⊕Sj′t only depends on the corresponding components j and

j′ of X̌. Then, e(E⊕Sjt/E
⊕Sj′t, X̌lt) = 0 if l 6= j, j′. Moreover, the elasticity of the

ratio between the share j and the share j′ relative to a change in X̌jt is the same for all
considered shares j′. This is a lack of flexibility of the MCI model, because it implies that
an increase of X̌jt will reduce proportionally all other shares. The CODA model does
not satisfy the IIA property, and then this model is able to take into account possible
synergies (positive cross effects) between brands.
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Odds ratio of a ratio of dependent shares Another type of interpretation which
can be used for shares is the odds ratio. The advantage of this measure is that it is a
measure of impact of a discrete change of X̌l (X̌l is increased by ∆×100% between situa-
tions t = t1 and t = t2) on the ratio E

⊕Sjt/E
⊕Sj′t, as opposed to an infinitesimal change

for marginal effects and elasticities. The odds ratio for a couple of shares E
⊕Sjt/E

⊕Sj′t

relative to X̌lt is

OR

(
E

⊕Sjt

E⊕Sj′t
, X̌lt, ∆

)
=

(E⊕Sj,t2/E
⊕Sj′,t2)|X̌l,t2

(E⊕Sj,t1/E⊕Sj′,t1)|X̌l,t1

,

where X̌l,t2 = (1 + ∆)X̌l,t1 and ∆ ≥ 0.

Note that e(E⊕Sjt/E
⊕Sj′t, X̌lt) and OR(E⊕Sjt/E

⊕Sj′t, X̌lt, ∆) are more or less mea-
suring the same thing differently, if ∆ is small:

e(E⊕Sjt/E
⊕Sj′t, X̌lt) ≃ (E⊕Sjt2/E

⊕Sj′t2) − (E⊕Sjt1/E
⊕Sj′t1)

(E⊕Sjt1/E⊕Sj′t1)
/

X̌lt2 − X̌lt1

X̌lt1

≃ OR(E⊕Sjt/E
⊕Sj′t, X̌lt, ∆) − 1

(X̌lt2 − X̌lt1)/(X̌lt1)

2.3.4 Elasticity of a particular ratio of dependent shares relative to a
particular ratio of components

In the compositional data analysis literature, compositional models are interpreted with
marginal effects directly on ILR coordinates, which corresponds to interpret marginal
effects on particular log ratios of shares. Thus, it is advised to choose an appropriate
ILR transformation in order to have ILR coordinates which make sense for the consid-
ered application, using a sequential binary partition for example (see Hron et al. [30]).
We show here that we can go one step further and make an interpretation in terms of
elasticity for the ratio of shares directly.

For example, in Chen et al. [8], the chosen ILR transformation is the following:

ilr(x)i =

√
D − i

D − i + 1
log

xi

(
∏D

j=1+i xj)1/(D−i)
, i = 1, . . . , D − 1

With this transformation, the expected value of the first coordinate of S according to
the MCI model is equal to

Eilr(S)1 =

√
D − 1

D
log

E
⊕S1t

g(E⊕S−1t)
= a∗

1 + b∗

√
D − 1

D
log

X̌1t

g(X̌−1t)
+ c∗

1Zt,

and the expected value of the first coordinate of S according to the CODA model is
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equal to

Eilr(S)1 =

√
DS − 1

DS
log

E
⊕S1t

g(E⊕S−1t)
= a

∗(j,l)
1 + b

∗(j,l)
11

√
DX − 1

DX
log

X̌1t

g(X̌−1t)

+ b
∗(j,l)
12

√
DX − 2

DX − 1
log

X̌2t

g(X̌−1−2t)
+ . . . ,

where the indexes j and l denote the fact that the jth component of S and the lth

component of X are in the first position in S and X before the ILR transformation.

In order to interpret their model, Chen et al. [8] (who are considering a CODA

model) compute the marginal effect of ilr(X)
(l)
1 on ilr(S)

(j)
1 :

me(Eilr(S)
(j)
1 , ilr(X)

(l)
1 ) =

∂
√

DS−1
DS

log(E⊕Sjt/g(E⊕S−jt))

∂
√

DX−1
DX

log(X̌lt/g(X̌−lt))
= b

∗(j,l)
11 ,

so that an increase of one unit of ilr(X)
(l)
1 implies an increase of b

∗(j,l)
11 units of Eilr(S)

(j)
1 .

Note that this is true if and only if ilr(X)
(l)
1 =

√
DX−1

DX
log(X̌lt/g(X̌−lt)) moves because

X̌lt moves, while other X̌jt remain constant. Otherwise, other ILR coordinates in the
right part of the equation would be moving and the marginal effect should take it into
account. However, for the MCI model, we do not have this problem because other ILR
coordinates of X are not used.

We show that this is equivalent to compute the following elasticity (multiplying by
a factor if DS 6= DX):

e

(
E

⊕Sjt

g(E⊕S−jt)
, X̌lt

)
=

∂ log(E⊕Sjt/g(E⊕S−jt))

∂ log X̌lt

=





b
∗(j,l)
11 if DS = DX√

(DX−1)/DX

(DS−1)/DS
b

∗(j,l)
11 otherwise

Thus, instead of saying that when ilr(X)
(l)
1 increases by 1 unit, Eilr(S)

(j)
1 increases

by b
∗(j,l)
11 units, one can say that when X̌lt increases by 1%, E

⊕Sjt/g(E⊕S−jt) increases

by b
∗(j,l)
11 % (in the case where DS = DX). The term E

⊕Sjt/g(E⊕S−jt) can be interpreted
as the “predominance of share j over the average of other shares”.

Note that this b
∗(j,l)
11 will be different for each permutation (i.e. each couple j, l). Chen

et al. [8] show how one can determine in one step the first coefficient of B∗(j,l), that is

the b
∗(j,l)
11 which is used to compute the above elasticity, for all possible permutations

without fitting several times the model.
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2.3.5 Elasticities and odds ratios relative to a classical variable

The same kind of interpretations can be done for classical variables Z, as presented
in Table 2.2, except for the elasticity including the geometric mean. Indeed, this
would allow to measure the marginal effect (not the elasticity) of Zt over Eilr(S)1 =√

DS−1
DS

log E
⊕S1t

g(E⊕S−1t) . This marginal effect would be equal to c∗
1 for the MCI model and

the CODA model, but this kind of interpretation is not useful to understand the impact
of Z on the final shares. Thus, we do not show this measure in Table 2.2.

Note that in practice, elasticities and other measures depending on E
⊕Sjt are esti-

mated using the observed shares Sjt, not the fitted shares Ŝjt.
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2.4 Application

As explained in the introduction of this thesis, the automobile market is usually seg-
mented in 5 segments, from A to E, according to the size of the vehicle chassis. Inside a
segment, a brand generally supplies only one main vehicle. Thus, we can consider that
the alternatives for a consumer inside a particular segment coincide with the available
brands in this segment. One can suppose that consumers intending to buy new cars
make their choice partly in accordance with the price and the “image” of the brand. Car
manufacturers spend millions of euros in media investments to enhance their image, giv-
ing rise to the following question: do the media investments have an impact on brands’
market shares?

In this chapter, we focus on the B segment of the French automobile market, and
more precisely on the three leaders Citroën, Peugeot and Renault (see Figure 2.1). Other
brands are aggregated in a group called Others (also denoted “ZZZ”). In order to answer
the previous question, we model the corresponding market shares as a function of brands’
total media investments, brands’ average catalogue prices and the scrapping incentive
dummy variable.

The considered media investments are the sum of the investments made by a brand
for its vehicle of the B segment, in television, radio, press, outdoor, internet and cinema,
in euro (see Figure 2.1). They do not include advertising budget for the brand itself.
In order to take into account the carryover effect of the advertising, we use the media
investments at time t − 3, t − 4 and t − 5 before the registration time.

The brand’s average catalogue price (average of catalogue prices weighted by corre-
sponding sales at the vehicle level) is also used as an explanatory variable (see Figure
2.1). It does not include potential promotions made in the car dealership at the time of
purchase. Even if they do not vary a lot across time, prices are used to position brands
within the segment.

We also control for scrapping incentive periods, from December 2008 to December
2010. The corresponding dummy variable is a “classical” variable (not compositional)
which varies across time only, not across brands.

In the case of this study, the MCI model considers that the effect of media investments
and price are the same for all brands, whereas the CODA model implies cross-effects
and brand-specific impacts of media investments and price on market shares. As our
interest is on the impact of media investments, we also consider a MCODA model which
contains cross-effects and brand-specific parameters for media investments, but a unique
parameter for all brands for the composition of prices.

This section presents the results of this application. We interpret the models in
terms of marginal effects, elasticities and odds ratios of shares, and we compare them in
terms of goodness-of-fit measures. The Fisher tests comparing the unconstrained CODA
model to the constrained MCI and MCODA models are also computed.
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Figure 2.1: Sales, media and average price of brands, in volume and in share, in the B
segment

2.4.1 Non brand-specific impact of media investments (MCI model)

Model Assuming that brand media investments and brand prices have the same effect
for all brands, the following equations correspond to the model in the simplex and the
attraction formulation of the model:

St = a
5⊕

τ=3

bτ ⊙ Mt−τ ⊕ bP ⊙ Pt ⊕ SIt ⊙ c ⊕ εt

⇔ Sjt =
aj
∏5

τ=3 M bτ
t−τ,jP

bP
t,j cSI

j εjt
∑4

m=1 am
∏5

τ=3 M bτ
t−τ,mP bP

t,mcSI
m εmt

,

where S, Mt−τ , P ∈ S4 are the compositions of brand sales, of brand media investments
at time t − 3, t − 4 and t − 5, and of brand prices. bτ , bP ∈ R are the parameters associ-
ated to compositional explanatory variables and c ∈ S4 is a composition of parameters
associated to the dummy variable SI (scrapping incentive).

The ILR transformed version of the model is

S∗
t = a∗ +

5∑

τ=3

bτ M∗
t−τ + bP P∗

t + c∗SIt + ε∗
t

⇔ S∗
jt = a∗

j +
5∑

τ=3

b∗
τ M∗

j,t−τ + b∗
P P ∗

jt + c∗
jSIt + ε∗

jt for j = 1, 2, 3,

where ε∗ is supposed to be a Gaussian distributed error term. The balance matrix used
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for the ILR transformation is the default matrix in the R software:

VILR,4 =




−
√

1/2 −
√

1/6 −
√

1/12√
1/2 −

√
1/6 −

√
1/12

0
√

2/3 −
√

1/12

0 0
√

3/4




Results All explanatory variables are significant at 0.1% according to the analysis of
variance (ANOVA). Figure 2.2 compares observed and fitted shares. It confirms that
the model succeeds in fitting the main trends of brands’ market shares. However, the
model underestimates the market share of “Others” at the beginning of the period, and
overestimates it in the end.

The parameters estimated with the ILR transformed model are presented in Table
2.3. The corresponding parameters for the model in the simplex are in Table 2.4. We
remark that the coefficient associated to price is positive, which can be surprising, but
price here is correlated with the quality image of the brand, which is very important for
the customer who buys a durable and expensive good like a car.

Table 2.3: Estimated parameters on ILR coordinates - MCI model

Estimate Std. Error t value Pr(> |t|)
a∗

1 0.3439 0.0151 22.84 0.0000∗∗∗

a∗
2 0.3363 0.0159 21.19 0.0000∗∗∗

a∗
3 0.6620 0.0263 25.14 0.0000∗∗∗

b1 0.0267 0.0071 3.79 0.0002∗∗∗

b2 0.0241 0.0062 3.90 0.0001∗∗∗

b3 0.0264 0.0062 4.26 0.0000∗∗∗

bP 1.2217 0.2313 5.28 0.0000∗∗∗

c∗
1 -0.0241 0.0338 -0.71 0.4758

c∗
2 -0.1690 0.0334 -5.05 0.0000∗∗∗

c∗
3 0.1292 0.0336 3.84 0.0001∗∗∗

Nb param. 10
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2.4: Estimated parameters in the simplex - MCI model

S1 S2 S3 S4

(Citroën) (Peugeot) (Renault) (Others)
(Intercept) 0.1300 0.2114 0.2502 0.4084
Mt−3 0.0267
Mt−4 0.0241
Mt−5 0.0264
Pt 1.2217
SI 0.2610 0.2523 0.2086 0.2780
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Figure 2.2: Observed (color) and predicted (grey) brands’ market shares

2.4.2 Brand-specific impact of media investments (CODA model)

Model Now, let us look at a different specification of the model (dependent and ex-
planatory variables are the same as in the MCI model) with brand-specific coefficients
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and cross effects. It corresponds to the following model:

St = a
5⊕

τ=3

Bτ ⊡ Mt−τ ⊕ BP ⊡ Pt ⊕ SIt ⊙ c ⊕ εt

⇔ Sjt =
aj
∏5

τ=3

∏4
l=1 M

bτ,jl

t−τ,l

∏4
l=1 P

bP,jl

t,l cSI
j εjt

∑4
m=1 am

∏5
τ=3

∏4
l=1 M

bτ,ml

t−τ,l

∏4
l=1 P

bP,ml

t,l cSI
m εmt

,

where Bτ , BP ∈ R
D×D are the matrices of parameters associated to compositional ex-

planatory variables.
The corresponding ILR transformed model is:

S∗
t = a∗ +

5∑

τ=3

B∗
τ M∗

t−τ + B∗
PP∗

t + c∗SIt + ε∗
t

⇔ S∗
jt = a∗

j +
5∑

τ=3

3∑

l=1

b∗
τ,jlM

∗
l,t−τ +

3∑

l=1

b∗
P,jlP

∗
lt + c∗

jSIt + ε∗
jt for j = 1, 2, 3,

where ε∗ is supposed to be a Gaussian distributed error term. The same balance matrix
VILR,4 is used.

Results All variables of the model are significant at 0.1% according to the ANOVA,
except for price which is significant at 1%. According to Figure 2.2, the CODA model
seems to fit better than the MCI model (see Section 2.4.4 for the goodness-of-fit mea-
sures). The estimated parameters of the model are given in Table 2.5 and Table 2.6.

2.4.3 Interpretation of MCI and CODA models

Marginal effect of media investments We calculate the marginal effects of media
investments at time t − 3 on market shares at time t. The average marginal effects are
reported in Table 2.7. They are quite consistent between the MCI model and the CODA
model, with positive direct marginal effects and negative cross marginal effects. However,
these measures are not really adapted to summarize an impact as they fluctuate a lot
across time, as we can see in Figure 2.3 (marginal effects can be larger than 6e-08 but
we voluntarily cropped the graph). The marginal effects of Citroën media investments
are especially very high when these investments are very low, for example between 2007
and 2009.

Elasticity of the share Sj relative to Xl For the MCI model, cross elasticities are
necessarily negative and direct elasticities are necessarily positive if the parameter b is
positive. Moreover, cross elasticities of market shares Sj with respect to a particular
media budget Ml,t−3 are equal for any brand j 6= l. This is a lack of flexibility of the
MCI model compared to the CODA model: it does not allow positive interaction between
brands, and it considers that if a brand increases its media investments of 1% it impacts
in the same way all competitors market shares Sj (they will all decrease by b%).
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Table 2.5: Estimated parameters on ILR coordinates - CODA model

S∗
1 S∗

2 S∗
3

(Peu. vs Cit.) (Reu. vs Cit.,Peu.) (Oth. vs Cit.,Peu.,Reu.)
(Intercept) 0.3686∗∗∗ 0.3637∗∗∗ 0.6940∗∗∗

M∗
t−3,1 0.0193. -0.0052 0.0081

M∗
t−3,2 0.0162 0.0319∗ -0.0245

M∗
t−3,3 -0.0069 0.0009 0.0279

M∗
t−4,1 0.0208. -0.0093 0.0205.

M∗
t−4,2 0.0151 0.0361∗∗ -0.0259.

M∗
t−4,3 -0.0197 -0.0338. 0.0278

M∗
t−5,1 0.0289∗∗ -0.0115 0.0278∗

M∗
t−5,2 0.0104 0.0206∗ -0.0274.

M∗
t−5,3 -0.0114 0.0064 0.0323.

