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Discrete structures like graphs make it possible to naturally and flexibly model complex phenomena. Since
graphs that represent various types of information are increasingly available today, their analysis has become
a popular subject of research. The graphs studied in the field of data science at this time generally have
a large number of nodes that are not fairly weighted and connected to each other, translating a structural
specification of the data. Yet, even an algorithm for locating the average position in graphs is lacking
although this knowledge would be of primary interest for statistical or representation problems. In this work,
we develop a stochastic algorithm for finding the Fréchet mean of weighted undirected metric graphs. This
method relies on a noisy simulated annealing algorithm dealt with using homogenization. We then illustrate
our algorithm with two examples (subgraphs of a social network and of a collaboration and citation network).
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1. Introduction.
Numerous open questions in a very wide variety of scientific domains involve complex discrete
structures that are easily modeled by graphs. The nature of these graphs may be weighted or not,
directed or not, observed online or by using batch processing, each time implying new problems
and sometimes leading to difficult mathematical or numerical questions. Graphs are the subject of
perhaps one of the most impressive growing bodies of literature dealing with potential applications
in statistical or quantum physics (see, e.g., [21]) economics (dynamics in economy structured as
networks), biology (regulatory networks of genes, neural networks), informatics (Web understand-
ing and representation), social sciences (dynamics in social networks, analysis of citation graphs).
We refer to [37] and [43] for recent communications on the theoretical aspects of random graph
models, questions in the field of statistics and graphical models, and related numerical algorithms.
In [34], the authors have developed an overview of numerous possible applications using graphs
and networks in the fields of industrial organization and economics. Additional applications, details
and references in the field of machine learning may also be found in [28].

In the meantime, the nature of the mathematical questions raised by the models that involve
networks is very extensive and may concern geometry, statistics, algorithms or dynamical evolution
over the network, to name a few. For example, we can be interested in the definition of suitable
random graph models that make it possible to detect specific shape phenomena observed at dif-
ferent scales and frameworks (the small world networks of [47], the existence of a giant connected
component for a specific range of parameters in the Erdös-Rényi random graph model [20]). A com-
plete survey may be found in [39]. Another important field of investigation is dedicated to graph
visualization (see some popular methods in [45] and [35], for example). In statistics, a popular topic
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deals with the estimation of a natural clustering when the graph follows a specific random graph
model (see, among others, the recent contribution [36] that proposes an optimal estimator for the
stochastic block model and smooth graphons). Other approaches rely on efficient algorithms that
analyze the spectral properties of adjacency matrices representing the networks (see, e.g, [6]). A
final important field of interest deals with the evolution of a dynamical system defined through
a discrete graph structure: this is, for instance, the question raised by gossip models that may
describe belief evolution over a social network (see [1] and the references therein).

We address a problem here that may be considered as very simple at first glance: we aim to
define and estimate the barycenter of weighted graphs. Hence, this problem involves questions
that straddle the area of statistics and the geometry of graphs. Surprisingly, as far as we know,
this question has received very little attention, although a good assessment of the location of a
weighted graph barycenter could be used for fair representation issues or for understanding the
graph structure from a statistical point of view. In particular, it could be used and extended to
produce “second order” moment analyses of graphs. We could therefore generalize a Principal
Component Analysis by extending this framework. This intermediary step was used, for example,
by [13] to extend the definition of PCA on the space of probability measures on R, and by [14]
to develop a suitable geometric PCA of a set of images. A popular strategy to define moments
in complex metric spaces is to use the variational interpretation of means (or barycenters), which
leads to the introduction of Fréchet (or Karcher) means (see Section 2.2 for an accurate definition).
This approach has been introduced in the seminal contribution [23] that makes it possible to define
p-means over any metric probability space.

The use of Fréchet means has met with great interest, especially in the field of bio-statistics and
signal processing, although mathematical and statistical derivations around this notion constitute
a growing field of interest.
• In continuous domains, many authors have recently proposed limit theorems on the empirical

