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Abstract

Aggregate fluctuations display both persistence and darapetlations in response to transitory
shocks. The standard Real Business Cycle model cannot exipésie patterns, because its stable
eigenvalues are positive and real. We demonstrate thantbae! with labor adjustment costs can
yield complex eigenvalues. However, numerical experimenggest that the model cannot display
distinguishable damped oscillations of aggregate vaggbl

Keywords : Labor adjustment costs, Business cycle model, Complex eaigzw.

J.E.L. classification : C12, C52

*Address: Gremaq, Univergitde Toulouse |, Manufacture des Tabacatident F, 2meétage, 21 Ake de Bri-
enne, 31 000 Toulouse, France. e-mail: patrick.feve@tisét.fr. We thank P. Beaudry, J.P. Benassy, F. Collard, P.
Flaschel, P.Y. iénin, T. Kollintzas, F. Langot, F. Portier, W. Zemmler, as@sate editor and an anonymous referee
for fruitful remarks and comments. An earlier version otpaper has benefited from discussions at the workshop
Human Capital Mobility(Louvain-la-Neuve, sept. 1996), T2M Conference (Montrezy 1999), SED conference
(Alghero ,june 1999), ESEM99 (Santiago, august 1999), GEA&minar (Angers, december 1999) aRfticrostruc-
tures, Macrodynamics and Macroeconometriegdrkshop (Bielefeld, january 2000). The usual disclainaggly.

1



Introduction

Aggregate output fluctuations and related measures of eticraxtivity display both persistence
and damped oscillations in response to transitory shocks. AEariadis, Bullard and Ohanian
[2001], this pattern appears to be a robust empirical fintlimgugh both the roots of simple au-
toregressive and vector autoregressive representatfaggoegate variables. The standard Real
Business Cycle (RBC) model, in the sense of the one sector optmmatilgymodel governed by a
technological shock, cannot explain these stylized fatkss failure of the standard RBC model
partly results in its inability to display persistent dardpescillations, These oscillations are char-
acterized in any dynamic model by complex eigenvalues veithd imaginary part compared to
the real one. As pointed out by Azariadis et al. [2001], baddmodels in accordance with these

business cycle facts is actually sensible.

This paper shows that the standard RBC model with a slight neatiin is qualitatively able to
produce complex eigenvalues. The extension concerns lbloe ilaput, which is now considered
as a quasi—fixed factor. The standard model abstracts frgpiogment lags. But, as suggested by
0Oi [1962], labor displays smooth adjustments along thertass cycle, usually modelled by labor
adjustment costs. For small costs, the model behaves asdasteRBC model. Conversely, large
costs imply a labor almost constant over time. Complex eiglei@s occur if changes in labor input
are costly and the intertemporal substitution of consuomgs sufficiently large. Labor adjustment
costs implies persistent deviations of employment, wieehégh intertemporal substitution of con-
sumption induces high sensitivity of saving to change inré@ interest rate. Following a positive
shock that increases employment, the labor input will gdklsowly to its steady state as it is
costly to adjust. As capital will gradually increases, thalrnnterest rate remains above its long
run value. After some periods, the increase in capital iegpthat the real interest rate will be
below its long run value. When intertemporal substitutiorcofsumption is sufficiently large,
household will reduce strongly their saving and the reariedt rate will increase again and move

above its long run value. Aggregate variables can thus fatetaround the steady state.

The paper also shows that sufficiently conditions for comgligenvalues are satisfied for most
preferences specifications typically used in the RBC liteeat8ome numerical experiments illus-
trate this property but they suggest that the imaginaryngamtins insufficiently large compared to

the real one. This means that the response of aggregatélear@annot display any distinguish-



able oscillations when they go back to their steady stateegalMoreover, we show that the RBC
model with labor adjustment cost can display persisteneseNheless, we question the empirical

relevance of the model, as it implies an excess smoothnessgibyment.

The paper is organized as follows. A first section presertgtbdel economy. Section 2 character-
izes the local dynamic properties of the model and discubsesonditions under which complex
eigenvalues occur. Section 3 presents some numericaligges. A last section offers some

concluding remarks. Proofs are given in appendix.