P ∗
1 0.8854. -0.5981 1.9138∗∗∗

P ∗
2 0.0151 0.2615 0.6509

P ∗
3 -0.6442 -0.3729 2.4717∗∗∗

SI∗ -0.0394 -0.2088∗∗∗ 0.2070∗∗∗

Adjusted R2 0.3353 0.3255 0.3269
Nb param. 42
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2.6: Estimated parameters of Mt−1 in the simplex - CODA model

S1 S2 S3 S4

(Citroën) (Peugeot) (Renault) (Others)
Mt−3,1 0.0179 -0.0079 -0.0067 -0.0032
Mt−3,2 -0.0016 0.0111 -0.0161 0.0066
Mt−3,3 -0.0132 0.0084 0.0292 -0.0243
Mt−3,4 -0.0030 -0.0115 -0.0064 0.0209

Table 2.7: Average marginal effects of media investments M̌t−3 on market shares

me(Sjt, M̌l,t−3) MCI CODA

M̌C,t−3 M̌P,t−3 M̌R,t−3 M̌Z,t−3 M̌C,t−3 M̌P,t−3 M̌R,t−3 M̌Z,t−3

SCitroën,t 1.93e-05 -1.65e-09 -2.13e-09 -3.01e-10 1.68e-05 -7.20e-10 -2.82e-09 -2.00e-10
SP eugeot,t -4.58e-06 1.14e-08 -3.09e-09 -5.30e-10 -7.67e-06 5.51e-09 7.72e-09 -7.52e-10
SRenault,t -4.88e-06 -3.64e-09 1.35e-08 -5.96e-10 -6.43e-06 -1.14e-08 2.23e-08 -5.71e-10
SOthers,t -9.89e-06 -6.10e-09 -8.24e-09 1.43e-09 -2.66e-06 6.60e-09 -2.72e-08 1.52e-09

C: Citroën; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.

Let us consider a situation where the market shares of Citroën, Peugeot, Renault and
Others in the B segment are respectively 10%, 25%, 25% and 40%. According to Table
2.8, if Renault increases its media investments M̌t−3 of about 1%, the average elasticity
of the MCI model on the studied period suggests that its market share should increase
by 0.0204% to reach 25.005% and that competitors market shares should decrease by
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Figure 2.3: Direct marginal effects of Mj,t−3 on Sjt across time

0.0204% to reach respectively 9.998%, 24.995% and 39.992%. Note that here we take an
example for an arbitrary share of 25% using the average elasticity. However, the only
way to ensure that the sum of the modified shares

∑D
m=1 S′

mt is equal to 1 is to use the
corresponding elasticities calculated at the same time t, not the average elasticities.

In the CODA model, when brand-specific effects and cross-effects are taken into
account, the direct elasticity of Renault market share in the B segment relative to its
corresponding media investments (0.0327) is much higher than for other brands, see
for example Peugeot which has the lowest (0.0099). Note that positive cross effects
(synergies) are possible in the CODA model: for example when Renault invests more in
media, it tends to help its own market share a lot, but also to raise a little bit the share
of Peugeot, and to have a negative impact on Citroën and Others. Then, after closure
and depending on the considered values of Sj , an increase in Renault media investments
in the B segment can increase or decrease the Peugeot market share.

Taking the same example as previously, according to the CODA model, if Renault
increases its media investments M̌t−3 of about 1%, the average elasticity on the stud-
ied period suggests that its market share should increase by 0.0327% to reach 25.008%
and that competitors market shares should respectively decrease by 0.0097%, increase
by 0.0119% and decrease by 0.0208% to reach respectively 9.999%, 25.003% and 39.992%.

As shown in Figure 2.4, the estimated direct elasticities are quite stable across time.
However, as elasticities in the MCI model are computed using the same parameter b
for all brands, they are closer to each other than in the CODA model where they are
computed using different parameters bjl. The direct elasticity of Renault is larger than
those of other brands during the whole studied period.
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Figure 2.4: Direct elasticity of Sjt relative to Mj,t−3 across time

Table 2.8: Average elasticity of market shares relative to media investments M̌t−3

e(Sjt, M̌l,t−3) MCI CODA

M̌C,t−3 M̌P,t−3 M̌R,t−3 M̌Z,t−3 M̌C,t−3 M̌P,t−3 M̌R,t−3 M̌Z,t−3

SCitroën,t 0.0235 -0.0056 -0.0063 -0.0116 0.0204 -0.0028 -0.0097 -0.0078
SP eugeot,t -0.0032 0.0211 -0.0063 -0.0116 -0.0054 0.0099 0.0119 -0.0163
SRenault,t -0.0032 -0.0056 0.0204 -0.0116 -0.0043 -0.0173 0.0327 -0.0111
SOthers,t -0.0032 -0.0056 -0.0063 0.0151 -0.0008 0.0054 -0.0208 0.0161
C: Citroën; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.

Elasticity of the ratio Sj

Sj′
relative to X̌l (see Table A.1 in the appendix A.2.4)

In the MCI model, the elasticity of a ratio Sj/Sj′ relative to X̌j is equal to 0.0267,
whereas in the CODA model it can be smaller or larger according to the considered
brands: the largest elasticity is for SR/SZ relative to X̌R which is equal to 0.0535.
In general, ratios between the market shares of Renault and other brands are quite
positively sensitive to media investments of Renault. For example, if the ratio SR/SZ is
equal to 25/40 = 0.6250 and Renault increases by 1% its media investments, then the
ratio will increase up to 0.6253. Let us remind that this measure does not depend on
the considered period. This evolution is consistent with the fact that the market share
of Renault is very positively elastic and the market share of “Others” is very negatively
elastic to Renault media investments, as seen in Table 2.8.

Odds ratio of Sj

Sj′
relative to a change of X̌l (see Table A.2 in the appendix A.2.4)

As expected, this measure is consistent with the previous one. In the MCI model, the
odds ratio of any couple of brands’ market shares Sj/Sj′ relative to a change of 10%

of M̌j,t−3 is equal to 1.0025, whereas it can reach 1.0054 in the CODA model for the
ratio SR/SZ for a change of 10% in M̌R,t−3. It means that if the ratio of market shares
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of Renault over Others is equal to 25/40 = 0.6250 and if Renault decides to increase
its media budget by 10%, then this ratio will increase to 0.6266 according to the MCI
model and to 0.6284 according to the CODA model.

Elasticity of Sj

g(S−j) relative to X̌l (see Table A.3 in the appendix A.2.4)

As in the MCI model, the parameter b1 will be the same for any chosen ILR transfor-

mation, then we obtain that e
(

Sjt

g(S−jt) ,
Mj,t−3

g(M−j,t−3)

)
= e

(
Sjt

Sj′t
, Mj,t−3

)
= e

(
Sjt

Sj′t
,

Mj,t−3

Mj′,t−3

)
.

Moreover, these elasticities are consistent with previous impact measures, and the largest
one concerns the ratio SR

g(S−R) relatively to the ratio MR
g(M−R) , which is equal to 0.0389%.

For example, let us consider a situation where the market shares are the following:
(SC , SP , SR, SZ)′ = (13, 22, 25, 40)′, inducing that SR

g(S−R) = 1.1095. Then, if Renault

increases its media investments by 1% of the geometric average of other brands media
investments, we can expect its market share to move from 110.95% to 110.99% of the
geometric average market share of others.

2.4.4 Complexity and goodness of fit

We have seen that the MCI model and the CODA model can be used for the same
type of application. The CODA model is more complex than the MCI model because it
allows to have component-specific parameters for each explanatory variables along with
cross-effects parameters. We have also fitted an intermediate MCODA model without
component-specific and cross-effects parameters for the price. The number of parameters
to fit for the CODA model can be a serious limitation when the number of components D
and the number of explanatory compositions K increase. For example, in our application
the MCI model involves 10 parameters whereas the MCODA model and the CODA model
involve respectively 34 and 42 parameters.

However, the CODA model is also more flexible than the MCI model in the sense
that it allows to have positive synergies (positive interactions) between some shares,
whereas cross elasticities of the MCI model are necessarily negative as long as the direct
elasticity is positive (the cross elasticity is of opposite sign of the direct elasticity by
construction). For example, we see in Table 2.8 that when the media investments of
Citroën increase, it tends to benefit also to “Others”, and when the media investments
of Renault increase, it tends to benefit to Peugeot.

Is the complexity of the CODA model useful to explain brands’ market shares of the
B segment? According to the Fisher tests of the MCI model against the CODA model,
and of the MCODA model against the CODA model, for which the estimated statistics
are respectively 2.22 and 3.72 to be compared to the 99% quantiles, respectively 0.51
and 0.56, we conclude that the CODA model is significantly better than the MCI and
MCODA models. This means that the brand-specific and cross-effect parameters for
media investments and prices are necessary to reflect the complexity of the competitive
interaction in the automobile market.
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We also compare cross-validated quality measures, recorded in Table 2.9: the ad-
justed R2 calculated on the transformed model with coordinates used for the estimation
(for the CODA model, the adjusted R2 is computed on the transformed model which
uses dummy variables for estimations, as in the MCI and MCODA models), the R2 based
on the total variance as defined in compositional data analysis (see Section A.1.4 in the
appendix for more details), and the RMSE. The out-of-sample computation process is
the same than in Chapter 1 (see Section 1.4.2). All measures agree on the fact that the
CODA model is better than the MCI model and the MCODA model for our application.

Table 2.9: Cross-validated quality measures

MCI MCODA CODA

Adj. R2 0.9250 0.9274 0.9310
R2

T 0.3183 0.4002 0.4513
RMSE 0.0326 0.0913 0.0322
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2.5 Conclusion

The focus of this chapter is to combine the best part of the MCI model and of the CODA
model presented in Chapter 1, in order to improve the interpretability of CODA models,
and to improve the estimation of MCI models: we stress the positive aspects of using an
isometric log-ratio (ILR) transformation to estimate the MCI model, as in the CODA
model, instead of the usual centered log-ratio (CLR) transformation used in marketing.
We also develop an intermediate specification, the MCODA model, allowing to have
a simple specification for some explanatory variables and a complex specification with
cross effects between components for others. A model selection procedure is proposed
using an adapted Fisher test, considering that the CODA model is the unconstrained
model to be compared to the constrained models, the MCI model or the MCODA model.

This chapter presents a set of possible measures, mutually consistent, to interpret
parameters of these models: marginal effects, elasticities and odds ratios. The elasticity
of a component relative to an explanatory variable is the relative variation of this com-
ponent to a relative variation of the explanatory variable, ceteris paribus. This type of
measures is totally adapted to enhance the interpretability of these models. However,
this measure is observation dependent and we have to make sure that it is stable across
observations to use it. Marginal effects are not well adapted to interpret this kind of
models because they depend a lot on the considered observation. The other types of
measures presented have the advantage to be observation independent, but they are
more difficult to interpret in practice because they involve ratios of shares.

The two models, and an intermediate specification, are applied to the B segment
of the French automobile market, for the purpose of measuring the impact of brands’
media investments on brands’ market shares. The CODA model fits our data better
than the MCI and the MCODA models according to cross-validated quality measures
and to the Fisher tests. In the CODA model, Renault is the brand which has the largest
direct elasticity to media investments. This model also shows interesting non-symmetric
synergies between brands.

In the next chapter, we are going to show how to properly take into account the
carryover effect of the media investments, in a better manner than taking different lags
of media investments as we have done here. We are also going to consider separately the
impacts of the different advertising channels.
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Chapter 3

Impact of advertising on brand’s
market shares in the automobile
market: a multi-channel
attraction model with
competition and carryover effects

This third chapter aims to present the final regression model chosen to answer the major
question addressed in this thesis. In order to do that we address here all the issues high-
lighted before, concerning the application itself or the statistical aspects of the modeling.
In particular, we propose here to align the media investments data on the registration
data, and we construct a model able to take into account the carryover effects of the ad-
vertising in a multi-channel case, and the cross effects of competitors. The corresponding
model, called CODAAd, is validated after a residuals diagnostic and the measurement of
several accuracy indicators. We also explain how to construct confidence and prediction
ellipsoids, and we interpret the advertising elasticities.

This chapter will be submitted to a marketing journal. Thus, this chapter is less
theoretical than the previous ones, and focuses more on the practical interpretation of
the impact of advertising on market shares.

77



3.1 Introduction

The effect of marketing mix variables (advertising, price, promotion, distribution) have
been modeled since the 50’s using the so-called market response models, where the
response variable is usually the sales or the market shares of products or brands (see
Hanssens et al. [27] for a review of existing models).

Three main categories of models are used in practice: linear, multiplicative and
attraction models. Only the latter category complies with the constraints of positivity
and summing up to one of market shares data, as emphasized by Cooper and Nakanishi
[10] (p.28). Nevertheless, attraction models are not used systematically for market shares
modeling, because of three main reasons.

1. The first one is that some authors have shown empirically that attraction models,
as the multiplicative competitive interaction model (MCI) for example, do not
give significantly better results than the others in terms of fitting and prediction
accuracy (see for example Ghosh et al. [20] and Leeflang et al. [36]). Nevertheless,
Naert et al. [51] have made the opposite claim a few years ago, suggesting that
the conclusion can depend on the considered application.

2. The second reason is that the estimation of an attraction model is not straight-
forward: it is a non-linear model which can be linearized by a transformation,
generally the log-centering transformation, also called centered log-ratio transfor-
mation (CLR) in the compositional data analysis literature (see Aitchison [1]).
A simple estimation by ordinary least squares is generally run on the resulting
coordinates, while it is obvious that the log-centered error terms cannot be inde-
pendently distributed. Generalized least squares (GLS) and iterative generalized
least squares (IGLS) have also been considered by several authors, but without
concluding to a significant improvement of the estimation (see for example Ghosh
et al. [20], Leeflang and Reuyl [36], and Cooper and Nakanishi [10], p.128).

3. The third reason is that they are often overparametrized. The classical MCI sug-
gests that the impact of a marketing instrument is the same for all brands, which is
often too restrictive. The differential MCI model (DMCI) includes brand specific
parameters, leading to D + DK parameters, where D is the number of brands
and K the number of explanatory variables, but it ignores the potential cross ef-
fects between brands. The additional specification of cross effects, done in the
so-called fully extended MCI model (FEMCI), leads to a huge number of parame-
ters: D(1 + DK). With the estimation on the CLR transformed model, only the
centered version of these coefficients can be identified, although they are sufficient
for interpreting the model, according to Cooper and Nakanishi [10] (p.145).

We argue in favor of the use of attraction models to model market shares. Our claims
concerning the three previous points are the following:

1. From a mathematical point of view, market shares data are “compositions” (vectors
of positive numbers where only the relative information is of interest) and they
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belong to the simplex space. Their compositional nature must be considered to
analyze them. Compositional data analysis (CODA) is a recent field in statistics
which has developed a set of tools, including compositional regression models with
the advantage of including brand specific (differential) parameters and flexible
(non-symmetric and not necessarily negative) cross effects. We prove in Chapter
1, Section 1.3.5, that these models are very close to the fully extended MCI model.

2. We suggest in Chapter 2, Section 2.2.1, to use another transformation than CLR
called isometric log-ratio (ILR) transformation, which is recommended in the
CODA literature because it allows to obtain orthonormal transformed error terms,
with non-constant variance between the obtained coordinates. The associated es-
timation method is easy to implement (e.g. with the R package compositions).

3. Concerning the DMCI model, it should not be used as we prove in Chapter 1, Sec-
tion 1.3.5, that this model is not scale invariant1. Concerning the FEMCI model,
we prove in the same section that if it is estimated using the ILR transformation, it
is then identical to the CODA model presented in Chapter 1. Then, the D(1+DK)
parameters to be estimated can be recovered estimating only (D−1)(1+(D−1)K)
parameters. Moreover, in order to determine if cross effects for a given marketing
instrument are really improving the model, we propose in Chapter 2, Section 2.2.2,
a model selection based on an adapted Fisher test.

In addition to the MCI model, the Dirichlet (DIR) regression model can also be used
to model market shares respecting their compositional nature. Although rarely used in
marketing, the DIR model is a flexible model allowing the specification of differential
effects for example, and it is easy to implement (R package DirichletReg).

Once the type of market response model is chosen, we then need to determine how
to take into account the dynamic aspect of the relationship between market shares and
advertising. Some authors have emphasized the existence of short term and long term
effect of advertising on sales (see for example Assmus et al. [2] and Lodish et al. [39]). In
the case of durable and expensive goods like automobile, we can expect the advertising
impact to be spread over several periods, with diminishing returns effect on sales.

