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Abstract

This thesis focuses on first order descent methods in the minimization problems. There are
three parts. Firstly, we give an overview on local and global error bounds. We try to provide
the first bricks of a unified theory by showing the centrality of the  Lojasiewicz gradient inequal-
ity. In the second part, by using Kurdyka- Lojasiewicz (KL) inequality, we provide new tools to
compute the complexity of first-order descent methods in convex minimization. Our approach
is completely original and makes use of a one-dimensional worst-case proximal sequence. This
result inaugurates a simple methodology: derive an error bound, compute the KL desingularizing
function whenever possible, identify essential constants in the descent method and finally com-
pute the complexity using the one-dimensional worst case proximal sequence. Lastly, we extend
the extragradient method to minimize the sum of two functions, the first one being smooth and
the second being convex. Under Kurdyka-Lojasiewicz assumption, we prove that the sequence
produced by the extragradient method converges to a critical point of this problem and has finite
length. When both functions are convex, we provide a O(1/k) convergence rate. Furthermore, we
show that our complexity result in the second part can be applied to this method. Considering
the extragradient method is the occasion to describe exact line search for proximal decomposi-
tion methods. We provide details for the implementation of this scheme for the ℓ1 regularized
least squares problem and give numerical results which suggest that combining nonaccelerated
methods with exact line search can be a competitive choice.
Key words: Kurdyka-Lojasiewicz inequality, error bounds, complexity of first order method,
extragradient, descent method, forward-backward splitting, ℓ1-regularized least squares.
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Résumé

Cette thèse traite des méthodes de descente d’ordre un pour les problèmes de minimisation.
Elle comprend trois parties. Dans la première partie, nous apportons une vue d’ensemble des
bornes d’erreur et les premières briques d’unification d’un concept. Nous montrons en effet la
place centrale de l’inégalité du gradient de  Lojasiewicz, en mettant en relation cette inégalité avec
les bornes d’erreur. Dans la seconde partie, en usant de l’inégalité de Kurdyka- Lojasiewicz (KL),
nous apportons un nouvel outil pour calculer la complexité des méthodes de descente d’ordre
un pour la minimisation convexe. Notre approche est totalement originale et utilise une suite
proximale “worst-case” unidimensionnelle. Ces résultats introduisent une méthodologie simple
: trouver une borne d’erreur, calculer la fonction KL désingularisante quand c’est possible,
identifier les constantes pertinentes dans la méthode de descente, et puis calculer la complexité
en usant de la suite proximale “worst-case” unidimensionnelle. Enfin, nons étendons la méthode
extragradient pour minimiser la somme de deux fonctions, la première étant lisse et la seconde
convexe. Sous l’hypothèse de l’inégalité KL, nous montrons que la suite produite par la méthode
extragradient converge vers un point critique de ce problème et qu’elle est de longueur finie.
Quand les deux fonctions sont convexes, nous donnons la vitesse de convergence O(1/k) qui
est classique pour la méthode de gradient. De plus, nous montrons que notre complexité de la
seconde partie peut-être appliquée à cette méthode. Considérer la méthode extragradient est
l’occasion de décrire la recherche linéaire exacte pour les méthodes de décomposition proximales.
Nous donnons des détails pour l’implémentation de ce programme pour le problème des moindres
carrés avec régularisation ℓ1 et nous donnons des résultats numériques qui suggèrent que combiner
des méthodes non-accélérées avec la recherche linéaire exacte peut-être un choix performant.
Mots clés: Inégalité Kurdyka-Lojasiewicz, bornes erreur, complexité de méthode d’ordre un,
extragradient, méthode descente, moindre carré avec régularisation ℓ1.
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Introduction

The optimization problem

Optimization problems arise naturally in various fields of applications, throughout science and
engineering, it can be seen in the framework of signal/image [38, 17], processing and machine
learning [116], optimal control [32], mechanics [30], physics [61], economics [67], computational
chemistry and biology [55]. General optimization problems we consider have the general form

(P1) min
C

F (x),

where C is a subset of a Hilbert space H and F : H → (−∞,+∞] is a real-extended-valued
function on H.

Most optimization problems do not have explicit solutions, the goal of an optimization
method, algorithm is to generate an approximation sequence which aims at detecting an an
optimal solution or some acceptable approximation. If we denote by (xk)k∈N such a sequence
some crucial questions are

1. convergence of (F (xk))k∈N
to minF (x),

2. convergence of the sequence (xk)k∈N itself to a solution of (P1) (or to a critical point in
the absence of convexity),

3. rate of convergences,

4. complexity issues, i.e. how many steps k̄ are necessary to build a feasible point xk̄ such
that F (xk̄) ≤ val (P1) + ǫ.

A limitation of problem (P1) is that the objective function F usually requires some as-
sumptions (convex, smooth, Lipschitz continuous gradient). The applications are thus limited.
Therefore, other forms of problem (P1) have been studied, in which the assumptions on F are
relaxed. An important case is the case of a composite function

(P2) min
H

{F (x) = f(x) + g(x)}

where one function is smooth with Lipschitz continuous gradient and the other is convex or/and
simple (in the sense that its proximal operator is computable).

Due to its important applications, this optimization problem has attracted numerous re-
searches. There are many methods for solving this problem in the literature. In this thesis, we
focus on the class of first–order methods, which are generally more effective in the large scale
setting. The gradient method is one of the oldest optimization algorithms which is due to Cauchy
[34], in 1847. The class of first–order method has been further improved by many researchers.
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In the modern era some of the most important works are those of Goldstein [57], Polyak and
Levitin [75] (the gradient method) and Nesterov [98] (fast gradient method). Later, the proximal
method was introduced by Martinet [94], it was extended to the so-called forward-backward split-
ting method in [29, 115, 38]. This method is nowadays considered as one of most fundamental
first–order method (see also the work of Beck and Teboulle [16] for FISTA method).

Many works were made in the case of convex functions but due to major applications in
imaging, learning, signal processing, there was a necessity to investigate the case of nonconvex
problems. In this research line, the nonsmooth Kurdyka- Lojasiewicz inequality (KL inequality
for short, [22]) has opened the road to many theoretical and algorithmic developments. This
inequality was introduced and established in [21, 22]. It asserts that, for any definable function
F in an arbitrary o-minimal structure over R

n, there exists a smooth, increasing, nonnegative
function ϕ such that

d(0, ∂(ϕ ◦ (F − minF )))(x) ≥ 1,

for all x in some neighborhood of the set argminF , the function ϕ is called the desingularizing
KL function. The convergence analysis of descent algorithms for the functions satisfying the
Kurdyka- Lojasiewicz was investigated recently. The pioneering work, for smooth unconstrained
problems, seems to be that of Absil, Mahony and Andrews [1]. After that, Attouch and Bolte [2]
obtained the global convergence for the proximal method. Rate of convergence for this method
were shown to depend on the exponent of  Lojasiewicz gradient inequality. More recently, the
result of Attouch, Bolte and Svaiter [4] provided the framework for the analysis of general descent
methods, see also [3, 26, 56].

Yet, despite the important success of KL inequality in many algorithms of optimization
problem, the connection of this inequality with the study of the complexity of general descent
methods was not known, even if F is a convex function. This PhD thesis addresses this issue
and provides some simple relationships on the impact of KL inequality on the complexity of
first–order descent method.

First-order descent methods

One of the thesis’s contribution is to provide a new protocol to calculate the complexity of a
general first–order descent method (FODM). For an object function F , we consider a sequence
(xk)k∈N which satisfies the two following properties

(i) F (xk) + a‖xk − xk−1‖2 ≤ F (xk−1).

This condition guarantees that (F (xk))k∈N is a nonincreasing sequence, and that ‖xk −
xk−1‖ converges to 0.

(ii) ‖ωk‖ ≤ b‖xk − xk−1‖ where ωk ∈ ∂F (xk), k ≥ 1.

This property ensures that, if ‖xk − xk−1‖ → 0 then there exists a subgradient sequence
(ωk)k∈N which converges to 0.

It seems that these conditions were first considered in the work of Luo and Tseng [92]. They were
used to study convergence rates from error bounds. The motivation behind this definition is due
to the fact that such sequences are generated by many methods, such as the forward-backward
splitting method [92, 4, 56], many trust region methods [1], or proximal alternating methods
[3, 26].

The complexity of some important methods (gradient method, proximal gradient method)
of the class of FODM were presented in several works, see [112, 98, 16]. As we mentioned,
the geometric approach (KL inequalities, error bounds) are available but they are only used for
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convergence rate analysis. Our work gives the links between these concepts to provide new a
complexity analysis. More precisely, we show how complexity can be tackled for such dynamics,
and, on the other hand, we provide a general methodology that will hopefully be used for many
other methods than those considered here.

Our results: A new approach to complexity

Our result of complexity is based on the notion of KL inequality and the relationship with
error bounds. Assume that F is a convex and satisfies KL inequality with the desingularizing
function ϕ. The major novelty in our approach is to introduce a one–dimensional worst case
proximal method associate with ϕ−1. Our method asserts that, the complexity of any method
in the FOMD class, initial at x0 ∈ H is controlled by the complexity of a known prox method
on the one dimensional function ϕ−1. In other words:

F (xk) − minF ≤ ϕ−1(αk), ∀k ∈ N,

where (αk)k∈N is one–dimensional worst case proximal sequence of ϕ−1.
One sees that this method requires that the desingularizing function of KL inequality is known

explicitly or well estimated. However this is not in general an easy task. Another innovative
aspect of our work is to use error bounds to calculate such a desingularizing function ϕ.

An error bound is an inequality of the form

dist(x, argminF ) ≤ ψ ((F (x) − minF )) ,

where ψ is an increasing function, vanishing at 0 and x may evolve either in the whole space or
in a bounded set. The error bound is an important tool in optimization, see e.g. [66, 106, 54, 9].
An important aspect for us is that they are often used to establish the rate of convergence of
optimization methods, see e.g., [52, 91, 92, 27, 118, 97, 16, 40, 108]. However, to the best of our
knowledge, the connection between error bounds and the complexity of first–order method was
never made before our work.

The development of error bound’s theory has a long history. The pioneering works due to
Hoffman [63], Robinson [113], Mangasarian [93]. The  Lojasiewicz function inequality [84] dis-
covered in a geometrical context, has given as well a lot of research directions. The relationships
between error bounds and KL inequalities has been presented in several works, the pionnering
work seems to be [23]. In general, KL inequality implies the error bound, (see [65, 9, 23]).
However, we show that the converse does not hold, even if F is a convex function (see the
counterexample in subsection 2.6.2). In order to improve the effectiveness of our complexity, let
us give a summary on the relation of error bounds and KL inequalities. We show that, under
convexity assumption, in the particular case (for example: ψ(s) = τ(sα+ sβ)–Hölder type), they
coincide. This result allows us to obtain the complexity of first–order descent methods from error
bounds. To better understand our method, we also present a short overview on error bounds,
focusing on the Höder type, which are very useful in practice.

A consequence of our result is to provide a method to calculate the complexity of first–order
descent method for a convex function which possesses a known error bound:

• Calculate the desingularizing function ϕ of KL inequality, the inverse of ψ = ϕ−1 and the
Lipschitz constant of ψ′.

• Calculate the worst-case proximal sequence (αk)k∈N in R. The complexity is then

F (xk) − minF ≤ (ψ ◦ · · · ◦ ψ) (F (x0)), ∀k ∈ N.

15



An illustration of our method is to calculate the complexity of the iterative shrinkage thresholding
algorithm (ISTA) applied to a least squares objective with ℓ1 regularization [44]. This method
was known to have a complexity of the form O( 1

k ). Our result gives that the complexity is
actually of the form O(qk) with q ∈ (0, 1) (but with different multiplicative constant). This is
a new result and this suggests that many questions on the complexity of first-order methods
remain open.

Extragradient method for minimization

In another work, our method of complexity can be applied to the extragradient algorithm.
This method was first presented by Korpelevich [71] for variational inequality problems (VIP), see
also [35, 95] for some extensions. In the context of optimization, under an error bound assump-
tion, Luo and Tseng [91] used this method to solve the smooth, convex constrained minimization
problem (P1). More precisely, they studied the convergence of the following sequence

{

yk = PC(xk − sk∇f(xk))

xk+1 = PC(xk − sk∇f(yk)).

By using extra proximal operators at each iteration, we extend the extragradient method to the
nonsmooth, nonconvex minimization problem (P2). More explicitly, we generate the sequence
(xk)k∈N by

{

yk = proxskg
(xk − sk∇f(xk))

xk+1 = proxαkg
(xk − αk∇f(yk)).

Without convexity, by using the assumption on the nonsmooth KL inequality, we prove that
the sequence (xk)k∈N converges to a critical point of F and we also obtain some convergence
rate. When F is convex, firstly, we describe a 1/k non-asymptotic rate in terms of the objective
function. This is related to classical results of first order methods in convex optimization, see
for example the analysis of the forward-backward splitting method in [17]. Furthermore, we also
obtain some complexity for this method by applying our general methodology based on error
bounds. Lastly, we compare the effectiveness of the extragradient method and of an exact line
line search variant we introduce, to those of FISTA and forward-backward splitting methods.
The numerics suggest that, both the extragradient and the forward-backward splitting method,
when combined with exact line search, constitute promising alternatives to FISTA.

Structure of thesis The thesis contains three parts:

1. [104] A stroll in the jungle of error bounds

In this part we provide an overview on error bounds. We consider local and global bounds,
qualitative and quantitative results. Inspired by the works in [65, 9, 23, 11], we strongly
use the characterization of error bounds in term of strong slope. By specifying this result
to the convex case, we consider the interplay between error bounds and KL inequalities.
In addition, we present some sufficient conditions so that the two concepts are equivalent.
We also review the Hölder type error bound, especially their quantitative versions, which
play a major role in complexity theory of many optimization methods.

2. [24] From error bounds to the complexity of first-order descent methods for convex func-
tions.
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We study KL inequalities in the convex framework and we use our results to provide a proto-
col for deriving complexity results of first–order descent methods. Our general methodology
is illustrated by the ℓ1 regularized least squares method and by feasibility problems. We
also further give theoretical aspects related to our results, namely: some counterexamples
to the equivalence between error bounds and KL inequalities, more insight into the rela-
tionship between KL inequalities and the length of subgradient curves, globalization of KL
inequalities and other related questions.

3. [105] Extragradient Method in Optimization: Convergence and Complexity.

In this last part, we present an extragradient method to tackle the composite problem (P2).
We obtain the convergence and finite length property under KL inequality assumption in
the nonconvex case. When F is convex, we give both a proof of a sublinear convergence rate
and a complexity analysis under semi-algebraic assumptions. This leads to an improved
complexity analysis under a KL inequality assumption. Lastly, we describe an exact line
search version of the extragradient method and we discuss computational aspects of the
line search part. In the context of ℓ1 penalized least-squares and results from numerical
experiment.
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Chapter 1

A stroll in the jungle of error

bounds

Abstract The aim of this paper is to give a short overview on error bounds and to provide
the first bricks of a unified theory. Inspired by the works of [9, 23, 21, 24, 11], we show indeed
the centrality of the  Lojasiewicz gradient inequality. For this, we review some necessary and
sufficient conditions for global/local error bounds, both in the convex and nonconvex case. We
also recall some results on quantitative error bounds which play a major role in convergence rate
analysis and complexity theory of many optimization methods.
Key words: Error bounds, Kurdyka– Lojasiewicz inequality,  Lojasiewicz function inequality,
descent method.

1.1 Introduction

Let X be a Banach space. Given a function f : X → (−∞,+∞], an error bound is an
inequality that bounds the distance from an arbitrary point in a test set to the level set in terms
of the function values. More precisely, we shall say that f has an error bound on a set K ⊂ X
if there exists an increasing function ϕ : [0,+∞) → [0,+∞), ϕ(0) = 0 such that

(1.1) dist(x, [f ≤ 0]) ≤ ϕ([f(x)]+), ∀x ∈ K.

When K = X then f is said to possess global error bound; otherwise we say that f has a local
error bound.

Error bounds have a lot of applications in many fields. They may be used to establish the
rate of convergence of many optimization methods: we can think to descent methods for solving
minimization problems [15, 52, 92, 90, 91, 118], to the cyclic projection algorithm [16, 27, 79], to
algorithms for solving variational inequalities, see e.g., [117]. In [24, 120] the error bound theory
is used to estimate the complexity of a wealth of descent methods for convex problems. Error
bounds have also played a major role in the context of metric regularity [6, 66, 72] or within the
field of exact penalty functions, see e.g., [46].

Let us now present the two major mathematical results that are structuring the theory of
error bounds and along which we will develop our own presentation. Hoffman seems to be the
first to provide an error bound in the context of optimization theory. His result concerns affine
function system:
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Theorem 1.1.1 (Hoffman, 1952). [63] Let A,B ∈ R
m×n be some matrices and a, b are the

vectors in R
m. Assume that

S = {x ∈ R
n|Ax ≤ a,Bx = b} .

is nonempty. Then, there exists a scalar c > 0 such that

dist(x, S) ≤ c (‖[Ax− a]+‖ + ‖Bx− b‖) ,∀x ∈ R
n.

Around the same time, a very general and powerful result was provided in [85] for semi-
algebraic functions. This result was developed as a positive response to a conjecture of Schwartz
in the distribution theory of functions (see [88]). Later, in [62], Hironaka extended this inequality
to the case of subanalytic function.

Theorem 1.1.2 ( Lojasiewicz, 1959). [62, 85] Let φ, ψ : Rn −→ R be two continuous subanalytic
functions. If φ−1(0) ⊂ ψ−1(0) then for each compact, subanalytic set K ⊂ R

n, there exist a
constant c > 0 and a integer N such that

c|ψ(x)|N ≤ |φ(x)|, ∀x ∈ K.

After those pioneering works, the study of error bounds has attracted numerous researches.
In 1972, under Slater’s condition and a boundedness assumption on the level sets, Robinson [113]
extended the result of Hoffman to systems of convex differentiable inequalities. Mangasarian [93]
established the same result for the maximum of finitely many differentiable convex functions.
Later on, Auslender and Crouzeix [6], extended Mangasarian’s result to non-differentiable con-
vex functions. Some other sufficient conditions were also given by Deng in [47, 48], by using in
particular Slater’s condition on the recession function. In [76], Lewis and Pang gave a characteri-
zation of Lipschitz global error bound for convex functions in terms of the directional derivatives.
The work of Lewis and Pang was further generalized by Ng and Yang [101], by Wu and Yu in
[123, 122], by Klatte and Li in [69]. In a series papers [7, 9, 8, 10, 11], Azé and Corvellec
presented some characterizations of error bounds in terms of the strong slope in the context of
metric spaces.

The first fundamental works on quantitative error bounds seem to be those of Gwozdziewicz
[58] and Kollár [70] for polynomial functions. Inspired by these works many researchers have
tried to provide more general types of quantitative error bounds. Li, Mordukhovich and Pham
[80] established a local error bound for polynomial function systems in the nonconvex case. Li
[77], and Yang [124] obtained some error bounds for polynomial convex functions, the work of
Li was extended for piecewise convex polynomial function in [78], which has also improved the
result of Li [81]. In [102], Ngai gave some similar results on polynomial function systems. For
the quadratic function systems, Luo and Luo [87] seem to be the first to have studied global
error bounds for such class, under the assumption of convexity. This work has been improved
by Pang and Wang [121] and later by Luo and Sturm [89] who derived a global error bound for
such function without assuming convexity.

The connection between error bound and Kurdyka– Lojasiewicz inequality was first settled
by Bolte, Daniilidis, Ley and Mazet, in [23]. Later some of these results were improved [24, 11].

This paper is organized as follows:
In Section 3, based on the results in [9, 23, 11], we give a characterization of error bounds,

specifying this result in some particular cases. We establish the connection between this result
and some other previous sufficient conditions for Lipschitz error bounds.

In Section 4, we review some results on local error bounds and global error bound, respectively.
We focus on the class of polynomial functions whose error bounds are of Hölder type, which play
a major role in complexity theory of many optimization methods.
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1.2 Preliminaries

Let X be a Banach space, X∗ be topological dual space and f : X −→ R be a lower semi-
continuous function. For any α, β ∈ R, we set [f ≤ α] = {x ∈ X|f(x) ≤ α}, [f = α] =
{x ∈ X|f(x) = α}, [α ≤ f ≤ β] = {x ∈ X|α ≤ f(x) ≤ β}, and [α]+ = max{α, 0}. For any sub-
set S ⊂ X, denote dist(x, S) = infu∈S ‖x−u‖, and bdS, clS, intS respectively are the boundary,
closure and interior set of S. For x ∈ X, δ > 0, set Bδ(x) = {y ∈ X| dist(x, y) < δ}.

The Fréchet subdifferential of f at x ∈ dom f , denote ∂F f(x), is defined by

∂F f(x) =

{

u ∈ X∗| lim inf
y→x

f(y) − f(x) − 〈u, y − x〉
‖y − x‖ ≥ 0

}

.

The limiting-subdifferential of f at x ∈ dom f , written ∂f(x) is defined as follows

∂f(x) =
{

u ∈ X∗|∃xk → x, f(xk) → f(x), uk ∈ ∂F f(xk) → u
}

.

And

f ′(x, d) = lim inf
t→0+

f(x+ td) − f(x)

t
,

is called the derivative of f at x in the direction d ∈ X.
The strong slope of f at x is given by

|∇f |(x) =

{

0 if x is a local minimum point of f ,

lim supy→x
f(x)−f(y)

‖x−y‖ otherwise.

It is easy to see that

• ‖d‖|∇f |(x) ≥ −f ′(x, d), ∀(x, d) ∈ X2.

• |∇f |(x) ≤ dist(0, ∂F f(x)), ∀x ∈ X.

We recall the chain rule for the strong slope.

Lemma 1.2.1. [11] Let −∞ < α < β ≤ +∞ and a function ϕ : ]α, β[→ R with ϕ ∈ C1(α, β)
and ϕ′(s) > 0, ∀s ∈]α, β[. One has

|∇(ϕ ◦ f)|(x) = ϕ′(f(x))|∇f |(x), ∀x ∈ [α < f < β].

As mentioned in the introduction, the theory of error bound can be developed, based on the
theory of  Lojasiewicz on the subanalytic function. Let us recall the definition of such function
class.

Definition 1. [21]

(i) A function f : Rn → R is real-analytic on S ⊂ R
n if it can be represented locally on S by

a convergent power series, this means that, for any x̄ = (x̄1, . . . , x̄n) ∈ S, there exists a
neighbourhood U(x̄) such that

f(x) =
∞
∑

i1,...,in=0

ai1,...,in(x1 − x̄1)i1 . . . (xn − x̄n)in , ∀x ∈ U(x̄).
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(ii) A subset S of Rn is called semianalytic if for each point x̄ ∈ R
n admits a neighborhood U(x̄)

for which S ∩ U(x̄) is represented in the following form

S ∩ U(x̄) =

p
⋃

i=1

q
⋂

j=1

{x ∈ R
n|fij(x) = 0, gij(x) > 0} ,

where the functions fij , gij : Rn → R are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q. If the
graph of f is a semianalytic set in R

n+1, we say that f is a semianalytic function.

(iii) S is called subanalytic if each point x̄ ∈ R
n, there exist a neighbourhood U(x̄) and a bounded

semianalytic set A ⊂ R
n+m, (for some m ∈ N

∗) such that S ∩ U(x̄) is the projection on
R
n of A. The function f is subanalytic if its graph is a subanalytic set in R

n+1.

We give some elementary properties of subanalytic function and subanalytic set, see[21].

1. If S is subanalytic set then so are its boundary bdS, its closure clS, its interior intS, and
its complement set.

2. The class of subanalytic sets is closed under finite union and intersection. The distance
function to a subanalytic set is a subanalytic function.

3. The image of a bounded subanalytic set under a subanalytic map is subanalytic. The
inverse image of a subanalytic set under a subanalytic map is a subanalytic set.

4. When S is a closed, convex subanalytic set, the Euclidean projector onto S is a subanalytic
function.

In this work, we focus on the Hölder-type error bound, which is very common in practice.

Definition 2. Let f be a function on the Banach space X and K be a subset of X. We say that
f admits a

1. Hölder-type error bound on K if there exists τ > 0 and a, b > 0 such that

(1.2) dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]a+ + [f(x)]b+
)

, ∀x ∈ K.

2. Lipschitz-type (or linear) error bound on K if the inequality (1.2) holds with a = b = 1, for
all x ∈ K.

When K ≡ X then f is said to have a global error bound, otherwise we say that f possesses a
local error bound.