1 The model

There exists a single good both consumed and invested. Tim@ey is populated by an infinite
number of identical agents with infinite lifetime. Their feeences are described by a time sepa-
rable utility function in consumption and leisutéC;, L;). Time endowment is normalized to one

and hours worked are given by, = 1 — L,. The utility function satisfies the following conditions:

Assumption: (i) The utility functionu(.): R* x]0, 1[— R* is strictly increasing and concave in
CandL = 1 — N, (ii) verifies the additional restrictiong- u; — ur,uc > 0 anducruc —

uccur > 0 with at least one strict inequality arfii) satisfies the Inada conditions.

Condition(i) is rather standard, whereas condit{@h imposes that consumption and leisure are
normal goods. We will see later that this restriction is calrfor the saddle path property. Because
the approximate solution is obtained through a log—liresdion around the steady state, it is useful

to express previous conditions in terms of elasticitiedefrharginal utilities:

Eco = Cuce/uc écr = Lucr/uc érc = Cuer/ur & = Lupp/ug,

Using these elasticities, the conditiahl§ecomegccérr — Eorére > 0 and i) o — & > 0
andé o — &cc > 0 with at least one strict inequality. The conditiGin) also insures the existence
and uniqueness of the steady state.

The technology is described by a Cobb—Douglas productioctimmwith constant returns to scale
Y, = ZK}! “N/ (1)

with 0 < a < 1. K;, N, Y, andZ > 0 denote the capital stock, the labor input, the raw product

and the level of the technology, respectively. Capital aadation is described by the following
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law of motion
Kt+1 - (1 - 5)Kt + ]t (2)

whereé €]0, 1| denotes the depreciation rate ahds the flow of investments. The employment
evolves according to
Nt+1 = (1 — V)Nt + Ht (3)

wherev €]0, 1] is the quit rate and{; represents the flow of hirings. Productive employment at
timet+1is hired at time, implying some labor hoarding phenomenon (see Burnsidégilzaum
and Rebelo [1993] and Fairise and Langot [1994]abor is a quasi-fixed factor. The adjustment

costs function follows a standard quadratic specification:

G(Hy, Ny) = gw

with b > 0. This function satisfies convexity and is homogeneous ofakegne. The decision
rule on hirings is thus independent of the size of the econanalythe hiring rate only depends on
the marginal value of labor. At the steady state, this fuarciatisfiesj(.) = Gu(.) = Gn(.) =0
andGyy(.) = b/N*, whereN* denotes the steady state employment. This implies thatelaes
state of the model does not differ from the one of the standawdel. Adjustment costs only
affect the convergence path toward the steady state. Tihigsalis to concentrate on the dynamic
implications of labor adjustment costs.

The aggregate resources constraint is given by :
ZF(Kt, Nt) - Q(Ht, Nt) — Ct + [t (4)

The central planer solves the following intertemporal peab:
max Y Fu(Cri, 1 — Nigs)
0

I,Hy 4
1=

subject to the period—by—period aggregate resourcesreons4), the laws of motion on capital
(2) and employment (3) and fat,,, N, given and strictly positive. The parameteeE|0, 1| denotes

the constant discount factor. The first order conditions are

pe = uc(t) ()

INote that our model departs from Burnside et al. [1993] ariddéaand Langot [1994], as we do not introduce
variable intensity of work effort. In our model, firms can rmaljust their inputs, whereas firms can adjust the intensive
margin in Burnside et al. [1993] and Fairise and Langot []1994
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A = uc(t)Gu(t) (6)
pe = Bluc(t+1)ZFk(t+1)+ (1 —90)pe1} (7)

M = [Bluct+D)(ZFn({t+1)—Gn(t+1) —ur(t+ 1)+ (1 —v)\p1} (8)

wherep; and)\; are the implicit prices of capital and labor, respectivélyese two implicit prices
satisfy usual terminal conditions. The first order condisig5)—(8), the aggregate resources con-

straint (4) and the laws of motion (2) and (3) define the optipagh of the economy.