This is called the carryover effect of advertising and it is usually integrated in mar-
ket response models using a stock variable, built using a retention rate which can be
estimated econometrically. In advertising research, this notion is also called “adstock”
variable and was initiated by Broadbent (1979). The most commonly used adstock model
is the Koyck model, defined as Qt = µ + βAdstockt + ǫt where the adstock function is
equal to Adstockt = (1 − λ)(Mt + λMt−1 + λ2Mt−2 + . . . ), Qt is the demand at time t,
Mt is the media investment at time t, and λ is the retention rate. Then, β(1 − λ) can
be interpreted as the current (short term) effect of advertising and β the carryover (long
term) effect of advertising, and we can say that θ% of the advertising impact occurs in
the log(1 − θ)/ log(λ) − 1 periods after advertising.

1It means that if marketing instruments are used in thousands of euro or in euro, the DMCI model
will not lead to the same results in terms of fitted market shares.
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Vakratsas and Ambler [66] report that “Clarke (1976) and Assmus, Farley, and
Lehmann (1984), in meta-analytic studies, suggest that 90% of the advertising effects
dissipate after three to fifteen months. Leone (1995), in an empirical generalizations
study, suggests that the range be narrowed to six to nine months”. However, Leone [37]
also emphasizes the fact that the retention parameter λ “should increase as the level of
aggregation increases”. Note that advertising campaigns are often analyzed at the week
level and for FMCGs (fast moving consumer goods), whereas in our application we are
observing the monthly advertising budgets for a durable good. Then we can expect to
find larger carryover effects of advertising.

Usually carryover effects are estimated in the case of market response models for
sales and for only one marketing instrument (advertising in most of the cases), not for
market share models with multi-channel advertising.

In this chapter, we first present a descriptive compositional analysis of the competi-
tion situation in the French automobile market, of the marketing mix habits and pricing
strategy.

In a second phase, we develop a fully extended multi-channel attraction model with
adstock (what we call the CODAAd model), which considers the cross effects of televi-
sion, outdoor, radio and press advertising budgets between brands and their carryover
effects. This model allows to distinguish between short-term and long-term effects of
the advertising. As market shares are compositions belonging to the simplex, we take
benefit from the compositional data analysis literature to estimate properly this model.
We also explain how to determine the decay parameters of advertising in this case.

Then, we present an application to the main segment of the French automobile market
where different specifications of market share models, including Dirichlet models, are
compared in terms of complexity, goodness of fit and prediction accuracy. A residuals
diagnostic is done and we explain how to build confidence and prediction ellipsoids in
the space of market shares.

We then interpret the chosen model in terms of short term advertising elasticities of
market shares by channel, and we conclude on practical findings for car manufacturers
concerning marketing mix strategies.
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3.2 A compositional data analysis of the French automo-
bile market

We are working on a data base coming from the French registration data base, which
contains the sales of all brands. It is important to note that what we call “sales” at
time t actually correspond to registrations of new passenger vehicles at time t, which
can correspond to purchases during the previous months, due to the delivery delay.

3.2.1 A market in 5 segments

The usual segmentation of the automobile market in Europe is done in five main segments
for passenger cars, from A to E, according to the size of the chassis: small vehicles are
in the A segment, and largest one in the E segment. Sport and luxury cars are grouped
in another additional F segment.

Figure 3.1 represents the registrations (called sales below by abuse of language) in
volume and the corresponding market shares of each segment from 2003 to 2015 in
France. A strong seasonality exists in this market. The economic crisis of 2008 led to a
decrease of sales in most of the segments, especially in the E segment made of the most
expensive cars, except for the A segment which gained market shares at the expense
of the others. The scrapping incentive put in place by the French government from
December 2008 to December 2010, and delimited by black dotted lines in Figure 3.1, has
clearly boosted sales of the first two segments.
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Figure 3.1: Segmentation of the French automobile market

For the rest of this chapter, we focus on the B segment which is the main segment
in France (almost 40% of sales on average in the period) and includes for example the
best-seller model Renault Clio.

3.2.2 Overview of competition in the B segment

From 2003 to 2015, 34 different brands sell vehicles in the B segment in France. However,
three main brands take the lead of the market on the whole period: the three French
manufacturers Renault, Peugeot and Citroën, as can be seen in Figure 3.2.
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Figure 3.2: Brands ranking on total sales from 2003 to 2015 (left); Yearly sales of top
10 brands (right)

For the sake of simplicity and for confidentiality reasons, we focus on Renault, Peu-
geot and Citroën, and the remaining brands are grouped in an “Others” category (also
denoted “ZZZ” below).

From Figure 3.3, we can easily see the order of magnitude of each brand in terms
of sales across time. During the scrapping incentive period, the sales of the group of
smaller brands Others increased quite a lot. Citroën also seems to take advantage from
this incentive, contrary to Renault and Peugeot. We observe that the strong seasonality
of sales is not visible on market shares, suggesting that this seasonality has the same
impact on all brands.

In terms of market shares, it is easier to see the evolution of the competition with
the 3D ternary diagram2 presented in Figure 3.4, and we clearly observe a move in the
direction of Others from 2003 to 2012. The market share of Others was around 35% in
2003 versus almost 50% in 2011-2012. We note that the supremacy of the three leaders
was especially true at the beginning of the period (blue points) but things changed
since the economic crisis (in green). The scrapping incentive (in anise green) benefits
to Citroën and Others, as seen previously. At the end of the period we observe a slight
backward step of the Others market share. Renault seems to be the brand the most
affected by the competition of new or small brands (Others), according to 2D ternary
diagrams in Figure 3.5.

3.2.3 Advertising budgets and channels

The question we want to answer is: “what is the impact of advertising on brands’ market
shares?”. To do so, it is important to have an idea of who is spending the most relative
to other brands, and in which channel.

2Example of interpretation of a 3D ternary diagram: the closer we are from the Others vertex, the
higher the Others’ market share is. If the point is on the face delimited by Citroën/Renault/Peugeot
vertices, then the Others’ market share is null. If the point is in the center of the tetrahedron, then all
market shares are equal to 1/4.
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Figure 3.3: Sales and market shares - Citroën, Peugeot, Renault and Others

Figure 3.4: 3D ternary diagram of sales - Citroën, Peugeot, Renault and Others

Aligning advertising with registrations

First of all, media investments, expressed in euro, are not coming from the registration
data base but from a different data base of advertising tracking. Customers who register
their vehicle at time t have not necessarily been exposed to media investments spent at
time t before their purchase decision, because of the delay between the purchase act and
the registration: the customer may have purchased his car at t − 2. As we want to put
in parallel the advertising potentially seen by customers and the purchase acts, we need
to readjust media investment on registration time.

In order to do so, we use empirical knowledge about delivery times, which almost
correspond to the difference of time between the purchase act and the registration. This
delay evolves a little bit across years and across brands, but on average, the registrations
of month t are made of 31% of sales of month t, 34% of sales of month t−1, 21% of sales
of month t−2, and 14% of sales of month t−3 or before. Then, we can consider that the
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Figure 3.5: 2D ternary diagrams of sales - Citroën, Peugeot, Renault and Others

media investments corresponding to the vehicles registered at time t are made of 31%
of month t media investments, 34% of month t − 1 media investments, 21% of month
t − 2 media investments, and 14% of month t − 3 media investments (see Table A.4 in
the appendix). We use these “weighted” media investments throughout this chapter.

Marketing mix between channels

Media investments are allocated among six channels: television, outdoor, press, radio,
internet and cinema. Cinema’s budget is marginal or null for most of the brands and
the nature of advertising on internet has changed a lot between 2003 and 2015. Then,
we choose not to consider these two channels.

The (weighted) media investments by channel are compared across brands in Figure
3.6, in euro and in share of voice. The media investments of Renault, Peugeot and
Citroën are of the same order of magnitude for outdoor, radio and press channels, but
in general Citroën spends less in television than the two leaders. Globally, advertising
expenses vary a lot from one month to another for every channel and for all brands, much
more than market shares. Moreover, we remark a net increase of outdoor, television and
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press shares-of-voice for the group Others between 2010 and 2013, which seems to be
concomitant with the increase in Others market shares. Similarly, the TV share of voice
of Renault is quite large before 2007 and after 2013, which are the periods where Renault
has larger market shares.
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Figure 3.6: Advertising budgets and Share of Voice by channel - Citroën, Peugeot,
Renault and Others
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Figure A.1 in the appendix compares for each brand the advertising expenses by
channel. Outdoor advertising (in orange) represents the main item of expenditure for
all brands. Television is generally the second one (except for Citroën). We can remark
an increase in the press budget for all brands at the end of the period. Note that here
we are not interested in the impact of the composition across channels of the advertising
budgets, but in the impact of the share of voice across brands for every channel.

Let us look at the relationship between sales and advertising by channel and by
brand. In Figure A.2 in the appendix, the graphs in the left column represent the
volume of registrations of a brand as a function of the advertising budget in euro of this
brand, while in the right column the graphs represent the market shares of brands as a
function of shares of voice (relative media investment) for each channel. We observe a
positive relationship between sales and advertising, in volume and in share. However, this
positive relationship is even stronger, according to correlation coefficients, in shares than
in volumes, which confirms our assumption that competition cannot be omitted, and
that a compositional approach should be undertaken. Note that correlation coefficients
indicated in Figure A.2 are the correlation coefficients between the y and the x axes
variables, all brands combined.

3.2.4 Pricing strategy

Registrations and prices are based on the same source: the registration data base. Then,
prices at time t do correspond to vehicles registered at time t. We computed average
prices in euro by brand for the B segment using the catalogue prices of each vehicle
model of the brand and weighting by the corresponding sales volume of each vehicle
model. The smallest brands grouped in Others tend to have a lower price on average,
but it is less true at the end of the period. Renault had a price decline in 2012 due to
the liquidation of the Clio’s stock before the new version (Clio IV). Prices are increasing
across time for all brands almost in the same way. Then, if we look at the relative
prices, they are quite stable, as can be seen in Figure 3.7. They indicate the position of
the brand inside the segment (low cost versus high quality). Figure A.3 in the appendix
shows that, as for media investments, the relationship between sales and price is stronger
(negatively) in shares than in volumes.
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Figure 3.7: Catalogue prices and relative prices - Citroën, Peugeot, Renault and Others
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3.3 Multi-channel attraction model with carryover effects

3.3.1 Extending the Koyck model to the multi-channel attraction case

In order to properly measure the link between advertising budgets by channel and market
shares for the three leaders of the French B segment and the group of others brands, we
develop a multi-channel attraction model specifying the carryover effect of advertising
in a similar manner as in the Koyck model. The Koyck model (or geometric distributed
lag (GL) model in Hanssens et al. [27]), the most famous adstock model, is defined by:

Qt = µ + βAdstockt + ǫt (3.1)

where Adstockt = β(1 − λ)
∑∞

τ=0 λτ Mt−τ is the adstock at time t, Mt represents the
media investment at time t, and 0 ≤ λ < 1 is the decay parameter.

Let us now adapt this model with adstock for the multi-channel advertising case and
an attraction model formulation of MCI type. We call this model MCIAd:

Sjt =
aj
∏C

c=1 Adstockbc
cjtǫjt

∑D
l=1 al

∏C
c=1 Adstockbc

cltǫlt

(3.2)

where Adstockcjt =
∏∞

τ=0 M
λτ

c (1−λc)
cj,t−τ is the adstock at time t of brand j for the advertising

channel c, and where each channel c = 1, . . . , C has its proper decay parameter λc (the
same for all brands j). This model can be equivalently written with the operators of
the simplex, as in the compositional data analysis literature (see Chapter 1 for brief
definitions and Pawlowsky-Glahn and Buccianti [54] for more detail):

St = a
C⊕

c=1

bc(1 − λc) ⊙
∞⊕

τ=0

λτ
c Mc,t−τ ⊕ ǫt,

where St, a, Mc,t−τ , ǫt are respectively the compositions (the whole vectors) of market
shares at time t, intercept terms, advertising of channel c at time t − τ , and error terms
at time t. The advantage of this presentation is that it looks like a linear model but with
simplicial notations, and then it is easier to see the link with the transformed model.
Indeed, the linearization of the MCI model in equation (3.2) is done by a transformation.
The ILR (isometric log-ratio transformation) is the best choice because contrary to the
log-centered (CLR) transformation usually used in marketing, the error terms of the
coordinates are orthonormal and the OLS estimation can be applied without any issue,
as explained in Chapter 2, Section 2.2.1. The ILR transformed MCIAd model can be
written as follows:

S∗
j′t = a∗

j′t +
C∑

c=1

∞∑

τ=0

λτ
c (1 − λc)bcM

∗
cj′,t−τ + ǫ∗

j′t for j′ = 1, . . . , D − 1, (3.3)

where S∗
j′t, M∗

cj′t, ǫ∗
j′t are respectively the j′th ILR coordinate of market shares, advertis-

ing of channel c and error terms.
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Now, if we think that brands may have different advertising impacts and that cross
effects may exist between brands, we can consider the CODA model with a multi-channel
carryover effects specification, which we call CODAAd:

Sjt =
aj
∏C

c=1

∏D
m=1 Adstock

bcjm

cm,t ǫjt
∑D

l=1 al
∏C

c=1

∏D
m=1 Adstockbclm

cm,tǫlt

(3.4)

where Adstockcjt =
∏∞

τ=0 M
λτ

c (1−λc)
cj,t−τ is the adstock at time t of brand j for the advertising

channel c, as in Equation (3.2), but here in equation (3.4) the adstocks of all brands are
directly impacting the market share Sjt. The simplicial formulation of this model is

St = a
C⊕

c=1

Bc(1 − λc) ⊡
∞⊕

τ=0

λτ
c Mc,t−τ ⊕ ǫt

The ILR transformed version of the CODAAd model is a system of D −1 equations, one
by ILR coordinate j′ = 1, . . . , D − 1, such as:

S∗
j′t = a∗

j′t +
C∑

c=1

D−1∑

m′=1

∞∑

τ=0

λτ
c (1 − λc)b

∗
cj′m′M∗

cm′t + ǫ∗
j′t for j′ = 1, . . . , D − 1 (3.5)

Each equation of this system can be estimated separately by OLS in order to get different
variances for error terms. If we fit this model in a unique equation using dummy variables
in order to estimate the b∗

cj′m′ parameters, it implies that one assumes that the variance
of error terms are constant across coordinates.

The matrix of parameters BD×D can be recovered after inverse ILR transformation
of the matrix of parameters B∗

(D−1)×(D−1), using the following equation: B = VB∗V′,

where V is the balance matrix used for the ILR transformation (see Chapter 1, Section
1.2.5).

3.3.2 Optimal advertising carryover parameters

In order to find the optimal adstock parameters, we have tested every combination of
λc for each channel c, taking values from 0 to 0.9 with a step of 0.1 (10000 possible
combinations). We also imposed a maximum τ lag of 24 months because after this
delay, even with a strong decay parameter, the residual impact becomes negligible ((1 −
0.9) × 0.924 ≤ 0.008). For each combination, we run the MCIAd and the CODAAd
models with all the explanatory variables (the adstock functions of outdoor, press, radio
and television, the price and the scrapping incentive), and we report the corresponding
R2, computed on the ILR transformed models.

The best MCI model is obtained for the decay parameters (λOutdoor = 0.9; λP ress =
0.9; λRadio = 0.8; λT V = 0.8), and the best CODA model is obtained for (λOutdoor =
0.9; λP ress = 0.9; λRadio = 0; λT V = 0.9), as shown in Figures A.4 and A.5 in the
appendix. As the MCI model is a particular case of the CODA model, and because
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no particular λRadio gives better results, we choose to consider the decay parameters
obtained in the CODA model (they also give very good results in the MCI model).