1.3 Characterization of error bounds

1.3.1 Characterizing error bounds through Kurdyka– Lojasiewicz ine-

quality

The  Lojasiewicz gradient inequality was introduced in [86]. Let f : Rn → R be an analytic
function. For any x̄ ∈ dom f , there exist τ > 0, θ ∈ [0, 1) and a neighbourhood U(x̄) such that

‖∇f(x)‖ ≥ τ |f(x) − f(x̄)|θ , ∀x ∈ U(x̄).
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In [73], Kurdyka generalized the above result to the class of C1 functions whose graphs belong
to an o-minimal structure (the definition of o-minimal structure can be seen in [73, Definition
1], [22, Definition 6]), this result was extended to the nonsmooth class by Bolte, Danillidis,
Lewis and Shiota [22]. The corresponding generalized  Lojasiewicz gradient inequality is called
the Kurdyka– Lojasiewicz (KL for short) inequality. In addition, the generalization for the class
nonsmooth subanalytic functions has been obtained by Bolte, Danillidis and Lewis in [21]. This
has opened the road to many theoretical and algorithmic developments (see [1, 2, 3, 4, 26, 24, 56]).
We summarize the above extension by the following theorem.

Theorem 1.3.1. [22, 21] Let f : Rn → R be a lower semicontinuous, definable function in
an arbitrary o-minimal structure over R. Then for all x̄ ∈ dom f , there exist δ > 0 and a
neighbourhood U(x̄) of x̄ such that

ϕ′ (f(x) − f(x̄)) dist (0, ∂f(x)) ≥ 1, ∀x ∈ U(x̄) ∩ [f(x̄) < f < f(x̄) + δ],

where ϕ : [0, δ] → [0,+∞) is an increasing function, which vanishes at zero and ϕ ∈ C0[0, δ] ∩
C1(0, δ). The class of such functions ϕ will be denoted by K[0, δ].

The connection between error bounds and Kurdyka– Lojasiewicz inequality was established
in [23] (see also [24]), this was further improved by Azé and Corvellec [11].

Azé and Corvellec have series of researches on the characterization of global error bounds
for lower semicontinuous functions in terms of the strong slope, see [9, 8, 10, 11, 41]. These
works are of great help for this section. Let us now give the result in [9], in which, the authors
used Ekeland’s variational principle to establish the connection between the strong slope and the
linear error bound.

Theorem 1.3.2. [9] Let f : X → R ∪ {+∞} be a lower semicontinuous function, and −∞ <
α < β ≤ ∞. Then

inf
x∈[α<f<β]

|∇f |(x) = inf
α≤γ<β

(

inf
x∈[γ<f<β]

f(x) − γ

dist(x, [f ≤ γ])

)

.

We rewrite the latter theorem as a characterization of linear global error bound, which is a
well known result since Ioffe’s pioneering works [65].

Theorem 1.3.3. [9] Let τ > 0, the following assertions are equivalent

(i) |∇f |(x) ≥ 1
τ , ∀x ∈ [α < f < β].

(ii) τ (f(x) − γ) ≥ dist (x, [f ≤ γ]) , ∀γ ∈ [α, β), x ∈ [γ < f < β].

For any ϕ ∈ K[0, β−α], thanks to Lemma 1.2.1, we can apply the latter result for the function
x 7→ ϕ (f(x) − α), therefore we obtain a nonlinear version of Theorem 1.3.3.

Theorem 1.3.4. Assume that ϕ ∈ K[0, β − α). The following statements are equivalent

(i) ϕ′(f(x) − α)|∇f |(x) ≥ 1, ∀x ∈ [α < f < β].

(ii) ϕ (f(x) − α) ≥ ϕ(γ − α) + dist (x, [f ≤ γ]) , ∀γ ∈ [α, β], ∀x ∈ [γ < f < β].

This is content of [23, Corollary 4], [11, Theorem 4.2]. In the latter result, if we let γ equal
to α in the assertion (ii), then we immediately obtain as a consequence, a sufficient condition for
nonlinear global error bound.
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Corollary 1.3.5. We suppose that

ϕ′(f(x) − α)|∇f |(x) ≥ 1, ∀x ∈ [α < f < β],

where ϕ ∈ K[0, β − α). Then

ϕ (f(x) − α) ≥ dist (x, [f ≤ α]) , ∀x ∈ [α < f < β].

Generally, the converse of this corollary is false, as shown in [74, Remark 3] (when f is a
polynomial function) and in [24, Theorem 28] (when f is convex). However, in some particular
cases, this converse may be hold, for example:

• f is an analytic function with an isolated zero, see [58].

• f is a convex function and an additional assumption on ϕ, see [24], (we also show this
result in Theorem 1.3.11).

Recalling ‖d‖|∇f |(x) ≥ −f ′(x, d),∀(x, d) ∈ X2, a consequence of Theorem 1.3.3 is:

Corollary 1.3.6. For any τ > 0, suppose that for each x ∈ [α < f < β], there exists a unit
vector dx ∈ X such that

f ′(x, dx) ≤ − 1

τ
.

Then
τ (f(x) − α) ≥ dist (x, [f(x) ≤ α]) , ∀x ∈ [α < f < β].

This is the content of [101, Theorem 2.5]. A local version of Theorem 1.3.4 is given as follows

Theorem 1.3.7. [11] Consider the following statements

(i) There exists ε > 0 such that

ϕ′(f(x) − α)|∇f |(x) ≥ 1, ∀x ∈ Bε(x̄) ∩ [α < f < β].

(ii) There exists ρ > 0 such that

ϕ (f(x) − α) ≥ ϕ(γ − α) + dist (x, [f(x) ≤ γ]) , ∀γ ∈ [α, β), ∀x ∈ Bρ(x̄) ∩ [α < f < β].

Then (i) ⇒ (ii) with ρ = ε/2 and (ii) ⇒ (i) with ε = ρ.

In the statement (ii), by setting γ = α, we obtain a local version of Corollary 1.3.5.

Corollary 1.3.8. [11] For any x̄ ∈ [f ≤ α], suppose that there exists ε > 0 such that

ϕ′(f(x) − α)|∇f |(x) ≥ 1, ∀x ∈ B2ε(x̄) ∩ [α < f < β].

Then
ϕ (f(x) − α) ≥ dist (x, [f(x) ≤ α]) , ∀x ∈ Bε(x̄) ∩ [α < f < β].

If we take ϕ(s) = τsθ, τ > 0, θ ∈ [0, 1], then this corollary recover the result of Ngai, Thera
[119, Corollary 2].

As we mentioned before, the converse of the latter corollary does not always hold. The
results of Corollary 1.3.5, Corollary 1.3.8 have appeared in numerous works, for instance, see
[58, 74, 103, 119, 110, 111]. This result gives an useful tools for establishing the quantitative
error bounds, see [80, 79].
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1.3.2 Equivalence in the convex case

In the sequel, we suppose that f : X → R ∪ {+∞} is a proper lower semicontinuous convex
function. The following extra-properties are available .

• ∂F f(x) = ∂f(x) = {u ∈ X∗|〈u, y − x〉 ≤ f(y) − f(x), ∀y ∈ X}, ∀x ∈ dom f .

• |∇f |(x) = dist(0, ∂f(x)),∀x ∈ X.

In the convex case, Theorem 1.3.2 can be simplified by the following proposition.

Proposition 1.3.9. [9] For −∞ < α < β ≤ +∞, the following assertions hold true:

(i) |∇f |(x) = supf(z)≤f(x)
f(x)−f(z)
dist(x,z) , with x is not a minimum point of f .

(ii) inf [α<f<β] |∇f |(x) ≥ inf [f=α] |∇f |(x).

(iii) infα≤γ<β
(

infx∈[γ<f<β]
f(x)−γ

dist(x,[f≤γ])

)

= infx∈[α<f<β]
f(x)−α

dist(x,[f≤α]) .

Thanks to Proposition 1.3.9, the convex version of Theorem 1.3.3 is given as follows.

Theorem 1.3.10. Suppose −∞ < α < β ≤ +∞ and τ > 0. Consider the following statements

(i) inf
x∈[f=α]

dist(0, ∂f(x)) ≥ 1

τ
.

(ii) inf
x∈[α<f<β]

dist(0, ∂f(x)) ≥ 1

τ
.

(iii) τ (f(x) − α) ≥ dist (x, [f(x) ≤ α]) , ∀x ∈ [α < f < β].

Then (i) =⇒ (ii) ⇐⇒ (iii).

We mention that the assumption (i) in the above theorem is equivalent to the condition
0 /∈ cl

(

∂f
(

f−1(0)
))

, which is called strong Slater’s condition [76, 101].
We now consider the converse of Corollary 1.3.5. Assume that

ϕ(f(x) − α) ≥ dist(x, [f ≤ α]), ∀x ∈ [α < f < β], ϕ ∈ K(0, β − α),

which is equivalent to

ϕ(f(x) − α)

f(x) − α

f(x) − α

dist(x, [f ≤ α])
≥ 1, ∀x ∈ [α < f < β].

Thanks to Proposition1.3.9, the latter inequality implies that

ϕ(f(x) − α)

f(x) − α
dist(0, ∂f(x)) ≥ 1, ∀x ∈ [α < f < β].

Thus, if ϕ satisfies the condition
∫ β−α

0

ϕ(s)

s
ds < +∞,

then we get
ψ′(f(x) − α) dist(0, ∂f(x)) ≥ 1, ∀x ∈ [α < f < β],

where

ψ(s) =

∫ s

0

ϕ(t)

t
dt, ∀s > 0.

Therefore, when f is convex, the converse of Corollary 1.3.5 is given as following.
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Theorem 1.3.11. Assume that ϕ (f(x) − α) ≥ dist (x, [f ≤ α]) , ∀x ∈ [α < f < β], where
ϕ ∈ K[0, β − α) and

(1.3)

∫ β−α

0

ϕ(s)

s
ds < +∞.

Then, we get

ψ′(f(x) − α) dist(0, ∂f(x)) ≥ 1, ∀x ∈ [α < f < β], where ψ(s) =

∫ t

0

ϕ(s)

s
ds.

This result has been presented in [24, Theorem 6], [23, Theorem 30 ]. We remark that when
ϕ(s) = τsθ, (τ, θ > 0), then the condition (1.3) holds.

We will show that the Theorem 1.3.10 covers numerous results on Lipschitz global error
bounds in the literature.

• In [113], Robinson proved that if f satisfies the Slater condition (there exists x̄ such that
f(x̄) < 0) and the set [f ≤ 0] is bounded then f has a Lipschitz global error bound. More
generally, in [48], Deng proved the following fact: If there exist δ > 0, ∆ > 0 such that

[f ≤ −δ] 6= ∅ and sup
[f≤0]

dist(x, [f ≤ −δ]) ≤ ∆,

then

dist(x, [f ≤ 0]) ≤ ∆

δ
[f(x)]+, ∀x ∈ X.

Let us show that this result is actually a consequence of Theorem 1.3.10. Indeed, take
x ∈ [f = 0] and u ∈ ∂f(x). For any ε > 0, there exists z ∈ [f ≤ −δ] such that dist(x, z) ≤
∆ + ε. Thus, we obtain

δ ≤ f(x) − f(z) ≤ ‖u‖‖x− z‖ ≤ ‖u‖(∆ + ε),

which implies that

inf
[f=0]

dist(0, ∂f(x)) ≥ δ

∆
.

Combining with Theorem 1.3.10, f has Lipschitz global error bound.

Note that Deng’s result [48, Theorem 1] also covers the one in [47], in which the author
start form the assumption that there exist a unit vector u and a constant τ > 0 such that

(1.4) f∞(u) = sup
t>0

f(x+ tu) − f(x)

t
≤ − 1

τ

to derive that dist(x, [f ≤ 0]) ≤ τ [f(x)]+,∀x ∈ X.

• The work of Robinson was also generalized in other directions. More precisely, instead of
the boundedness assumption on the set [f ≤ 0], in [93], Mangasarian used the asymptotic
constraint qualification condition (this means for any sequence (xk)k∈N ⊂ [f = 0] such
that lim ‖xk‖ = ∞, then the zero vector is not a limit point of any sequence (uk)k∈N, with
uk ∈ ∂f(xk)) to obtain a Lipschitz global error bound for differentiable convex function.
Auslender and Crouzeix in [6] extended the work of Mangasarian to the case nonsmooth
convex functions. On the other hand, in [69, Theorem 2], Klatte and Li proved that, a
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convex function satisfies the Slater and the asymptotic qualification conditions if and only
if

inf
x∈[f=0]

dist(0, ∂f(x)) > 0.

Therefore, it is clear that the results of Mangasarian [93], Auslender and Crouzeix [6] are
the consequences of Theorem 1.3.10.

• In [76], Lewis and Pang characterized Lipschitz error bounds using directional derivatives
as follows. Let f : Rn → R ∪ {+∞} be a lower semicontinuous and convex function. They
proved that the Lipschitz global error bound holds for f :

dist(x, [f ≤ 0]) ≤ τf(x), ∀x ∈ R
n,

if and only if
f ′(x̄, d) ≥ τ‖d‖, ∀x̄ ∈ [f = 0], d ∈ N[f≤0](x̄),

where the cone normal is defined by NS(x̄) = {u ∈ X∗|〈u, y − x̄〉 ≤ 0,∀y ∈ S}, ∀S ⊂ R
n.

This result has been obtained by several other researchers, we can mention here the works
of Ng and Zheng [100], [101] where they characterized error bounds for lower semicontinous
functions.

Consider now [101, Theorem 3.1].

Suppose that X is a reflexive Banach space. Then the following statements are equivalent

(i) dist(x, [f ≤ 0]) ≤ τ [f(x)]+, for all x ∈ X.

(ii) For each x ∈ [f = 0], we get

inf{f ′(x, d)|d ∈ N[f=0](x), ‖d‖ = 1} ≥ 1

τ
.

(iii) For each x ∈ X\[f ≤ 0], there exists dx ∈ X, ‖dx‖ = 1, such that

f ′(x, dx) ≤ − 1

τ
.

Let us prove that the (iii) above assertions are equivalent to (ii) of Theorem 1.3.10. Assume
that the assumption (iii) holds, then for all x ∈ X\[f ≤ 0], we get

|∇f |(x) ≥ −f ′(x, d) ≥ 1

τ
.

Conversely, suppose that |∇f |(x) ≥ 1
τ ,∀x ∈ X\[f ≤ 0]. Take any x ∈ X, we get

dist(0, ∂f(x)) ≥ 1

τ
,∀x ∈ X\[f ≤ 0],

hence there exists dx ∈ X such that

−τ = inf{〈x∗, d〉|x∗ ∈ X∗, ‖x∗‖ ≤ τ} ≥ sup{〈u, d〉|u ∈ ∂f(x)} = f ′(x, d).

It follows that

f ′(x, dx) ≤ − 1

τ
.

Similarly, by setting ϕ(s) = τsθ, (τ, θ > 0), we can see that the following result of Ng and
Zheng [100] is also a consequence of Theorem 1.3.11:
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Let X be a reflexive Banach space and f : X → R∪ {+∞} a continuous function. Suppose
that for each x ∈ X\S, there exists dx ∈ X, ‖dx‖ = 1 and τ > 0, θ ∈ (0, 1) such that

f ′(x, dx) ≤ −τf1−θ(x).

Then we get
dist(x, [f ≤ 0]) ≤ τ [f(x)]θ+,∀x ∈ X.

1.3.3 Qualification conditions and error bounds

1.3.3.1 Slater’s condition and error bounds

We recall that if there exists x̄ such that f(x̄) < 0 then f is said to satisfy the Slater
condition. This condition plays an important role for the study of error bounds. The existence
of the Lipschitz global error bound usually requires the convexity and the Slater condition.
We consider the following example, which shows that for a convex function without the Slater
condition, the Lipschitz global error bound may fail to hold.

Example 1. [76] f(x, y) = x+
√

x2 + y2, (x, y) ∈ R
2.

It is easy to check that the function f is convex, nonnegative on R
2 and [f = 0] = {(x, 0)|x ≤

0} has empty interior. Take the sequence (zk = (−k, 1))k∈N then f(zk) converges to 0 but
dist(zk, [f ≤ 0]) = 1,∀k ∈ N, so that there is not global error bound for S.

As mentioned earlier, the Slater condition was used for the first time by Robinson [113].

Theorem 1.3.12. [113] Let f1, . . . , fm be convex functions on R
n and assume that there is x̄

such that fi(x̄) < 0, . . . , fm(x̄) < 0. Then there exists τ > 0 such that

dist(x, [f ≤ 0]) ≤ τ‖x− x̄‖
m
∑

i=1

[fi(x)]+, ∀x ∈ R
n,

where f(x) = maxi=1,...,m fi(x).
In additional, when {x ∈ R

n|fi(x) ≤ 0, (i = 1, . . . ,m)} is bounded then there exists τ > 0
such that

dist(x, [f ≤ 0]) ≤ τ
m
∑

i=1

[fi(x)]+, ∀x ∈ R
n.

As a consequence, we immediately deduce that the convex function systems f1 . . . , fm has
Lipschitz local error bound.

Luo and Luo [87] used the Slater condition to establish the Lipschitz global error bound for
convex quadratic systems, this result has been extended by Pang and Wang [121]. In general,
the Slater condition is not sufficient to ensure that the global error bound holds, even if f is a
convex function. We consider the following example:

Example 2. [77] Let f1, f2 : R4 → R be defined by f1(x) = x1 and

f2(x) = x16
1 + x8

2 + x6
3 + x2

1x
4
2x

2
3 + x2

2x
4
3 + x4

1x
4
4 + x4

1x
6
2 + x2

1x
6
2 + x2

1 + x2
2 + x2

3 − x4,

for all x = (x1, x2, x3, x4) ∈ R
4. Define f(x) = max{f1(x), f2(x)}, ∀x ∈ R

4.

We get the following properties, (see [77]).

(i) f1, f2 are convex polynomial functions, therefore f is convex.
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(ii) f satisfies the Slater condition.

(iii) For any α, β ∈ R with α ≤ β, then supx∈[f≤β] dist(x, [f ≤ α]) = +∞.

By taking α = 0, β = 1 in the property (iii), we imply that there exists a sequence (xk)k∈N ⊂
[f ≤ 1] such that dist(xk, [f ≤ 0]) = +∞, this show that f can not possess the Hölder global
error bound.

However enhancing the assumptions we can derive global error bounds from the Slater like
condition. For instance, let f be a lower semicontinuous, convex function on R

n which satisfies
the Slater condition, then f has Lipschitz gloabl error bound if one of the following assertions
holds.

1. f can be expressed as maximum of finitely many bounded below convex polynomials func-
tion on R

n, i.e: f(x) = maxi=1,...,d fi(x), ∀x ∈ R
n, where fi is a polynomial function on

R
n with inf fi > −∞, for all i = 1, . . . , d, see [77, Theorem 4.1].

2. f is a separable function (in the sense that f(x) =
∑n
i=1 fi(xi) where x = (x1, . . . , xn) and

each fi is a lower semicontinuous function), see[77, Theorem 4.1].

3. f is well-posed (for any sequence {xk}k∈N for which dist(0, ∂f(xk)) → 0 then f(xk) →
infX f), see [76, Corollary 1].

4. f satisfies the asymptotic qualification condition, see [6].

Notice that if f is a convex function, then f satisfies the Slater condition if and only if
0 /∈ ∂f

(

f−1(0)
)

. We can easily see that, if f satisfies the Slater condition and the level set
[f ≤ 0] is bounded then f possesses the strong Slater condition. Furthermore, in [69], Klatte and
Li proved that, for a convex function f : Rn → (−∞,+∞] which satisfies the Slater condition,
the following conditions are equivalent:

1. The strong Slater condition holds.

2. The asymptotic qualification condition is satisfied.

3. supx∈[f=0] infy∈[f<0]
‖x−y‖
−f(y) < +∞.

1.3.3.2 Abadie qualification condition and error bounds

We begin this subsection by considering an example:

Example 3. [82] For (x, y) ∈ R
2, take f1(x, y) = x + y, f2(x, y) = −x − y, f3(x, y) = (x + y)2

and f(x, y) = (f1, f2, f3)(x, y). Then [f ≤ 0] = {(x,−x)|x ∈ R
n} has no interior point, but we

can check that dist((x, y), [f ≤ 0]) ≤ 2‖[f(x, y)]+‖, for all (x, y) ∈ R
2.

This means that, the global error bound may be hold without the Slater condition. In [82],
Li used the Abadie qualification condition to characterize Lipschitz-type error bound for convex
quadratic systems.

Recall that, the tangent cone of S ⊂ R
n is defined by

TS(x) = {y ∈ R
n|〈u, y〉 ≤ 0,∀u ∈ NS(x̄)} .

Let us now recall the definition of Abadie’s condition.
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Definition 3. [82] We say that the systems f1, f2, . . . , fm : X → R satisfies the Abadie condition
at x̄ ∈ S = {x ∈ X|fi(x) ≤ 0, i = 1, . . . ,m} if

TS(x̄) = {u ∈ X| 〈f ′
i(x̄), u〉 ≤ 0, ∀i ∈ I(x̄)},

where I(x̄) = {i : fi(x̄) = 0}.
If this property holds at every point in S, then we say that the systems f1, f2, . . . , fm satisfies

the Abadie condition on S.

When X = R
n and f1, . . . , fm are convex functions, we have the two following properties, see

[82].

1. The system f1, f2, . . . , fm satisfies the Abadie condition at x̄ ∈ S if and only if

NS(x̄) =







∑

i∈I(x̄)

λif
′
i(x̄)|λi ≥ 0







.

2. If there exists x ∈ S such that fi(x) < 0 with fi is not affine function, for all i = 1, . . . ,m
then the systems f1, f2, . . . , fm satisfies Abadie’s condition on S.

Let us now give a necessary and sufficient condition for a convex quadratic system to have a
Lipschitz-type global error bound, which was established by Li [82, Theorem 4.2].

Theorem 1.3.13. [82] Let f1, f2, . . . , fm be convex quadratic functions on R
n such that S =

{x ∈ R
n|fi(x) ≤ 0, (i = 1 . . . ,m)} is nonempty. The following statements are equivalent

(i) The system (fi)i=1...,m satisfies the Abadie condition on S.

(ii) There exists τ > 0 such that

dist(x, S) ≤ τ

m
∑

i=1

[fi(x)]+, ∀x ∈ R
n.

Later, in [103, Theorem 6], Ngai and Théra extended this result in the Banach space. In
which, fi : X → R, i = 1, . . . ,m are defined by

fi(x) =
1

2
〈Aix, x〉 + 〈Bi, x〉 + ci,

where Ai : X × X → R be a symmetric continuous bilinear and semi-definite positive, Bi ∈ X∗

and ci ∈ R, for i = 1, . . . ,m. In this paper, Ngai and Théra also gave the relation between the
Abadie condition and the Lipschitz local error bound for the convex function systems.

Theorem 1.3.14. [103] Let f1, . . . , fm, be convex continuous functions on the neighborhood of
x̄ ∈ S = {x ∈ X|fi(x) ≤ 0, i = 1, . . . ,m}. Set f = maxi=1,...,m fi.

(i) If there exist τ > 0, ε > 0 such that

dist(x, S) ≤ τ

m
∑

i=1

[fi(x)]+, ∀x ∈ Bε(x̄) ∩K,

then the Abadie condition is satisfied on Bδ(x̄) ∩ S for some δ > 0.

(ii) If fi, . . . , fm are differentiable on Bδ(x̄), then the converse of part (i) holds.
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1.4 Existence and quantitative results

The first result on local error bound was deduced from the result of Hörmander, in his work
on the fundamental solution of partial differential equation.

Theorem 1.4.1 (Hömander, 1958). [64] Let f be a polynomial function on R
n. Under the

assumption that [f ≤ 0] is nonempty, there exist τ > 0, a > 0 and b ∈ R such that

dist(x, [f ≤ 0]) ≤ τ (1 + ‖x‖)
b

[f(x)]a+,∀x ∈ R
n.

This “error bound” has an extra factor of (1 + ‖x‖)
b
. One sees that we can remove this extra

factor when restricting the error bound to a bounded region, in that case this local error bound
for f can be deduced from. Luo and Luo applied the above theorem to obtain the Hölder local
error bound for polynomial function systems [87, Theorem 2.2], this result was extended for
analytic systems, by Luo and Pang [88, Theorem 2.2]. Recently, Kurdyka and Spondzieja [74,
Corollary 10] showed that the exponents a, b in Theorem 1.4.1 can be computed explicitly:

b = 2, a =
1

d(6d− 3)n−1
.

Result of  Lojasiewicz A very general local error bound is deduced from the result of
 Lojasiewicz, Theorem 1.1.2, if we take φ(x) = f(x) and ψ(x) = dist(x, [f ≤ 0]), we get a
local error bound result for subanalytic functions, also called  Lojasiewicz function inequality. It
also includes a special case of the polynomial equation studied by Hörmander.

Theorem 1.4.2. [85] Let f : Rn → R be a continuous subanalytic function. For any compact
set K ⊂ R

n, there exist τ > 0, a > 0 such that

dist(x, [f ≤ 0]) ≤ τ [f(x)]a+, ∀x ∈ K.

With a direct application of the Theorem 1.4.2 to a subanalytic system, we recover a result
of Luo and Pang [88, Theorem 2.2], in which they obtained the similar result for an analytic
system:

Theorem 1.4.3. Let f1, f2, . . . , fr and g1, g2, . . . , gs be continuous subanalytic functions on R
n,

set
S = {x ∈ R

n|fi(x) ≤ 0, i = 1, . . . , r; gj(x) = 0, j = 1, . . . s} .
Then, for each compact set K ⊂ R

n, there exist τ > 0, a > 0 such that

dist(x, S) ≤ τ (‖[f(x)]+‖ + ‖g(x)‖)
a
, ∀x ∈ K,

where f(x) = (f1(x), . . . , fr(x)), g(x) = (g1(x), . . . , gs(x)).