2 Dynamic properties

This section establishes the dynamic properties of the matfe report in appendix A the lin-
earized model, its transformation and some general resiNith our specification of the labor
adjustment costs, the steady state corresponds exadtly éme of the standard RBC model. There
exists an unique steady staie, K*, H*, N*, p*, \*, C*) that satisfies{* — 0 K* = 0, H* —vN* =

0, B[ZFx(K*,N*) +1— 0] — 1 = 0, uc(C*,1 — N*)ZFn(K*, N*) — ur(C*,1 — N*) = 0,

p* =uc(C*, 1= N*), \* =0andZF(K*, N*) — C* — I* = 0. Given these steady state values,
we then study the dynamic properties of the log—linear versif (2)—(8). We first establish the

following property:

Proposition 1 If the assumptions (i) and (ii) on the utility function hotten there exists a unique

convergence path toward the steady state.

Proposition 1 shows that the introduction of labor adjusthrests does not modify the saddle
path property of the standard RBC model. Note that our assangtin the utility functioni.e.
consumption and leisure are normal goods, are sufficiergtedbbsh this result. Compared to the
standard RBC model, we only add an additional restrictionitigtres the saddle path property,
that is the convexity of the adjustment costs functibn>( 0). Given this result, we now study
in details other interesting dynamic properties of the nhodibe following proposition raises the

possibility for complex eigenvalues.
Proposition 2 If the preferences satisfy the conditions :

Sco > —1 9)
§co —&ro < —1 (10)

2More details are avialable from the authors upon request.
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then, there exists an intervé, b], with 0 < b < b < oo, such that eigenvalues are (i) complex if

b €]b, b and (ii) real if b €]0, b] U [b, +-oc.

The existence of a complex eigenvalues imposes some tests©on preferences. The elasticity
¢cc appears in both conditions. This shows that the specificatiohe utility function matters for
the dynamic property of the model economy. Conversely, ndrkeostructural parameters that

characterize the technology and the accumulation procgsssdan the sufficient conditions.

The intuition of such a dynamic property is the following. ppose that a positive shock hits
employment above its steady state value. When labor adjasttosts are zero, the economy will
go back quickly to its steady state as changes in labor ingut@stless. Conversely, when these
changes are costly, employment will go back slowly to itedjestate. As capital will gradually
adjust, the real interest rate increases. After some pgribe increase in capital will critically
lower the real interest rate below its long run value. Wheerteimporal substitution effect in
consumption is sufficiently large, household will have mies to reduce saving. This decrease
in saving will create an upward pressure on the real inteatst The real interest rate (and other

aggregate variables) can thus fluctuate around its steati\stlue.

Few parameters enter in the sufficient conditions (9) anyl (Léllows that complex eigenvalues

can therefore be easily checked. The following examplastiiates the proposition.

Example 1 Consider the isoelastic utility function:

1
U(Ct, 1— Nt) = 1

?[Ct@(l — N

with 6 €]0, 1[ ando €]0, 1[U]1, co]. Itis for instance the one used by Kydland and Prescott [JL982
We havetoe = 0(1—0)—1andécc — & = —1. Condition (10) is always satisfied and condition
(9) hold if o < 1. The standard case of logarithmic and separable utilitgtion satisfies these

conditions. In this case;, = 1, {cc = —1 and{; ¢ = 0.

Example 2 Consider the utility function with indivisible labor suppbyoposed by Hansen [1985]
and Rogerson [1988]:
U<Ct, 1-— Nt> = lOg(Ct) + 0(1 — Nt)



We directly deduce thal.c = —1 andécc — . = —1 and conditions (9) and (10) are satisfied.

Example 3 Consider the class of utility functions that produces statior supply:

N1+¢
log | C, — !
og( t ¢01+¢>

with v, vy > 0. This function, used by Hercowitz and Sampson [1991] amadhgre, implies
that the income effect on leisure is zero. It follows that — ., = v L*/(1 — L*) > 0 and

oo — &o = 0. The condition (10) is thus not verified.

In example 1, the condition (9) is not verifieddf> 1. Nevertheless, a less restrictive condition
can be obtained from the very plausible assumption thataberIshare exceeds the depreciation

rate of the capital.