These decay parameters suggest that the half life of advertising in outdoor, television
and press communications is about 5.6 months, while the advertising through the radio
only has a contemporaneous effect within the month of diffusion. We demonstrate in the
appendix A.3.5 how the half life can be computed for attraction models with carryover
effects. The half life of advertising in outdoor, television and press may seem to be quite
strong, but it is not surprising in a durable good market.
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3.4 Final model specification and results

3.4.1 Comparison of model specifications

We want to explain brands’ market shares by the advertising budgets3 in television,
outdoor, radio and press, the average prices and the scrapping incentive. Several models
can be considered, with more or less complexity. In this section, we compare the MCI
model, the Dirichlet model (DIR, see Chapter 1, Section 1.2.4) and the CODA model.
The last two models specify brand-specific parameters for the marketing explanatory
variables, while the first one does not. The CODA model is the only model specifying
additionally cross effects between brands. All these models can be expressed in attraction
formulation: the market share of brand j is defined as the relative attraction of brand
j, that is the attraction of brand j divided by the sum of attractions of all brands of the
market (see Chapter 1, Section 1.3.2 for details).

MCI, CODA and DIR models are fitted with and without adstock variables in order
to assess the relevance of the carryover effects. Note that in the case of the DIRAd model,
adstock variables are computed additively whereas they are computed multiplicatively
in the MCIAd and CODAAd models4.

In order to enhance the importance of explanatory variables, these models are com-
pared to naive models, called Constant MCI and Constant DIR models, where only
brand-specific intercepts are used as explanatory variables. In the case of the MCI
model, it is equivalent to estimate market shares to their closed geometric means (called
“center” in compositional data analysis).

Models are adjusted on the period from 2005/01 to 2014/12 (in sample, T = 120)
and are validated on the period from 2015/01 to 2015/08 (out of sample, T ′ = 8). The
period 2003-2004 has been sacrificed for the computation of weighted media which uses 3
lags (from 2003/01 to 2003/03) and adstock variables which uses 21 lags (from 2003/04
to 2004/12).

We compare the considered models according to their goodness of fit (in sample) and
their prediction accuracy (out of sample), reported in Table 3.1. The adjusted R2 and
the non adjusted R2 are computed respectively on the in-sample and out-of-sample ILR
coordinates of market shares, in the case of the MCI and CODA models. Then, they
reflect the quality of the model on log ratios of shares, giving more importance to the
relative error than to the absolute error. The compositional R2

T (R-squared based on
the total variance, see details in the appendix A.1.4) is computed for all models on the
market shares directly, as the RMSE. Nevertheless, the R2

T is a measure of quality on
the log ratios of shares, whereas the RMSE gives the same importance to an error of 1
percentage point made on a share of 1% or on a share of 50%. We conclude from Table
3.1 that the CODAAd model is the best model in terms of goodness of fit according to

3When the advertising budgets are null, they are replaced by one euro, as explained in A.1.3 in the
appendix.

4Multiplicative adstock functions in equations (3.2) and (3.4) correspond to additive adstock functions
in the ILR transformed models (3.3) and (3.5).
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all quality measures. This suggests that the carryover effect of the advertising does exist
and that the advertising of each brand has potentially a different impact on the other
brands.

Concerning the prediction accuracy, we can notice in Figure 3.8 that the market
shares from January to August 2015 are not varying a lot and are very close to the
center of the the data from 2005 to 2014. Thus, the result is that, by chance, the
Constant MCI and the Constant DIR models give very good results in terms of RMSE.
The CODAAd model still is the best model of the MCI family5 according to the R2 on
ILR coordinates. Note that the maximum R2

T for prediction is higher than 1 for the
CODA model, meaning that the variability of the predicted log ratios is larger than the
variability of the real log ratios.

The complexity of each model can be appreciated through the number of parameters
to be estimated. In the case of the models of the MCI family, the number of parameters
to be estimated is lower than the number of parameters in the attraction form of the
model, thanks to the use of the ILR transformation, and the number of observations to
consider is T (D − 1). Then, in Table 3.1, we see that CODA and CODAAd require the
estimation of 51 parameters for 360 in-sample ILR observations, which is feasible. In
the case of the Dirichlet family models, the number of parameters to estimate is equal
to the final number of parameters.

Table 3.1: Market share models accuracy (in sample: 2005-2014, out of sample: 2015)

In sample Out of sample
Model Param Adj. R2 R2 Adj. R2

T R2
T RMSE R2 R2

T RMSE
Constant MCI 3 0.589 0.591 0 0 0.035 0.853 0 0.018
Constant DIR 4 - - - 0 0.035 - 0 0.019
MCI 11 0.727 0.734 0.315 0.350 0.029 0.835 0.385 0.022
MCIAd 11 0.786 0.792 0.464 0.491 0.025 0.722 0.139 0.026
DIR 28 - - - 0.422 0.024 - 0.478 0.029
DIRAd 28 - - - 0.561 0.021 - 0.640 0.025
CODA 51 0.789 0.819 0.488 0.557 0.024 0.623 1.913 0.029
CODAAd 51 0.859 0.879 0.657 0.703 0.019 0.858 0.585 0.026
Adj. R2 and R2 computed on the ILR coordinates (Dirichlet models not concerned).

Adj. R2
T and R2

T computed on the compositions of market shares.

RMSE computed on the market shares.

The observed, fitted and predicted market shares of the different models are rep-
resented in Figure 3.8. We can notice that taking into account the carryover effect of
advertising in the MCI model allows to give a better fit of the lowest point of Citroën
in 2008. The consideration of the cross effects between brands (CODA model) results in
a better adjustment of Renault’s market shares in 2005-2006. Finally, the combination
of cross effects and adstock specification of advertising (CODAAd) gives very satisfying
fitted market shares during the whole period 2005-2015.

5We call “MCI family” the MCI and CODA type models, in opposition to Dirichlet models.
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Figure 3.8: Observed, fitted and predicted market shares and accuracy measures

Moreover, using an adapted Fisher test (see Chapter 2, Section 2.2.2), we have
tested whether the complexity of the “unconstrained” CODAAd gives significantly better
results that the “constrained” model MCIAd where the explanatory variables impacts
are the same for all brands, without cross effect. The Fisher statistic is equal to 5.51
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while the 95% quantile is equal to 0.44, then we can largely reject H0 and conclude
that CODAAd is better than MCIAd. We have also compared the CODAAd model and
the constrained model where brand specific and cross effects parameters are defined for
advertising channel but not for price, but the conclusion is the same (the Fisher statistics
equals 1.76 and the 95% quantile equals 0.52).

The CODAAd model is then considered to be the best specification for the modeling
of advertising impact on market shares.

3.4.2 Residual diagnostic

Let us check that the CODAAd model residuals have good features. The residual diag-
nostic is done on the ILR residuals, for the CODAAd model and for the MCIAd model
in order to have a benchmark. The first graph of Figure 3.9 suggests that there is no
heteroscedasticity problem in the CODAAd model, while it is less clear for the MCIAd
model. ILR residuals look normal according to the QQ-plot even if the tails are a little
bit heavier. Finally, the graphs of the last column allow to conclude that the CODAAd
model residuals are not autocorrelated, as confirmed by the Breusch-Godfrey test at
order 1, contrary to those of the MCIAd model.
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Figure 3.9: ILR residuals diagnostic of models for MCIAd and CODAAd models

3.4.3 Confidence and prediction ellipsoids

Now, let us look more precisely at the prediction power of the CODAAd model. It is pos-
sible to construct confidence and prediction intervals for market shares using the ellipsoid
of confidence and the ellipsoid of prediction of the ILR coordinates, as we demonstrate
in Appendix A.3.7. Here it is important to estimate the CODAAd model as proposed in
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compositional data analysis with the ILR transformation, instead of the estimation in a
unique equation with dummy variables proposed by Nakanishi and Cooper [52]. Indeed,
while it does not change the predicted values, it does change the prediction intervals be-
cause the estimated values of standard deviations of parameters are different. We have
run a test of equality of variance on residuals across ILR coordinates, and we conclude
that the variance of ILR error terms should not be considered as equal, which reinforces
the choice of this estimation method.

Figure 3.10 represents the confidence and prediction ellipsoids for the Citroën, Peu-
geot, Renault and Others market shares in January 2015, in the simplex S4.

Figure 3.10: Prediction (left) and confidence (right) ellipsoids at 95% for market shares
in January 2015

A 95% marginal prediction interval for each share is obtained taking the minimum
and the maximum values of the projection of the ellipsoid on the corresponding simplex
edge in S4 (see for example the minimum and maximum for Renault delimited by dotted
lines in Figure 3.10). These maximum and minimum points are computed for each pre-
diction time and are represented in Figure 3.11. We observe that the true market shares
(in grey) are always in the 95% prediction intervals and very close to the predictions
(black). However, the CODAAd model tends to overestimate the Citroën market shares
and underestimate the Peugeot market shares in 2015. The Renault’s market share in
June is surprisingly high at the expense of the Others market share, but the model does
not succeed in reflecting this temporary change, while the predictions of the rest of the
period are very accurate.
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Figure 3.11: Observed (grey) and predicted (black) market shares with 95% confidence
(red) and prediction (blue) intervals

3.4.4 Advertising elasticity of market shares

We now focus on the explanatory power of the CODAAd model. According to the
analysis of variance, all explanatory variables are significant in this model, except the
scrapping incentive (see ANOVA results in Table A.5 in the appendix). Note that the
scrapping incentive was generally significant in other models, suggesting that the speci-
fication of adstock and cross-effects are sufficient to take into account the perturbation
of market shares during this special period of governmental incentive. Moreover, if SI is
not included as explanatory variable in CODAAd, this model stays the best according
to its accuracy measures which remain almost the same.

Then, for the purpose of interpreting the model, we fit the CODAAd model without
the scrapping incentive, on the total period from 2005 to 2015, and we call the resulting
model CODAAd_SI. All explanatory variables are strongly significant in this model
according to the ANOVA (see Table 3.2) and the accuracy measures are fully satisfactory
(see Table 3.3).

Table 3.2: Analysis of variance table for CODAAd_SI model

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.99 3902.2 3 102 < 2.2e−16∗∗∗

ilr(OutdoorAd) 3 1.34 28.1 9 312 < 2.2e−16∗∗∗

ilr(PressAd) 3 0.68 10.2 9 312 9.384e−14∗∗∗

ilr(RadioAd) 3 0.35 4.5 9 312 1.374e−05∗∗∗

ilr(TVAd) 3 0.58 8.3 9 312 4.206e−11∗∗∗

ilr(Price) 3 0.23 2.9 9 312 0.002926∗∗

Residuals 104

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

ilr(X) denotes the vector of ILR coordinates of the variable X.

The short-term elasticities of market share Sj at time t relative to the brand l media
investments in channel c at time t, X̌clt, can be computed according to the following
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Table 3.3: Accuracy of the CODAAd_SI model (from 01-2005 to 08-2015)

In sample
Model Adj. R2 R2 Adj. R2

T R2
T RMSE

CODAAd_SI 0.856 0.874 0.639 0.682 0.019

formula (see Chapter 2, Section 2.3.2 for details):

elast(Sjt, X̌clt) =
∂ log Sjt

∂ log X̌clt

=
∂Sjt/Sjt

∂X̌clt/X̌clt

= (1 − λc)(bcjl −
D∑

m=1

Smtbcml)

We talk about short-term elasticity because it only measures the relative impact of X̌clt

on Sjt at time t, ignoring the future impacts on Sjt+1, Sjt+2, . . . . As we are working on
market shares, it is not possible to summarize the overall long term effect of an evolution
of X̌clt on the Sjt′ for t′ ≥ t. However, it is of course possible to compute the following
elasticities:

elast(Sjt+τ , X̌clt) = λτ
c (1 − λc)(bcjl −

D∑

m=1

Smt+τ bcml)

Table 3.4 presents the average short-term elasticities of market shares relative to
outdoor, press, radio and television. Direct elasticities are on the diagonal and cross
elasticities are extra diagonal. We remark that the largest elasticities (in bold) are
often off-diagonal, which highlights the importance of cross effects between brands. For
example, if Citroën increases by 1% its TV advertising budget, its market share increases
on average by 0.0192%, but if Others increases by 1% its TV advertising budget, the
Citroën market share decreases on average by 0.0372%.

For outdoor, press and television, we can compute “long-term elasticities”, that is
the elasticities of market shares relative to these channels’ adstocks, but care must be
taken for the interpretation: they correspond to the relative impact of market shares for
a relative change in the adstock variable, which can come from changes in one or several
lags of the media investments. Long-term elasticities for these three channels are equal
to ten times the short-term elasticities (short-term elasticities divided by 1 − λ, with
λ = 0.9). Note that in the case of radio, as the estimated retention rate is equal to zero,
and in the case of price for which we assumed contemporaneous effect only, there is no
long-term elasticities.

We can see in Figure 3.12 that the direct elasticities of the four channels are quite
constant across time, which means that the average elasticities presented in Table 3.4
are good indicators of the real elasticity at time t. Moreover, the Renault’s elasticity of
market share to its own outdoor and television advertising are very close (around 0.018)
but an increase of 1% of TV represents less money than an increase of 1% in outdoor, as
on average the budget of outdoor is much larger than the TV’s budget. Note that Citroën
has a particular profile regarding advertising elasticities: it has a very positive direct
elasticity for the radio while other brands have a negative direct elasticity, and negative
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outdoor and press direct elasticities while other brands have positive direct elasticities.
Peugeot has surprisingly quite low outdoor and television elasticities compared to its
direct competitor Renault.

Table 3.4: Advertising short term elasticities of market shares (CODAAd_SI)

Outdoor_Citroën Outdoor_Peugeot Outdoor_Renault Outdoor_Others

S_Citroën -0.0042 -0.0372 -0.0014 0.0428
S_Peugeot -0.0133 0.0076 -0.0064 0.0121
S_Renault 0.0088 0.0354 0.0183 -0.0624
S_Others 0.0027 -0.0058 -0.0047 0.0078

Press_Citroën Press_Peugeot Press_Renault Press_Others

S_Citroën -0.0092 -0.0008 -0.0039 0.0139
S_Peugeot 0.0053 0.0110 0.0027 -0.0190
S_Renault -0.0007 -0.0212 0.0128 0.0091
S_Others 0.0012 0.0049 -0.0051 -0.0010

Radio_Citroën Radio_Peugeot Radio_Renault Radio_Others

S_Citroën 0.0639 0.0011 -0.0140 -0.0510
S_Peugeot 0.0085 -0.0031 0.0308 -0.0362
S_Renault -0.0768 0.0099 -0.0124 0.0793
S_Others 0.0083 -0.0033 -0.0021 -0.0030

TV_Citroën TV_Peugeot TV_Renault TV_Others

S_Citroën 0.0192 0.0024 0.0157 -0.0372
S_Peugeot -0.0014 0.0056 0.0014 -0.0056
S_Renault -0.0091 0.0016 0.0184 -0.0109
S_Others -0.0018 -0.0036 -0.0132 0.0185

The most positive (resp. negative) relative impact due to an increase in advertising is in bold (resp. italic).

−0.025

0.000

0.025

0.050

0.075

2005 2010 2015

Date

O
u

td
o

o
r

−0.025

0.000

0.025

0.050

0.075

2005 2010 2015

Date

P
re

s
s

−0.025

0.000

0.025

0.050

0.075

2005 2010 2015

Date

R
a

d
io

−0.025

0.000

0.025

0.050

0.075

2005 2010 2015

Date

T
V

Brand Citroen Peugeot Renault ZZZ

Figure 3.12: Short term direct elasticities of channels by brand
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3.5 Conclusion

The aim of this chapter is to measure the impact of advertising investments through
different channels (outdoor, press, radio and television), on brands’ market shares in
the French automobile market, from 2005 to 2015. We focus on the main segment of
this market, namely the B segment, and on the three leaders of this segment: Citroën,
Peugeot and Renault, aggregating the other brands in a group.

After analyzing this market in terms of absolute and relative sales and media invest-
ments for the different brands, we emphasize the importance of taking into account the
competition on the one hand, and the advertising carryover effect on the other hand.
For this purpose, we build a multi-channel attraction model with carryover effects, called
CODAAd model (for CODA model with adstock), combining the classical Koyck model
and the CODA model presented in previous chapters. We stress the positive aspects of
using an isometric log-ratio (ILR) transformation, coming from the compositional data
analysis (CODA) literature, to estimate this type of models, instead of the usual cen-
tered log-ratio (CLR) transformation used in marketing. We explain how to determine
the carryover parameters λ for several channels in a simultaneous way, and we conclude
that outdoor, press and television advertisements have a large retention rate implying
an advertising half life of 5.6 months, which seems realistic for a durable and expensive
good such as automobile. On the contrary, the radio advertising appears to have only
contemporaneous effect on market shares in the B segment of the automobile market.