We mention that in all the above results of error bound, the Hölder exponent is not unknown,
even in the result of Luo and Luo [87] for polynomial function systems.

1.4.1 Local error bounds for polynomials

We are now interested in the estimation of exponents within error bounds. First, we present
the result of Gwozdziewicz [58], in which a local quantitative error bound for a single real
polynomial function with a isolated zero is provided.
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For each n, d ∈ N, we set

κ(n, d) = (d− 1)n + 1 and R(n, d) =

{

1 if d = 1

d(3d− 3)n−1 if d ≥ 2.

Theorem 1.4.4. [58] Let f be a polynomial function on R
n with degree d. Assume that x = 0 is

an isolate zero of f , this means f(0) = 0 and there is δ > 0 with f(x) 6= 0, for all x ∈ Bδ(0)\{0}.
There exist positive constants τ, ε such that

‖x‖ ≤ τ |f(x)| 1
κ(n,d) ,

for all ‖x‖ ≤ ε.

A similar result for polynomial function system was given by Kollár in [70].

Theorem 1.4.5. [70] Let f1, . . . , fm be some polynomial functions on R
n whose degrees do not

exceed d. Set f(x) = maxi=1,...,m fi(x) for x in R
n. Assume that there is δ > 0 such that

f(x) = 0 and f(x) 6= 0, ∀x ∈ Bδ(0)\{0}. Then there exist τ, ε such that

‖x‖ ≤ τ |f(x)| 1
dnβ(n−1) , for all x such that ‖x‖ ≤ ε,

where

β(n− 1) =

(

n− 1
[n−1

2 ]

)

.

Without the assumption of isolated zero point, Kurdyka and Spodzieja [74, Corollary 4]
(see also [111]) obtained an error bound for a polynomial function with the Hölder exponent
a = R−1(n, d).

To our knowledge, these are the first general results on error bounds with some estimations of
the exponent. Some applications of these above results can be found in [27, 77, 78, 80, 102, 79].

In [80], Li, Mordukhovich and Pham, gave local error bounds for polynomial function systems
in the nonconvex case, with exponents explicitly determined by the dimension of the underlying
space and the degree of the involved polynomial functions. In this work, they obtained two
results, one is based on  Lojasiewicz gradient inequality, and the other result is proved with a
technique similar to that of Theorem 1.4.3.

Theorem 1.4.6. [80] . Let f1, . . . , fr and g1, . . . , gs be real polynomial functions on R
n with

degree at most d, and let
S = {x ∈ R

n|fi(x) ≤ 0, : gj(x) = 0} .
Then for each x̄ ∈ S there exist τ > 0, ε > 0 such that

(1.5) dist(x, S) ≤ τ





r
∑

i=1

[fi(x)]+ +

s
∑

j=1

|gi(x)|





1
R(n+r+s,d+1)

, with ‖x− x̄‖ ≤ ε.

Before beginning the proof of the latter theorem, let us recall a result of D’Acunto and
Kurdyka [43], which established  Lojasiewicz gradient inequality for polynomial function.

Theorem 1.4.7. [43] Let f be a polynomial function with degree d, suppose that f(0) = 0. There
exists c > 0, ε > 0 such that

‖∇f(x)‖ ≥ τ |f(x)|1− 1
R(n,d) , with ‖x‖ ≤ ε.
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Now, we apply this result to establish the  Lojasiewicz gradient inequality for maximum of
finitely many polynomial functions.

Lemma 1.4.8. Let f(x) = maxi=1,...,r fi(x) where fi are polynomial functions on R
n whose

degrees do not exceed d, and x̄ ∈ R
n with f(x̄) = 0. Then, exist c > 0, ε > 0 such that

dist (0, ∂f(x)) ≥ τ |f(x)|1− 1
R(n+r−1,d+1) , with ‖x− x̄‖ ≤ ε.

Proof. Without loss of generality, suppose that fi(x̄) = 0, i = 1, . . . , r. For each subset I =
{i1, . . . , iq} ⊂ {1, . . . , r}, we define the polynomial function FI : Rn+q−1 → R as following

FI(x, λ) =











q−1
∑

j=1

λjfij (x) +

(

1 −
q−1
∑

j=1

λj

)

fiq (x) if q ≥ 2

fi1(x) if q = 1,

where λ = (λ1, . . . , λq−1) ∈ R
q−1. It is clear that FI has degree at most d + 1 and F (x̄, λ) =

0,∀λ ∈ R
q−1. Set

P =







λ ∈ R
q−1|λj ≥ 0,

q−1
∑

j=1

λj ≤ 1







.

P is a compact set. For each λ̄ ∈ P , if ∇FI(x̄, λ̄) = 0, then thanks to Theorem 1.4.7, there exit
εI > 0, τI > 0 such that

(1.6) ‖∇F (x, λ)‖ ≥ τI |FI(x, λ)|1− 1
R(n+q−1,d+1) , with ‖λ− λ̄‖ ≤ εI , ‖x− x̄‖ ≤ εI .

In the other case, when ∇FI(x̄, λ̄) 6= 0 then (1.6) immediately holds. By the compactness of P ,
the inequality (1.6) holds for all λ ∈ P . Set

τ = min {τI |I ⊂ {i, . . . , r}, I 6= ∅} > 0 and ε = min {εI |I ⊂ {i, . . . , r}, I 6= ∅} > 0.

Take an arbitrary point x ∈ R
n such that ‖x − x̄‖ ≤ ε and I(x) = {i|fi(x) = f(x)}, then there

exist λi ≥ 0, i ∈ I(x) and
∑

i∈I(x)

λi = 1 such that

dist (0, ∂f(x)) = ‖
∑

i∈I(x)

λi∇fi(x)‖.

On the other hand, for i ∈ I(x), we have

FI(x)(x, λ) =
∑

i∈I(x)

λifi(x) = f(x)

and

‖∇FI(x)(x, λ)‖ = ‖
∑

i∈I(x)

λi∇fi(x)‖ = dist (0, ∂f(x)) .

By combining the above inequalities and (1.6), we have the conclusion.
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We now provide the proof of Theorem 1.4.6
Proof of Theorem 1.4.6 We consider the proof for x̄ ∈ bd(S). For any e = (ei)i=1,...,s ∈
{−1, 1}s, define the function

fe(x) = max {0, fi(x), . . . , fr(x), e1g1(x), . . . , esgs(x)} , ∀x ∈ R
n.

One can see that fe is the maximum of r + s+ 1 polynomial function with degree not exceed d,
and fe(x̄) = 0. Applying Lemma 1.4.8, one obtains τe > 0 and εe > 0 such that

dist (0, ∂fe(x)) ≥ τe|fe(x)|1− 1
R(n+r+s,d+1) ,∀‖x− x̄‖ ≤ εe.

Set
τ = min {τe|e ∈ {−1, 1}s} > 0, ε = {εe|e ∈ {−1, 1}s} > 0,

and
f(x) = max {0, fi(x), . . . , fr(x), g1(x), . . . , gs(x),−g1(x), . . . ,−gs(x)}

For any x with ‖x− x̄‖ ≤ ε and f(x) > 0, then we can find e ∈ {−1, 1}s such that f(x) = fe(x)
and dist (0, ∂f(x)) = dist (0, ∂fe(x)). Therefore,

dist (0, ∂f(x)) ≥ τ |f(x)|1− 1
R(n+r+s,d+1) ,∀‖x− x̄‖ ≤ ε.

By applying Corollary 1.3.8 with ϕ(s) = s
1

R(n+r+s,d+1) , ∀s > 0, we obtain the conclusion. ✷

By using the same technique as in[88, Theorem 2.1], [87, Theorem 2.2], one can obtain an
error bound whose exponent is different from Theorem 1.4.6.

Theorem 1.4.9. [80] With the assumptions of Theorem 1.4.6, we have the following local error
bound.

dist(x, S) ≤ τ





r
∑

i=1

[fi(x)]+ +

s
∑

j=1

|gi(x)|





2
R(n+r,2d)

, with ‖x− x̄‖ ≤ ε.

1.4.2 Global error bounds for polynomials

1.4.2.1 Nonconvex case

We begin this subsection by recalling the result of Luo and Sturm [89]. The authors estab-
lished the global error bound for the zero set of a quadratic function.

Theorem 1.4.10. [89] Let f : Rn → R be the quadratic function. There exists a constant τ > 0
such that

dist(x, [f = 0]) ≤ τ(|f(x)| + |f(x)| 1
2 ),∀x ∈ R

n.

This result is recovered by the works of [101, Corollary 5], [50, Corollary 2]. Remark that
this theorem does not until hold for an arbitrary polynomial,

Example 4. Let f(x, y) = (xy − 1)2 + (x− 1)2, ∀(x, y) ∈ R
2.

One has [f ≤ 0] = {(1, 1)}. Consider the sequence (xk = 1
k , yk = k)k∈N, it is easy to check

that

0 < f(xk, yk) =

(

1 − 1

k

)2

< 1,∀k ∈ N and d((xk, yk), [f ≤ 0]) → +∞(k → +∞),
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therefore, f does not possess Hölder global error bound.
However, when f is a polynomial convex, this result was proved by Yang [124], and we present

it in Theorem 1.4.15.

Let us now present the characterization of global error bound for semi–algebraic, which is
proved by Ha [59].

Suppose that f : Rn → (−∞,+∞] has a Hölder global error bound,

(1.7) dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]a+ + [f(x)]b+
)

, ∀x ∈ R
n.

We observe easily that for any sequence (xk)k∈N ⊂ R
n, two following assertions hold

(i) If f(xk) → 0, then dist(xk, [f ≤ 0]) → 0.

(ii) If dist(xk, [f ≤ 0]) → +∞, then f(xk) → +∞.

Conversely, in [59], Ha proved that, for a polynomial function which satisfies two above conditions,
then it possesses Hölder global error bound. This result was extended for the class of continuous
semi-algebraic functions, see [50, Theorem 2]. The definition of the semi-algebraic function is
well-known, we can see the one in [50, Definition 1].

Theorem 1.4.11 (Characterization of global error bound for semi-algebraic). [59, 50] Let
f : Rn → R be a continuous semi-algebraic function. The following statements are equivalent:

1. For any sequence (xk)k∈N ∈ R
n \ [f ≤ 0] and ‖xk‖ → +∞, we have:

(i) If f(xk) → 0 then dist(xk, [f ≤ 0]) → 0.

(ii) If dist(xk, [f ≤ 0]) → +∞ then f(xk) → +∞.

2. There exist τ > 0 and a, b > 0 such that

dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]a+ + [f(x)]b+
)

, ∀x ∈ R
n.

Proof. (2) ⇒ (1) is obvious, we now prove the implication (1) ⇒ (2). The proof is divided into
two parts. Using (i), we shall prove that an error bound holds on the neighborhood of [f ≤ 0],
while by using (ii) we provide a bound for large dist(x, [f ≤ 0]).

Assume (i) holds. Let us prove that there exist τ1 > 0, a > 0 and r > 0 such that

dist(x, [f ≤ 0]) ≤ τ1[f(x)]a+,∀x ∈ [f ≤ r].

For t ∈ R, put ϕ(t) = sup{dist(x, [f ≤ 0]) : f(x) = t}. It is a semi-algebraic function. Thanks
to (i), there exists r > 0 such that ϕ(t) < ∞ for all t ∈ [0, r]. We can choose r sufficiently small
such that ϕ(t) is continuous and ϕ(t) 6= 0 on (0, r]. By using Puiseux Lemma:

ϕ(t) = τta + 0(ta), (t → 0).

From the assumption (i), it can be seen that τ > 0, a > 0. So there exist r > 0 and τ1 > 0 such
that ϕ(t) ≤ τ1t

a, for all t ∈ [f ≤ r]. It means that

dist(x, [f ≤ 0]) ≤ τ1[f(x)]a+,∀x ∈ [f ≤ r].

Using (ii), let us prove that there exist τ2 > 0, b > 0 and δ > 0 such that

dist(x, [f ≤ 0]) ≤ τ2[f(x)]b+,∀x ∈ [δ < f ].
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This conclusion is clear when f is bounded from above. We assume thus that supRn f =
supRn ϕ = +∞. It appears that ϕ(t) > 0 when t is sufficiently large, so there exist τ > 0
and b > 0 such that

ϕ(t) = τtb + 0(tb).

This implies that there is cτ2 > 0, R > 0 such that

dist(x, [f ≤ 0]) ≤ τ2[f(x)]b+,∀x ∈ [R < f ].

It is easily seen that (ii) implies the existence of M > 0 such that dist(x, S) < M , for all
x ∈ [r < f < R]. It gives dist(x, [f ≤ 0]) ≤ M

rα f(x)α. Combining with such inequality on the
domain [f ≤ r] and [f ≥ R], we have the conclusion.

The implication (2) ⇒ (1) in the latter theorem explains why do we need two exponents
[f(x)]a+ and [f(x)]b+ in the global error bound (1.7). One is ensures that the inequality (1.7) holds
when dist(x, [f ≤ 0]) → 0, and the other keeps such inequality holds when dist(x, [f ≤ 0]) → +∞.
Generally, the exponents are different.

Example 5. [60] Let f(x, y) = x2 + y4, ∀(x, y) ∈ R
2.

It can be seen that [f ≤ 0] = {( 0, 0)}, and

dist((x, y), [f ≤ 0]) ≤ f
1
4 (x, y) + f

1
2 (x, y), ∀(x, y) ∈ R

2.

On the other hands, by taking two sequences (x1
k = k, y1

n = 0)k∈N and (x2
k = 0, y2

k = 1/k)k∈N,
this follows that there does not exist α ∈ R such that

dist((x, y), [f ≤ 0]) ≤ τ [f(x, y)]α+, ∀(x, y) ∈ R
2.

By using Theorem 1.4.11, Ha [59] provided a global error bound for polynomial function under a
Palais–Smale condition. After that, his result was improved in [50] for continuous semi-algebraic
functions.

We recall that, f is said to possess the Palais-Smale condition (PS) at r0 if any sequence
(xk)k∈N, for which f(xk) → r0 and dist (0, ∂f(xk)) → 0, then (xk)k∈N possesses a converging
subsequence.

Theorem 1.4.12. [59, 50] Let f : Rn → R be a continuous semi-algebraic function. Suppose
that f satisfies the Palais-Smale condition at each r > 0, then there exist constants τ > 0 and
a, b > 0 such that

dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]a+ + [f(x)]b+
)

,∀x ∈ R
n.

Proof. It is enough to show that f satisfies the two conditions (i) and (ii) in Theorem 1.4.11.
First we establish (i). By contradiction, we assume that there exists a sequence (xk)k∈N and a
constant δ > 0 such that:

‖xk‖ → ∞, f(xk) → 0 and dist(xk, [f ≤ 0]) > δ.

Put X = {x|f(x) ≥ 0}, then X is a complete metric space. Applying Ekeland’s principle (see
[53]), there is a sequence (yk)k∈N ⊂ X such that

f(yk) ≤ f(xk) = εk

dist(xk, yk) ≤ √
εk
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f(yk) ≤ f(x) +
√
εk dist(x, yk),∀x ∈ X.

It is clear that f(yk) → 0 and ‖yk‖ → +∞. We can suppose that dist(yk, [f ≤ 0]) ≥ δ
2 , therefore

∀t ∈ (0, δ2 ) and for all u ∈ R
n, ‖u‖ = 1 we obtain

f(yk + tu) − f(yk)

t
≥ −√

εk.

Thus |∇f |(yk) ≤ √
εk. On the other hands, ‖∂f(yk)‖ ≤ |∇f |(yk), (see [10, Remark 6.1]),

therefore ∂f(yk) → 0, which is in contradiction with Palais-Smale’s condition.

Now, we will prove that f satisfies the condition (ii) of Theorem 1.4.11. By contradiction,
suppose that there exists a sequence (xk)k∈N ⊂ R

n such that:

‖xk‖ → ∞, dist(xk, [f ≤ 0]) → +∞ and f(xk) → t ∈ R.

Set X = {x|f(x) ≥ 0}, X is a complete metric space. Applying Ekeland’s principle, there is a
sequence (yk)k∈N ⊂ X such that

f(yk) ≤ f(xk) = tk

dist(xk, yk) ≤ dist(xk, [f ≤ 0])

2

f(yk) ≤ f(x) +
2f(xk)

dist(xk, [f ≤ 0])
dist(x, yk),∀x ∈ X

Therefore, without loss of generality we can assume that the sequence f(yk) is convergent,
‖yk‖ → ∞ and dist(yk, [f ≤ 0]) → +∞, therefore,

‖∇f(yk)‖ ≤ |∇f |(yk) ≤ 2f(xk)

dist(xk, [f ≤ 0])
→ 0,

contradicting to Palais-Smale’s condition.

1.4.2.2 Convex case

We begin this subsection by giving a result of Facchinei, Pang [54], they assert that a lower
semicontinuous convex function, a Hölder-type error bound on a level set can be extended to a
global error bound.

Theorem 1.4.13. [54] Let f be a lower semicontinuous convex function on R
n with [f ≤ 0]

nonempty. Suppose that there exist δ > 0 and τ > 0, θ > 0 such that

dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]+ + [f(x)]θ+
)

, ∀x ∈ [f ≤ δ].

There exists τ ′ > 0 such that

dist(x, [f ≤ 0]) ≤ τ ′ ([f(x)]+ + [f(x)]θ+
)

, ∀x ∈ R
n.

When we take θ = 1, this means that for a convex function, a Lipschitz error bound on the level
set can be extended to a global error bound.
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Proof. Let x ∈ R
n such that f(x) > δ and p = P[f≤0]x. It is clear that f(p) = 0. For any

λ ∈ (0, 1), we denote xλ = λx + (1 − λ)p. It can be seen that p = P[f≤0]xλ and dist(xλ, [f ≤
0]) = λ dist(x, [f ≤ 0]). By convexity, we get

f(xλ) ≤ λf(x) + (1 − λ)f(p) = λf(x).

We deduce that

dist(x, [f ≤ 0]) ≤ dist(xλ, [f ≤ 0])

f(xλ)
f(x).

On the other hand, by choosing λ = δ
2f(x) , we get

f(xλ) ≤ λf(x) =
δ

2
< δ.

Therefore, thanks to the assumption on error bounds, we obtain

dist(xλ, [f ≤ 0]) ≤ τ
(

f(xλ) + fθ(xλ)
)

.

It follows that

dist(xλ, [f ≤ 0])

f(xλ)
< τ

(

1 + fθ−1(xλ)
)

< c

(

1 +

(

δ

2

)θ−1
)

.

Combining the above inequalities, we get

dist(x, [f ≤ 0]) ≤ τ

(

1 +

(

δ

2

)θ−1
)

f(x).

This means that

dist(x, [f ≤ 0]) ≤ τ

(

1 +

(

δ

2

)θ−1
)

(

f(x) + fθ(x)
)

,∀x ∈ R
n.

Combining this result with Theorem 1.4.2, we immediately obtain a result similar to [24, Theorem
3] and [49, Theorem 6].

Theorem 1.4.14. Let fi : R
n → R, (i = 1, . . .m) be continuous, convex and subanalytic func-

tions. Assume that, the set

S = {x ∈ R
n|fi(x) ≤ 0, i = 1, . . .m}

is nonempty, compact. Then, there exist τ, θ > 0 such that

dist(x, S) ≤ τ
(

[f(x)]+ + [f(x)]θ+
)

, ∀x ∈ R
n,

where f(x) =
∑m
i=1[fi(x)]+.

We remark that if fi is coercive then for all r ∈ R, the set [fi ≤ r] is compact.
We recall now the definition of piecewise convex polynomial functions.
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Definition 4. [81, 78] A continuous function f on R
n is said to be a piecewise convex polyno-

mial function if there exist finitely many polyhedra P1, . . . , Pk with ∪kj=1Pj = R
n such that the

restriction of f on each Pj, denoted by fi, is a convex polynomial function. The degree of f ,
denoted by deg(f), is defined as the maximum of deg(fj).

In [81], Li studied error bounds for a convex piecewise quadratic function. More precisely, let
f be a convex piecewise quadratic function. Then, there exists τ > 0 such that

(1.8) dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]+ +
√

[f(x)]+

)

,∀x ∈ R
n.

By using Theorem 1.4.5 and Theorem 1.4.13, Li [77] showed that, for a convex polynomial
function f on R

n with degree d, there exists τ > 0 such that

(1.9) dist(x, [f ≤ 0]) ≤ τ

(

[f(x)]+ + [f(x)]
1

κ(n,d)

+

)

,∀x ∈ R
n.

This result is further improved by Yang [124].

Theorem 1.4.15. [124] Let f be a polynomial convex with degree d. There exists τ > 0 such
that

dist(x, [f ≤ 0]) ≤ τ
(

[f(x)]+ + [f(x)]
1
d

+

)

,∀x ∈ R
n.

The two above results (1.8), (1.9) have been extended by Li ([78]), for general convex piecewise
polynomial function.

Theorem 1.4.16. [78] Let f be a piecewise convex polynomial function on R
n with degree d.

Suppose that one of the following two conditions holds:

(i) If dist(x, [f ≤ 0]) → +∞ then f(x) → +∞.

(ii) f is convex.

There exists c > 0 such that

dist(x, [f ≤ 0]) ≤ c

(

[f(x)]+ + [f(x)]
1

κ(n,d)

+

)

,∀x ∈ R
n.

Let us now present a global error bound for convex polynomial function systems. In [87],
under the Slater condition, Luo and Luo proved that a global Lipschitzian error bound holds for
convex quadratic systems. After that, without the Slater condition, Pang and Wang in [121],
showed that any systems of convex quadratic has a global error bound.

Theorem 1.4.17. [121] Let f1, f2 . . . , fm be convex quadratic functions. Assume that

S = {x ∈ R
n|fi(x) ≤ 0, i = 1, . . .m}

is not empty, then there exists a positive integer dist ≤ n+ 1 and a scalar c > 0 such that

dist(x, S) ≤ cmax
(

‖[f(x)]+‖, ‖[f(x)]+‖ 1

2d

)

,∀x ∈ R
n,

where f(x) = (fi(x))i=1...,m, ∀x ∈ R
n.

Furthermore, if S contains an interior point, then d = 0.
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Similarly Theorem 1.3.14, the latter result is extended to the Banach space in [103, Theorem
7], with

fi(x) =
1

2
〈Aix, x〉 + 〈Bi, x〉 + ci,

where Ai : X × X → R is a symmetric continuous bilinear and semi-definite positive, Bi ∈ X∗

and ci ∈ R, for i = 1, . . . ,m.
Note that this result does not hold for a general convex polynomial function system, see

Example 2. However, in some particular cases, the global error bound hold for such systems.

Theorem 1.4.18. Let f1, . . . , fp be convex polynomial functions on R
n whose degrees are at

most d. Let f(x) = maxi=1,...,m fi(x), ∀x ∈ R
n. Then, the following statements are hold

1. [77] If fi(x) ≥ 0,∀x ∈ R
n, i = 1, . . . ,m then there exists τ > 0 such that

dist(x, [f ≤ 0]) ≤ τ

(

[f(x)]+ + [f(x)]
1

κ(n,d)

+

)

,∀x ∈ R
n.

2. [102] If S = {x ∈ K|f(x) ≤ 0} is a nonempty compact set, where K is a convex polyhedral
in R

n. Then, there exists τ > 0 such that

dist(x, S) ≤ c

(

[f(x)]+ + [f(x)]
1

κ(n,2d)

+

)

,∀x ∈ K.

3. [102]Let K is a convex polyhedral in R
n and S = {x ∈ K|f(x) ≤ 0} is nonempty. Assume

that, for each v ∈ K∞: maxi=1,...,p f
∞
i (v) = 0 ⇒ f∞

i (v) = 0 (see (1.4)). Then, there exists
τ > 0 such that

dist(x, S) ≤ c

(

[f(x)]+ + [f(x)]
1

κ(n,2d)

+

)

,∀x ∈ K,

where K∞ is recession cone of K, defined by

K∞ = {v ∈ R
n|x+ tv ∈ K, ∀t > 0, x ∈ K} .

40



Chapter 2

From error bounds to the

complexity of first–order descent

methods for convex functions

Abstract This chapter shows that error bounds can be used as effective tools for deriving
complexity results for first-order descent methods in convex minimization. In a first stage, this
objective led us to revisit the interplay between error bounds and the Kurdyka- Lojasiewicz (KL)
inequality. One can show the equivalence between the two concepts for convex functions having
a moderately flat profile near the set of minimizers (as those of functions with Hölderian growth).
A counterexample shows that the equivalence is no longer true for extremely flat functions. This
fact reveals the relevance of an approach based on KL inequality. In a second stage, we show
how KL inequalities can in turn be employed to compute new complexity bounds for a wealth
of descent methods for convex problems. Our approach is completely original and makes use
of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method
of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of
descent methods. As a byproduct of our study, we also provide new results for the globalization
of KL inequalities in the convex framework.