Proposition 3 If the preferences satisfy the conditions :

§oc > —(1+a) (11)

Scc —&e < —1 (12)

and ifa > ¢, then, there exists an intervéll, b, with 0 < b < b < oo, such that the eigenvalues

are (i) complex i €]b, b[ and (ii) real if b €]0,b] U [b, +o0].

We immediately see that the condition (11) is less restacdthan the condition (9). In example
1, wheno = 1.5, 0 = 1/3, a = 0.64 andd = 0.025 as in Kydland and Prescott [1982], complex
eigenvalues can occur. The condition (12) in propositios &iactly the same than condition (10)

in proposition 2. It follows that example 3 does not verifynddion (12).
3 Numerical experiments

3.1 Sensitivity Analysis

Following example 2, we choose a utility function with inidible labor supply. From our as-
sumptions on the structure of the labor adjustment costsstady state of the model is the same

than the one of the standard RBC model. This allows to set thesalf the structural parameters

3A similar exercice have been performed with isoelastidtytflinction. The results are quite similar, despite a
lower imaginary part of the eigenvalues.



in accordance to previous calibrations and thus to useyfteel parameteb of labor adjustment

costs.

Table 1. Values of the structural parameters

Technology Preferences
! 0.640 6] 0.99
o 0.025 N~ 0.40
v 0.015

The parametetr corresponds to a labor share@f% at steady state. The parametgis set in
order to imply a4% annual subjective discount rate. The depreciationfaseequal t02.5% per
guarter. The quit rate is fixed in order to roughly match the average destructioa irathe US
manufacturing sector over the period 1972-199me time spent to productive activity is equal
to 40%. The value of is thus deduced from the steady state conditions. Finkyparameter of
the production functior¥ is set to scale the adjustment costs parameter. So, in wWitat/$o the
value ofb must be interpreted with respect to the scale paranittédl these values are reported

in table 1.

Figure 1 presents the modulus, the real part and the imagoaat of the two eigenvalues with re-
spect to the adjustment costs paramétéiorb small, the two eigenvalues are real. iAscreases,
the modulus of these two eigenvalues becomes closer anaddmeplex conjugate. However, for

b large (not reported in figure 1), the imaginary part is zerodigappointed quantitative result
concerns the size of the imaginary part, as it remains ircseiffily large — it never exceeds)25

— compared to the real part — it is close to 0.95—. This resgjgssts the model cannot generate
damped oscillations in response to transitory shoicksthe response of aggregate variables does

not display any distinguishable oscillations when they goldao their steady state values.

We further explore the quantitative effects of other sualt parameters changes on aggregate
dynamics. We compute the imaginary part of the eigenvaltle kspect to the adjustment costs
parameteb and a selected structural parameter. We keep a utility ioméhear in leisure, but we
consider that the elasticityt~ can differ from minus unity. The four structural parametaes the

steady state labor shane the depreciation rat&, the discount factof and the curvature of the

4If N, should be interpreted as hours rather than employmentali@ation ofv should be adjusted accordingly.
Nevertheless, our numerical results has appeared ungensitvarious values of this parameter.
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utility function with respect to consumption = —{c¢. The range forv € [0.58;0.75] reflects

on how proprietors’ income is treateicg. the share of total output paid to capital varies between
0.25 and 0.42. The range fére [0.005;0.040] is selected because it is commonly set to 0.025
and previous estimates lie within the selected range. Tingeréor 3 € [0.970;0.999] implies the
annual subjective discount rate lies within [0.4%;10.3%ihally, the range for the curvature of
the utility function [0.5; 3] roughly corresponds to previous estimates. In each cagepbthe
structural parameter varies within the range, whereasttier®are fixed to their reference values
(see table 1). We report in figure 2 the contours of the 3-Dtianahat express the imaginary
part of the eigenvalue as a function otind{«, J, 3,0}. The results, reported in Figure 2, are
again disappointed as the imaginary part remains too smadpared to the real part. Indeed, the
real part in these experiments (not reported here) alwaysegls).95, whereas the imaginary part

never exceed8.035.