Several model specifications are compared: with or without explanatory variables
(constant models), with or without cross effects, with or without adstock variables,
using a model belonging to the Dirichlet family or to the MCI family. According to
goodness-of-fit (on the 2005-2014 period) and prediction accuracy (on 2015) measures,
the CODAAd model, is considered to be the best model for our purpose. An adapted
Fisher test confirms that the inclusion of cross effects improves significantly the model.
The residual diagnostic suggests that the CODAAd model has good properties. More-
over, we draw the 95% confidence and prediction ellipsoids in the space of market shares
(i.e. in the simplex), and we derive from that the 95% confidence and prediction intervals
for the prediction period, in 2015.

In order to interpret the impact of each channel on brands’ market shares, we compute
direct and cross advertising elasticities. While television direct elasticities are positive
for all brands, this is not the case for the other channels. Citroën has a different adver-
tising impact profile from the other considered brands: the model suggests that Citroën
can increase its market share diminishing its outdoor and press advertising budget in
favor of the radio and television advertisements, whereas for Peugeot, Renault and the
group of others, it suggests to increase the investments in outdoor, press and television
and to reduce the radio communication.
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Further research should be done in order to evaluate the elasticities significance, in
particular for cross elasticities. A standardized interpretation could be proposed in order
to be able to compare the marginal impact of channels whose total expenses are not of
the same order of magnitude. Threshold effects in the advertising elasticities may also
be considered. Moreover, the geometric distributed lagged adstock function of the Koyck
model can be seen as too restrictive, and more flexible functions could be investigated.
Finally, these elasticities can be useful for advertising budgeting optimization, like in
the Dorfman-Steiner theorem [12], but the optimization problem has to be adapted for
a multi-channel attraction model.
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Chapter 4

Further directions

This last chapter of the thesis aims to list further directions to explore in order to answer
the question “What is the impact of media investments on the brands’ market shares
in the automobile market?”. For example, additional models could be considered, the
distributional assumption of the proposed market share models could be questioned,
and the interpretation of market share models could be improved. Finally, the ultimate
goal of measuring the impact of each advertising channel is to optimize the advertising
budget and the marketing mix. We show that the famous Dorfman-Steiner theorem can
be generalized for the multi-channel and competitive case.

4.1 Additional models

During the thesis, we have estimated various market share models only on the B segment
of the French automobile market, focusing on the main brands on this market. Of course,
it would be very interesting to apply these models to other data. Below, we give a non
exhaustive list of additional modelings which can be considered in order to get a better
understanding of the impact of media investments on market shares:

• We could apply the CODA model to other segments (A, C, D and E), in order to
compare the significance of the impact of each advertising channel, their carryover
effects, and their cross effects between brands. Advertising may have a higher
impact on larger and more expensive vehicles (D and E segments).

• We could choose to focus on other brands than Citroën, Dacia, Nissan, Peugeot and
Renault, or to consider more brands simultaneously, but it would imply to have
more observations because the number of parameters to be estimated is rising
dramatically with the number of brands (D) considered.

• We could imagine that market share models are useful to analyze the impact of
advertising at a micro level, on each model of vehicle for example (instead of at a
macro level, on each brand within a segment), but it requires again a large number
of observations, at a weekly frequency if possible, to avoid zero problems.
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We also think that a nested compositional model could be built, where segments are
the nests, and vehicle (or brands) within each segment are the alternatives. Nested
multinomial logit models (NMNL) have been developed in econometrics for individual
data. In a working paper, Fry and Chong [19] start to explore the use of NMNL for
(aggregated) compositional data. Compositional contingency tables may be a fruitful
avenue for considering this aspect, where rows of the contingency table can be segments
and columns can be brands (see Greenacre and Lewi [24] and Egozcue et al. [14]).

Other models could also be interesting, considering sales in volumes instead of market
shares:

• The sales of a particular vehicle or brand can be modeled as a function of its
advertising composition in terms of channels: the explanatory variable is then the
vector of proportions of each channel (outdoor, press, radio, television, . . . ) in the
total advertising budget (or in the the total adstock function) at time t. This type
of model would allow to focus on the marketing mix impact and on the “winning
combinations” of media channels.

• We could also consider a panel data model, where individuals are vehicles or brands,
observed across time, with potential interactions between advertising budgets of
each vehicle or brand.

It would also be valuable to observe the actual purchase prices instead of the cata-
logue prices, or to observe promotions, and to measure properly the media investments
in internet and the impact of social media.

Finally, one of our starting assumptions is that the economic context is playing a
role for customers in the choice of the vehicle segment. We are currently analyzing
this impact in an article: Morais, J., and Thomas-Agnan, C. Impact of economic
conditions on automobile market segment shares: a compositional approach. CSBIGS
(2018). In progress.

4.2 Assumptions of the models

Concerning the assumptions of the CODA model we use, further research could be done
on the following aspects:

• The CODA and the MCI models assume that the transformed error terms (in CLR
or ILR) are normally distributed. Even if this condition seems to be satisfied in our
example, it may not be the case. When appropriate, a Box-Cox transformation of
the initial market shares can be used until reaching the normality of error terms.
Other distributions can also be investigated: for instance using more flexible ver-
sions of the Dirichlet distribution (see for example Monti et al. [44]) or a Student
distribution for transformed error terms (see for example Katz and King [32]).
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• In Chapter 3, we introduce the carryover effect of advertising through an adstock
function, inspired from the classical Koyck model. This geometric lag specification
is quite simple and suggests that the impact of advertising across time is constantly
decreasing. Other types of adstock functions could be tested (see Joy [31] for a brief
review) in order to allow for threshold effects for example (increasing impact until
a certain threshold, and then decreasing impact after this threshold). However,
more complex functions go hand in hand with more complicated estimation of their
own parameters.

• Concerning again the chosen adstock function, the way to determine the decay
parameters λ could be more precise with a finer grid of possible values (with a
step of 0.01 instead of 0.1 for example), and possibly more lags. We could also
make the choice to estimate the decay parameters separately for each channel and
without the rest of the explanatory variables in order to isolate the pure correlation
between one advertising channel and the market shares.

4.3 Interpretation

In Chapter 2, we emphasize the difficulty to interpret properly market share models
taking into account the constraints applicable to share data. We highlight the benefits
of elasticities which are consistent with the relativeness of market shares. However, two
main points need to be deeply examined:

• The significance of elasticities should be analysed, especially for cross elasticities
which seem to vary a lot across time. Standard errors for elasticities can be com-
puted by bootstrap (see Green et al. [23] for example) or by the Delta method.
Presently, we have only checked the distribution of direct elasticities to see if they
are sufficiently stable in order to use the average elasticities to summarize the
impact of media investments on market shares.

• Elasticities measure the relative impact on market shares of a relative variation in
an advertising budget. For example, it allows to compare the relative impact of an
increase of 1% in the Renault’s television budget on the Renault’s market share,
and the relative impact of an increase of 1% in the Peugeot’s television budget
on the Peugeot’s market share. However, as the level of advertising budget is not
equivalent in all channels, the increase of 1% in the Renault’s television budget
and the increase of 1% in the Renault’s outdoor budget do not represent the same
amount of money. But in the end, manufacturers need to optimize the allocation
of their total advertising budget between the different channels. Thus, we can
imagine a standardized version of elasticities, based on standardized explanatory
variables or standardized coefficients.
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4.4 Advertising budgeting optimization

The final aim of this research is to optimize the advertising budget of car manufac-
turers, considering the competitors’ actions and the multi-channel case. Advertising
budgeting optimization has been studied in marketing, firstly by Dorfman and Steiner
[12]. They proved that the solution to the budgeting optimization problem is linked to
the advertising elasticities and the price elasticities by a simple formula. The so-called
“Dorfman-Steiner theorem” has been developped in a simple case, focusing on one brand
(or product) and one global advertising budget. Then, Levy and Simon [38] generalize
it to the dynamic case where advertising has a multi-period impact. Let us now start
to generalize the Dorfman-Steiner theorem for the multi-channel and competitive case.
The notations used are in Table 4.1.

Table 4.1: Notations used for advertising budgeting optimization

Profit Π = G − M
Gross revenue G = Q(P − C)
Quantity sold Q
Unit price P
Unit cost C
Margin rate τ = (P − C)/P
Media investment (advertising) M
Advertising elasticity eM

Price elasticity eP

Index of the jth brand j

4.4.1 The Dorfman-Steiner theorem

Dorfman and Steiner [12] demonstrate how to simultaneously optimize advertising bud-
get and price, or to optimize only advertising budget considering fixed prices, in a very
simple demand function framework.

Joint optimization of advertising budget and price

The quantity sold Q of a given product (or brand) is assumed to be a function of price
and advertising, such that Q = f(P, M). Then, the change in Q when P and M change
respectively by dP and dM is

dQ =
∂Q

∂P
dP +

∂Q

∂M
dM

The changes dP and dM can compensate each other such that the final quantity Q is
not impacted:

dQ = 0 ⇔ dP = −∂Q/∂M

∂Q/∂P
dM
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Then, the profit function being equal to Π = Q(P − C) − M , the net effect on profit of
the changes dP and dM such that Q, and C, are stable is

dΠ = QdQ − dM = −Q
∂Q/∂M

∂Q/∂P
dM − dM,

and the profit is maximized in the following conditions:

MaxΠ ⇔
(

Q
∂Q
∂M
∂Q
∂P

+ 1

)
= 0 if M>0 or

(
Q

∂Q
∂M
∂Q
∂P

+ 1

)
≥ 0 if M=0

⇔ P
∂Q

∂M
= −∂Q

∂P

P

Q

⇔ eM
PQ

M
= −eP

⇔ M

PQ
=

eM

−eP

where eM , eP are the advertising and price elasticities of demand. In this framework,
the ratio of optimal advertising and price is a function of the quantity multiplied by the
ratio of advertising and price elasticities.

Optimal advertising with fixed price

In the case of fixed price, the optimal advertising is simply a function of advertising
elasticity and gross product:

MaxΠ = Q(P − C) − M ⇔ dQP − dQC − dM = 0

⇔ P − C =
dM

dQ
⇔ Q

M
(P − C) =

dM

dQ

Q

M

⇔ eM =
M

Q(P − C)
⇔ M = GeM

Wright, in an article called “A new theorem for optimizing the advertising budget” [71],
actually considers this case, specifying the demand function as Q = kM eM . Then,

MaxΠ = (P − C)Q − M = (P − C)kM eM − M ⇔ ∂Π

∂M
= 0

⇔ eM =
M

G
⇔ M = GeM

The result is the same than in Dorfman and Steiner [12].

4.4.2 A dynamic version of the Dorfman-Steiner theorem

Levy and Simon [38] propose “A Generalization That Makes Useful the Dorfman-Steiner
Theorem with Respect to Advertising”. Indeed, they include the fact that advertising
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has an impact on several periods after the advertising diffusion, according to a customer-
retention factor and a cost-of-capital discount factor.

They consider the following function for the gross revenue:

Gt = (Pt − Ct)Qt = bGt−1 + f(Mt),

where the gross revenue at time t is a function of the accumulated carryover sales due
to previous advertising and of the sales due to the advertising at time t. The retention
rate is denoted by b = 1 − decay rate. Then, we get:

f(Mt) = Gt − bGt−1 = ∆G

Assuming stationarity, we have b(Gt − bGt−1) = b∆G.

They define the net present value of the present and future effects of Mt as:

NPV (Mt) = ∆G + ∆Gbd + ∆Gb2d2 + · · · − Mt

= f(Mt) + bdf(Mt) + b2d2f(Mt) + · · · − Mt

= f(Mt)[1 + bd + b2d2 + . . . ] − Mt,

where d is the money discount factor. If b is the same at all periods, then:

NPV (Mt) = f(Mt)

(
1

1 − bd

)
− Mt

= Gt − bGt−1

(
1

1 − bd

)
− Mt

MaxNPV (Mt) ⇔ ∂NPV (Mt)

∂Mt
=

(
1

1 − bd

)
∂f(Mt)

∂Mt
− 1 = 0

⇔ ∂f(Mt)

∂Mt
= 1 − bd

They advise to invest in advertising until reaching the point such that ∂f(Mt)
∂Mt

= 1 − bd.

Note that in Dorfman and Steiner, b = 0, and then ∂f(Mt)
∂Mt

= 1 (it is a particular case).

4.4.3 A multi-channel and competitive version of the Dorfman-Steiner
theorem

In the classical Dorfman-Steiner theorem presented above, the profit function of a brand
j (or product) is defined as:

Πj = Gj − Mj = Qj(Pj − Cj) − Mj

where Qj = kjM
eMj

j in Wright [71].

Let us define a specification for Qj corresponding to the models we use in the previous
chapters. Qj is a function of the total quantity of the market Q and of the market share
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Sj , the first one being a linear function of media investments, and the second one being
modeled with a CODA model:

EQj = EQ × E
⊕Sj = (α +

D∑

l=1

K∑

k=1

βklMkl) × aj
∏D

l=1 M
bjl

l∑D
m=1 am

∏D
l=1 M bml

l

To simplify, EQj , EQ, E⊕Sj are replaced below by they estimations Q̂j , Q̂, Ŝj , the
number of brands considered is D = 2, and the number of advertising channel is K = 1.
The profit of brand j is then:

Πj = τjPjQ̂j − Mj = τjPjQ̂Ŝj − Mj

= τjPj(α̂ + β̂1M1 + β̂2M2)
âjM

b̂j1

1 M
b̂j2

2

â1M b̂11
1 M b̂12

2 + â2M b̂21
1 M b̂22

2

− Mj

Let us maximize the profit of brand 1 with respect to its own media investment M1

for example:

∂Π1

∂M1
= τ1P1(

∂Q

∂M1
S1 +

∂S1

∂M1
Q) − 1

= τ1P1(β̂1S1 +
1

M1
Q(b11S1 − b11S2

1 − b21S1S2)) − 1

= G1(
1

Q
β̂1 +

1

M1
e11) − 1

= G1
1

M1
(ǫ1 + e11) − 1

∂Π1

∂M1
= 0 ⇔ M1

G1
= ǫ1 + e11 ⇔ M1 = G1(ǫ1 + e11)

where Gj = τjPjQSj is the gross revenue of brand j, ǫj = ∂Q
∂Mj

Mj

Q = β̂j
Mj

Q is the adver-

tising elasticity of the total market Q relative to the media investment of brand j, and
ejl =

∂Sj

∂Ml

Ml
Sj

= bjl − ∑D
m=1 bmlSm is the advertising elasticity of the market share Sj

relative to the media investment of brand l.

We thus find a similar equation to the Dorfman-Steiner theorem. However, here we
need to take into account the direct advertising elasticity of the jth market share and
the advertising elasticity of the total market relative to the media investment of brand
j. The former takes into account the cross effects of Mj on other brands’ market shares,
and we expect the latter to be very small in the case of a non-oligopolistic competitive
market which is the case of the automobile market.

This case can be generalized for any number of brands D and for any number of
channel K. Further research should also be done to incorporate the dynamic aspect of
advertising impact, combining our adstock specification and the proposition of Levy and
Simon [38].
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4.5 Conclusion

In order to answer the question “What is the impact of media investments on the brands’
market shares in the automobile market?”, additional models can be considered in or-
der to cover the whole French automobile market in a finer way, and to take into ac-
count its segmentation. Moreover, the distributional assumption of the proposed market
share models can be questioned and alternative distributions should be considered if the
Gaussian distribution seems to be inadequate. Concerning the interpretation of market
share models, elasticities also have drawbacks which may be circumvented. Finally, the
ultimate goal of measuring the impact of each advertising channel is to optimize the
advertising budget and the marketing mix. We show that the famous Dorfman-Steiner
theorem can be generalized for the multi-channel and competitive case, but work still
has to be done to integrate the carryover effect of advertising.
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Conclusion (English version)

The objective of this thesis is to answer from a mathematical point of view the following
question: “What is the impact of media investments on the brands’ market shares in the
automobile market?”.