2.1 Overview and main results

A brief insight into the theory of error bounds. Since Hoffman’s celebrated result on error
bounds for systems of linear inequalities [63], the study of error bounds has been successfully
applied to problems in sensitivity, convergence rate estimation, and feasibility issues. In the
optimization world, the first natural extensions were made to convex functions by Robinson
[113], Mangasarian [93], and Auslender-Crouzeix [6]. However, the most striking discovery came
years before in the pioneering works of  Lojasiewicz [84, 85] at the end of the fifties: under a mere
compactness assumption, the existence of error bounds for arbitrary continuous semi-algebraic
functions was provided. Despite their remarkable depth, these works remained unnoticed by
the optimization community during a long period (see [88]). At the beginning of the nineties,
motivated by numerous applications, many researchers started working along these lines, in quest
for quantitative results that could produce more effective tools. The survey of Pang [106] provides
a comprehensive panorama of results obtained around this time. The works of Luo [87, 88, 89]
and Dedieu [45] are also important milestones in the theory. The recent works [78, 80, 59, 79, 15]
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provide even stronger quantitative results by using the powerful machinery of algebraic geometry
or advanced techniques of convex optimization.

A methodology for complexity of first-order descent methods. Let us introduce the
concepts used in this work and show how they can be arranged to devise a new and systematic
approach to complexity. Let H be a real Hilbert space, and let f : H → (−∞,+∞] be a proper
lower-semicontinuous convex function achieving its minimum min f so that argmin f 6= ∅. In its
most simple version, an error bound is an inequality of the form

(2.1) ω
(

f(x) − min f
)

≥ dist(x, argmin f),

where ω is an increasing function vanishing at 0 –called here the residual function–, and where
x may evolve either in the whole space or in a bounded set. Hölderian error bounds, which are
very common in practice, have a simple power form

f(x) − min f ≥ γ distp(x, argmin f),

with γ > 0, p ≥ 1 and thus ω(s) = ( 1
γ s)

1
p . When functions are semi-algebraic on H = R

n

and “regular” (for instance, continuous), the above inequality is known to hold on any compact
set [84, 85], a modern reference being [42]. This property is known in real algebraic geometry
under the name of  Lojasiewicz inequality. However, since we work here mainly in the sphere of
optimization and follow complexity purposes, we shall refer to this inequality as to the  Lojasiewicz
error bound inequality.

Once the question of computing constants and exponents (here γ and p) for a given mini-
mization problem is settled (see the fundamental works [89, 78, 15, 59]), it is natural to wonder
whether these concepts are connected to the complexity properties of first-order methods for
minimizing f . Despite the important success of the error bound theory in several branches of
optimization, we are not aware of a solid theory connecting the error bounds we consider (as de-
fined in (2.1)), with the study of the complexity of general descent methods. There are, however,
several works connecting error bounds with the convergence rates results of first-order methods
(see e.g., [92, 97, 16, 40, 108]). See also the new and interesting work [79] that provides a wealth
of error bounds and some applications to convergence rate analysis. An important fraction of
these works involves “first-order error bounds”1 (see [88, 92]) that are different from those we
consider here.

Our answer to the connection between complexity and “zero-order error bounds” will partially
come from a related notion, also discovered by  Lojasiewicz and further developed by Kurdyka
in the semi-algebraic world: the  Lojasiewicz gradient inequality. This inequality, also called
Kurdyka- Lojasiewicz (KL) inequality (see [23]), asserts that for any smooth semi-algebraic func-
tion f there is a smooth concave function ϕ such that

‖∇ (ϕ ◦ (f − min f)) (x)‖ ≥ 1

for all x in some neighborhood of the set argmin f . Its generalization to the nonsmooth case
[21, 22] has opened very surprising roads in the nonconvex world and it has allowed to perform
convergence rate analyses for many important algorithms in optimization [4, 26, 56]. In a first
stage of the present paper we show, when f is convex, that error bounds are equivalent to
nonsmooth KL inequalities provided the residual function has a moderate behavior close to 0
(meaning that its derivative blows up at reasonable rate). Our result includes, in particular, all
power-type examples like the ones that are often met in practice2.

1That is, involving inequalities of the type ‖∇f(x)‖ ≥ ω(dist(x, argmin f))
2An absolutely crucial asset of error bounds and KL inequalities in the convex world is their global nature

under a mere coercivity assumption – see Section 2.6.
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Once we know that error bounds provide a KL inequality, one still needs to make the connec-
tion with the actual complexity of first-order methods. This is probably the main contribution
in this paper: to any given convex objective f : H → (−∞,+∞] and descent sequence of the
form

(i) f(xk) + a‖xk − xk−1‖2 ≤ f(xk−1),

(ii) ‖ωk‖ ≤ b‖xk − xk−1‖ where ωk ∈ ∂f(xk), k ≥ 1,

we associate a worst case one dimensional proximal method

αk = argmin

{

ϕ−1(s) +
1

2ζ
(s− αk)2 : s ≥ 0

}

, α0 = ϕ−1(f(x0)),

where ζ is a constant depending explicitly on the triplet of positive real numbers (a, b, ℓ) where

ℓ > 0 is a Lipschitz constant of
(

ϕ−1
)′

. Our complexity result asserts, under weak assumptions

that the “1-D prox” governs the complexity of the original method through the elementary and
natural inequality

f(xk) − min f ≤ ϕ−1(αk), k ≥ 0.

Similar results for the sequence are provided. These ideas are already present in [20] and [18,
Section 3.2]. The function ϕ−1 above –the inverse of a desingularizing function for f on a
convenient domain– contains almost all the information our approach provides on the complexity
of descent methods. As explained previously, it depends on the precise knowledge of a KL
inequality and thus, in this convex setting, of an error bound. The reader familiar with second-
order methods might have recognized the spirit of the majorant method of Kantorovich [68],
where a reduction to dimension one is used to study Newton’s method.

Deriving complexity bounds in practice: applications. Our theoretical results inaugu-
rate a simple methodology: derive an error bound, compute the desingularizing function when-
ever possible, identify essential constants in the descent method and finally compute the com-
plexity using the one-dimensional worst case proximal sequence. We consider first some classic
well-posed problems: finding a point in an intersection of closed convex sets with regular inter-
section or uniformly convex problems, and we show how complexity of some classical methods
can be obtained or recovered. We revisit the iterative shrinkage thresholding algorithm (ISTA)
applied to a least squares objective with ℓ1 regularization [44] and we prove that its complexity
is of the form O(qk) with q ∈ (0, 1) (see [97] for a pioneering work in this direction and also
[83] for further geometrical insights). This result contrasts with what was known on the subject
[17, 51] and suggests that many questions on the complexity of first-order methods remain open.

Theoretical aspects and complementary results. As explained before, our paper led us
to establish several theoretical results and to clarify some questions appearing in a somehow
disparate manner in the literature. We first explain how to pass from error bounds to KL
inequality in the general setting of Hilbert spaces and vice versa, similar questions appear in
[21, 80, 79]. This result is proved by considering the interplay between the contraction semigroup
generated by the subdifferential function and the L1 contraction property of this flow. These
results are connected to the geometry of the residual functions ω and break down when error
bounds are too flat. This is shown in Section 2.6 by a dimension 2 counterexample presented in
[23] for another purpose.

Our investigations also led us to consider the problem of KL inequalities for convex functions,
a problem partly tackled in [23]. We show how to extend convex KL inequalities from a level set

43



to the whole space. We also show that compactness and semi-algebraicity ensure that real semi-
algebraic or definable coercive convex functions are automatically KL on the whole space. This
result has an interesting theoretical consequence in terms of complexity: abstract descent methods
for coercive semi-algebraic convex problems are systematically amenable to a full complexity
analysis provided that a desingularizing function –known to exist– is explicitly computable.

2.2 Preliminaries

In this section, we recall the basic concepts, notation and some well-known results to be used
throughout the paper. In what follows, H is a real Hilbert space and f : H → (−∞,+∞] is
proper, lower-semicontinuous and convex. We are interested in some properties of the function
f around the set of its minimizers, which we suppose to be nonempty and denote by argmin f
or S. We assume, without loss of generality, that min f = 0.

2.2.1 Some convex analysis

We use the standard notation from [114] (see also [14, 109] and [96]). The subdifferential of
f at x is defined as

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ H}.

Clearly, x̂ minimizes f on H if, and only if, 0 ∈ ∂f(x̂). The domain of the point-to-set operator
∂f : H ⇒ H is dom ∂f := {x ∈ H : ∂f(x) 6= ∅}. For x ∈ dom ∂f , we denote by ∂0f(x) the
least-norm element of ∂f(x). The vector ∂0f(x) exists and is unique as it is the projection of
0 ∈ H onto the nonempty closed convex set ∂f(x). We have ‖∂0f(x)‖ = dist(0, ∂f(x)) (when
x is not in dom ∂f we set ‖∂0f(x)‖ = +∞). We adopt the convention s × (+∞) = +∞ for all
s > 0.

Given x ∈ H, the function fx, defined by

fx(y) = f(y) +
1

2
‖y − x‖2

for y ∈ H, has a unique minimizer, which we denote by proxf (x). Using Fermat’s Rule and the
Moreau-Rockafellar Theorem, proxf (x) is characterized as the unique solution of the inclusion

x − proxf (x) ∈ ∂f
(

proxf (x)
)

. In particular, proxf (x) ∈ dom ∂f ⊂ dom f ⊂ H. The mapping
proxf : H → H is the proximity operator associated to f . It is easy to prove that proxf is
Lipschitz continuous with constant 1.

Example 6. If C ⊂ H is nonempty, closed and convex, the indicator function of C is the
function iC : H → (−∞,∞], defined by

iC(x) =

{

0 if x ∈ C

+∞ otherwise.

It is proper, lower-semicontinuous and convex. Moreover, for each x ∈ H, ∂iC(x) = NC(x), the
normal cone to C at x. In turn, proxiC is the projection operator onto C, which we denote by
PC .
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2.2.2 Subgradient curves

Consider the differential inclusion
{

ẏ(t) ∈ −∂f(y(t)), for almost all t in (0,+∞)

y(0) = x,

where x ∈ dom f and y(·) is an absolutely continuous curve in H. The main properties of this
system − for the purpose of this research − are summarized in the following:

Theorem 2.2.1 (Brézis [28], Bruck [31]). For each x ∈ dom f , there is a unique absolutely
continuous curve χx : [0,∞) → H such that χx(0) = x and

χ̇x(t) ∈ −∂f (χx(t))

for almost every t > 0. Moreover,

i) d
dtχx(t+) = −∂0f(χx(t)) for all t > 0;

ii) d
dtf

(

χx(t+)
)

= −‖χ̇x(t+)‖2 for all t > 0;

iii) For each z ∈ S, the function t 7→ ‖χx(t) − z‖ decreases;

iv) The function t 7→ f(χx(t)) is nonincreasing and limt→∞ f(χx(t)) = min f ;

v) χx(t) converges weakly to some x̂ ∈ S, as t → ∞.

The proof of the result above is provided in [28], except for part v), which was proved in [31].
The trajectory t 7→ χx(t) is called a subgradient curve.

2.2.3 Kurdyka- Lojasiewicz inequality

In this subsection, we present the nonsmooth Kurdyka- Lojasiewicz inequality introduced in
[21] (see also [22, 23], and the fundamental works [86, 73]). To simplify the notation, we write
[f < µ] = {x ∈ H : f(x) < µ} (similar notation can be guessed from the context). Let r0 > 0
and set

K(0, r0) =
{

ϕ ∈ C0[0, r0) ∩ C1(0, r0), ϕ(0) = 0, ϕ is concave and ϕ′ > 0
}

.

The function f satisfies the Kurdyka- Lojasiewicz (KL) inequality (or has the KL property)
locally at x̄ ∈ dom f if there exist r0 > 0, ϕ ∈ K(0, r0) and ε > 0 such that

ϕ′ (f(x) − f(x̄)) dist(0, ∂f(x)) ≥ 1

for all x ∈ B(x̄, ε) ∩ [f(x̄) < f(x) < f(x̄) + r0]. We say ϕ is a desingularizing function for
f at x̄. This property basically expresses the fact that a function can be made sharp by a
reparameterization of its values.

If x̄ is not a minimizer of f , the KL inequality is obviously satisfied at x̄. Therefore, we focus
on the case when x̄ ∈ S. Since f(x̄) = 0, the KL inequality reads

(2.2) ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1

for x ∈ B(x̄, ε) ∩ [0 < f < r0]. The function f has the KL property on S if it does so at each
point of S.
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The  Lojasiewicz gradient inequality corresponds to the case when ϕ(s) = cs1−θ for some c > 0
and θ ∈ [0, 1). Following  Lojasiewicz original presentation, (2.2) can be reformulated as follows

‖∂0f(x)‖ ≥ c′ f(x)θ,

where c′ = [(1 − θ)c]−1. The number θ is the  Lojasiewicz exponent. If f has the KL property
and admits the same desingularizing function ϕ at every point, then we say that ϕ is a global
desingularizing function for f .

KL inequalities were developed within the fascinating world of real semi-algebraic sets and
functions. For that subject, we refer the reader to the book [42] by Bochnak-Coste-Roy.

We recall the following theorem on the nonsmooth KL inequality (which follows the pioneering
works of  Lojasiewicz [86] and Kurdyka [73]). It is one of the cornerstones of the present research:

Theorem 2.2.2 (Bolte-Daniilidis-Lewis [21]). (Nonsmooth KL inequality) If f : Rn → (−∞,+∞]
is proper, convex, lower-semicontinuous and semi-algebraic3, then it has the KL property around
each point in dom f .

Under an additional coercivity assumption, a global result is provided in Subsection 2.6.3.

2.2.4 Error bounds

Consider a nondecreasing function ω : [0,+∞[→ [0,+∞[ with ω(0) = 0. The function f
satisfies a local error bound with residual function ω if there is r0 > 0 such that

(ω ◦ f)(x) ≥ dist(x, S)

for all x ∈ [0 ≤ f ≤ r0] (recall that min f = 0). Of particular importance is the case when

ω(s) = γ−1s
1
p with γ > 0 and p ≥ 1, namely:

f(x) ≥ γ dist(x, S)p

for all x ∈ [0 ≤ f ≤ r0].
If f is convex lower semicontinuous, we can extend the error bound beyond [0 ≤ f ≤ r0] by

linear extrapolation. More precisely, let x ∈ dom f such that f(x) > r0. Then f is continuous on
the segment [x, PS(x)]. Therefore, there is x0 ∈ [x, PS(x)] such that f(x0) = r0. By convexity,
we have

f(x) − 0

dist(x, S)
≥ f(x0) − 0

dist(x0, S)
≥ r0

(

γ

r0

)
1
p

.

It follows that
f(x) ≥ γ dist(x, S)p for x ∈ [0 ≤ f ≤ r0],

f(x) ≥ r
p−1

p

0 γ
1
p dist(x, S) for x /∈ [0 ≤ f ≤ r0].

This entails that
f(x) + f(x)

1
p ≥ γ0 dist(x, S)

for all x ∈ H, where γ0 =

(

1 + r
p−1

p

0

)

γ
1
p . This is known in the literature as a global Hölder-type

error bound (see [78]). Observe that it can be put under the form ω(f(x)) ≥ dist(x, S) by simply

setting ω(s) = 1
γ0

(s+ s
1
p ). When combined with the  Lojasiewicz error bound inequality [84, 85],

the above remark implies immediately the following result:

3If semi-algebraic is replaced by subanalytic or definable, we obtain the same results.
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Theorem 2.2.3 (Global error bounds for semi-algebraic coercive convex functions).
Let f : Rn → (−∞,+∞] be proper, convex, lower-semicontinuous and semi-algebraic, and as-
sume that argmin f is nonempty and compact. Then f has a global error bound

f(x) + f(x)
1
p ≥ γ0 dist(x, argmin f),∀x ∈ R

n,

where γ0 > 0 and p ≥ 1 is a rational number.

2.3 Error bounds with moderate growth are equivalent to

 Lojasiewicz inequalities

In this section, we establish a general equivalence result between error bounds and KL inequal-
ities. Our main goal is to provide a simple and natural way of explicitly computing  Lojasiewicz
exponents and, more generally, desingularizing functions. To avoid perturbing the flow of our
general methodology on complexity, we discuss limitations and extensions of our results later, in
Section 2.6.

As shown in Section 2.4, KL inequalities allow us to derive complexity bounds for first-order
methods. However, KL inequalities with known constants are in general difficult to establish
while error bounds are more tractable (see e.g., [78] and references therein). The fact that
these two notions are equivalent opens a wide range of possibilities when it comes to analyzing
algorithm complexity.

2.3.1 Error bounds with moderate residual functions and  Lojasiewicz

inequalities

Moderate residual functions. Error bounds often have a power or Hölder-type form (see e.g.
[88, 87, 89, 78, 100, 59]). They can be either very simple s → asp or exhibit two regimes, like for
instance, s → asp+bsq. In any cases, for all concrete instances we are aware of, residual functions
are systematically semi-algebraic or of “power-type”. In this paper, we introduce a category of
functions that allows to encompass these semi-algebraic cases and even more singular ones into
a simple and appealing framework. A function ϕ : [0, r) → R in C1(0, r) ∩C0[0, r) and vanishing
at the origin, has a moderate behavior (near the origin) if it satisfies a differential equation of
the type

sϕ′(s) ≥ cϕ(s), ∀s ∈ (0, r),

where c is a positive constant (observe that by concavity one has necessarily c ≤ 1). A pretty
direct use of the Puiseux Lemma (see [42]) shows:

Lemma 2.3.1. If ϕ : [0, r) → R in C1(0, r)∩C0[0, r), vanishes at the origin and is semi-algebraic
or subanalytic then it has a moderate behavior.

The following theorem asserts that if ϕ has a moderate behavior, f has the global KL prop-
erty if, and only if, f has a global error bound. Besides, the desingularizing function in the KL
inequality and the residual function in the error bound are essentially the same, up to a multi-
plicative constant. As explained through a counterexample in subsection 2.6.3, the equivalence
breaks down if one argues in a setting where the derivative ϕ can blow up faster. This result is
related to results obtained in [23, 21, 41, 80, 79] and also shares some common techniques.

Theorem 2.3.2 (Characterization of  Lojasiewicz inequalities for convex functions).
Let f : H → (−∞,+∞] be a proper, convex and lower-semicontinuous, with min f = 0. Let
r0 > 0, ϕ ∈ K(0, r0), c > 0, ρ > 0 and x̄ ∈ argmin f .
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(i) [KL inequality implies error bounds] If ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 for all x ∈ [0 < f <
r0] ∩B(x̄, ρ), then dist(x, S) ≤ ϕ (f(x)) for all x ∈ [0 < f < r0] ∩B(x̄, ρ).

(ii) [Error bounds implies KL inequality] Conversely, if sϕ′(s) ≥ cϕ(s) for all s ∈ (0, r0) (ϕ
has a moderate behavior), and ϕ(f(x)) ≥ dist(x, S) for all x ∈ [0 < f < r0] ∩B(x̄, ρ), then
ϕ′ (f(x)) ‖∂0f(x)‖ ≥ c for all x ∈ [0 < f < r0] ∩B(x̄, ρ).

Proof. (i) Recall that the mapping [0,+∞) × dom f ∋ (t, x) → χx(t) denotes the semiflow
associated to −∂f (see previous section). Since f satisfies Kurdyka- Lojasiewicz inequality, we
can apply Theorem 2.6.1 of Section 2.6, to obtain

‖χx(t) − χx(s)‖ ≤ ϕ(f(χx(t))) − ϕ(f(χx(s))),

for each x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s. As established in Theorem 2.6.1, χx(s)
must converge strongly to some x̃ ∈ S as s → ∞. Take t = 0 and let s → ∞ to deduce that
‖x− x̃‖ ≤ ϕ(f(x)). Thus ϕ(f(x)) ≥ dist(x, S).
(ii) Take x ∈ [0 < f < r0] ∩B(x, ρ) and write y = PS(x). By convexity, we have

0 = f(y) ≥ f(x) + 〈∂0f(x), y − x〉.
This implies

f(x) ≤ ‖∂0f(x)‖ ‖y − x‖ = dist(x, S)‖∂0f(x)‖ ≤ ϕ(f(x))‖∂0f(x)‖.
Since f(x) > 0, we deduce that

1 ≤ ‖∂0f(x)‖ϕ(f(x))

f(x)
≤ 1

c
‖∂0f(x)‖ϕ′(f(x)),

and the conclusion follows immediately.

In a similar fashion, we can characterize the global existence of a  Lojasiewicz gradient in-
equality.

Corollary 2.3.3. (Characterization of  Lojasiewicz inequalities for convex functions:
global case) Let f : H → (−∞,+∞] be a proper, convex and lower-semicontinuous, with
min f = 0. Let ϕ ∈ K(0,+∞) and c > 0.

(i) If ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 for all x ∈ [0 < f ], then dist(x, S) ≤ ϕ (f(x)) for all x ∈ [0 < f ].

(ii) Conversely, if sϕ′(s) ≥ cϕ(s) for all s ∈ (0, r0) (ϕ has moderate behavior), and ϕ(f(x)) ≥
dist(x, S) for all x ∈ [0 < f ], then ϕ′ (f(x)) ‖∂0f(x)‖ ≥ c for all x ∈ [0 < f ].

Remark 2.3.4. (a) Observe the slight dissymmetry between the conclusions of (i) and (ii) in
Theorem 2.3.2 and Corollary 2.3.3: while a desingularizing function provides directly an error
bound in (i), an error bound (with moderate growth) becomes desingularizing after a rescaling,
namely c−1ϕ.

(b) (Hölderian case) When in (ii) one has ϕ(s) = γs
1
p with p ≥ 1, γ > 0, then the constant c is

given by

(2.3) c =
1

p
.

Analytical aspects linked with the above results, such as connections with subgradient curves
and nonlinear bounds, are discussed in a section devoted to further theoretical aspects of the
interplay between KL inequality and error bounds. We focus here on the essential consequences
we expect in terms of algorithms and complexity. With this objective in mind, we first provide
some concrete examples in which a KL inequality with known powers and/or constants can be
provided.

48



2.3.2 Examples: computing  Lojasiewicz exponent through error bounds

The method we use for computing  Lojasiewicz exponents is quite simple: we derive an error
bound for f with as much information as possible on the constants, and then we use the convexity
along with either Theorem 2.3.2 or Corollary 2.3.3 to compute a desingularizing function together
with a domain of desingularization; this technique appears also in [80] a paper which only came
to our knowledge during the finalization of our article.

2.3.2.1 KL inequality for piecewise polynomial convex functions and least squares
objective with ℓ1 regularization

Here, a continuous function f : Rn → R is piecewise polynomial if there is a partition of Rn into
finitely many polyhedra4 P1, . . . , Pk, such that fi = f |Pi

is a polynomial for each i = 1, . . . , k.
The degree of f is defined as deg(f) = max{deg(fi) : i = 1, . . . , k}. We have the following
interesting result from Li [78, Corollary 3.6]:

Proposition 2.3.5 (Li [78]). Let f : Rn → R be a piecewise polynomial convex function with
argmin f 6= ∅. Then, for each r ≥ min f , there exists γr > 0 such that

(2.4) f(x) − min f ≥ γr dist
(

x, argmin f
)(deg(f)−1)n+1

for all x ∈ [f ≤ r].

Combining Proposition 2.3.5 and Corollary 2.3.3, the above implies:

Corollary 2.3.6. Let f : Rn → R be a piecewise polynomial convex function with argmin f 6= ∅.

Then f has the  Lojasiewicz property on [f ≤ r], with exponent θ = 1 − 1

(deg(f) − 1)n + 1
.

Sparse solutions of inverse problems. Let f : Rn → R be given by

f(x) =
1

2
‖Ax− b‖2

2 + µ‖x‖1,

where µ > 0, b ∈ R
m and A is a matrix of size m × n. Then f is obviously a piecewise

polynomial convex function of degree 2. Since f is also coercive, we have S = argmin f 6= ∅. A
direct application of Proposition 2.3.5 and Corollary 2.3.6 gives that f − min f admits θ = 1

2 as
a  Lojasiewicz exponent.

Yet, in order to derive proper complexity bounds for ISTA we need to identify a computable
constant γr in (2.4). For this we shall apply a recent result from Beck-Shtern [15].

First let us recall some basic results on error bounds (see e.g., [63, 125]). In what follows,
‖M‖ denotes the spectral or operator norm of a real matrix M .5

Definition 5 (Hoffman’s error bound). Given positive integers m,n, r, let A ∈ R
m×n, a ∈ R

m,
E = R

r×n, e ∈ R
r. We consider the two polyhedra

X = {x ∈ R
n : Ax ≤ a} , Y = {x ∈ R

n : Ex = e} ,

and we assume that X ∩ Y 6= ∅. There exists a constant ν = ν(A,E) ≥ 0, that only depends on
the pair (A,E) and is known as Hoffman’s constant for the pair (A,E), such that

(2.5) dist(x,X ∩ Y ) ≤ ν‖Ex− e‖, ∀x ∈ X.