3.2 Transitional Dynamics

The previous quantitative experiments suggest that theshwashnot produce damped oscillations.
Nevertheless, labor adjustment costs allows to generagesfent responses of aggregate variables.
We report in figure 3 the transitional dynamics of capitddola consumption and investment when
employment is above its steady state value. We considerasesc In the first one, labor costs are
zero ¢ = 0). In the second one, the adjustment cost paranhétechosen with the intervab, b].
When labor adjustment costs are zero, employment quicklg ¢paek to its long run value. It
follows that the economy does not display any persistencaw&esely, when changes in labor
input are costly, the labor input will adjust slowly. Empfognt is thus persistently above its
steady state. These dynamic properties of employment fiéltizall the other aggregate variables.
The response of capital stock and consumption is hump—dhape

This experiment suggests that labor adjustment cost caroieghe dynamic properties of the
RBC model. It is worth noting that we conduct this experimenewlthe model exhibits com-
plex eigenvalues. Nevertheless, as already mentionedef§jillustrates the lack of significant

oscillations.
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3.3 Business Cycle Properties

The previous experiments suggest that labor adjustmets allsws to generate persistent fluctu-
ations in the RBC model. However, large labor adjustment desid to smooth the response of
employment and thus other aggregate variables. We nowadh#pe business cycle properties of
the model. We consider again two casks: 0 andb < [b,b]. We simulate the model when the
economy is only perturbed by a stationary technology shéskusual, the autoregressive param-
eter of this shock is equal t@95. The standard error of the innovation is set in order to match
the volatility of the cyclical component of the US Gross Datie Product. We then inspect
the model’s business cycle properties regarding othereggde variables. In table 2, we report
various moments on these variables. Moments on US data acameking and Rebelo [1999].
The columns “Model (1)” and “Model (2)” report the businegsle properties of the RBC model
without and with labor adjustment costs, respectively.

The relative volatility of consumptiorns(/o,) and investment;/o,) are very similar in the two

models. Note that they implies both an excess smoothnessnglimption. The main departure

5This cyclical component is obtained from the Hodrick—Pogisiilter.
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Table 2: Selected Moments

US Data Model (1) Model (2)

oy 1.81 1.81 1.81
oo, 0.74 0.28 0.33
gifoy 2.93 3.25 3.03
on/o,  0.99 0.84 0.19
P 0.88 0.68 0.93

Note: US Data: 1947.1-1996.4 (see King and Rebelo [19999de(1): without adjustment costs; Model (2): with
adjustment costs.

between the two models concerns the volatility of employngetyo,). The model without adjust-
ment cost implies a volatility of labor input close (but layt the one of the US data. Conversely,
labor adjustment costs dramatically reduces the volabliemployment. This constitutes the sec-
ond disappointed result of our model. However, labor adjesit costs improve the ability of the
model to replicate the observed persistence of employmenthe first order serial correlation of
labor (p,,). These two features illustrate the trade—off between aesxsmoothness of employ-
ment and its persistence. This point has been already stiégsCogley and Nason [1995]. They
shown that a RBC model with labor adjustment costs accounefalorrelation, but it fails to

replicate observed impulse—response functions to a téafeshock.

4 Concluding remarks

This paper studies the ability of a standard RBC model with dautpustment costs to produce
complex eigenvalues. The paper establishes sufficientitbmmsl for complex eigenvalues and
illustrates these properties using numerical experimeéttsvever, the paper shows that labor ad-
justment costs can not display distinguishable aggregatidlations and imply excess smoothness
of employment. Further research must therefore explorgyhamic and quantitative properties
of equilibrium models when labor adjustment costs are castbwith suitable assumptions on

good and labor market arrangements.

12



Appendix

A Notations and the log-linearized model

This appendix derives the main dynamic properties of our model economyir$¥/introduce some nota-
tions: (1) elasticities of the adjustment cost functionsiyy = H*Gyp/ZFn, wgn = N*Gun/ZFy,
WNH = H*QNH/ZFN andwyy = N*QNN/ZFN with NGgny + HGrg = 0; (2) elasticities of the
marginal utilities {oc = CHucc /uc, éor = L*ucr/uc, o = CHucr/urp and{ry, = L*upr/ur; (3)
elasticity of the marginal product of capitgh = —a(1—3(1—9)); (4) consumption sharg- = C*/Y™* =
(1—B(1—ad))(1—pB(1—25))"1; (5)investment share; =1 — 5. = ((1 — a)dB)(1 — B(1 —5))~L; (6)
others:¢p = 1/0,v¢ = 1/v. Letz denotes the state variablds (V). After some algebra, the log—linearized
dynamical system formed by (2)—(8) takes the following form :