Because of the constraints of shares data, classical regression models cannot be used
directly to model market shares. Market share models have been developed in the mar-
keting literature, but other statistical models can be adapted to this type of applications.
In the first chapter of this thesis, we present four types of models suitable when mod-
eling market shares, or share data in general: the multinomial logit model (MNL), the
generalized multiplicative competitive interaction model (GMCI), the Dirichlet model
(DIR) and the linear compositional model (CODA).

We express all of them in an attraction formulation to ease their comparison, and
we highlight the similarities and the differences of these models from a theoretical point
of view. We prove that GMCI can be written as a particular compositional model, and
that it can be considered as a particular case of the CODA model. The CODA model
comes out to be similar to the fully extended attraction model used in marketing, but
with several advantages: for example, it manages to capture all cross effects with a rel-
ative parsimony, thanks to the isometric log-ratio (ILR) transformation involved in the
estimation. These four types of models are all easy to implement, with the R software
for example.

The focus of the second chapter is to combine the best part of the MCI model and
of the CODA model presented in Chapter 1, in order to improve the interpretability of
CODA models, and to improve the estimation of MCI models. We stress the positive
aspects of using an isometric log-ratio (ILR) transformation to estimate the MCI model,
as in the CODA model, instead of the usual centered log-ratio (CLR) transformation
used in marketing. We also develop an intermediate specification between the MCI and
the CODA models, which we call the MCODA model. A model selection procedure
is proposed using an adapted Fisher test, considering that the CODA model is the
unconstrained model to be compared to the constrained models, the MCI model or the
MCODA model.

We present a set of possible measures, mutually consistent, to interpret the coeffi-
cients of these models: marginal effects, elasticities and odds ratios. For example, we are
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able to compute the direct and cross elasticities of brands’ market shares relative to the
advertising investment of a given brand in a given communication channel. This type
of interpretation is totally suitable to answer our initial question, and is consistent with
the derivatives in the simplex. However, this measure is observation dependent (it varies
across time in our case) and we have to make sure that it is stable across observations
to use it.

The third chapter presents the final application and the final model. We measure
the impact of advertising investments through different channels (outdoor, press, radio
and television), on brands’ market shares in the French automobile market, from 2005
to 2015. We focus on the main segment of this market, namely the B segment, and on
the three leaders of this segment: Citroën, Peugeot and Renault, aggregating the other
brands in a group.

After analyzing in a descriptive manner this market in terms of absolute and relative
sales and media investments for the different brands, we emphasize the importance of
taking into account the competition on the one hand, and the advertising carryover effect
on the other hand. For this purpose, we build a multi-channel attraction model with
carryover effects, called CODAAd model for “CODA model with adstock”, where the
adstock is a cumulative variable made of actual advertising expenses and of a decreasing
function of past advertising expenses. This CODAAd model is a combination of the
Koyck model (the most common model used to introduce advertising carryover effects)
and of the CODA model. We explain how to determine the carryover parameters λ
for several channels in a simultaneous way, and we conclude that outdoor, press and
television advertisements have a large retention rate implying an advertising half life of
5.6 months, which seems realistic for a durable and expensive good such as automobile.
On the contrary, the radio advertising appears to have only contemporaneous effect on
market shares in the B segment of the automobile market.

Several model specifications are compared: with or without explanatory variables
(constant models), with or without cross effects, with or without adstock variables,
using a model belonging to the Dirichlet family or to the MCI family. According to
goodness-of-fit (on the 2005-2014 period) and prediction accuracy (on 2015) measures,
the CODAAd model, is considered to be the best model for our purpose. An adapted
Fisher test confirms that the inclusion of cross effects improves significantly the model.
The residual diagnostic confirms that the CODAAd model has good properties. We
explain how to draw the 95% confidence and prediction ellipsoids in the space of market
shares (i.e. in the simplex) and how to derive the 95% confidence and prediction intervals
for each market share.

In order to interpret the impact of each channel on brands’ market shares, we compute
direct and cross advertising elasticities. While television direct elasticities are positive
for all considered brands, this is not the case for the other channels. Citroën has a dif-
ferent advertising impact profile from the other considered brands: the model suggests
that Citroën can increase its market share diminishing its outdoor and press advertising
budget in favor of the radio and television advertisements, whereas for Peugeot, Renault
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and the group of others, it suggests to increase the investments in outdoor, press and
television and to reduce the radio communication.

Finally, the fourth and last chapter of this thesis addresses further directions to be
investigated in order to answer our initial question. Additional models can be considered
in order to cover the whole French automobile market in a finer way, and to take into ac-
count its segmentation. Moreover, the distributional assumptions of the proposed market
share models can be questioned and alternative distributions should be considered if the
Gaussian distribution and the Dirichlet distribution seem to be inadequate. Concerning
the interpretation of market share models, elasticities also have drawbacks which may
be circumvented. Finally, the ultimate goal of measuring the impact of each advertising
channel is to optimize the advertising budget and the marketing mix. We show that
the Dorfman-Steiner theorem can be generalized for the multi-channel and competitive
case, but work still has to be done to integrate the carryover effect of advertising.
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Conclusion (version française)

L’objectif de cette thèse a été répondre d’un point de vue mathématique à la question
suivante : “Quel est l’impact des investissements publicitaires sur les parts de marché
des marques dans le marché automobile ?”.

A cause des contraintes qui sont propres aux données de parts, les modèles de ré-
gression classiques ne peuvent pas être utilisés directement pour modéliser des parts
de marché. Des modèles de parts de marché ont été développés dans la littérature
marketing, mais d’autres modèles statistiques peuvent également convenir pour ce type
d’applications. Dans le premier chapitre de cette thèse, quatre types de modèles adaptés
pour modéliser des parts de marché, ou des données de parts en général, sont présentés :
le modèle multinomial logit (MNL), le modèle d’interaction concurrentielle multiplicative
généralisé (GMCI), le modèle de Dirichlet (DIR) et le modèle de composition linéaire
(CODA). Tous ces modèles ont été réexprimés sous forme de modèles d’attraction pour
faciliter leur comparaison, et nous avons mis en évidence les points communs et les dif-
férences d’un point de vue théorique. Nous avons prouvé que le modèle GMCI peut
s’écrire de manière compositionnelle et qu’il peut être considéré comme un cas partic-
ulier du modèle CODA. Ce dernier se révèle être similaire au modèle d’attraction étendu
(“fully extended attraction model”) utilisé en marketing, mais avec plusieurs avantages :
par exemple, il permet de capturer la complexité de tous les effets croisés avec une rel-
ative parcimonie, grâce à la transformation log ratio isométrique (ILR) utilisée pour
l’estimation du modèle. Ces quatre types de modèles sont faciles à implémenter, notam-
ment via le logiciel R.

L’objectif du deuxième chapitre a été de combiner les atouts des modèles MCI et
CODA présentés dans le premier chapitre, de manière à améliorer l’interprétabilité du
modèle CODA et de perfectionner la méthode d’estimation du modèle MCI. Nous avons
montré qu’il est préférable d’estimer le modèle MCI en utilisant une transformation
ILR des données de parts, comme dans le modèle CODA, plutôt qu’une transformation
log ratio centrée (CLR) comme habituellement en marketing. Nous avons également
développé une spécification intermédiaire entre le modèle MCI et le modèle CODA, que
nous appelons modèle MCODA. Une procédure de sélection de modèle est proposée,
basée sur un test de Fisher adapté, où le modèle CODA est considéré comme le modèle
non contraint, à comparer aux modèles contraints que sont les modèles MCI et MCODA.
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Nous avons présenté un ensemble de mesures possibles, cohérentes entre elles, pour
l’interprétation de ces modèles : des effets marginaux, des élasticités et des rapports de
cotes. Nous sommes par exemple capables de calculer les élasticités directes et croisées
des parts de marché des marques à l’investissement publicitaire d’une certaine marque
dans un certain canal de communication. Ce genre d’interprétation est parfaitement
approprié pour répondre à la problématique qui est la nôtre, et il est cohérent avec les
dérivées dans le simplexe. Cependant, cette mesure dépend des observations (elle varie
au cours du temps dans notre cas) et nous devons nous assurer de sa stabilité pour
pouvoir l’utiliser convenablement.

Le troisième chapitre présente l’application finale et le modèle final. Il s’agit de
mesurer l’impact des investissements publicitaires de différents canaux de communication
(affichage, presse, radio et télévision) sur les parts de marché des marques du marché
automobile français, de 2005 à 2015. Nous nous sommes concentrés sur le segment
principal de ce marché, le segment B, et sur les trois leaders de ce segment : Citroën,
Peugeot et Renault, les autres marques étant agrégées ensemble.

Après avoir analysé de manière descriptive ce marché en termes de ventes et de
dépenses publicitaires pour les différentes marques, nous avons insisté sur l’importance
de prendre en compte la concurrence d’une part, et l’effet retard de la publicité d’autre
part. Ainsi, nous avons construit un modèle d’attraction multicanal avec effets retard,
appelé CODAAd pour “modèle CODA avec adstock”, l’adstock désignant la variable
cumulative de la publicité constituée des investissements publicitaires courants et d’une
fonction décroissante des investissements publicitaires passés. Ce modèle CODAAd est
une combinaison du modèle de Koyck (le modèle le plus usuel pour introduire des ef-
fets retard de la publicité) et du modèle CODA. Nous détaillons comment estimer les
paramètres de rétention de la publicité de cette fonction d’adstock pour les différents
canaux simultanément. Dans notre cas, les communications en affichage, presse et télévi-
sion ont un fort taux de rétention estimé correspondant à une demi-vie de la publicité
de 5,6 mois, ce qui semble réaliste pour un bien durable et coûteux comme l’automobile.
Au contraire, on estime que la publicité radio n’a qu’un impact ponctuel lors du mois
de sa diffusion pour le segment B du marché automobile français.

Plusieurs spécifications de modèles ont été comparées : avec ou sans variables explica-
tives (modèles constants), avec ou sans effets croisés, avec ou sans variables d’adstock,
en utilisant un modèle de la famille Dirichlet ou de la famille MCI. D’après les mesures
de qualité d’ajustement (sur la période 2005-2014) et de précision de la prédiction (sur
2015), le modèle CODAAd est considéré comme le meilleur modèle dans notre cas. Un
test de Fisher adapté a permis de valider que l’inclusion d’effets croisés améliore signi-
ficativement le modèle. Le diagnostic des résidus a confirmé que le modèle CODAAd a
de bonnes propriétés. Nous avons montré comment construire des ellipsoïdes de confi-
ance et de prédiction à un niveau de 95% dans l’espace des parts de marché (i.e. dans
le simplexe) et comment en déduire des intervalles de confiance et de prédiction pour
chaque part de marché séparément.

Pour interpréter l’impact de chaque canal de communication sur les parts de marché
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des marques, nous avons calculé les élasticités directes et croisées. Alors que les élastic-
ités directes relatives à la télévision sont positives pour toutes les marques considérées, ce
n’est pas le cas pour les autres canaux. Citroën a un profil différent des autres marques
considérées concernant l’impact publicitaire : le modèle suggère que Citroën peut aug-
menter sa part de marché en diminuant son budget publicitaire en affichage et en presse,
en faveur de la publicité radio et télévisée, alors que pour Peugeot, Renault et le groupe
des autres marques, il suggère d’augmenter le budget affichage, presse et télévision et de
réduire les dépenses en radio.

Enfin, le quatrième chapitre de cette thèse aborde les pistes de recherche qui perme-
ttraient d’améliorer la réponse à notre question initiale. Des modèles complémentaires
peuvent être considérés de manière à couvrir plus finement tout le marché automobile
français, et à prendre en compte sa segmentation. De plus, les hypothèses de distribution
des modèles de parts de marché proposés peuvent être remises en question et des distri-
butions alternatives peuvent être proposées si les distributions gaussienne ou de Dirichlet
semblent inadéquates. Concernant l’interprétation des modèles de parts de marché, les
élasticités ont quelques défauts qui pourraient être abordés. Pour finir, le but ultime de
la mesure de l’impact publicitaire de chaque canal est d’optimiser le budget publicitaire
et le mix marketing. Nous avons montré que le théorème de Dorfman et Steiner peut
être généralisé au cas compétitif et multicanal, mais il reste à intégrer les effets retard
de la publicité.
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Appendix A

Appendix

A.1 Appendix (Chapter 1)

A.1.1 MCI model: a particular case of the CODA model

Let us consider a CODA model where the dimensions of the dependent composition
and of the explanatory composition are such as DS = DX = 3, where the matrix of
coefficients in the ILR transformed space is equal to

B∗ =

[
b∗ 0
0 b∗

]
,

and where the balance matrix used for the ILR transformation is for example

V =




1√
6

1√
2

1√
6

− 1√
2

− 2√
6

0




Then, the matrix of the coefficients in the simplex space is

B = VB∗V′ =
1

3
b∗




2 −1 −1
−1 2 −1
−1 −1 2


 ,

such that the matrix B does verify the rows sum and columns sum equal to 0 requirement.
We can check that in this case we have B ⊡ X = b ⊙ X:

B ⊡ X = C(X
2
3

b
1 X

− 1
3

b
2 X

− 1
3

b
3 , X

− 1
3

b
1 X

2
3

b
2 X

− 1
3

b
3 , X

− 1
3

b
1 X

− 1
3

b
2 X

2
3

b
3 )′

= C(Xb
1(X1X2X3)− 1

3
b , Xb

2(X1X2X3)− 1
3

b , Xb
3(X1X2X3)− 1

3
b)′

= C(Xb
1 , Xb

2 , Xb
3)′ = b ⊙ X

Then, in this particular case, the CODA specification is equivalent to the MCI speci-
fication, meaning that the MCI model is a particular case of the CODA model. This
relationship holds for any ILR transformation.

123



A.1.2 Non scale invariance of the DMCI model

The differential MCI model (DMCI) used in the marketing literature (see for example
Cooper and Nakanishi [10], p.58) is not a particular case of the CODA model, contrary
to the MCI model, because it is not scale invariant. The DMCI is defined by:

Sjt =
ajX

bj

jt cZt
j ǫjt

∑D
m=1 amXbm

mt cZt
m ǫmt

with brand specific parameters bj . Thus, it corresponds to the following equation in the
simplex, for D = 3:

St = C(a1Xb1
1t cZt

1 , a2Xb2
2t cZt

2 , a3Xb3
3t cZt

3 )

but this function is not scale invariant. For example, let us consider that Xj , ∀j =
1, . . . , D is multiplied by 100 (e.g. thousands euro instead of euro). Then,

C(a1Xb1
1t cZt

1 , a2Xb2
2t cZt

2 , a3Xb3
3t cZt

3 ) 6= C(a1(100X1t)
b1cZt

1 , a2(100X2t)
b2cZt

2 , a3(100X3t)
b3cZt

3 )

because of the different bj parameters, whereas in the case of MCI and CODA models,
scale invariance holds respectively thanks to the closure and thanks to the zero sums of
columns and rows in the B matrix of parameters.

A.1.3 Treatment of zero observations

Zeros are often an issue with share data. For GMCI, Dirichlet and CODA models, zeros
cannot be tolerated because of the presence of the log transformation of shares in the
likelihood. Many solutions to this problem have been considered, depending on the
nature of zeros. Among the main ones, let us mention amalgamation of components
(Pawlowsky-Glahn et al. [56]), ratio-preserving zero replacement (Martin-Fernadez et
al. [41]) and conditional modeling for the CODA literature. Several transformations
have been proposed for this problem, see for example Smithson and Verkuilen [60] in the
case of the Dirichlet model. Wang et al. [69] and Scealy and Welsh [59] use a square
root transformation together with models on the hypersphere. Fry et al. [18] compare
their performance for the case of economic micro-data.

In order to fit the different models studied in this thesis, we have made the following
substitutions: when during a given period, for a given brand, the media expense (total
media in Chapter 1 and Chapter 2, or by channel in Chapter 3) is null, it is replaced by
1 euro (very small value in comparison to the usually huge advertising budgets). Indeed,
most of the market share models use log ratios and then do not admit null values for
compositional dependent and explanatory variables. Several imputation methods exist
for zero values as explained above, but in the case of structural zeros, or “real zeros”,
as in our case, the simplest way to replace zeros is to choose a small value. Note that
thanks to the amalgamation of "Others" brands and the adstock computation, there is
no zero problem in the final model of this thesis.
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A.1.4 Quality measures

We present here some goodness-of-fit measures adapted to the case where the dependent
variable is a vector of shares. Two categories of measures are detailed: the R2-type
measures which are based on the notion of explained variability, and the distance-type
measures which evaluate how far are the fitted values from the true values.