4Usual definitions allow the subdomains to be more complex
5It is the largest singular value of M , which is the square root of the largest eigenvalue of the positive-

semidefinite square matrix MT M , where MT is the transpose matrix of M .
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A crucial aspect of Hoffman’s error bound is the possibility of estimating the constant ν from
the data A,E. We will not enter into these details here, we simply refer the reader to the work
of Zǎlinescu [125] and the references therein.

As suggested by Beck, we shall now apply a very useful result from [15] to derive an error
bound for f . Recall that S = argminRn f is convex, compact and nonempty. For any x∗ ∈ S,

f(x∗) ≤ f(0) = 1
2 ‖b‖2 which implies ‖x∗‖1 ≤ ‖b‖2

2µ . Hence S ⊂ {x ∈ R
n : ‖x‖1 ≤ R} for any fixed

R > ‖b‖2

2µ . For such a bound R, one has

min
Rn

f = min

{

1

2
‖Ax− b‖2

2 + µ‖x‖1 : x ∈ R
n

}

= min

{

1

2
‖Ax− b‖2

2 + µy : (x, y) ∈ R
n × R, ‖x‖1 ≤ R, y = ‖x‖1

}

= min

{

1

2
‖Ax− b‖2

2 + µy : (x, y) ∈ R
n × R, ‖x‖1 − y ≤ 0, y ≤ R

}

= min

{

1

2
‖Ãx̃− b̃‖2

2 + 〈µ̃, x̃〉 : x̃ = (x, y) ∈ R
n × R, Mx̃ ≤ R̃

}

(2.6)

where







































• Ã = [A, 0Rm×1 ] ∈ R
m×(n+1), b̃ = (b1, . . . , bm, 0) ∈ R

m+1,

• µ̃ = (0, . . . , 0, µ) ∈ R
n+1, R̃ = (0, . . . , 0, R) ∈ R

n+1

•M =

[

E −1R2n×1

0R1×n 1

]

is a matrix of size (2n + 1) × (n+ 1),

where E is a matrix of size 2n × n whose rows are all possible distinct vectors of size n

of the form ei = (±1, . . . ,±1) for all i = 1, . . . , 2n. The order of the ei being arbitrary.

Set X̃ :=
{

x̃ ∈ R
n+1 : Mx̃ ≤ R̃

}

and observe that the “geometrical complexity” of the problem
is now embodied in the matrix M .
It is clear that

(x∗, y∗) ∈ S̃ := argmin
x̃∈X̃

(

f̃(x̃) :=
1

2
‖Ãx̃− b̃‖2

2 + 〈µ̃, x̃〉
)

if and only if (x∗ ∈ S and y∗ = ‖x∗‖1) .

Using [15, Lemma 2.5], we obtain:

dist2(x̃, S̃) ≤ ν2
(

‖µ̃‖D + 3GDA + 2G2 + 2
) (

f̃(x̃) − f̃(x̃∗)
)

, ∀x̃ ∈ X̃

where

• x̃∗ = (x∗, y∗) is any optimal point in S̃,

• ν is the Hoffman constant associated with the couple (M, [ÃT , µ̃T ]T ) as in Definition 5
above.

• D is the Euclidean diameter of the polyhedron X̃ = {(x, y) ∈ R
n+1 : ‖x‖1 ≤ y ≤ R} and

is thus the maximal distance between two vertices. Hence D = 2R.

• G is the maximal Euclidean norm of the gradient of 1
2 ‖. − b̃‖2 over Ã(X̃), hence, G ≤

R‖A‖ + ‖b‖.
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• DA is the Euclidean diameter of the set Ã(X̃), thus DA = maxxi∈X ‖A(x1 −x2)‖ ≤ 2R‖A‖.

Therefore, we can rewrite the above inequality as follows
(2.7)

dist2(x, S) + (y − y∗)2 ≤ κR

(

1

2
‖Ax− b‖2

2 + µy −
(

1

2
‖Ax∗ − b‖2

2 + µ‖x∗‖1

))

,∀(x, y) ∈ X̃,

where

(2.8) κR = ν2
(

2Rµ+ 6 (R‖A‖ + ‖b‖)R‖A‖ + 2 (R‖A‖ + ‖b‖)
2

+ 2
)

.

By taking y = ‖x‖1, (2.7) becomes

dist2(x, S) + (y − y∗)2 ≤ κR(f(x) − f(x∗)), ∀x ∈ R
n, ‖x‖1 ≤ R.

We therefore obtain

Lemma 2.3.7. (Error bound and KL inequality for the least squares objective with

ℓ1 regularization) Fix R > ‖b‖2

2µ . Then,

(2.9) f(x) − f(x∗) ≥ 2γR dist2(x, S) for all x in R
n such that ‖x‖1 ≤ R,

where

(2.10) γR =
1

4ν2
(

1 + µR+ (R‖A‖ + ‖b‖) (4R‖A‖ + ‖b‖)
) .

As a consequence f is a KL function on the ℓ1 ball of radius R and admits ϕ(s) =
√

2γ−1
R s as

desingularizing function.

2.3.2.2 Distances to an intersection: convex feasibility

For m ≥ 2, one considers closed convex subsets C1, . . . , Cm of H whose intersection contains
a nonempty open ball. This proposition is a quantitative version of [16, Corollary 3.1].

Proposition 2.3.8. Suppose that there is x̄ ∈ H and R > 0 such that

(2.11) B(x̄, R) ⊂
m
⋂

i=1

Ci.

Then,

(2.12) dist(x,
m∩
i=1

Ci) ≤
(

1 +
2‖x− x̄‖

R

)m−1

max {dist(x,Ci), i = 1, · · · ,m} , ∀x ∈ H.

Proof. We assume m = 2 in a first stage. Put C = C1 ∩ C2, d = 2 max {dist(x,C1),dist(x,C2)}
and fix x ∈ H. The function dist(·, C2) is Lipschitz continuous with constant 1. Thus,

| dist(PC1(x), C2) − dist(x,C2)| ≤ ‖x− PC1(x)‖

and so
dist(PC1

(x), C2) ≤ dist(x,C1) + dist(x,C2) ≤ d.
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By taking y = x̄ + R
d (PC1(x) − PC2PC1(x)), we deduce that y ∈ B(x̄, R) ⊂ C1 ∩ C2. Now, we

construct a specific point z ∈ C as follows

z =
d

R+ d
y +

R

R+ d
PC2PC1(x).

Obviously z is in C2, and if we replace y in z by x̄+ R
d

(

PC1
(x) − PC2

PC1
(x)
)

, we obtain

z =
d

R+ d
x̄+

R

R+ d
PC1(x) ∈ C1,

This implies that z ∈ C1 ∩ C2. Therefore

dist(x,C) ≤ ‖x− z‖ ≤ ‖x− PC1
(x)‖ + ‖z − PC1

(x)‖,

and, since x̄ ∈ C1 ∩ C2,

‖z − PC1
(x)‖ =

d

R+ d
‖x̄− PC1

(x)‖ =
d

R+ d
‖PC1

(x̄) − PC1
(x)‖ ≤ d

R+ d
‖x̄− x‖.

By combining the above results, we have dist(x,C) ≤ d
2 + d

R+d‖x− x̄‖, which gives

(2.13) dist(x,C) ≤
(

1 +
2‖x− x̄‖

R

)

max {dist(x,C1),dist(x,C2)} .

For arbitrary m ≥ 2, applying (2.13) for the two sets C1 and
m∩
i=2

Ci, we obtain

dist(x,
m∩
i=1

Ci) ≤
(

1 +
2‖x− x̄‖

R

)

max

{

dist(x,C1),dist(x,
m∩
i=2

Ci)

}

.

Repeating the process (m− 1) times, we obtain (2.12).

A potential function for the barycentric projection method. Let C := ∩mi=1Ci. If C 6= ∅,
finding a point in C is equivalent to minimizing the following convex function over H

(2.14) f(x) =
1

2

m
∑

i=1

αi dist2(x,Ci),

where αi > 0 for all i = 1, . . . ,m and
∑m

1 αi = 1. As we shall see in the next section, the
gradient method applied to f yields the barycentric projection method (introduced in [5]; see also
[37, 16]). We now provide an error bound for f under assumption (2.11).

It is clear that C = argmin f = {x ∈ H : f(x) = 0}. Fix any x0 ∈ H. From Proposition 2.3.8,
we obtain that f has the following local error bound:

dist(x,C) ≤
(

1 +
2‖x0 − x̄‖

R

)m−1




2

min
i=1,...,m

αi





1
2

√

f(x), ∀x ∈ B(x̄, ‖x0 − x̄‖).

Combining with Theorem 2.3.2, we deduce that f satisfies the  Lojasiewicz inequality on

B(x̄, ‖x0 − x̄‖) ∩ [0 < f ] with desingularizing function ϕ(s) =
√

2
M s , where
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(2.15) M =
1

4

(

1 +
2‖x0 − x̄‖

R

)2−2m

min
i=1,...,m

αi.

A potential function for the alternating projection method. Assume now that m = 2,
and set g = iC1

+ 1
2 dist(·, C2)2 – a function related to the alternating projection method, as we

shall see in a Section 2.5. One obviously has g(x) ≥ 1
2

(

dist2(x,C1) + dist2(x,C2)
)

for all x ∈ H.
From the above remarks, we deduce that

dist(x,C) ≤ 2

(

1 +
2‖x0 − x̄‖

R

)

√

g(x),∀x ∈ B(x̄, ‖x0 − x̄‖).

Hence, g satisfies the  Lojasiewicz inequality on B(x̄, ‖x0 − x̄‖) ∩ [0 < g] with desingularizing
function given by

ϕ(s) =

√

2

M ′ s ,

where

(2.16) M ′ =
1

8

(

1 +
2‖x0 − x̄‖

R

)−2

.

2.4 Complexity for first-order methods with sufficient de-

crease condition

In this section, we derive complexity bounds for first-order methods with a sufficient decrease
condition, under a KL inequality. In what follows, we assume, as before, that f : H → (−∞,+∞]
is a proper lower-semicontinuous convex function such that S = argmin f 6= ∅ and min f = 0.

2.4.1 Subgradient sequences

We recall, from [4], that (xk)k∈N inH is a subgradient descent sequence for f : H → (−∞,+∞]
if x0 ∈ dom f and there exist a, b > 0 such that:

(H1) (Sufficient decrease condition) For each k ≥ 1,

f(xk) + a‖xk − xk−1‖2 ≤ f(xk−1).

(H2) (Relative error condition) For each k ≥ 1, there is ωk ∈ ∂f(xk) such that

‖ωk‖ ≤ b‖xk − xk−1‖.

We point out that an additional continuity condition − which is not necessary here because
of the convexity of f − was required in [4].

It seems that these conditions were first considered in the seminal and inspiring work of Luo-
Tseng [92]. They were used to study convergence rates from error bounds. We adopt partly their
views and we provide a double improvement: on the one hand, we show how complexity can be
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tackled for such dynamics, and, on the other hand, we provide a general methodology that will
hopefully be used for many other methods than those considered here.

The motivation behind this definition is due to the fact that such sequences are generated by
many prominent methods, such as the forward-backward method [92, 4, 56] (which we describe
in detail below), many trust region methods [1], alternating methods [4, 26], and, in a much
more subtle manner, sequential quadratic methods and a wealth of majorization-minimization
methods [25, 107]. In Section 2.5, we essentially focus on the forward-backward method because
of its simplicity and its efficiency. Clearly, many other examples could be worked out.

Remark 2.4.1 (Explicit step for Lipschitz continuous gradient). If f is smooth and its gradient
is Lipschitz continuous with constant L, then any sequence satisfying:

(H2’) For each k ≥ 1, ‖∇f(xk−1)‖ ≤ b‖xk − xk−1‖,
also satisfies (H2).
Indeed, for every k ≥ 1,

‖∇f(xk)‖ ≤ ‖∇f(xk−1)‖+‖∇f(xk)−∇f(xk−1)‖ ≤ b‖xk−xk−1‖+L‖xk−xk−1‖ = (b+L)‖xk−xk−1‖.

Example 7 (The forward-backward splitting method.). The forward-backward splitting or proxi-
mal gradient method is an important model algorithm, although many others could be considered
in the general setting we provide (see [4, 26, 56]). Let g : H → (−∞,+∞] be a proper lower-
semicontinuous convex function and let h : H → R be a smooth convex function whose gradient
is Lipschitz continuous with constant L. In order to minimize g+h over H, the forward-backward
method generates a sequence (xk)k∈N from a given starting point x0 ∈ H, and using the recursion

(2.17) xk+1 ∈ argmin

{

g(z) + 〈∇h(xk), z − xk〉 +
1

2λk
‖z − xk‖2 : z ∈ H

}

for k ≥ 1. By the strong convexity, lower-semicontinuity of the argument in the right-hand side
and weak topology arguments, the set of minimizers has exactly one element. On the other hand,
it is easily seen that (2.17) is equivalent to

xk+1 ∈ argmin

{

g(z) +
1

2λk
‖z − (xk − λk∇h(xk))‖2 : z ∈ H

}

.

Moreover, using the proximity operator defined in Subsection 2.2.1, the latter can be rewritten
as

(2.18) xk+1 = proxλkg
(xk − λk∇h(xk)) .

When h = 0, we obtain the proximal point algorithm for g. On the other hand, if g = 0 it reduces
to the classical explicit gradient method for h.

We shall see that the forward-backward method generates subgradient descent sequences if
the step sizes are properly chosen.

Proposition 2.4.2. Assume now that 0 < λ− ≤ λk ≤ λ+ < 2/L for all k ∈ N. Then (H1) and
(H2) are satisfied for the forward-backward splitting method (2.18) with

a =
1

λ+
− L

2
and b =

1

λ− + L.
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Proof. Take k ≥ 0. For the constant a, we use the fundamental inequality provided in [26,
Remark 3.2(iii)]:

g(xk+1)+h(xk+1) ≤ g(xk)+h(xk)−
(

1

λk
− L

2

)

‖xk+1−xk‖2 ≤ g(xk)+h(xk)−
(

1

λ+
− L

2

)

‖xk+1−xk‖2.

For b, we proceed as in Remark 2.4.1 above. Using the Moreau-Rockafellar Theorem, the opti-
mality condition for the forward-backward method is given by

ωk+1 + ∇h(xk) +
1

λk
(xk+1 − xk) = 0,

where ωk+1 ∈ ∂g(xk+1). Using the Lipschitz continuity of ∇h, we obtain

‖ωk+1 + ∇h(xk+1)‖ ≤
(

1

λk
+ L

)

‖xk+1 − xk‖ ≤
(

1

λ− + L

)

‖xk+1 − xk‖,

as claimed.

If f = g+ h has the KL property, Theorem 2.4.3 below guarantees the strong convergence of
every sequence generated by the forward-backward method.

Convergence of subgradient descent sequences follows readily from [4] and [26, 56]. Although
this kind of result has now became standard, we provide a direct proof for estimating thoroughly
the constants at stake.

Theorem 2.4.3. (Convergence of subgradient descent methods in a Hilbertian convex
setting) Assume that f : H → (−∞,+∞] is a proper lower-semicontinuous convex function
which has the KL property on [0 < f < r̄] with desingularizing function ϕ ∈ K(0, r̄). We
consider a subgradient descent sequence (xk)k∈N such that f(x0) ≤ r0 < r̄. Then, xk converges
strongly to some x∗ ∈ argmin f and

(2.19) ‖xk − x∗‖ ≤ b

a
ϕ(f(xk)) +

√

f(xk−1)

a
, ∀k ≥ 1.

Proof. Using (H1), we deduce that the sequence (f(xk))k∈N is nonincreasing, thus xk ∈ [0 ≤
f < r̄]. Denote by i0 the first index i0 ≥ 1 such that ‖xi0 − xi0−1‖ = 0 whenever it exists. If
such an i0 exists, one has ωi0 = 0, and so, f(xi0) = 0. This implies that f(xi0+1) = 0 and thus
xi0+1 = xi0 (the sequence is then stationary.) Hence the upper bound holds provided that it
has been established for all k ≤ i0 − 1 in (2.19). A similar reasoning applies to the case when
f(xi0) = 0.

Assume first that f(xk) > 0 and ‖xk − xk−1‖ > 0 for all k ≥ 1. Combining (H1), (H2), and
using the concavity of ϕ we obtain

ϕ(f(xk)) − ϕ(f(xk+1)) ≥ ϕ′(f(xk)) (f(xk) − f(xk+1))

≥ a‖xk − xk+1‖2

b‖xk−1 − xk‖

≥ a

b

(

2‖xk − xk+1‖‖xk − xk−1‖ − ‖xk−1 − xk‖2
)

‖xk − xk−1‖ ,∀k ≥ 1.

≥ a

b
(2‖xk − xk+1‖ − ‖xk−1 − xk‖),∀k ≥ 1.(2.20)
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This implies

b

a

(

ϕ(f(x1)) − ϕ(f(xk+1))
)

+ ‖x0 − x1‖ ≥
k
∑

i=1

‖xi − xi+1‖,∀k ∈ N,

therefore, the series
∑∞
i=1 ‖xi − xi+1‖ is convergent, which implies, by the Cauchy criterion (H

is complete), that the sequence (xk)k∈N converges to some point x∗ ∈ H. From (H2), there is
a sequence ωk ∈ ∂f(xk) which converges to 0. Since f is convex and lower-semicontinuous, the
graph of ∂f is closed in H×H for the strong-weak (and weak-strong) topology. Thus 0 ∈ ∂f(x∗).
Coming back to (2.20), we also infer

b

a
(ϕ(f(xk)) − ϕ(f(xk+m))) + ‖xk−1 − xk‖ ≥

k+m
∑

i=k

‖xi − xi+1‖,∀k,m ∈ N.

Combining the latter with (H1) yields

b

a
(ϕ(f(xk)) − ϕ(f(xk+m))) +

√

f(xk−1) − f(xk)

a
≥
k+m
∑

i=k

‖xi − xi+1‖,∀k,m ∈ N.

Letting m → ∞, we obtain

b

a
ϕ(f(xk)) +

√

f(xk−1) − f(xk)

a
≥ ‖xk − x∗‖,∀k ∈ N,

thus
b

a
ϕ(f(xk)) +

√

f(xk−1)

a
≥ ‖xk − x∗‖,∀k ∈ N.

The case when ‖xk − xk−1‖ or f(xk) vanishes for some k follows easily by using the argument
evoked at the beginning of the proof.

Remark 2.4.4. When f is twice continuously differentiable and definable (in particular, if it
is semi-algebraic) it is proved in [18] that ϕ(s) ≥ O(

√
s) near the origin. This shows that, in

general, the “worst” complexity is more likely to be induced by ϕ rather than the square root.

2.4.2 Complexity for subgradient descent sequences

This section is devoted to the study of complexity for first-order descent methods of KL
convex functions in Hilbert spaces.

Let 0 < r0 < r̄, we shall assume that f has the KL property on [0 < f < r̄] with desingular-
izing function ϕ ∈ K(0, r̄) (recall that argmin f 6= ∅ and min f = 0.). Whence

ϕ′(f(x))||∂0f(x)|| ≥ 1

for all x ∈ [0 < f < r̄]. Set α0 = ϕ(r0) and consider the function ψ = (ϕ|[0,r0])
−1 : [0, α0] →

[0, r0], which is increasing and convex.

The following assumption will be useful in the sequel:

(A) The function ψ′ is Lipschitz continuous (on [0, α0]) with constant ℓ > 0 and ψ′(0) = 0.
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Intuitively, the function ψ embodies the worst-case “profile” of f . As explained below, the
worst-case behavior of descent methods appears indeed to be measured through ϕ. The assump-
tion (A) is definitely weak, since for interesting cases ψ is flat near 0, while it can be chosen
affine for large values (see Proposition 2.6.4).

We focus on algorithms that generate subgradient descent sequences, thus complying with
(H1) and (H2).

A one-dimensional worst-case proximal sequence. Set

(2.21) ζ =

√
1 + 2ℓ a b−2 − 1

ℓ
> 0,

where a > 0, b > 0 and ℓ > 0 are given in (H1), (H2) and (A), respectively. Starting from α0,
we define the one-dimensional worst-case proximal sequence inductively by

(2.22) αk+1 = argmin

{

ψ(u) +
1

2ζ
(u− αk)2 : u ≥ 0

}

for k ≥ 0. Using standard arguments, one sees that αk is well defined and positive for each k ≥ 0.
Moreover, the sequence can be interpreted through the recursion

(2.23) αk+1 = (I + ζψ′)−1(αk) = proxζψ(αk),

for k ≥ 0 and where I is the identity on R. Finally, it is easy to prove that αk is decreasing and
converges to zero. By continuity, lim

k→∞
ψ(αk) = 0.

The following is one of our main results. It asserts that (αk)k∈N is a majorizing sequence “à
la Kantorovich”:

Theorem 2.4.5 (Complexity of descent sequences for convex KL functions).
Let f : H → (−∞,+∞] be a proper lower-semicontinuous convex function with argmin f 6= ∅
and min f = 0. Assume further that f has the KL property on [0 < f < r̄]. Let (xk)k∈N be a
subgradient descent sequence with f(x0) = r0 ∈ (0, r̄) and suppose that assumption (A) holds (on
the interval [0, α0] with ψ(α0) = r0).

Define the one-dimensional worst-case proximal sequence (αk)k∈N as above6. Then, (xk)k∈N

converges strongly to some minimizer x∗ and, moreover,

f(xk) ≤ ψ(αk), ∀k ≥ 0,(2.24)

‖xk − x∗‖ ≤ b

a
αk +

√

ψ(αk−1)

a
, ∀k ≥ 1.(2.25)

Proof. For k ≥ 1, set rk := f(xk). If rk = 0 the result is trivial. Assume rk > 0, then one has

also rj > 0 for j = 1, . . . , k. Set βk = ψ−1(rk) > 0 and sk = βk−1−βk

ψ′(βk) > 0 so that βk satisfies

(2.26) βk = (1 + skψ
′)−1(βk−1).

We shall prove that sk ≥ ζ. Combining the KL inequality and (H2), we obtain that

b2ϕ′(rk)2‖xk − xk−1‖2 ≥ ϕ′(rk)2‖ωk‖2 ≥ 1,

6See (2.21) and (2.22).
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where ωk is as in (H2). Using (H1) and the formula for the derivative of the inverse function,
this gives

a

b2
≤ ϕ′(rk)2(rk−1 − rk) =

(ψ(βk−1) − ψ(βk))

ψ′(βk)2
.

We now use the descent Lemma on ψ (see, for instance, [109, Lemma 1.30]), to obtain

a

b2
≤ (βk−1 − βk)

ψ′(βk)
+
ℓ(βk−1 − βk)2

2ψ′(βk)2
= sk +

ℓ

2
s2
k.

We conclude that

(2.27) sk ≥
√

1 + 2ℓ a b−2 − 1

ℓ
= ζ.

The above holds for every k ≥ 1 such that rk > 0.

To conclude we need two simple results on the prox operator in one dimension.
Claim 1. Take λ0 > λ1 and γ > 0. Then

(I + λ0ψ′)−1(γ) < (I + λ1ψ′)−1(γ).

Proof of Claim 1. It is elementary, set δ = (I+λ1ψ′)−1(γ) ∈ (0, γ), one indeed has (I+λ0ψ′)(δ) =
(I + λ1ψ′)(δ) + (λ0 − λ1)ψ′(δ) > γ, and the result follows by the monotonicity of I + λ0ψ

′.

Claim 2. Let (λ0
k)k∈N, (λ

1
k)k∈N two positive sequences such that λ0

k ≥ λ1
k for all k ≥ 0. Define

the two proximal sequences

β0
k+1 = (I + λ0

kψ
′)−1(β0

k), β1
k+1 = (I + λ1

kψ
′)−1(β1

k),

with β0
0 = β1

0 ∈ (0, r0]. Then β0
k ≤ β1

k for all k ≥ 0.

Proof of Claim 2. We proceed by induction, the first step being trivial, we assume the result
holds true for k ≥ 0. We write

β0
k+1 = (I + λ0

kψ
′)−1(β0

k) ≤ (I + λ0
kψ

′)−1(β1
k) ≤ (I + λ1

kψ
′)−1(β1

k) = β1
k+1,

where the first inequality is due to the induction assumption (and the monotonicity of ψ′), while
the second one follows from Claim 1.

We now conclude by observing that αk, βk are proximal sequences,

αk+1 = (I + cψ′)−1(αk), βk+1 = (I + skψ
′)−1(βk).

Recalling that sk ≥ ζ, one can apply Claim 2 to obtain that αk ≥ βk. And thus ψ(αk) ≥ ψ(βk) =
rk.
The last point follows from Theorem 2.4.3.

Remark 2.4.6 (Two complexity regimes). In many cases the function ψ is nonlinear near zero
and is affine beyond a given threshold t0 > 0 (see subsection 2.2.4 or Proposition 2.6.4). This
geometry reflects on the convergence rate of the estimators as follows:
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1. A fast convergence regime is observed when αk > t0. The objective is cut down by a
constant value at each step.