AZpio +TZy + 7 1A T =0 (A.1)

where the elements of the matricAsandI” are:

011 = [; [i—sclfcc} o12 =0 021 = [; [5%(500 - fLC)] 09 = [; ;ﬁ WYwrn]
Y1 = I; [m( + <1 + %) i—:fcc} T2 = [; {—HK + %(&JC - SLC)]
Yoo = I; [g—fl <—1/JUJHH — %wWHH> + K + g—i <%(§CC —&e) + 1 iVN* (L — ‘§CL)>}

For practical reasons, we transform equation (A.1) in a canonical by the mean of a diagonalization.
We follow an idea of Magill [1979] adapted by Cassing and Kollintzas [1891he case of a discrete time
model. Such a method allows to highlight the symmetric and asymmetric characteofdiies dynamic

system. We define the variahlg such that:; = (6*1/2)t w; and (A.1) becomes :
AWyyo + Y200 + A, =0 (A.2)

Let us define the matrice$ = (1/2)(A + A’) andB = (1/2)(A — A’). A is a symmetric matrix whereas
B is a skew matrix. We have the following useful lemma:

Lemma 1 Leta; anda, the real eigenvalues of the matrig!/?T")~!(— A) andt¢, andt, the associated
eigenvectors. The matrik = [ ¢; ¢ | can be choosen such that (—8Y20)T = I, and T'AT =
diag(al, 042)

The skew matrixB implies:
T'BT = [ 4o }
We definew; = T'z; and (A.2) becomes :
(T'AT)Zyy0 + T/ (B D)2 + T'A'TZ, = 0
From Lemma 1, we have:
aq d —~ 1 0 —~ (05) —d ~

The parameters;, as andd are function of the structural parameters. The characteristic rootauatieq
(A.3) are solution of :

(alag -+ d2>)\4 — (051 + 042)/\3 + (20[1042 +1— 2d2))\2 — (a1 + Oég))\ + ajag + > =0
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This equation can be solved usipg= A + 1 and(aq s + d?)p? — (a1 + ag)p + (1 — 4d?) = 0. Now
consider the discriminant

K= (041 + a2)2 — 4(1 — 4d2)(a1a2 + d2)
In order to determine the roots of (A.3), one must consider two cases:

1 a1+ as £k | 1 o1 + o i/ —
Ai+—=——"""—"—if k>0 and X\, + — = "t k<0
J + /\j 2(0&10(2 + d2) : J + /\j 2(041@2 -+ d2) "
for j = 1,2. Note that the previous expressions define second order equatioose woefficients are not
necessarily reali,e. the discriminant: can be negative. The eigenvalues of equation (A.1) are deduced
usingp; = \;/v/B.
Lemma 2 Let denotep; = (1 — 4d?), g2 = (a1as + d?), 3 = (a1 + a2), B = /B + (1/v/B) and
B8 =+/B— (1/y/B). Consider the dynamic system described by equafioh)( The stationary equilibrium
is a saddle path and its convergence path is (i) cyclicaldff o > 2 and (01 /w2)8 > (w3/p2)? + BQQQ
and (i) monotone iffip1 o < 3, (p3/92) > 28 andB” — (¢3/p2)B + (1 /p2) > 0.
Lemma 2 presents two types of convergence path toward the steady statérsiane is cyclical because
the eigenvalues have no zero imaginary part. In the second case, tinadigs are real and the convergence
is monotone. Lemma 2 presents only two cases. There exists also two otkeiddash are not discussed
here: a case where the eigenvalues are both negative and a case¢heheexists both positive and negative

eigenvalues. We will not discuss these two last cases, because aeagjgtwvvalues cannot occur in our
model.