R2 based on total variability (R2
T ) The compositional data analysis literature pro-

poses a R2 directly adapted to compositional data (see Hijazi [28], Monti et al. [44]). It
uses the measure of the total variability of a set of compositions, based on the variance
of log ratios. In terms of interpretation, it is similar to the classical R2: it measures the
proportion of the total variation explained by the model:

R2
T =

totvar(Ŝ)

totvar(S)
where totvar(S) =

1

2D

D∑

j=1

D∑

l=1

var(log
Sj

Sl
)

This measure is always positive but is not guaranteed to be lower than 1. Note that
for the constant model (where the only explanatory variables are component-specific
intercepts), R2

T equals zero for all models because there is no variability in Ŝ.

R2 based on Aitchison distance (R2
A) Another R2 measure can be found in the

CODA literature, based on the Aitchison distance between the observed compositions
and the fitted compositions on one hand, and on the Aitchison distance between the ob-
served compositions and the center of the data (closed geometric means of components)
on the other hand (see Hijazi [28], Monti et al. [44]).

R2
A = 1 − CSSE

CSST

with CSST =
∑T

t=1 d2
A(St, g) ; CSSE =

∑T
t=1 d2

A(St, Ŝt). g is the closed vector of
geometric means of each component over observations t, and

dA(St, Ŝt) =

√√√√√
D∑

j=1

(
log

Sjt

g(Sj)
− log

Ŝjt

g(Ŝj)

)2

=

√√√√√ 1

D

D∑

j=1

D∑

l>j

(
log

Sjt

Slt
− log

Ŝjt

Ŝlt

)2

However, this R2 measure can be misleading because it has a large variability and it can
take negative values. Note that for the constant model, R2

A equals zero for CODA and
GMCI models because Ŝ = g(S).

Kullback-Leibler divergence (KL) The Kullback-Leibler divergence is used as a
goodness-of-fit measure or as a prediction accuracy measure (see Haaf et al. [26]). It is
a sum of the log ratios between the observed values and the fitted values of the shares,
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weighted by the observed value. The log ratio allows to take into account the relative
error, and the weight emphasizes the importance of large errors in large shares.

KL(S, Ŝ) =
T∑

t=1

D∑

j=1

log

(
Sjt

Ŝjt

)
Sjt

A compositional version of this measure is defined as follows (see Martin-Fernandez
et al. [42], and Palarea et al. [53]):

KLC(S, Ŝ) =
D

2

(
KL(0D, S ⊖ Ŝ) + KL(0D, Ŝ ⊖ S)

)
=

D

2

T∑

t=1

log
(
(St/Ŝt)(Ŝt/St)

)

where 0D = (1/D, . . . , 1/D) the compositional zero (center of the simplex SD), and

(St/Ŝt) the arithmetic mean of shares ratios

(
S1t

Ŝ1t
, . . . , SDt

ŜDt

)
for observation t.

The KLC measure is indeed well adapted to shares data because for the constant
model, this measure of divergence is lower for models which predict the geometric means
of the shares (CODA and GMCI models) than for models which predict the arithmetic
means (MNL and DIR models), and it is well known that the geometric mean is more
adapted to summarize compositional data than the arithmetic mean.

Other quality measures can be used for share data. See for example Kumar [34],
Quagrainie [58], Leeflang and Reuyl [36], Naert and Weverbergh [51], Ghosh et al. [20].
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A.2 Appendix (Chapter 2)

A.2.1 Marginal effect and elasticity calculus on ILR

We are going to demonstrate how to compute marginal effects of the volume X̌lt on the
dependent shares Sjt, and elasticities of Sjt relative to X̌lt, using the transformed and
the non-transformed compositional models. The demonstration is made for the CODA
model, with D = 3 components and an ILR transformation defined by the transformation
matrix

V =




√
2
3 0

− 1√
6

1√
2

− 1√
6

− 1√
2




Let us remind that X∗ = ilr(X) = V′ log(X), and X = ilr−1(X∗) = C(exp(VX∗)). We
define the following transformations:

T : (X̌1, X̌2, X̌3)′ → (X̌∗
1 , X̌∗

2 )′

F : (X̌∗
1 , X̌∗

2 )′ → (ES∗
1 , ES∗

2)′ = (a∗
1 + b∗

11X̌∗
1 + b∗

12X̌∗
2 , a∗

2 + b∗
21X̌∗

1 + b∗
22X̌∗

2 )′

T −1 : (ES∗
1 , ES∗

2)′ → (E⊕S1, E
⊕S2, E

⊕S3)′

We are going to use the following property of Jacobian matrices: J = JT −1JF JT , imply-
ing that:

ME(E⊕St, X̌t) =

[
∂E

⊕Sit

∂X̌jt

]

D,D

=

[
∂E

⊕Sit

∂ES∗
jt

]

D,D−1

[
∂ES∗

it

∂X̌∗
jt

]

D−1,D−1

[
∂X̌∗

it

∂X̌jt

]

D−1,D

and

E(E⊕St, X̌t) =

[
∂ log E

⊕Sit

∂ log X̌jt

]

D,D

=

[
1

Sit

]
⊙

[
∂E

⊕Sit

∂ES∗
jt

]

D,D−1

[
∂ES∗

it

∂X̌∗
jt

]

D−1,D−1

[
∂X̌∗

it

∂X̌jt

]

D−1,D

⊙
[
Xjt

]
(A.1)

where ⊙ denotes here the Hadamard product (term by term product)1,
[

1
Sit

]
is a D ×

D − 1 matrix with 1/Sit on the ith row and
[
Xjt

]
is a D − 1 × D matrix with Xjt on the

jth column.

The Jacobian of the model in coordinates JF

JF =




∂ES∗
1

∂X̌∗
1

∂ES∗
1

∂X̌∗
2

∂ES∗
2

∂X̌∗
1

∂ES∗
2

∂X̌∗
2


 =

[
b∗

11 b∗
12

b∗
21 b∗

22

]
= B∗

1Note that ⊙ in bold denote the Hadamard product whereas ⊙ denote the power transformation.
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The Jacobian of the transformation JT The ILR transformation associated to the
V balance matrix is defined as

(X̌∗
1 , X̌∗

2 )′ = T (X̌1, X̌2, X̌3)′

=

(√
2

3
log X̌1 − 1√

6
log X̌2 − 1√

6
log X̌3,

1√
2

log X̌2 − 1√
2

log X̌3

)′

Then, JT =




∂X̌∗
1

∂X̌1

∂X̌∗
1

∂X̌2

∂X̌∗
1

∂X̌3

∂X̌∗
2

∂X̌1

∂X̌∗
2

∂X̌2

∂X̌∗
2

∂X̌3


 = V′ ⊙

[
1

Xj

]
=



√

2
3

1
X1

− 1√
6

1
X2

− 1√
6

1
X3

0 1√
2

1
X2

− 1√
2

1
X3


 ,

where
[

1
Xj

]
is a D − 1 × D matrix with 1/Xj on the jth column.

The Jacobian of the inverse transformation JT −1 The inverse ILR transformation
is such as

(E⊕S1, E
⊕S2, E

⊕S3)′ = T −1(ES∗
1 , ES∗

2)′ = C(exp(VES∗)′)

= C
(

exp(ES∗
1)
√

2
3 , exp(ES∗

1)
− 1√

6 exp(ES∗
2)

1√
2 , exp(ES∗

1)
− 1√

6 exp(ES∗
2)

− 1√
2

)′

=

(
u1

DEN
,

u2

DEN
,

u3

DEN

)′
,

where

u1 = exp(ES∗
1)
√

2
3

u2 = exp(ES∗
1)

− 1√
6 exp(ES∗

2)
1√
2

u3 = exp(ES∗
1)

− 1√
6 exp(ES∗

2)
− 1√

2

DEN = u1 + u2 + u3

In order to compute the matrix JT −1 =




∂E
⊕S1

∂ES∗
1

∂E
⊕S1

∂ES∗
2

∂E
⊕S2

∂ES∗
1

∂E
⊕S2

∂ES∗
2

∂E
⊕S3

∂ES∗
1

∂E
⊕S3

∂ES∗
2


, we need to compute the

derivatives of the numerators of E
⊕S, u = (u1, u2, u3)′, with respect to ES∗:

(
∂u

∂ES∗

)
= V ⊙ u =




∂u1
∂ES∗

1
=
√

2
3u1

∂u1
∂ES∗

2
= 0

∂u2
∂ES∗

1
= − 1√

6
u2

∂u2
∂ES∗

2
= 1√

2
u2

∂u3
∂ES∗

1
= − 1√

6
u3

∂u3
∂ES∗

2
= − 1√

2
u3




Now we can compute the elements of JT −1 . For example, the first element of this
matrix is

∂E
⊕S1

∂ES∗
1

=
DEN

√
2
3u1 − u1[

√
2
3u1 − 1√

6
u2 − 1√

6
u3]

DEN2
=

3√
6
u1(u2 + u3)

DEN2

=
3√
6
E

⊕S1(1 − E
⊕S1),

128



using the fact that u1/DEN = E
⊕S1 and u2 + u3 = DEN − u1. Similar computations

give the results for the whole matrix:

JT −1 =




∂E
⊕S1

∂ES∗
1

∂E
⊕S1

∂ES∗
2

∂E
⊕S2

∂ES∗
1

∂E
⊕S2

∂ES∗
2

∂E
⊕S3

∂ES∗
1

∂E
⊕S3

∂ES∗
2


 =




3√
6
E

⊕S1(1 − E
⊕S1) 1√

2
E

⊕S1(E⊕S3 − E
⊕S2)

− 3√
6
E

⊕S1E
⊕S2

1√
2
E

⊕S2(E⊕S1 + 2E
⊕S3)

− 3√
6
E

⊕S1E
⊕S3 − 1√

2
E

⊕S3(E⊕S1 + 2E
⊕S2)




= [Sit] ⊙




3√
6
(1 − E

⊕S1) 1√
2
(E⊕S3 − E

⊕S2)

− 3√
6
E

⊕S1
1√
2
(E⊕S1 + 2E

⊕S3)

− 3√
6
E

⊕S1 − 1√
2
(E⊕S1 + 2E

⊕S2)


 = [Sit] ⊙ W∗

The Jacobian of the model in the simplex J The Jacobian matrix of the model
is the matrix of marginal effects of Xls on Sj .

J = JT −1JF JT =




∂S1

∂X̌1

∂S1

∂X̌2

∂S1

∂X̌3
∂S2

∂X̌1

∂S2

∂X̌2

∂S2

∂X̌3
∂S3

∂X̌1

∂S3

∂X̌2

∂S3

∂X̌3


ME(E⊕St, X̌t)

= [Sit] ⊙ W∗B∗V′
⊙

[
1/X̌j

]
= [Sit] ⊙ W∗V′B ⊙

[
1/X̌j

]
= [Sit] ⊙ WB ⊙

[
1/X̌j

]

= [Sit] ⊙




3√
6
(1 − E

⊕S1) 1√
2
(E⊕S3 − E

⊕S2)

− 3√
6
E

⊕S1
1√
2
(E⊕S1 + 2E

⊕S3)

− 3√
6
E

⊕S1 − 1√
2
(E⊕S1 + 2E

⊕S2)




[
b∗

11 b∗
12

b∗
21 b∗

22

]

√

2
3 − 1√

6
− 1√

6

0 1√
2

− 1√
2


⊙

[
1/X̌j

]

= [Sit] ⊙




1 − S1 −S2 −S3

−S1 1 − S2 −S3

−S1 −S2 1 − S3







b11 b12 b13

b21 b22 b23

b31 b32 b33


⊙

[
1/X̌j

]
,

where W∗V′ = W is a D, D matrix with 1 − Si in the diagonal and −Si in the row
i otherwise. According to equation (A.1), we deduce that the matrix of elasticities is
equal to

E(E⊕St, X̌t) =

[
1

Sit

]
⊙ ME(E⊕St, X̌t) ⊙

[
X̌j

]
= WB

Then, marginal effects and elasticities matrices are easy to compute using coefficients
in the simplex or coefficients in the transformed space, using the following equations:

ME(E⊕St, X̌t) = [Sit] ⊙ WB ⊙

[
1/X̌j

]
= [Sit] ⊙ WVB∗V′

⊙

[
1/X̌j

]

E(E⊕St, X̌t) = WB = WVB∗V′
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A.2.2 Derivatives in the simplex

We keep here the notations of chapter 13 in Pawlowsky-Glahn and Buccianti [54] except

that we denote
∂f

∂⊕x the part-C derivatives. Let f be a vector-valued scale-invariant
function from R

DX to R
k. Let f be the corresponding vector-valued function on SDX

induced by f(x) = f(w), where w is the vector of volumes corresponding to the vector
of shares x. We have f(w) = f(C(w)). For the sake of simplicity, let us assume that

DX = 3. We denote by w+ =
∑DX

i=1 wi the total volume. Taking the derivative of the
previous equation with respect to wj yields

∂f(w)

∂wj
=

3∑

i=1

∂f(x)

∂xi

∂xi

∂wj

Since ∂xi
∂wi

= w+−wi

w2
+

and ∂xi
∂wj

= −wi

w2
+

if i 6= j, we obtain

∂f(w)

∂wj
=

1

w2
+

[
w+

∂f(x)

∂xj
−

3∑

i=1

wi
∂f(x)

∂xi

]

=
1

w+

[
∂f(x)

∂xj
−

3∑

i=1

xi
∂f(x)

∂xi

]
(A.2)

Using equation (A.2) with wj replaced by log(wj) yields

∂f(w)

∂ log(wj)
= wj

∂f(w)

∂wj
=

wj

w+

[
∂f(x)

∂xj
−

3∑

i=1

xi
∂f(x)

∂xi

]
(A.3)

= xj

[
∂f(x)

∂xj
−

3∑

i=1

xi
∂f(x)

∂xi

]

Proposition 13.3.5 in Pawlowsky-Glahn and Buccianti [54] tells us that

∂f(x)

∂⊕xj
= xj

[
∂f(x)

∂xj
−

3∑

i=1

xi
∂f(x)

∂xi

]
(A.4)

Combining this equations (A.3) and (A.4) yields the following proposition, linking
the semi-log derivatives of f with the directional C-derivatives of f :

∂f(x)

∂⊕xj
=

∂f(w)

∂ log(wj)
(A.5)

Let us now consider the case of a function from the simplex SDX of R
DX to the

simplex SDS of R
DS . Rewriting equation (12.6) from chapter 12 (page 163) in [54] with

our present notations we have ∂⊕h(t)
∂t = C exp

(
∂ log h(t)

∂t

)
.

Combining this with equation (A.5), we can define the following simplicial derivatives

of h, denoted ∂⊕h(x)
∂⊕xj

as

∂⊕h(x)

∂⊕xj
= C

(
exp(

∂ log h(x)

∂⊕xj
)

)
= C

(
exp(

∂ log h(x)

∂ log wj
)

)
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A.2.3 Nullity of the sum of elasticities weighted by shares

We have to prove that
∑D

m=1 emltE
⊕Smt = 0. This is the necessary condition for new

shares S′
mt, resulting from a change in Xlt, to sum up to one:

∑D
m=1 S′

mt = 1 ⇔∑D
m=1 emltE

⊕Smt = 0.
Proof:

D∑

m=1

E
⊕Smt = 1 ⇔

D∑

m=1

∂E
⊕Smt

∂ log Xlt
= 0 ⇔

D∑

m=1

∂E
⊕Smt

∂ log Xlt

1

E⊕Smt
E

⊕Smt = 0 ⇔
D∑

m=1

emltE
⊕Smt = 0

A.2.4 Elasticities of shares ratios and odds ratios

Table A.1: Elasticity of ratios of market shares
Sjt

Sj′t
relative to media M̌l,t−1

MCI CODA

M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

e
(

Sjt

Sj′t
, M̌j,t−1

)
0.0267 SC/P 0.0258 SP/C 0.0127 SR/C 0.0424 SZ/C 0.0239

e
(

Sjt

Sj′t
, M̌j′,t−1

)
-0.0267 SC/R 0.0246 SP/R 0.0272 SR/P 0.0208 SZ/P 0.0325

e
(

Sjt

Sj′t
, M̌l,t−1

)∗
0 SC/Z 0.0211 SP/Z 0.0044 SR/Z 0.0535 SZ/R 0.0273

∗where l 6= j, j′ and SC/Z means SCitroën,t/SOthers,t for example.