2. When the sequence αk enters [0, t0], a slower and restrictive complexity regime appears.

Remark 2.4.7 (Complexity with a continuum of minimizers). We draw the attention of the
reader that our complexity result on the sequence (not only on the values) holds even in the case
when there is a continuum of minimizers.

It is obvious from the proof that the following result holds.

Corollary 2.4.8 (Stable sets and complexity). Let X be a subset of H. If the set [0 < f < r̄] on
which f has the KL property is replaced by a more general set of the form: X̄ = X ∩ [0 < f < r̄]
with the property that xk ∈ X̄ for all k ≥ 0, then the same result holds.

The above corollary has the advantage to relax the constraints on the desingularizing function:
the smaller the set is, the lower (and thus the better) ϕ can be7. There are thus some possi-
bilities to obtain functions ψ with an improved conditioning/geometry, which could eventually
lead to tighter complexity bounds. On the other hand, the stability condition xk ∈ X̄, ∀k ∈ N

is generally difficult to obtain.

We conclude by providing a study of the important case ψ(s) = ℓ
2s

2. In that case assumption
(A) holds, and we obtain the following particular instance of Theorem 2.4.5:

Corollary 2.4.9. The assumptions and the notation are those of Theorem 2.4.5, but we assume
further that f has the KL property with ψ(s) = ℓ

2s
2 on [0 < f < r̄]. We set

(2.28) σ = ℓb−2.

In that case the complexity estimates given in Theorem 2.4.5 take the form

f(xk) ≤ f(x0)

(1 + 2aσ)k
, ∀k ≥ 0,(2.29)

‖xk − x∗‖ ≤



1 +
1

aσ
√

1 + 1
2aσ





√

1
af(x0)

(1 + 2aσ)
k−1

2

, ∀k ≥ 1.(2.30)

Proof. First, recall that the one-dimensional worst-case proximal sequence (αk)k∈N is given by
α0 = ϕ(r0), and

αk+1 = argmin

{

ℓ

2
s2 +

1

2ζ
(s− αk)

2
: s ≥ 0

}

for all k ≥ 0, where

ζ =

√
1 + 2ℓab−2 − 1

ℓ
.

Whence, αk+1 = αk

(1+ℓζ) , and so,

(2.31) αk =
α0

(1 + ℓζ)k
, ∀k ≥ 0.

7Desingularizing functions for a given problem (but with different domains) are generally definable in the
same o-minimal structure thus their germs are always comparable. This is why the expression “the lower” is not
ambiguous in our context.
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From (2.24), we immediately deduce

f(xk) ≤ f(x0)

(1 + ℓζ)2k
.

Finally, since

1 + ℓζ =
√

1 + 2ℓab−2 =
√

1 + 2aσ,

we obtain (2.29). For (2.30), first observe that

(2.32)
b

a
αk =

b

a

α0

(1 + ℓζ)k
=

b

a
√
ℓ

√

2f(x0)

(1 + ℓζ)k
=

b

a
√
ℓ

√

2f(x0)

(1 + 2ℓab−2)k/2
,

while

(2.33)

√

ψ(αk−1)

a
=

√

ℓα2
k−1

2a
=

√

ℓα2
0

2a(1 + ℓζ)2k−2
=

√

1 + 2ℓab−2

2a

√

2f(x0)

(1 + 2ℓab−2)k/2
.

In view of (2.25), by adding (2.32) and (2.33) we obtain:

(2.34) ‖xk − x∗‖ ≤
[

b

a
√
ℓ

+

√

1

2a
+

ℓ

b2

]

√

2f(x0)

(1 + 2ℓab−2)k/2
, ∀k ≥ 1.

To conclude, observe that

[

b

a
√
ℓ

+

√

1

2a
+

ℓ

b2

]

=

√

1

2a
+

ℓ

b2

[

1 +
1

√

aσ
2 + a2σ2

]

=

√

1 + 2aσ

2a



1 +
1

aσ
√

1 + 1
2aσ



 ,

and combine this last equality with (2.34) to obtain the result.

Remark 2.4.10 (Constants). The constant σ = ℓb−2 plays the role of a step size as it can be
seen in the forthcoming examples. For smooth problems and for the classical gradient method,
one has for instance σ = constant · 1

L (see Section 2.5 below).

2.5 Applications: feasibility problems, uniformly convex

problems and compressed sensing

In this section we apply our general methodology to derive complexity results for some keynote
algorithms that are used to solve problems arising in compressed sensing and convex feasibility.
We shall make a constant use of Corollary 2.4.9, so let us keep in mind the notation introduced
in Section 2.4, especially the constants a, b and ℓ.
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2.5.1 Convex feasibility problems with regular intersection

Let
{

Ci
}

i∈{1,...,m} be a family of closed convex subsets of H, for which there exist R > 0 and

x̄ ∈ H with

B(x̄, R) ⊂ C :=

m
⋂

i=1

Ci.

Barycentric Projection Algorithm. Starting from x0 ∈ H, this method generates a sequence
(xk)k∈N by the following recursion

xk+1 =

m
∑

i=1

αiPCi
(xk).

where αi > 0 and
∑m
i=1 αi = 1.

Using the function f = 1
2

m
∑

i=1

αi dist2(·, Ci), studied in Subsection 2.3.2.2, it is easy to check

that

∇f(x) =
m
∑

i=1

αi(x− PCi
x) = x−

m
∑

i=1

αiPCi
(x)

for all x in H. Thus, the sequence (xk)k∈N can be described by the recursion

xk+1 = xk − ∇f(xk), k ≥ 0.

Moreover, ∇f is Lipschitz continuous with constant L = 1. It follows that (xk)k∈N satisfies the
conditions (H1) and (H2) with a = 1

2 , b = 2. It is classical to see that for any x̂ ∈ C, the
sequence ‖xk − x̂‖ is decreasing (see, for instance, [109]). This implies that xk ∈ B(x̄, ‖x0 − x̄‖)
for all k ≥ 0. As a consequence, f has a global desingularizing function ϕ on B(x̄, ‖x0 − x̄‖),
whose inverse is given by

ψ(s) =
M

2
s2, s ≥ 0,

where M is given by (2.15). Using Theorem 2.4.9 with a = 1
2 , b = 2 and ℓ = M , we obtain:

Theorem 2.5.1 (Complexity of the barycentric projection method for regular intersections).
The barycentric projection sequence (xk)k∈N converges strongly to a point x∗ ∈ C and

f(xk) ≤ f(x0)
(

1 + M
4

)k
, ∀k ≥ 0,

‖xk − x∗‖ ≤



1 +
8

M
√

1 + 4
M





√

2f(x0)
(

1 + M
4

)

k−1
2

, ∀k ≥ 1,

where M is given by (2.15).

Alternating projection algorithm. We consider here the feasibility problem in the case
m = 2. The von Neuman’s alternating projection method is given by the following recursion

x0 ∈ H, and xk+1 = PC1
PC2

(xk) ∀k ≥ 0.
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Let g = iC1 + 1
2 dist2(·, C2) and let M ′ be defined as in (2.16) (Subsection 2.3.2.2). The

function h = 1
2 dist2(·, C2) is differentiable and ∇h = I − PC2 is Lipschitz continuous with

constant 1. We can interpret the sequence (xk)k∈N as the forward-backward splitting method8

xk+1 = proxiC1
(xk − ∇h(xk)) = PC1(xk − ∇h(xk)),

and observe that the sequence satisfies the conditions (H1) and (H2) with a = 1
2 and b = 2. As

before, the fact that xk ∈ B(x̄, ‖x0 − x̄‖) for all k ≥ 0, is standard (see [13]). As a consequence,
the function g has a global desingularizing function ϕ on B(x̄, ‖x̄ − x0‖) whose inverse ψ is

ψ(s) = M ′

2 s2, where M ′ is given by (2.16). Using Corollary 2.4.9 with a = 1
2 , b = 2 and ℓ = M ′,

we obtain:

Theorem 2.5.2 (Complexity of the alternating projection method for regular convex sets).
With no loss of generality, we assume that x0 ∈ C1. The sequence generated by the alternating
projection method converges to a point x∗ ∈ C. Moreover, xk ∈ C1 for all k ≥ 1,

dist(xk, C2) ≤ dist(x0, C2)
(

1 + M ′

4

)
k
2

, ∀k ≥ 0,

‖xk − x∗‖ ≤



1 +
8

M ′
√

1 + M ′

4





dist(x0, C2)
(

1 + M ′

4

)

k−1
2

, ∀k ≥ 1,

where M ′ is given by (2.16).

2.5.2 Uniformly convex problems

Let σ be a positive coefficient. The function f is called p-uniformly convex, or simply uni-
formly convex, if there exists p ≥ 2 such that:

f(y) ≥ f(x) + 〈x∗, y − x〉 + σ‖y − x‖p,
for all x, y ∈ H, x∗ ∈ ∂f(x). It is easy to see that f satisfies the KL inequality on H with

ϕ(s) = p σ− 1
p s

1
p (see [3]). For such a function we have

ψ(s) =
σ

pp
sp, s ≥ 0.

Fix x0 in dom f and set r0 = f(x0), α0 = ψ(r0). The Lipschitz continuity constant of ψ′ is given

by ℓ = (p−1)σ
pp−1 αp−2

0 . Choose a descent method satisfying (H1), (H2), some examples can be

found in [4, 56]. Set ζ =

√
1+2ℓ a b−2−1

ℓ . The complexity of the method is measured by the real
sequence

αk+1 = argmin

{

σ

pp
up +

1

2ζ
(u− αk)2 : u ≥ 0

}

, k ≥ 0.

The case p = 2 can be computed in closed form (as previously), but in general only numerical
estimates are available.

Proposition 2.3.5 shows that first-order descent sequences for piecewise polynomial convex
functions have a similar complexity structure. This shows that error bounds or KL inequalities
capture more precisely the determinant geometrical factors behind complexity than mere uniform
convexity.

8A very interesting result from Baillon-Combettes-Cominetti [12] establishes that for more than two sets there
are no potential functions corresponding to the alternating projection method.
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2.5.3 Compressed sensing and the ℓ
1-regularized least squares problem

We refer for instance to [33] for an account on compressed sensing and an insight into its vast
field of applications. We consider the cost function f : Rn → R given by

f(x) = µ‖x‖1 +
1

2
‖Ax− d‖2

2,

where µ > 0, A ∈ R
m×n and d ∈ R

m.
Set g(x) = µ‖x‖1 and h(x) = 1

2 ‖Ax − d‖2
2 = 1

2 ‖Ax − d‖2, so that g is proper, lower-
semicontinuous and convex, whereas h is convex and differentiable, and its gradient is Lipschitz
continuous with constant L = ‖ATA‖. Starting from any x0 ∈ R

n, the forward-backward
splitting method applied to f is known as the iterative shrinkage thresholding algorithm [44]9:

(ISTA) xk+1 = proxλkµ‖·‖1

(

xk − λk(ATAxk −AT d)
)

for k ≥ 0.

Here, proxλkµ‖·‖1
is an easily computable piecewise linear object known as the soft thresholding

operator (see, for instance, [39]). This method has been applied widely in many contexts and is
known to have a complexity O

(

1
k

)

. We intend to prove here that this bound can be surprisingly
“improved” by our techniques.

First, recall that, according to Proposition 2.4.2, sequences generated by this method comply
with (H1) and (H2), provided the stepsizes satisfy 0 < λ− ≤ λk ≤ λ+ < 2/L. Recall that the
constants a and b can be chosen as

(2.35) a =
1

λ+
− L

2
and b =

1

λ− + L,

respectively.

Set R = max
(f(x0)

µ
, 1 +

‖d‖2

2µ

)

. We clearly have R > ‖d‖2

2µ , and, using the fact that (xk)k∈N

is a descent sequence, we can easily verify that ‖xk‖1 ≤ R for all k ∈ N.
From Lemma 2.3.7 we know that the function f has the KL property on [min f < f <

min f + r0] ∩ {x ∈ R
n : ‖x‖1 ≤ R} with10 a global desingularizing function ϕ whose inverse ψ is

given by

ψ(s) =
γR
2
s2, s ≥ 0

where γR is known to exist and is bounded from above by the constant given in (2.10).

Remark 2.5.3 (Constant step size). If one makes the simple choice of a constant step size all
throughout the process, namely λk = d/L with d ∈ (0, 2), one obtains

ζ =

√

1 + d(2−d)
L(1+d)2 γR − 1

γR
and αk =

α0
(

1 + d(2−d)
L(1+d)2 γR

)k/2
, k ≥ 0.

Combining the above developments with Corollary 2.4.8, we obtain the following surprising
result:

9Connection between ISTA and the forward-backward splitting method is due to Combettes-Wajs [39]
10Recall that r0 = f(x0).

63



Theorem 2.5.4 (Complexity bounds for ISTA). The sequence (xk)k∈N generated by ISTA con-
verges to a minimizer x∗ of f , and satisfies

f(xk) − min f ≤ f(x0) − min f

qk
, ∀k ≥ 0,(2.36)

‖xk − x∗‖ ≤ C

√

f(x0) − min f

q
k−1

2

∀k ≥ 1,(2.37)

where

q = 1 +
2aγR
b2

and C =
1√
a



1 +
1

ab−2γR
√

1 + 1
2ab−2γR



 .

Remark 2.5.5 (Complexity and convergence rates for ISTA). (a) While it was known that ISTA
has a linear asymptotic convergence rate, see [83] in which a transparent explanation is provided,
best known complexity bounds were of the type O( 1

k ), see [17, 51]. Much like in the spirit of [83],
we show here how geometry impacts complexity –through error bounds/KL inequality– providing
thus complementary results to what is usually done in this field.
(b) The estimate of γR given in Section 2.3.2.1 is far from being optimal and more work remains
to be done to obtain acceptable/tight bounds. Observe however that the role of an optimal γR is
absolutely crucial when it comes to complexity (see (2.36)): a good “conditioning” (γR not too
small) provides fast convergence, while a bad one11 comes with “bad complexity”.
(c) Assuming that the forward-backward method is performed with a constant stepsize d/L as in
Remark 2.5.3, the value q appearing in the complexity bounds given by Theorem 2.5.4 becomes

q = 1 +
d(2 − d)

(d+ 1)2L
γR.

This quantity is maximized when d = 1/2. In this case, one obtains the optimized estimate:

f(xk) − min f ≤ f(x0) − min f
(

1 + γR

3L

)k
, ∀k ≥ 0,

‖xk − x∗‖ ≤
√

2

3L



1 +
6L

γR

√

1 + 3L
γR





√

f(x0) − min f
(

1 + γR

3L

)
k−1

2

, ∀k ≥ 1.

2.6 Error bounds and KL inequalities for convex functions:

additional properties

In this concluding section we provide further theoretical perspectives that will help the reader
to understand the possibilities and the limitations of our general methodology. We give, in
particular, a counterexample to the full equivalence between the KL property and error bounds,
and we provide a globalization result for desingularizing functions.

2.6.1 KL inequality and length of subgradient curves

This subsection essentially recalls a characterization result from [23] on the equivalence be-
tween the KL inequality and the existence of a uniform bound for the length of subgradient

11Bad conditioning are produced by flat objective functions yielding thus small constants γR.

64



trajectories verifying a subgradient differential inclusion. Due to the contraction properties of
the semi-flow, the result is actually stronger than the nonconvex results provided in [23]. For the
reader’s convenience, we provide a self-contained proof.

Given x ∈ dom ∂f , we denote by χx : [0,∞) → H the unique solution of the differential
inclusion

ẏ(t) ∈ −∂f(y(t)), almost everywhere on (0,+∞),

with initial condition y(0) = x.

The following result provides an estimation on the length of subgradient trajectories, when
f satisfies the KL inequality. Given x ∈ dom f , and 0 ≤ t < s, write

length(χx, t, s) =

∫ s

t

‖χ̇x(τ)‖ dτ.

Recall that S = argmin f and that min f = 0.

Theorem 2.6.1 (KL and uniform bounds of subgradient curves). Let x̄ ∈ S, ρ > 0 and ϕ ∈
K(0, r0). The following are equivalent:

i) For each y ∈ B(x̄, ρ) ∩ [0 < f < r0], we have

ϕ′(f(y))‖∂0f(y)‖ ≥ 1.

ii) For each x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s, we have

length(χx, t, s) ≤ ϕ
(

f (χx (t))
)

− ϕ
(

f (χx (s))
)

.

Moreover, under these conditions, χx(t) converges strongly to a minimizer as t → ∞.

Proof. Take x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s. First observe that

ϕ(f(χx(t))) − ϕ(f(χx(s))) =

∫ t

s

d

dτ
ϕ(f(χx(τ))) dτ =

∫ s

t

ϕ′(f(χx(τ)))‖χ̇x(τ)‖2 dτ.

Since χx(τ) ∈ dom ∂f ∩ B(x̄, ρ) ∩ [0 < f < r0] for all τ > 0 (see Theorem 2.2.1) and −χ̇x(τ) ∈
∂f(χx(τ)) for almost every τ > 0, it follows that

1 ≤ ‖∂0(ϕ ◦ f)(χx(τ))‖ ≤ ϕ′(f(χx(τ)))‖χ̇x(τ)‖
for all such τ . Multiplying by ‖χ̇x(τ)‖ and integrating from t to s, we deduce that

length(χx, t, s) ≤ ϕ(f(χx(t))) − ϕ(f(χx(s))).

Conversely, take y ∈ dom ∂f ∩B(x̄, ρ) ∩ [0 < f < r0] (if y is not in dom ∂f the result is obvious).
For each h > 0 we have

1

h

∫ h

0

‖χ̇y(τ)‖ dτ ≤ −ϕ(f(χy(h)) − ϕ(f(y))

h
.

As h → 0, we obtain

‖χ̇y(0+)‖ ≤ ϕ′(f(y))‖χ̇y(0+)‖2 = ϕ′(f(y)) ‖∂0f(y)‖ ‖χ̇y(0+)‖,
and so

‖∂0(ϕ ◦ f)(y)‖ ≥ 1.

Finally, since ‖χx(t) − χx(s)‖ ≤ length(χx, t, s), we deduce from ii) that the function t 7→ χx(t)
has the Cauchy property as t → ∞.
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2.6.2 A counterexample: error bounds do not imply KL

In [23, Section 4.3], the authors build a twice continuously differentiable convex function
f : R2 → R which does not have the KL property, and such that S = D(0, 1) (the closed unit
disk of radius 1). This implies that f does not satisfy the KL inequality whatever choice of
desingularizing function ϕ is made.

Let us show that this function has a smooth error bound. First note that, since S is compact,
f is coercive (see, for instance, [114]). Define ψ : [0,∞) → R+ by

ψ(s) = min{f(x) : ‖x‖ ≥ 1 + s}.

This function is increasing (recall that f is convex) and it satisfies

ψ(0) = 0,(2.38)

ψ(s) > 0 for s > 0,(2.39)

f(x) ≥ ψ(dist(x, S)) for all x ∈ [r < f ](2.40)

Let ψ̂ be the convex envelope of ψ, that is the greatest convex function lying below ψ. One
easily verifies that ψ̂ enjoys the same properties (2.38), (2.39), (2.40). The Moreau envelope of
the latter:

R+ ∋ s → Ψ(s) := ψ̂1(s) = inf{ψ̂(ς) + 1
2 (s− ς)2 : ς ∈ R},

is convex, has 0 as a unique minimizer, is continuously differentiable with positive derivative on
R \ {0}, and satisfies Ψ ≤ ψ1 (see [14]). Whence,

f(x) ≥ Ψ(dist(x, S)) for all x ∈ [0 < f < r].

We have proved the following:

Theorem 2.6.2 (Error bounds do not imply KL). There exists a C2 convex function f : R2 → R,
which does not satisfy the KL inequality, but has an error bound with a smooth convex residual
function.

Remark 2.6.3 (Hölderian error bounds without convexity). Hölderian error bounds do not
necessarily imply  Lojasiewicz inequality − not even the KL inequality − for nonconvex functions.
The reason is elementary and consists simply in considering a function with non isolated critical
values. Given r ≥ 2, consider the Cr−1 function

f(x) =

{

x2r
(

2 + cos
(

1
x

))

if x 6= 0,

0 if x = 0.

It satisfies f ′(0) = 0 and f ′(x) = 4rx2r−1 + 2rx2r−1 cos
(

1
x

)

+ x2r−2 sin
(

1
x

)

if x 6= 0. Moreover,
we have f(x) ≥ x2r = dist(x, S)2r for all x ∈ R. On the other hand, picking yk = 1

2kπ and

zk = 1
2kπ+3 π

2
, we see that f ′(yk) = 6r

(2kπ)2r−1 > 0 and f ′(zk) = 1
(2kπ+3 π

2 )2r−2

(

4r
2kπ+3 π

2
− 1
)

< 0

for all sufficiently large k. Therefore, there is a positive sequence (xk)k∈N converging to zero with
f ′(xk) = 0 for all k. Hence, f cannot satisfy the KL inequality at 0.

2.6.3 From semi-local inequalities to global inequalities

We derive here a globalization result for KL inequalities that strongly supports the Lipschitz
continuity assumption for the derivative of the inverse of a desingularizing function, an assump-
tion that was essential to derive Theorem 2.4.5. The ideas behind the proof are inspired by
[23].
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Proposition 2.6.4 (Globalization of KL inequality – convex case). Let f : H → (−∞,+∞] be
a proper lower semicontinuous convex function such that argmin f 6= ∅ and min f = 0. Assume
also that f has the KL property on [0 < f < r0] with desingularizing function ϕ ∈ K(0, r0).
Then, given r1 ∈ (0, r0), the function given by

φ(r) =

{

ϕ(r) when r ≤ r1

ϕ(r1) + (r − r1)ϕ′(r1) when r ≥ r1

is desingularising for f on all of H.

Proof. Let x be such that f(x) > r1. We would like to establish that ‖∂0f(x)‖φ′(f(x)) ≥ 1, thus
we may assume, with no loss of generality, that ‖∂0f(x)‖ is finite. If there is y ∈ [f = r1] such
that ‖∂0f(y)‖ ≤ ‖∂0f(x)‖, then

‖∂0f(x)‖φ′(f(x)) = ‖∂0f(x)‖ϕ′(r1) ≥ ‖∂0f(y)‖ϕ′(r1) = ‖∂0f(y)‖ϕ′(f(y)) ≥ 1.

To show that such a y exists, we use the semiflow of ∂f . Consider the curve t → χx(t)
and observe that there exists t1 > 0 such that f(χx(t1)) = r1, because f(χx(0)) = f(x) > r1,
f(χx(t)) → inf f < r1 and f(χx(·)) is continuous. From [28, Theorem 3.1 (6)], we know also that
‖∂f0(χx(t))‖ is nonincreasing. As a consequence, if we set y = χx(t1), we obtained the desired
point and the final conclusion.

One deduces easily from the above the following result, which is close to an observation
already made in [23]. For an insight into the notion of definability of functions, a prominent
example being semi-algebraicity, one is referred to [19]. Recall that coercivity of a proper lower-
semicontinuous convex function defined on a finite dimensional space is equivalent to the fact
that argmin f is nonempty and compact.

Theorem 2.6.5 (Global KL inequalities for coercive definable convex functions). Let f : Rn → R

be proper, lower-semicontinuous, convex, definable, and such that argmin f is nonempty and
compact. Then, f has the KL property on R

n.

Proof. Take r0 > 0 and use [22] to obtain ϕ ∈ K(0, r0) so that f is KL on [min f < f < min f+r0].
Then use the previous proposition to extend ϕ on (0,+∞).

Remark 2.6.6. (Complexity of descent methods for definable coercive convex func-
tion) The previous result implies that there always exists a global measure of complexity for
first-order descent methods (H1), (H2) of definable coercive convex lower-semicontinuous func-
tions. This complexity bound is encoded in majorizing sequences computable from a single
definable function and from the initial data. These majorizing sequences are of course defined,
as in Theorem 2.4.5, by

αk+1 = argmin

{

ϕ−1(u) +
1

2ζ
(u− αk)2 : u ≥ 0

}

, α0 = ϕ(r0).

or equivalently
αk+1 = proxζϕ−1(αk), α0 = ϕ(r0),

where ζ is a parameter of the chosen first-order method.
It is a very theoretical result yet conceptually important since it shows that the understanding

and the research of complexity is guaranteed by the existence of a global KL inequality and our
general methodology.

67



68



Chapter 3

Extragradient method in

optimization: Convergence and

complexity

Abstract We consider the extragradient method to minimize the sum of two functions, the
first one being smooth and the second being convex. Under Kurdyka-Lojasiewicz assumption,
we prove that the sequence produced by the extragradient method converges to a critical point of
the problem and has finite length. The analysis is extended to the case when both functions are
convex. We provide a 1/k convergence rate which is classical for gradient methods. Furthermore,
we show that the recent small-prox complexity result can be applied to this method. Considering
the extragradient method is the occasion to describe exact line search for proximal decomposition
methods. We provide details for the implementation of this scheme for the ℓ1 regularized least
squares problem and give numerical results which suggest that combining nonaccelerated methods
with exact line search can be a competitive choice.