B Proof of proposition 1

For oy, as andd, we have the following expressions :

1/2
o] tay = b 5~ [712(012 + d21) — 611722 — G22711]
B(v1v22 — o)

611622 — 1/4(012 + 621)?]
B(y11722 — V1a)
_ 1/4(512 — 521)2
B(y11722 — 1)
From Lemma 2, we have a saddle path if the following inequalities are satisfied :

S V/ESYNC)

alay =

& =

oo + d?
9 a1 + 0 4d?
(VB+1/V/B)* - arn F B (VB+1/V/B) + a+d2>0
These two inequalities can be expressed with respect to the structwaaigiars:
*2

[; { Nk (—(b—fcc 5 (fCC fo) + ¢—B¢WHH> + j—fli(fccﬁu - §CL§LC)] >0
and

K*? N

K [(1 - ﬁ)j—f(fcc —&re) + (Z—fl (%(ﬁcc —&ro) + (e - §(JL)>] >0

From the assumptions that consumption and leisure are normal goods &nd.}ha concave, we have

¢oc —Ere <0,&r — &0 < 0andéccérnr — Ecrnérec > 0. Moreoverymg < 0andwg g > 0. It follows
that the two inequalities are satisfied. This completes the proof. O
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C Proof of proposition 2

From proposition 1, the stationary equilibrium is a saddle path. To determimeathes of the adjustment

path, we have to determine the sign(afi + a2)? — 4(1 — 4d?)(a1as + d?). Fromywpn = 5i— = %,
the previous expression can be expressed as a second ordempiallyind
f@) = WCIZ)Q + %@b +(3 (C.1)
where
G = p <¢81)
G = pl48(1 500—(500 §Le)nk — a—ﬁa—ﬁi(ﬁccﬁu —&oLéLe)nk
sc Psr sc
2 N
+ 4150 zf ( (bcc —&Le) +1—(§LL —€CL)> nK
- ZZ <ﬁ (écc —&Lo) + ¢—§CC> 2 ]
2
G = B Kﬁg(ﬁcc —&re) + @€CC> Nk + a—ﬁl(fccﬁu —&crére)
sc so so1l—

We now study the sign of this polynomial with respecttoWithout ambiguity,(; > 0 and{s > 0. If
(2 < 0 anddisc = (3 — 4¢1¢3 > 0, the polynomial has two positive roots and it is negative if it is evaluated
at values which lie between the two roots. The discriminant is givediky= 7,75 with :

Tn = [45(1 - 5)356‘0%(500 —&Lo)nk

2
+ 4%6 oaﬁ (8 (&cc — fLO)"‘L(fLL_fCL)) HK}

@Sy 1
T, = l:CQ - p ( g—ﬁa—ﬂi(&)a{u —&crére)nk
S7r S
+ Si ( /8(500 §ro) + ¢_£CC> 2 )]

T is without ambiguity negative. We thus have to determine the sigh, ofWe introduce the following
useful notationgcc — £pc = — X andérr, — £, = —Y. ThereforeI; becomes:

_ aﬁ aﬂ a9 N B
T = 4552 | x4 (- (1= 9)= Sheoc ) X (1 - e
Consider now the term in brackets :
g(X) = %Xz + <?7K —(1— ﬁ)g%fcc) X+ (1 -a)cc

As (1 —a)cc <0 and% > 0, the above polynomial has a positive discriminant. The two roots have
opposite sign. For values of greater than the positive root, the above expression is also positiveideon
now :

o) = ap(1-0)+

A sufficient condition forg(1) be positive isicc > —1. Moreover, if X = —(§cc — &rc) > 1, thenT,
is negative andy is also necessarily negative. To sum up, we héie = (2 — 4¢1¢2 > 0 and(s < 0
and equation (C.1) has two positive real roots. We conclude that thests éxo positive real numbers

0 < b < b < +oo such that for alb €]b, b[, equation (C.1) is negative and complex eigenvalues occur. This
completes the proof. O

(1 +&cc) (C.2)
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D Proof of proposition 3

The proof follows the one of C. Consider equation (C.2) and suppose tha). We have :

o) = Ty (1= 801 =8)(1 — ) + (1 - a)icc]

Itis then easy to verify that if. > §, then(1—3(1—9))(1—ad)((1—-a)d))~! > (1—ad)(1—a)™! > 1+a.
The end of the proof is then similar to the one of proposition 2. This completgsdoé O
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