Table A.2: Odds ratios of market shares for an increase of 10% in media M̌l,t−1

MCI CODA

For ∆ = 10% M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

OR
(

Sjt

Sj′t
, M̌j,t−1, ∆

)
1.0025 SC/P 1.0025 SP/C 1.0012 SR/C 1.0045 SZ/C 1.0022

OR
(

Sjt

Sj′t
, M̌j′,t−1, ∆

)
0.9975 SC/R 1.0024 SP/R 1.0030 SR/P 1.0026 SZ/P 1.0031

OR
(

Sjt

Sj′t
, M̌l,t−1, ∆

)∗
0 SC/Z 1.0020 SP/Z 1.0007 SR/Z 1.0054 SZ/R 1.0028

∗where l 6= j, j′ and SC/Z means SCitroën,t/SOthers,t for example.

Table A.3: Elasticity of ratios
Sjt

g(S−jt) relative to M̌l,t−1

MCI CODA

M̌C/g(−C) M̌P/g(−P ) M̌R/g(−R) M̌Z/g(−Z)

e
(

Sjt

g(S−jt) , M̌j,t−1

)
0.0267

SC/g(−C) 0.0239 -0.0022 -0.0176 -0.0040
SP/g(−P ) -0.0106 0.0148 0.0112 -0.0154

e
(

Sjt

g(S−jt) , M̌l,t−1

)∗
0

SR/g(−R) -0.0090 -0.0215 0.0389 -0.0085
SZ/g(−Z) -0.0043 0.0089 -0.0324 0.0279

∗where l 6= j.

SC/g(−C) means SCt

g(S−Ct)
, where g(S−Ct) is the geometric mean of others shares than Citroën.
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A.3 Appendix (Chapter 3)

A.3.1 Aligning media investments on registrations

The following table explains how the media investments are weighted in order to be
aligned on the registration time, such that the weighted media at time t are those
potentially seen by customers who purchase a new car for which the registration happens
at time t.

Table A.4: Weighted media

Registration time Purchase time % Sales registered in t Media Weighted Media

t

t 31% Mt WMt = 0.31Mt

t − 1 34% Mt−1 +0.34Mt−1

t − 2 21% Mt−2 +0.21Mt−2

t − 3 14% Mt−3 +0.14Mt−3

A.3.2 Media investments by brand
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Figure A.1: Media investments by brand and by channel (in euro)
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A.3.3 Relationship between explanatory variables and dependent vari-
able, in volume and in share
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Figure A.2: Correlations between sales and media (in volume and in share)
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Figure A.3: Correlations between sales and price (in volume and in share)
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A.3.4 R
2 values for different adstock parameters

The following graphs show the R2 values of MCI and CODA model, for the different
combinaisons (10000) of decay parameters λc of the different advertising channels. The
black horizontal line is just here to help the reader to visualize the parameters values
giving the higher R2 values.
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Figure A.4: R2 values of MCI model for different values of the adstock parameters of
channels
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Figure A.5: R2 values of CODA model for different values of the adstock parameters of
channels

A.3.5 Advertising half life in an attraction model with carryover effects

In a classical Koyck model as in equation (3.1), one can show easily that the half life of
the advertising is equal to log(1 − θ)/ log(λ) − 1 where θ = 1/2. Indeed, if we consider
the advertising investment Mt at time t, ignoring all other investments, we are looking
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for the period n such that a fraction θ of the long run impact of Mt occurs in n periods:

θMt = (1 − λ)
n∑

τ=0

λτ Mt

⇔ θ = (1 − λ)
n∑

τ=0

λτ = (1 − λn+1)

⇔ λn+1 = 1 − θ

⇔ (n + 1) log λ = log(1 − θ)

⇔ n =
log(1 − θ)

log λ
− 1

In the case of the attraction model with carryover effects, as in equations (3.2) and (3.4),
we can make the same demonstration based on the ILR transformed models of equations
(3.3) and (3.5) which are similar to equation (3.1). Thus, it gives exactly the same result.

A.3.6 ANOVA of CODAAd

Table A.5: Analysis of variance table for CODAAd model

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.99 3883.01 3 101 0.0000∗∗∗

ilr(OutdoorAd) 3 1.35 28.05 9 309 0.0000∗∗∗

ilr(PressAd) 3 0.69 10.18 9 309 0.0000∗∗∗

ilr(RadioAd) 3 0.35 4.55 9 309 0.0000∗∗∗

ilr(TVAd) 3 0.58 8.30 9 309 0.0000∗∗∗

ilr(Price) 3 0.23 2.91 9 309 0.0026∗∗∗

SI 1 0.04 1.30 3 101 0.2799
Residuals 103

A.3.7 Prediction intervals for market shares

In order to compute the confidence and prediction intervals of market shares for each
prediction time, we use the fact that the confidence and prediction regions of the ILR
coordinates are ellipsoids in dimension D − 1 = 3.

We denote S∗ = ilr(S) ∼ ND−1(µ∗, Σ∗) where Σ∗ is the covariance matrix of ILR
error terms (estimated by the empirical covariance matrix of ILR residuals), and S∗ =
V′ log S, where V is the balance matrix used for the ILR transformation.

The covariance matrix of the predicted ILR coordinates, Ŝ∗, is given by

V arP Ŝ∗ = V arX∗β̂∗ + V arǫ∗,

where V arX∗β̂∗ = X∗V arβ̂∗X∗′.
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The points S∗ in the confidence and prediction ellipsoids around the prediction Ŝ∗

are such that
H = (S∗ − Ŝ∗)′Σ̂P

∗−1
(S∗ − Ŝ∗)

follows a Hotelling distribution of parameters p = D − 1 and n − p with n the number
of observations (see Friendly et al. [17]), which is equivalent to follow a p(n−1)

n−p Fisher
distribution.

Thus, the ellipsoid of Ŝ∗ at a confidence level of 1 − α can be written

P((S∗ − Ŝ∗)′Σ̂P
∗−1

(S∗ − Ŝ∗) ≤ cα) = 1 − α,

where Σ̂P
∗−1

= V̂ arP Ŝ∗ for the prediction ellipsoid2 and cα verifies P(Fp,n−p ≤ n−p
p(n−1)cα) =

1 − α, meaning that cα is the 1 − α% quantile of Fp,n−p.

In order to visualize the prediction region in the simplex (which is the back trans-
formed ellipsoid from the ILR coordinates space), we are going to simulate points on the
ellipsoid, and back transform them into the simplex as follows.

We first rewrite the ellipsoid equation:

(S∗ − Ŝ∗)′Σ̂P
∗−1

(S∗ − Ŝ∗) = cα

⇔ (Σ̂P
∗−1/2

(S∗ − Ŝ∗))′(Σ̂P
∗−1/2

(S∗ − Ŝ∗)) = cα

⇔ ||Σ̂P
∗−1/2

(S∗ − Ŝ∗)||2E = cα (A.6)

It is equivalent to say that Σ̂P
∗−1/2

S∗ belongs to an hypersphere of center Σ̂P
∗−1/2

Ŝ∗

and radius
√

cα (where the “E” means Euclidean norm).
If D − 1 = 3, the points U = (sin(Φ)cos(Θ), sin(Φ)sin(Θ), cos(Φ))′, where Φ and

Θ are independently uniformly distributed in [0, 2π], are uniformly distributed on the
sphere of center 0 and radius 1. Thus, the points S∗ such that:

Σ̂P
∗−1/2

S∗ = Σ̂P
∗−1/2

Ŝ∗ +
√

cαU ⇔ S∗ = Ŝ∗ +
√

cαΣ̂P
∗1/2

U

are distributed on the ellipsoid.
In order to come back to the simplex, we use the inverse ILR transformation. The

points ilr−1(S∗) are distributed on the prediction region in the simplex SD. Equation
(A.6) is equivalent to the following equation:

||ilr−1(Σ̂P
∗−1/2

S∗) ⊖ ilr−1(Σ̂P
∗−1/2

Ŝ∗)||2A = cα, (A.7)

where the “A” stands for the Aitchison norm here. Then, we can say that the ellipsoid
for ILR coordinates corresponds to an ellipsoid in the simplex, because equation (A.7)
can also be written as:

||Σ̂P
−1/2

⊡ (S ⊖ Ŝ)||2A = cα

2Note that to built the confidence ellipsoid for the mean share, we take Σ̂P

∗−1
= V̂ arǫ∗.
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Indeed, this is true because

ilr−1(Σ̂P
∗−1/2

S∗) = C(exp VΣ̂P
∗−1/2

S∗) = C(exp VΣ̂P
∗−1/2

V′ log S)

= C(exp Σ̂P
−1/2

log S) = Σ̂P
−1/2

⊡ S,

where Σ̂P
−1/2

= VΣ̂P
∗−1/2

V′ is a D × D matrix.

In our case, we generate 10000 couples of angles (Φ, Θ) and we compute the 10000
corresponding S∗. Applying the ILR inverse transformation to these S∗ allows us to
represent the image of this ellipsoid in the simplex SD, for each prediction time t (see
Figure 3.10).
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Resume

Resume (English version)

The aim of this CIFRE thesis, realized with the market research institute BVA in collaboration
with the automobile manufacturer Renault, is to build a model in order to measure the impact
of media investments of several channels (television, outdoor, etc.) on the brands’ market shares,
taking into account the competition et the potential cross effects and synergies between brands,
as well as controlling for average price and regulatory context (scrapping incentive).

Market share models have been developed in the marketing literature, especially the GMCI
model (generalized multiplicative competitive interaction model), inspired from the aggregated
conditional MNL (multinomial logit) model. In the statistical literature, the compositional data
analysis (CODA) allows to analyze share data respecting their nature (a vector of D shares
subject to the unit sum constraint is a composition and belongs to the dimension D simplex
space). Regression models for dependent and explanatory compositional variables exist but are
rarely used in practice. Finally, the Dirichlet covariate model allows to model a simplex valued
dependent variable.

In the first chapter, these different models avec compared from a theoretical and empirical
point of view. It is shown that all of them can be expressed with a similar formulation using
the notions of attraction and of simplicial expected value. The GMCI model appears to be a
particular case of the CODA model, such that these two specifications can be combined into a
unique model. The complexity of Dirichlet and CODA models turns out to be necessary in order
to capture the diversity of competitive relationships.

In the second chapter, emphasis is given to the interpretation of models which is not very
well developed in the CODA literature. Different types of interpretations are presented, but it
is demonstrated that the calculation of the elasticities of market shares relative to media invest-
ments in particularly relevant from a mathematical point of view and from a practical perspective.
Indeed, we prove that elasticities are consistent with C-derivatives of simplex valued functions
of another simplex. Moreover, these elasticities can be easily interpreted by car manufacturers
and can be used for advertising budgeting optimization (Dorfman-Steiner theorem).

In the third chapter, a practical application to the B segment of the French automobile
market is presented for the purpose of measuring the impact of the different advertising channels
on the market shares of the three leaders of this segment and of the group of other brands, taking
into account the lagged effects of advertising (adstock function) and the competitive cross effects.
The media investments elasticity of the brand market share varies from one brand to another
and from one channel to another. Synergies between some brands can be highlighted.

The last chapter opens the discussion on different directions to be explored in order to

improve the proposed model and to provide further answers to the considered issue.
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Résumé (version française)

L’objectif de cette thèse CIFRE, réalisée avec la société d’études et conseil BVA et en collabora-
tion avec le constructeur automobile Renault, est de construire un modèle permettant de mesurer
l’impact des investissements media à travers différents canaux (télévision, affichage, etc.) sur les
parts de marché de différentes marques, en prenant en compte la concurrence et les potentiels
effets croisés et synergies entre ces marques, ainsi qu’en contrôlant pour le prix et le contexte
réglementaire (i.e. prime à la casse).

Des modèles de parts de marchés ont été développés dans la littérature marketing, notam-
ment le modèle GMCI (generalized multiplicative competitive interaction model), inspiré du
modèle MNL (multinomial logit) conditionnel agrégé. Dans la littérature statistique, l’analyse
des données de composition (CODA) permet d’étudier des données de parts en respectant leur
nature (un vecteur de D parts soumises à la contrainte de somme unitaire est une composition et
appartient au simplexe de dimension D). Des modèles de régression pour variables dépendante
et explicatives compositionnelles existent mais sont peu utilisés en pratique. Enfin, le modèle de
régression de Dirichlet permet de modéliser une variable dépendante appartenant au simplexe.

Dans le premier chapitre, ces différents modèles sont comparés théoriquement et empirique-
ment. On montre notamment qu’ils peuvent tous être exprimés sous une forme similaire en
utilisant les notions d’attraction et d’espérance dans le simplexe. Le modèle GMCI se trouve
être un cas particulier du modèle CODA, de telle sorte que ces deux spécifications peuvent être
combinées au sein d’un même modèle. La complexité des modèles Dirichlet et CODA se révèle
être nécessaire pour capturer la diversité des relations de concurrence.

Dans le deuxième chapitre, l’accent est mis sur l’interprétation, peu développée dans la
littérature CODA. Différents types d’interprétation sont présentés, mais nous montrons que le
calcul d’élasticités des parts de marché aux investissements media est particulièrement pertinent
d’un point de vue mathématique et applicatif. En effet, nous prouvons que les élasticités sont
cohérentes avec les C-dérivées de fonctions d’un simplexe à valeurs dans un autre simplexe.
De plus, ces élasticités peuvent être facilement interprétées par les constructeurs automobiles
et peuvent être utilisées pour l’optimisation de la budgétisation de la publicité (théorème de
Dorfman et Steiner).

Dans le troisième chapitre, une application concrète au segment B du marché automobile
français est présentée pour mesurer l’impact des différents canaux publicitaires sur les parts de
marché des trois leaders du segment et du groupe des autres marques, en tenant compte des effets
retards de la publicité (fonction d’adstock) et des effets croisés de la concurrence.L’élasticité des
parts de marché des différentes marques aux investissements media est variable d’une marque à
l’autre et d’un canal à l’autre. Des relations de synergies entre certaines marques peuvent être
mises en lumière.

Dans un dernier chapitre, nous ouvrons sur les pistes à explorer pour améliorer le modèle

proposé et apporter des réponses complémentaires à notre problématique.
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Impact of media investments on brands’ market shares: a
compositional data analysis approach

The aim of this CIFRE thesis, realized with the market research institute BVA in col-
laboration with the automobile manufacturer Renault, is to build a model in order to
measure the impact of media investments of several channels (television, outdoor, etc.)
on the brands’ market shares, taking into account the competition and the potential cross
effects and synergies between brands, as well as accounting for the price, the regulatory
context (scrapping incentive), and the lagged effects of advertising.

We have drawn from marketing and statistical literatures to develop, compare and
interpret several models which respect the unit sum constraint of market shares. A
practical application to the French automobile market is presented, for which it is shown
that brands’ market shares are more or less sensitive to advertising investments made in
each channel, and that synergies between brands exist.

Keywords: market shares, compositional data, automobile market, media
investments, elasticities.

Impact des investissements media sur les parts de marché
des marques : une approche par analyse des données de
composition

L’objectif de cette thèse CIFRE, réalisée avec la société d’études de marché BVA en
collaboration avec le constructeur automobile Renault, est de mesurer l’impact des in-
vestissements media pour différents canaux (télévision, affichage, etc.) sur les parts de
marché de différentes marques, en prenant en compte la concurrence et les potentiels
effets croisés et synergies entre ces marques, ainsi qu’en tenant compte du prix des
véhicules, du contexte réglementaire (i.e. prime à la casse), et des effets retard de la
publicité.

Nous avons puisé dans les littératures marketing et statistique pour développer, com-
parer et interpréter plusieurs modèles qui respectent la contrainte de somme unitaire des
parts de marché. Une application concrète au marché automobile français est présentée,
pour laquelle nous montrons que les parts de marché des marques sont plus ou moins
sensibles aux investissements publicitaires consentis dans chaque canal, et qu’il existe de
synergies entre certaines marques.

Mots-clefs: part de marché, données de composition, marché automobile,
investissements media, élasticités.