3.1 Introduction

We introduce a new optimization methods for approximating a global minimum of composite
objective function F

(P) min
x∈Rn

{F (x) = f(x) + g(x)},

where f is smooth and g is convex lower semicontinuous. This class of problems is rich enough
to encompass many smooth/nonsmooth, convex/nonconvex optimization problems considered
in practice. Applications can be found in various fields throughout science and engineering,
including signal/image processing [38] and machine learning [116]. Succesful algorithms for
these types of problems include for example FISTA method [17] and forward-backward splitting
method [39]. The goal of this paper is to investigate to which extent extragradient method can
be used to tackle similar problems.

The extragradient method was initially proposed by Korpelevich [71]. It has become a clas-
sical method for solving variational inequality problems, finding x̄ ∈ S such that

〈H(x), x− x̄〉 ≥ 0, ∀x ∈ S,
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where S is a nonempty, closed and convex subset of Rn, H : Rn −→ R
n is a monotone mapping,

and 〈., .〉 denotes the Euclidean inner product in R
n. The extragradient method, generates a

sequence of estimates based on the following recursion, which requires two orthogonal projections
onto S at each iteration,

{

yk = PS(xk − αH(xk))

xk+1 = PS(xk − αH(yk)).

After Korpelevich’s work, a number of authors extended the extragradient method for varia-
tional inequality problems (for example, see [35], [95]). In the context of convex constrained
optimization, [92] considered the performances of the extragradient method under error bounds
assumptions. In this setting, Luo and Tseng have described asymptotic linear convergence of the
extragradient method applied to constrained problems of the form,

min
x∈C

f(x),

where C is a convex set of Rn and f(x) is a smooth convex function on R
n. To our knowledge,

this is the only attempt to analyse the method specifically in an optimization setting.
A distinguished feature of the extragradient method is the use of an additional projected

gradient step which can be seen as a guide during the optimization process. Intuitively, this
additional iteration allows to foresee the geometry of the problem and take into account curvature
information, one of the most important bottlenecks for first order methods. Motivated by this
observation, our goal is to extend and understand further the extragradient method in the specific
setting of (P). Appart from the work of Luo and Tseng, the literature on this topic is quite
scarce. For example, the nonconvex case is not considered at all.

We combine the work of [71], [92] and recent extensions for first-order descent methods, (see
[2, 4, 26, 24]), and propose the extented extragradient method (EEG) to tackle problem (P).
The classical extragradient method relies on orthogonal projections. We extend it by considering
more general nonsmooth convex functions, the (EEG) method is given by the following recursion,

{

yk = proxskg
(xk − sk∇f(xk))

xk+1 = proxαkg
(xk − αk∇f(yk)),

where sk, αk are positive real number. An important challenge in this context is to balance
the magnitude of these two parameters to maintain desirable convergence properties. We devise
conditions which allow to prove convergence of the method when f is nonconvex. In addition,
we describe two different rates of convergence when f is convex.

Following [2, 4, 26, 24] we heavily rely on the Kurdyka-Lojasiewicz (KL) inequality to study
the nonconvex setting. The KL inequality [86, 73] has a long history in convergence analysis and
nonsmooth optimization. Furthermore, recent generalizations [21, 22] have shown the important
versatility of this approach as the inequality holds true for the vast majority of models encoun-
tered in practice. This opened the possibility to devise general and abstract convergence results
for first order methods [4, 26], which constitute an important ingredient of our analysis. Based
on this approach, we derive a general convergence result for the proposed (EEG) method.

When the function f is convex, problem (P) becomes convex and we may consider global
convergence rates. We first describe a 1/k nonasymptotic rate in terms of objective function.
This is related to classical results from the analysis of first order methods in convex optimization,
see for example the analysis of forward–backward splitting method in [17]. Furthermore, we show
that the small-prox result of [24] also applies to (EEG) method which echoes the error bound
framework of Luo and Tseng [92] and opens the door to more refined complexity results when
further properties of the objective function are available.
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As already mentioned, a distinguished aspect of the extragradient method is the use of an
additional proximal gradient step at each iteration. The intuition behind this mechanism is the
incorporation of curvature information in the optimization process. It is expected that one of the
effects of this additional step is to allow talking larger step sizes. With this in mind, the analysis
of (EEG) method is the occasion to describe an exact line search variant of the method:











yk = proxskg
(xk − sk∇f(xk))

αk = argminα∈R F
(

proxαg(xk − α∇f(yk))
)

xk+1 = proxαkg
(xk − αk∇f(yk)).

Although computing the solution to the exact line search is a nonconvex problem, potentially
hard in the general case, we describe an active set method to tackle it for the specific and very
popular case of ℓ1 regularized least squares. In this setting the computational overhead of the
exact line search has a magnitude roughly similar to that of a gradient computation (discarding
additional logarithmic terms).

On the practical side, we compare the performance of the proposed (EEG) method (and its
line search variant) to those of FISTA and forward-backward splitting methods on the ℓ1 regu-
larized least squares problem. The numerical results suggest that in the setting of ill conditioned
problems, both (EEG) and forward-backward, when combined with exact line search, constitute
promising alternatives to FISTA.

Structure of the paper. Section 2 introduces the problem and our main assumptions. We
also recall important definitions and notations which will be used throughout the text. Section
3 contains the main convergence results of this paper. More precisely, in Subsection 3.3, we
present the convergence and finite length property under KL assumption in the nonconvex case.
Subsection 3.4, contains both a proof of sublinear convergence rate and the application of the
small-prox result for (EEG) method leading to improved complexity analysis under Kurdyka-
Lojasiewicz inequality assumption. Section 4 describes exact line search for proximal gradient
steps in the context of ℓ1 penalized least-squares and results from numerical experiments.

3.2 The Problem and Some Preliminaries

3.2.1 The Problem

We are interested in solving minimization problems of the form

(P) min
x∈Rn

{F (x) = f(x) + g(x)},

where f, g are extended value functions from R
n to (−∞,+∞]. We make the following standing

assumptions:

• argminF 6= ∅, and we note F ∗ = minRn F

• g is a lower semi-continuous, convex, proper function.

• f is differentiable with L-Lipschitz continuous gradient, where L > 0.

Let us give two classical examples fitting these assumptions.
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Constrained minimization. Let C be a closed convex set of R
n. Define g to be the

indicator function (iC) of the set C:

iC(x) =

{

0 if x ∈ C

+∞ otherwise .

Then, the unconstrained minimization of composite function is equivalent to minimize the func-
tion f over the set C.

Regularized least squares. The ℓ1 regularized least squares problem consists in the mini-
mization of the following nonsmooth objective function:

F (x) =
1

2
‖Ax− b‖2

2 + λ‖x‖1

where A ∈ R
n×p is a real matrix, b ∈ R

n be is real vector, λ > 0 is a positive real and ‖.‖1 denotes
the l1-norm, the sum of coordinates absolute value. Many approaches based on ℓ1 regularized
least squares are very popular in signal processing and statistics.

3.2.2 Nonsmooths analysis

In this subsection, we recall the definitions, notations and some well-known results from
nonsmooth analysis which are going to be used throughout the paper. We will use notations
from [114] (see also [14]). Let h : Rn → (−∞,+∞] be a proper, lower-semicontinuous function.

For each x ∈ dom h, the Fréchet subdifferential of h at x, written ∂̂h(x), is the set of vectors
u ∈ R

n which satisfy

lim inf
y→x

h(y) − h(x) − 〈u, y − x〉
‖x− y‖ ≥ 0.

When x /∈ dom h, we set ∂̂h(x) = ∅. We will use the following set

graph(∂̂h) =
{

(x, u) ∈ R
n × R

n : u ∈ ∂̂h(x)
}

.

The subdifferential of h at x ∈ dom h is defined by the following closure process

∂h(x) =
{

u ∈ R
n : ∃ (xm, um)m∈N

∈ graph(∂̂h)N, xm →
m→∞

x, h(xm) →
m→∞

h(x), um →
m→∞

u
}

.

graph(∂h) is defined similarly as graph(∂̂h). When h is convex, the above definition coincides
with the usual notion of subdifferential in convex analysis

∂h(x) = {u ∈ R
n : h(y) ≥ h(x) + 〈u, y − x〉 for all y ∈ R

n}.

Independently from the definition, when h is smooth at x then the subdifferential is a singleton,
∂h(x) = {∇h(x)}.

We can deduce from its definition the following closeness property of the subdifferential: If
a sequence (xm, um)m∈N ∈ graph(∂h)N, converges to (x, u), and h(xm) converges to h(x) then
u ∈ ∂h(x). The set crith = {x ∈ R

n : 0 ∈ ∂h(x)} is called the set of critical points of h. In
this nonsmooth context, the Fermat’s rule remains unchanged: A necessary condition for x to
be local minimizer of h is that x ∈ crith [114, Theorem 10.1].
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Under our standing assumption, f is a smooth function and we have subdifferential sum rule
([Exercise 10.10][114])

(3.1) ∂(f + h)(x) = ∇f(x) + ∂h(x).

We recall a well known important property of smooth functions which have L-Lipschitz contin-
uous gradient, see [99, Lemma 1.2.3].

Lemma 3.2.1 (Descent Lemma (e.g. Lemma 1.2.3 in [99])). For any x, y ∈ R
n, we have

f(y) ≤ f(x) + 〈y − x,∇f(x)〉 +
L

2
‖x− y‖2.

For the rest of this paragraph, we suppose that h is a convex function. Given x ∈ R
n and

t > 0, the proximal operator associated to h, which we denote by proxth(x), is defined as the

unique minimizer of function y 7−→ h(y) +
1

2t
‖y − x‖2, i.e:

proxth(x) = argminy∈Rn h(y) +
1

2t
‖y − x‖2.

Using Fermat’s Rule, proxth(x) is characterized as the unique solution of the inclusion

x− proxth(x)

t
∈ ∂h (proxth(x)) .

We can check that when h is convex then proxh is Lipschitz continuous with constant 1 (see[14,
Proposition 12.27]). As an illustration, let C ⊂ R

n be a closed, convex and nonempty set, then
proxiC is the orthogonal projection operator onto C. The following property of the prox mapping
will be used in the analysis, see [17, Lemma 1.4].

Lemma 3.2.2. Let x ∈ R
n, t > 0, and p = proxth x, then

h(z) − h(p) ≥ 1

2t

(

‖x− p‖2 + ‖z − p‖2 − ‖x− z‖2
)

,∀z ∈ R
n.

3.2.3 Nonsmooth Kurdyka- Lojasiewicz inequality

In this subsection, we present the nonsmooth Kurdyka- Lojasiewicz inequality introduced in
[21] (see also [22, 23], and the fundamental works [86, 73]). We note [h < µ] = {x ∈ R

n : h(x) <
µ} and [η < h < µ] = {x ∈ R

n : η < h(x) < µ}. Let r0 > 0 and set

K(r0) =
{

ϕ ∈ C0[0, r0) ∩ C1(0, r0), ϕ(0) = 0, ϕ is concave and ϕ′ > 0
}

.

Definition 6. The function h satisfies the Kurdyka- Lojasiewicz (KL) inequality (or has the KL
property) locally at x̄ ∈ dom f if there exist r0 > 0, ϕ ∈ K(r0) and a neighborhood U(x̄) such
that

(3.2) ϕ′ (h(x) − h(x̄)) dist(0, ∂h(x)) ≥ 1

for all x ∈ U(x̄) ∩ [h(x̄) < h(x) < h(x̄) + r0]. We say that ϕ is a desingularizing function for F
at x̄. The function h has the KL property on S if it does so at each point of S.
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When h is smooth and h(x̄) = 0 then (3.2) can be rewritten as

‖∇(ϕ ◦ h)‖ ≥ 1, ∀x ∈ U(x̄) ∩ [h(x̄) < h(x) < h(x̄) + r0].

This inequality may be interpreted as follows: The function h can be made sharp locally by a
reparameterization of its values through a function ϕ ∈ K(r0) for some r0 > 0.

The KL inequality is obviously satisfied at any noncritical point x̄ ∈ dom h and will thus be
useful only for critical points, x̄ ∈ crith. The  Lojasiewicz gradient inequality corresponds to the
case when ϕ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1). The class of functions which satisfy KL
inequality is extremely vast. Typical KL functions are semi-algebraic functions, but there exists
many extensions, see [21].

If h has the KL property and admits the same desingularizing function ϕ at every point, then
we say that ϕ is a global desingularizing function for f . The following lemma is similar to [26,
Lemma 3.6].

Lemma 3.2.3 (KL property). Let Ω be a compact set and let h : Rn → (−∞,∞] be a proper
and lower semicontinuous function. We assume that h is constant on Ω and satisfies the KL
property at each point of Ω. Then there exist ε > 0, η > 0 and ϕ such that for all x̄ ∈ Ω, one has

ϕ′(h(x) − h(x̄)) dist(0, ∂h(x)) ≥ 1,

for all x ∈ {x ∈ R
n| dist(x,Ω) < ε} ∩ [h(x̄) < h(x) < h(x̄) + η].

3.3 Extragradient method, Convergence and Complexity

3.3.1 Extragradient method

We now describe our extragradient method dedicated to the minimization of problem (P).
Recall that the method is defined, given an initial estimate x0 ∈ R

n, by the following recursion,
for k ≥ 1,

(EEG)

{

yk = proxskg
(xk − sk∇f(xk)),(3.3)

xk+1 = proxαkg
(xk − αk∇f(yk)).(3.4)

where (sk)k∈N, (αk)k∈N are positive step size sequences. We introduce relevant quantities, s− =
infk∈N sk, s

+ = supk∈N sk, and α− = infk∈N αk, α
+ = supk∈N αk for k ∈ N. Throughout the

paper, we will consider the following condition on the two step size sequence,

(C) : 0 < α−, 0 < s−, s
+ <

1

L
and 0 < sk ≤ αk, ∀k ∈ N.

Depending on the context, additional restrictions will be imposed on the step size sequences.

3.3.2 Basic Properties

We introduce in this subsection two technical properties of sequences produced by(EEG)
method. They will play a crucial role in the proofs of our main convergence and complexity
results. We begin with a descent property.

Proposition 3.3.1 (Descent condition). For any k ∈ N, we have

F (xk)−F (xk+1) ≥ 1

2αk
‖xk−xk+1‖2 +

(

1

sk
− L

2
− 1

2αk

)

‖xk−yk‖2 +

(

1

2αk
− L

2

)

‖yk−xk+1‖2.
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Proof. We fix an arbitrary k ∈ N. Applying Lemma 3.2.2 for (3.3), with z = xk, p = yk,
x = xk − sk∇f(xk) and t = sk, we obtain

g(xk) − g(yk) ≥ 1

2sk

(

‖xk − yk‖2 + ‖xk − sk∇f(xk) − yk‖2 − ‖sk∇f(xk)‖2
)

=
1

sk
‖xy − yk‖2 + 〈yk − xk,∇f(xk)〉.

Combining with the descent lemma, f(yk) ≤ f(xk) + 〈yk − xk,∇f(xk)〉 + L
2 ‖xk − yk‖2, we get

(3.5) F (xk) − F (yk) ≥
(

1

sk
− L

2

)

‖xk − yk‖2.

Similarly, applying Lemma 3.2.2 for (3.4), with z := yk, p := xk+1 and x = xk − αk∇f(yk) we
obtain

g(yk) − g(xk+1) ≥ 1

2αk

(

‖yk − xk+1‖2 + ‖xk − αk∇f(yk) − xk+1‖2 − ‖yk − xk + αk∇f(yk)‖2
)

=
1

2αk

(

‖yk − xk+1‖2 + ‖xk − xk+1‖2 − ‖yk − xk‖2
)

+ 〈xk+1 − yk,∇f(yk)〉.

On the other hand, we have from the descent lemma that

f(xk+1) ≤ f(yk) + 〈xk+1 − yk,∇f(yk)〉 +
L

2
‖yk − xk+1‖2.

Summing up the last two inequalities, we have

(3.6) F (yk) − F (xk+1) ≥ 1

2αk

(

‖xk − xk+1‖2 − ‖yk − xk‖2
)

+

(

1

2αk
− L

2

)

‖yk − xk+1‖2.

Combining inequalities (3.5) and (3.6), we obtain
(3.7)

F (xk)−F (xk+1) ≥ 1

2αk
‖xk−xk+1‖2 +

(

1

sk
− L

2
− 1

2αk

)

‖xk−yk‖2 +

(

1

2αk
− L

2

)

‖yk−xk+1‖2,

which concludes the proof

Remark 3.3.2. If we combine the constraint that 0 < αk ≤ 1
L for all k ∈ N with condition (C),

we deduce from Proposition 3.3.1 that, for all k ∈ N, 1
sk

− L
2 − 1

2αk
≥ 0, and

F (xk) − F (xk+1) ≥ 1

2αk
‖xk − xk+1‖2.

Under this condition, we have that (EEG) is a descent method in the sense that it will produce
a decreasing sequence of objective value.

We now establish a second property of sequences produced by (EEG) method which is
interpreted as a subgradient step property.

Proposition 3.3.3 (Subgradient step). Assume that (sk, αk)k∈N satisfy condition (C). Then
for any k ∈ N, there exists uk+1 ∈ ∂g(xk+1) such that

‖uk+1 + ∇f(xk+1)‖ ≤ Lαk + (1 − Lsk)2

αk(1 − Lsk)
‖xk − xk+1‖.
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Proof. We write the optimality condition for (3.4),

(3.8)
xk − xk+1

αk
− ∇f(yk) ∈ ∂g(xk+1),

therefore, there exists uk+1 ∈ ∂g(xk+1) such that

xk − xk+1

αk
+ ∇f(xk+1) − ∇f(yk) = uk+1 + ∇f(xk+1).

This implies that

‖uk+1 + ∇f(xk+1)‖ ≤ ‖xk − xk+1‖
αk

+ ‖∇f(xk+1) − ∇f(yk)‖.

Since ∇f is L-Lipschitz continuous, it follows that

(3.9) ‖uk+1 + ∇f(xk+1)‖ ≤ ‖xk − xk+1‖
αk

+ L‖xk+1 − yk‖.

Denote zk+1 = proxskg
(xk − sk∇f(yk)), since the proxskg

is 1-Lipschitz continuous, we get

‖yk − zk+1‖ ≤ ‖(xk − sk∇f(yk)) − (xk − sk∇f(xk))‖
≤ Lsk‖xk − yk‖,

and therefore

(3.10) ‖xk − zk+1‖ ≥ ‖xk − yk‖ − ‖yk − zk+1‖ ≥ (1 − Lsk)‖xk − yk‖.

On the other hand, g is convex, thus in view of the definition of zk+1,

〈

xk − zk+1

sk
− ∇f(yk), xk+1 − zk+1

〉

≤ g(xk+1) − g(zk+1).

Similarly, from (3.8) and convexity of g, we get

〈

xk − xk+1

αk
− ∇f(yk), zk+1 − xk+1

〉

≤ g(zk+1) − g(xk+1).

Adding the last two inequalities, we obtain

〈

xk − zk+1

sk
− xk − xk+1

αk
, xk+1 − zk+1

〉

≤ 0,

or equivalently

〈

xk − zk+1

sk
− xk − xk+1

αk
, (xk+1 − xk) + (xk − zk+1)

〉

≤ 0.

It follows that

‖xk − zk+1‖2

sk
+

‖xk − xk+1‖2

αk
≤
(

1

sk
+

1

αk

)

〈xk − zk+1, xk − xk+1〉 ,
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Using Cauchy-Schwarz inequality, we get

‖xk − zk+1‖2

sk
+

‖xk − xk+1‖2

αk
≤
(

1

sk
+

1

αk

)

‖xk − zk+1‖.‖xk − xk+1‖.

Since from condition (C), 0 < sk, this is equivalent to

(‖xk − zk+1‖ − ‖xk − xk+1‖)

(

‖xk − zk+1‖ − sk‖xk − xk+1‖
αk

)

≤ 0.

This inequality asserts that the product of two terms is nonpositive. Hence one of the terms must
be nonpositive and the other one must be nonnegative. From condition (C), we have sk

αk
≤ 1,

the last term is bigger than the first one and hence must be nonnegative. This yields

sk
αk

‖xk − xk+1‖ ≤ ‖xk − zk+1‖ ≤ ‖xk − xk+1‖.

By combining the latter inequality with (3.10), we get

(3.11) ‖xk − xk+1‖ ≥ (1 − Lsk)‖xk − yk‖.

Similarly, from the definitions of yk, xk+1 and the convexity of g, we obtain that
〈

xk − yk
sk

− ∇f(xk), xk+1 − yk

〉

≤ g(xk+1) − g(yk),

and
〈

xk − xk+1

αk
− ∇f(yk), yk − xk+1

〉

≤ g(yk) − g(xk+1).

Summing the last two inequalities, we have that

1

sk
‖xk+1 − yk‖2 +

(

1

sk
− 1

αk

)

〈xk+1 − yk, xk − xk+1〉 ≤ 〈xk+1 − yk,∇f(xk) − ∇f(yk)〉.

Using the condition 0 < sk ≤ αk and Cauchy-Schwarz inequality, we get

1

sk
‖xk+1 − yk‖2 ≤

(

1

sk
− 1

αk

)

‖xk+1 − yk‖‖xk − xk+1‖ + ‖xk+1 − yk‖‖∇f(xk) − ∇f(yk)‖.

Using Lipschitz continuity of ∇f , we have that

‖xk+1 − yk‖ ≤
(

1 − sk
αk

)

‖xk − xk+1‖ + Lsk‖xk − yk‖.

Combining this inequality with (3.11), we obtain

‖xk+1 − yk‖ ≤
(

1 − sk
αk

+
Lsk

1 − Lsk

)

‖xk − xk+1‖

=

(

1

1 − Lsk
− sk
αk

)

‖xk − xk+1‖.(3.12)

Combining (3.12) with (3.9), we get

(3.13) ‖uk+1 + ∇f(xk+1)‖ ≤ Lαk + (1 − Lsk)2

αk(1 − Lsk)
‖xk − xk+1‖,

and the result is proved
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Combining Remark 3.3.2 and Proposition 3.3.3 above, we have the following corollary which
underlines the fact that (EEG) is actually an approximate gradient method in the sense of [4].

Corollary 3.3.4. Assume that (sk, αk)k∈N
satisfy the following

(C1) : (sk, αk)k∈N
satisfy condition (C) and αk ≤ 1

L
, ∀k ∈ N.

Then, for all k ∈ N

i) F (xk+1) + 1
2αk

‖xk − xk+1‖2 ≤ F (xk).

ii) There exists ωk+1 ∈ ∂F (xk+1) such that

‖ωk+1‖ ≤ bk‖xk − xk+1‖,

where,

0 < bk :=
Lαk + (1 − Lsk)2

αk(1 − Lsk)
≤ b :=

2

α−(1 − s+L)
.

3.3.3 Convergence of extragradient method under KL assumption

In this subsection, we analyse the convergence of (EEG) method in the nonconvex setting.
The main result is stated in Theorem 3.3.6, which also describes the asymptotic rate of conver-
gence. This result is based on the assumptions that F has the KL property on critF and that
(sk, αk)k∈N satisfy conditions (C1) from Corollary 3.3.4. We will also assume that the sequence
(xk)k∈N generated by (EEG) is bounded. This boundedness assumption is not very restrictive
here, since under condition (C1), Corollary 3.3.4 ensures that it is satisfied for any coercive
objective function. Similarly to [26, Lemma 3.5], we first give some properties of F on the set of
accumulation points of (xk)k∈N.

Lemma 3.3.5. Assume that (sk, αk)k∈N satisfy condition (C1) and that (xk)k∈N is bounded. Let
Ω0 be the set of limit points of the sequence (xk)k∈N. It holds that Ω0 is compact and nonempty,
Ω0 ⊂ critF , dist(xk,Ω0) → 0 and F (x̄) = limk→∞ F (xk) for all x̄ ∈ Ω0.

Proof. From the boundedness assumption, it is clear that Ω0 is nonempty. In view of Corollary
3.3.4 i), it follows that (F (xk))k∈N is nonincreasing. Furthermore, F (xk) is bounded from below
by F ∗, hence there exists F̄ ∈ R such that F̄ = limk→∞ F (xk). In addition, we have

m
∑

k=1

‖xk+1 − xk‖2 ≤ 2α+ (F (1) − F (m+ 1)) ,

therefore
∑∞
k=1 ‖xk+1−xk‖2 converges, thus (xk+1−xk) → 0. We now fix an arbitrary point x∗ ∈

Ω0, which means that there exists a subsequence (xkq
)q∈N of (xk)k∈N such that limq→∞ xkq

= x∗,
therefore, by lower semicontinuity of g and continuity of f ,

(3.14) g(x∗) ≤ lim inf
q→∞

g(xkq
), f(x∗) = lim

q→∞
f(xkq

).

78



From the definition of xkq
and condition (C1), we get for all q ∈ N,

g(xkq
) +

1

2s+
‖xkq−1 − xkq

‖2 +
〈

xkq
− xkq−1,∇f(ykq−1)

〉

≤ g(xkq
) +

1

2skq

‖xkq−1 − xkq
‖2 +

〈

xkq
− xkq−1,∇f(ykq−1)

〉

≤ g(x∗) +
1

2skq

‖x∗ − xkq−1‖2 +
〈

x∗ − xkq−1,∇f(ykq−1)
〉

.

≤ g(x∗) +
1

2s−
‖x∗ − xkq−1‖2 +

〈

x∗ − xkq−1,∇f(ykq−1)
〉

.

Let q → ∞, it follows that lim supq→∞ g(xkq
) ≤ g(x∗), thus, in view of (3.14), limq→∞ g(xkq

) =

g(x∗), therefore limq→∞ F (xkq
) = F (x∗). Since F (xk) is nonincreasing, limq→∞ F (xkq

) = F̄ ,

and we deduce that F (x∗) = F̄ . Since x∗ was arbitrary in Ω0, it holds that F is constant on Ω0.
Now, thanks to Corollary 3.3.4 ii), there exist ωk+1 ∈ ∂F (xk+1), such that

‖ωk+1‖ ≤ bk‖xk − xk+1‖.

Under condition (C1), it holds that bk remains bounded. Since limk→∞ xk − xk+1 = 0, it
holds that ωk → 0. Combining with the closeness of ∂F , this implies that 0 ∈ ∂F (x∗), hence
x∗ ∈ critF . Since x∗ was taken arbitrarily in Ω0, this means that Ω0 ⊂ critF . The compactness
of Ω0 is implied by [26, Lemma 3.5]. Combining the boundedness of (xk)k∈N and the compactness
of Ω0, we deduce that dist(xk,Ω0) → 0 which concludes the proof.

We are now in a position to prove the convergence of the extragradient method in the non-
convex case.

Theorem 3.3.6. Assume that (sk, αk)k∈N satisfy condition (C1), that F has the KL property
on critF and that (xk)k∈N is bounded. Then the sequence (xk)k∈N converges to x∗ ∈ critF ,
moreover ∞

∑

i=1

‖xk − xk+1‖ < ∞.

Proof. Note that Lemma 3.3.5 can be applied here and we will use the same notations. We
write limk→∞ F (xk) = F̄ and let Ω0 be the set of limit points of (xk)k∈N. Combining the KL
assumption and Lemma 3.2.3, there exists ε > 0, η > 0 and a desingularizing function ϕ ∈ K(η)
such that

ϕ′(F (x) − F̄ ) dist(0, ∂F (x)) ≥ 1,

for all x ∈ {x ∈ R
n| dist(x,Ω0) < ε} ∩ [F̄ < F (x) < F̄ +η] . Denote by i the first index such that

‖xi−xi−1‖ = 0 or F (xi) = F̄ . If such an i exists, one has ωi = 0 and xk = xi, for all k > i which
shows that the result holds true. For the rest of the proof, we will assume that ‖xk − xk−1‖ > 0
and F (xk) > F̄ for all k ≥ 1. From Lemma 3.3.5, we have dist(xk,Ω0) → 0 and F (xk) → F̄ ,
therefore there exists k0 ∈ N such that for all k ≥ k0,

dist(xk,Ω0) < ε and F̄ < F (xk) < F̄ + η.

Using the concavity of ϕ and Corollary 3.3.4 we obtain

ϕ(F (xk) − F̄ ) − ϕ(F (xk+1) − F̄ ) ≥ ϕ′(F (xk) − F̄ ) (F (xk) − F (xk+1))

≥ 1

2αk
ϕ′(F (xk) − F̄ )‖xk − xk+1‖2,∀k ≥ k0.
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Since F has KL property on Ω0, using again Corollary 3.3.4, we get

ϕ′(F (xk) − F̄ ) ≥ 1

bk‖xk − xk1
‖ ,∀k ≥ k0

Combining the last two inequalities, we obtain for all k ≥ k0,

ϕ(F (xk) − F̄ ) − ϕ(F (xk+1) − F̄ ) ≥ ‖xk − xk+1‖2

2αkbk‖xk − xk−1‖

≥ 1

2αkbk

(

2‖xk − xk+1‖‖xk − xk−1‖ − ‖xk−1 − xk‖2
)

‖xk − xk−1‖

=
1

2αkbk
(2‖xk − xk+1‖ − ‖xk−1 − xk‖)

≥ 1

2α+b
(2‖xk − xk+1‖ − ‖xk−1 − xk‖),(3.15)

where b is given in Corollary 3.3.4. This implies that

2α+b
(

ϕ(F (xk0) − F̄ ) − ϕ(F (xk+1) − F̄ )
)

+ ‖x0 − x1‖ ≥
k
∑

i=k0

‖xi − xi+1‖,∀k > k0.

Therefore, the series
∑∞
i=k0

‖xi−xi+1‖ is bounded and hence converges. By Cauchy criterion, it
follows that the sequence (xk)k∈N converges to some point x∗ ∈ R

n. Furthermore, from Lemma
3.3.5, x∗ ∈ critF which concludes the proof.

Remark 3.3.7 (Convergence rate). When the KL desingularizing function of F is of the form
ϕ(s) = cs1−θ, where c is a positive constant and θ ∈ (0, 1], then we can estimate the rate of
convergence of the sequence (xk)k∈N, as follows (see Theorem 2, [2]).

• θ = 0 then the sequence (xk) converges in a

finite number of steps.

• θ ∈ [0, 1
2 ] then there exist C > 0 and τ ∈ (0, 1) such that

‖xk − x∗‖ ≤ Cτk,∀k ∈ N.

• θ ∈ ( 1
2 , 1) then there exist C > 0 such that

‖xk − x∗‖ ≤ Ck− 1−θ
2θ−1 ,∀k ∈ N.

3.3.4 The complexity of extragradient in the convex case

Throughout this section, we suppose that the function f is convex and we focus on complexity
and non asymptotic convergence rate analysis.

3.3.4.1 Sublinear convergence rate analysis

We begin with a technical Lemma which introduces more restrictive step size conditions.
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Lemma 3.3.8. Assume that (sk, αk)k∈N satisfy the following

(C2): (sk, αk)k∈N satisfy condition (C) and sk ≤ 1

2L
, αk ≤ 1

L
− sk, ∀k ∈ N.

Then for all k ∈ N,
1

2αk
‖xk − xk+1‖2 − L

2
‖xk+1 − yk‖2 ≥ 0.

Proof. First, we note that if (sk, αk)k∈N satisfy (C2) then they also satisfy condition (C1) and
Proposition 3.3.3 applies. Thanks to inequality (3.12) from the proof of Proposition 3.3.3, we
get

1

αk
‖xk − xk+1‖2 − L‖xk+1 − yk‖2 ≥ 1

αk
‖xk − xk+1‖2 − L

(

1

1 − Lsk
− sk
αk

)2

‖xk − xk+1‖2

=
−Lα2

k + (1 − s2
kL

2)αk − Ls2
k(1 − Lsk)2

α2
k(1 − Lsk)2

‖xk − xk+1‖2.

In addition, it can be checked using elementary calculation that

−Lα2
k + (1 − s2

kL
2)αk − Ls2

k(1 − Lsk)2 ≥ 0,

is equivalent to
(3.16)

(1 − Lsk)
[

(1 + Lsk) −
√

(1 + Lsk)2 − 4L2s2
k

]

2L
≤ αk ≤

(1 − Lsk)
[

(1 + Lsk) +
√

(1 + Lsk)2 − 4L2s2
k

]

2L
.

Note that, for 0 ≤ b ≤ a then a − b ≤
√
a2 − b2. Using this inequality, with the condition

2Lsk ≤ 1, we get (1 + Lsk) − 2Lsk ≤
√

(1 + Lsk)2 − 4L2s2
k. Thus,



















(1 − Lsk)
[

(1 + Lsk) −
√

(1 + Lsk)2 − 4L2s2
k

]

2L
≤ (1 − Lsk) [(1 + Lsk) − (1 − Lsk)]

2L
= (1 − Lsk)sk ≤ sk

(1 − Lsk)
[

(1 + Lsk) +
√

(1 + Lsk)2 − 4L2s2
k

]

2L
≥ (1 − Lsk) [(1 + Lsk) + (1 − Lsk)]

2L
=

1

L
− sk.

Putting things together, condition (C2) implies that

1

2αk
‖xk − xk+1‖2 − L

2
‖xk+1 − yk‖2 ≥ 0, ∀k ∈ N.

With a similar method as in [17], we prove a sublinear convergence rate for (F (xk))k∈N
in

the convex case.

Theorem 3.3.9 (Complexity of extragradient method). Suppose that (sk, αk)k∈N satisfy condi-
tion (C2) and that f is convex, then, for any x∗ ∈ argminF , we have

F (xm) − F (x∗) ≤ 1

2mα−
‖x0 − x∗‖2, ∀m ∈ N

∗.
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Proof. We first fix arbirary k ∈ N and x∗ ∈ argminF . Applying Lemma 3.2.2 with z = x∗, p =
xk+1, x = xk − αk∇f(yk) and t = αk, we obtain

g(x∗) − g(xk+1) ≥ 1

2αk

(

‖x∗ − xk+1‖2 + ‖xk − xk+1‖2 − ‖x∗ − xk‖2
)

+ 〈xk+1 − x∗,∇f(yk)〉

=
1

2αk

(

‖x∗ − xk+1‖2 + ‖xk − xk+1‖2 − ‖x∗ − xk‖2
)

+ 〈xk+1 − yk,∇f(yk)〉

+ 〈yk − x∗,∇f(yk)〉

≥ 1

2αk

(

‖x∗ − xk+1‖2 + ‖xk − xk+1‖2 − ‖x∗ − xk‖2
)

+ f(xk+1) − f(yk)

− L

2
‖xk+1 − yk‖2 + 〈yk − x∗,∇f(yk)〉,

where the last inequality is due to Lemma 3.2.1. It follows that

F (x∗) − F (xk+1) ≥ 1

2αk

(

‖x∗ − xk+1‖2 + ‖xk − xk+1‖2 − ‖x∗ − xk‖2
)

− L

2
‖xk+1 − yk‖2

+ f(x∗) − f(yk) + 〈yk − x∗,∇f(yk)〉.

Since f is convex, f(x∗) − f(yk) + 〈yk − x∗,∇f(yk)〉 ≥ 0, and the above inequality implies that

F (x∗) − F (xk+1) ≥ 1

2αk

(

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2
)

+
1

2αk
‖xk − xk+1‖2 − L

2
‖xk+1 − yk‖2.

Using the fact that F (xk) is noninreasing and bounded from bellow by F (x∗), it follows from
Lemma 3.3.8 that

0 ≥ F (x∗)−F (xk+1) ≥ 1

2αk

(

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2
)

≥ 1

2α−

(

‖x∗ − xk+1‖2 − ‖x∗ − xk‖2
)

.

Summing this inequality for k = 0, · · · ,m− 1 gives

(3.17) mF (x∗) −
m
∑

k=1

F (xk) ≥ 1

2α−

(

‖x∗ − xm‖2 − ‖x∗ − x0‖2
)

.

Coming back to Corollary 3.3.4, it is easy to see that the sequence (F (xk))k∈N is nonincreasing,

then

m
∑

k=1

F (xk) ≥ mF (xm). Combining with (3.17), we get

m (F (x∗) − F (xm)) ≥ 1

2α−

(

‖x∗ − xm‖2 − ‖x∗ − x0‖2
)

.

It follows that

F (xm) − F (x∗) ≤ 1

2mα−
‖x∗ − x0‖2, ∀m ∈ N

∗.

3.3.4.2 Small-prox type result under KL property

We now study the complexity of (EEG) method when F has, in addition, the KL property on
critF . First, using the convexity of f , Proposition 3.3.1, can be improved by using the following
result.
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Proposition 3.3.10. Assume that f is convex and (sk, αk)k∈N satisfy condition (C), then for
all k ∈ N, we have

F (xk) − F (xk+1) ≥ ck‖xk − xk+1‖2,

where

ck =
1

αk
− L

2

(

1

1 − Lsk
− sk
αk

)2

.

Proof. Fix an arbitrary k ∈ N. Applying Lemma 3.2.2, with z = xk, p = xk+1, x = xk−αk∇f(yk)
and t = αk, we get

g(xk) − g(xk+1) ≥ 1

αk
‖xk − xk+1‖2 + 〈xk+1 − xk,∇f(yk)〉

=
1

αk
‖xk − xk+1‖2 + 〈xk+1 − yk,∇f(yk)〉 + 〈yk − xk,∇f(yk)〉

≥ 1

αk
‖xk − xk+1‖2 + f(xk+1) − f(yk) − L

2
‖xk+1 − yk‖2 + 〈yk − xk,∇f(yk)〉,

where the last inequality follows from Lemma 3.2.1. This implies that

F (xk) − F (xk+1) ≥ 1

αk
‖xk − xk+1‖2 − L

2
‖xk+1 − yk‖2 + f(xk) − f(yk) − 〈xk − yk,∇f(yk)〉.

Since f is convex, f(xk) − f(yk) − 〈xk − yk,∇f(yk)〉 ≥ 0, which leads to

(3.18) F (xk) − F (xk+1) ≥ 1

αk
‖xk − xk+1‖2 − L

2
‖xk+1 − yk‖2.

From condition (C), Proposition 3.3.3 holds and in particular, inequality (3.12). Combining
inequality (3.18) with (3.12), we get the desired result,

F (xk) − F (xk+1) ≥
[

1

αk
− L

2

(

1

1 − Lsk
− sk
αk

)2
]

‖xk − xk+1‖2.

Lemma 3.3.11. Suppose that sk, αk satisfy the following condition

(C3)

{

sk, αk satisfy (C) condition

sk ≤
√

5−1
2L , and αk ≤ 2

L − 2sk − (1 − Lsk)Ls2
k, ∀k ∈ N.

Then, for all k ∈ N,

1

αk
− L

2

(

1

1 − Lsk
− sk
αk

)2

≥ C :=
L3s2

−(1 + Ls−)

2(2 − L2s2
−)2(1 − Ls−)

> 0.

Proof. First, one can check that

Lsk ≤ 2 − 2Lsk − (1 − Lsk)L2s2
k

if and only if

Lsk ∈
[

−
√

5 + 1

2
,

√
5 − 1

2

]

∪ [2,+∞),
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and the bound sk ≤
√

5−1
2 is a necessary condition which ensures that there exists αk which

satisfies sk ≤ αk ≤ 2
L − 2sk − (1 − Lsk)Ls2

k. We now turn to the lower bound under condition
(C3). Set

α+
k =

2

L
− 2sk − (1 − Lsk)Ls2

k

Q(u) = u− 1

2

(

1

1 − Lsk
− Lsku

)2

,

where one can think of u satisfying u = 1
Lαk

∈
[

1
Lα+

k

, 1
Lsk

]

. The maximum of Q(u) is attained for

u = 1
(1−Lsk)L2s2

k

≥ 1
Lsk

and hence Q is increasing on

[

1

Lα+
k

,
1

Lsk

]

, and therefore, for all k ∈ N,

1

αk
− L

2

(

1

1 − Lsk
− sk
αk

)2

= LQ

(

1

Lαk

)

≥ LQ

(

1

Lα+
k

)

= L
−(Lα+

k )2 + 2Lα+
k (1 − Lsk) − L2s2

k(1 − Lsk)2

2(Lα+
k )2(1 − Lsk)2

= L
−(1 − Lsk)2(2 − L2s2

k)2 + 2(1 − Lsk)2(2 − L2s2
k) − L2s2

k(1 − Lsk)2

2(2 − L2s2
k)2(1 − Lsk)4

= L
−(2 − L2s2

k)2 + 2(2 − L2s2
k) − L2s2

k

2(2 − L2s2
k)2(1 − Lsk)2

=
L3s2

k(1 + Lsk)

2(2 − L2s2
k)2(1 − Lsk)

≥ L3s2
−(1 + Ls−)

2(2 − L2s2
−)2(1 − Ls−)

> 0,

which is the desired result.

We can check that, when condition (C3) is satisfied, one has

0 < bk =
Lαk + (1 − Lsk)2

αk(1 − Lsk)
≤ B =

6

α−

Combining this with Proposition 3.3.3, Proposition 3.3.10 and Lemma 3.3.11, we obtain the
following corollary.

Corollary 3.3.12. Suppose that (sk, αk)k∈N satisfy condition (C3) and that f is convex, then

i) F (xk+1) + C‖xk − xk+1‖2 ≤ F (xk), ∀k ∈ N.

ii) There exists ωk+1 ∈ ∂F (xk+1) such that

‖ωk+1‖ ≤ B‖xk − xk+1‖, ∀k ∈ N.

where C is given in Lemma 3.3.11 and B = 6
α−

.

We now consider the complexity for (EEG) method under nonsmooth KL inequality. By
applying the result of Theorem 2.4.5, we have the complexity of (EEG) method in the form of
a small prox result.
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Theorem 3.3.13 (Complexity of EEG method). Assume that (sk, αk)k∈N satisfy condition
(C3) and f is convex. Then, the sequence (xk)k∈N converges to x∗ ∈ argminF , and

∞
∑

i=1

‖xk − xk+1‖ < ∞,

moreover,

F (xk) − F ∗ ≤ ψ(βk), ∀k ≥ 0,

‖xk − x∗‖ ≤ B

C
βk +

√

ψ(βk−1)

C
, ∀k ≥ 1,

where B and C are given in Corollary 3.3.12.

3.4 Numerical experiment

In this section, we compare the extragradient method with standard algorithms in numerical
optimization: forward-backward and FISTA. We describe the problem of interest, details about
exact line search in this context and numerical results.

3.4.1 ℓ
1 regularized least squares

We let A ∈ R
p×n be a real matrix, b ∈ R

n be a real vector and λ > 0 be a scalar, all of them
given and fxed. Following the notations of the previous section, we define f : x 7→ 1

2 ‖Ax−b‖2
2 and

g : x 7→ λ‖x‖1 (the sum of absolute values of the entries). With these notations, the optimization
problem (P) becomes

min
x∈Rn

1

2
‖Ax− b‖2

2 + λ‖x‖1.(3.19)

Solutions of problem of the form of (3.19) (as well as many extensions) are extensively used in
statistics and signal processing [116, 36]. For this problem, we introduce the proximal gradient
mapping, a specialization of the proximal gradient step to problem (3.19). This is the main
building block of all the algorithms presented in the numerical experiment.

p : R
n × R+ 7→ R

n

(x, s) 7→ Ssλ(x− s∇f(x))
(3.20)

where Sa (a ∈ R+) is the soft-thresholding operator which acts coordinate-wise and satisfies for
i = 1, 2 . . . , n

[Sa(x)]i =

{

0, if |xi| ≤ a

xi − asign(xi), otherwise.

3.4.2 Exact line search

One intuition behind Extragradient-Method for optimization is the use of an additional itera-
tion as a guide or a scout to provide an estimate of the gradient that better suits the geometry of
the problem. This should eventually translate in the possibility of taking larger steps leading to
faster convergence. In this section we briefly describe a strategy which allows to perform exact
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line search in the context of ℓ1-regularized least squares. Up to our knowledge, this was not
decribed before in the literature. Furthermore, this strategy may be extended to more general
least squares problems with nonsmooth regularizes. For the rest of this section, we assume that
x ∈ R

n is fixed. We heavily rely on the two simple facts:

• The mapping s → p(x, s) is continuous and piecewise affine.

• The objective function x 7→ f(x) + g(x) is continuous and piecewise quadratic.

We consider the following function

qx : R+ → R

α → f(p(x, α)) + g(p(x, α)).

It can be deduced from the properties of f , g and p that qx is continuous and piecewise quadratic.
In classical implementation of proximal splitting methods, the step-size parameter α is a well
chosen constant which depends on the problem, or alternatively it is estimated using backtrack-
ing. The alternative which we propose is to choose the step-size parameter α minimizing qx.
Since qx is piecewise quadratic, this only requires to know the values of α for which qx is not
differentiable and the expression of qx as a quadratic form between these values.

The nonsmooth points of qx are given by the following set

Dx =

{

xi
∂f(x)
∂xi

− λ
,

xi
∂f(x)
∂xi

+ λ

}n

i=1

∩ R+

and correspond to limiting values for which coordinates of p(x, α) are null. We assume that the
elements of Dx are ordered nondecreasingly (letting potential ties appear several times). The
comments that we have made so far lead to the following.

• Dx contains no more than 2n elements.

• Given x and λ, computing Dx is as costly as computing ∇f .

• qx is quadratic between two consecutive elements of Dx.

In order to minimize qx, the only task that should be performed is to keep track of its value
(or equivalently of its quadratic expression) between consecutive elements of Dx. Here, we can
use the fact that elements of Dx corresponds to values of α for which one coordinate of p(x, α)
goes to zero or becomes active (non-zero). A careful implementation of the minimization of qx
amounts to sort the values in Dx, screen them in increasing order, keep track of the corresponding
quadratic expression and the minimal value. We provide a few details for completeness.

• The vector dx(s) :=
(

∂[p(x,s)]i

∂s

)n

i=1
∈ R

n is constant between consecutive elements of Dx.

Furthermore the elements of Dx (counted with multiple ties) corresponds to value of α for
which a single coordinate of dx(s) is modified.

• Suppose that α1 < α2 are two consecutive elements of Dx. Then for all α ∈ [α1, α2], letting
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dx(α) = d on this segment, we have p(x, α) = p(x, α1) + (α− α1)d, hence,

1

2
‖Ap(x, α) − b‖2

2 + λ‖p(x, α)‖1

=
1

2
‖Ap(x, α1) − b‖2

2 + λ‖p(x, α1)‖1

+
(α− α1)

n
〈Ad,Ax− b〉 +

(α− α1)2

2n
‖Ad‖2

2 + λ(α− α1)
〈

d̄, d
〉

,

where d̄ ∈ R
p is a vector which depends on the sign pattern of p(x, α1) and d.

• For α = α2, the sign pattern of p(x, α2) and the corresponding value of d and d̄ (for the
next interval) are modified only at a single coordinate, the same for the three of them. In
other words, updating the quadratic expression of qx at α2 only requires the knowledge of
this coordinate, the value of the corresponding column in A and can be done by computing
inner products in R

p. This requires O(p) operations.

• Given these properties, we can perform minimization of qx by an active set strategy, keeping
track only of the sign pattern of p(x, α), the value of

〈

d̄, d
〉

, the value of Ad, Ap(x, α) − b
and ‖p(x, α)‖1 which cost is of the order of O(p). This should not be repeated more than
2n times.

Using this active set procedure provides the quadratic expression of qx for all intervals represented
by consecutive values in Dx. From these expressions, it is not difficult to compute the global
minimum of qx. The overall cost of this operation when properly implemented is of the order of
O(np) plus the cost of sorting 2n elements in R. This is comparable to the cost of computing
the gradient of f . Hence in this specific setting, performing exact line search does not add much
overhead in term of computational cost compared to existing step-size strategies.

3.4.3 Simulation and results

We generate a matrix A and vector b using the following process.

• Set n = 400 and p = 1600

• Set A = DX where X has standard Gaussian independent entries and D is a diagonal
matrix which i-th diagonal entry is 1

i2 .

• Choose x0 in R
n with the 400 first entries being independent standard Gaussian and the

remaining ones are null.

• Set b = Ax+ z where z ∈ R
p has independant Gaussian entries.

• We choose λ = 0.001

We compare the following algorithms (L is the Lipschitz constant of f computed from the singular
value of A).

• Forward-backward with step-size parameter 1/L (see for example [17]).

• Forward-backward with step-size parameter determined by exact line search.
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Suboptimality on a Lasso instance

Figure 3.1: Suboptimality (F (xk) − F ∗) as a function of time for simulated ℓ1 regularized least
squares data. FB stands for forward-backward and EG for extragradient. The indications in
parenthesis indicate the step sizes strategy that is used.

• Extragradient (discussed in the present paper) with step size parameter s = 1/L and
α = 2/L.

• Extragradient with step size parameter s = 1/L and α determined by exact line search.

• FISTA as described in [17].

The exact line search active set procedure is implemented in compiled C code in order keep a
reasonable level of efficiency compared to linear algebra operations which have efficient imple-
mentations. All algorithms are initialized at the same point. We keep track of decrease of the
objective value, the iteration counter k and the total spent since initialization. The iteration
counter is related to analytical complexity while the total time spent is related to the arithmeti-
cal complexity (see the introduction in [99] for more details). Comparing algorithms in term of
analytical complexity does not reflect the fact that iterations are more costly for some of them
compared to others.

Computational times are presented in Figure 3.1 and iteration counters in Figure 3.2. The
main comment is that the exact line search procedure improves upon fixed step size parameters
while the induced computational overhead remains reasonable. Indeed, both forward-backward
and extragradient, when implemented using the exact line search procedure produce results which
are comparable to FISTA, a reference in terms of performances for this composite problem. On
the other hand, there is not much difference between forward-backward and extragradient, neither
for fixed step sizes, nor for exact line search.
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Figure 3.2: Suboptimality (F (xk) − F ∗) as a function of the iteration counter for simulated ℓ1

regularized least squares data. FB stands for forward-backward and EG for extragradient. The
indications in parenthesis indicate the step sizes strategy that is used.
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