Fréchet sample mean (only a sample of size n of the probability law is observed) towards its
population counterpart. These works were mostly guided by applications to continuous manifolds
that describe shape spaces introduced in [19]. For example, [38] establishes the consistency of the
population Fréchet mean and derives applications in the Kendall space. The study of [9] establishes
the consistency of Fréchet empirical means and derives its asymptotic distribution when n−→+∞,
whereas the observations live in more general Riemannian manifolds. Finer results can be obtained
in some non-parametric restrictive situations (see, e.g., [11, 12, 15] dedicated to the so-called shape
invariant model). Many applications in various domains involving signal processing can also be
found: ECG curve analysis [10] and image analysis [44, 2], to name a few.
• Recent works treat Fréchet means in a discrete setting, especially when dealing with phylo-

genetic trees that have an important hierarchical structure property. In particular, [8] proposed
a central limit theorem in this discrete case, whereas [41] used an idea of Sturm for spaces with
non-positive curvature to define an algorithm for the computation of the population Fréchet mean.
Other works deal with the averaging of discrete structure sequences such as diagrams using the
Wasserstein metric (see, e.g., [42]) or graphs [27].
Our work deviates from the above-mentioned point since we build an algorithm that recovers the
Fréchet mean of a weighted graph while observing an infinite sequence of nodes of the graph,
instead of finding the population Fréchet mean of a set of discrete structures, as proposed in
[8, 41, 42, 27]. Our algorithm uses recent contributions on simulated annealing ([3, 4]). It relies on
a continuous-time noisy simulated annealing Markov process on graphs, as well as a second process
that accelerates and homogenizes the updates of the noisy transitions in the simulated annealing
procedure.

The paper is organized as follows: Section 2 highlights the different difficulties raised by the
computation of the Fréchet mean of weighted graphs and describes the algorithm we propose. In
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Section 3.1, theoretical backgrounds to understand the behavior of our method are developed on
the basis of this algorithm, and Section 3.2 states our main results. Simulations and numerical
insights are then given in Section 4. The convergence of the algorithm is theoretically established
in Section 5, whereas Section 6 describes functional inequalities in quantum graphs that will be
introduced below.

Acknowledgments.
The authors gratefully acknowledge Laurent Miclo for his stimulating discussions and helpful com-
ments throughout the development of this work, and Nathalie Villa-Vialaneix for her interest and
advice concerning simulations. The authors are also indebted to zbMATH for making their database
available to produce numerical simulations.

2. Stochastic algorithm on quantum graphs
We consider G= (V,E) a finite connected and undirected graph with no loop, where V = {1, . . . ,N}
refers to the N vertices (also called nodes) of G, and E the set of edges that connect some couples
of vertices in G.

2.1. Undirected weighted graphs
The structure of G may be described by the adjacency matrix W that gives a non-negative weight
to each edge E (pair of connected vertices), so that W = (wi,j)1≤i,j≤N while wi,j = +∞ if there is
no direct link between node i and node j. W indicates the length of each direct link in E: a small
positive value of wi,j represents a small length of the edge {i, j}. We assume that G is undirected
(so that the adjacency matrix W is symmetric) and connected: for any couple of nodes in V , we
can always find a path that connects these two nodes. Finally, we assume that G has no self loop.
Hence, the matrix W satisfies:

∀i 6= j wi,j =wj,i and ∀i∈ V wi,i = 0

We define d(x, y) as the geodesic distance between two points (x, y) ∈ V 2, which is the length of
the shortest path between them. The length of this path is given by the addition of the length of
traversed edges:

∀(i, j)∈ V 2 d(i, j) = min
i=i1→i2→...→ik+1=j

k−1∑
`=1

wi`,i`+1
.

When the length of the edges is constant and equal to 1, it simply corresponds to the number of
traversed edges. Since the graph is connected and finite, we introduce the definition of the diameter
of G:

DG := sup
(x,y)∈V 2

d(x, y).

To define a barycenter of a graph, it is necessary to introduce a discrete probability distribution
ν over the set of vertices V . This probability distribution is used to measure the influence of each
node on the graph.
Example 1. Let us consider a simple scientometric example illustrated in Figure 1 and consider

a “toy” co-authorship relation that could be obtained in a subgraph of a collaboration network like
zbMATH 1. If two authors A and B share kA,B joint papers, it is a reasonable choice to use a weight
wA,B = φ(kA,B), where φ is a convex function satisfying φ(0) = +∞, φ(1) = 1 and φ(+∞) = 0. This
means that no joint paper between A and B leads to the absence of a direct link between A and B

1 https://zbmath.org/

https://zbmath.org/
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ν(1) = 0.5

ν(2) = 0.1 ν(3) = 0.1

ν(4) = 0.2

ν(5) = 0.11/5
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Figure 1 Example of a weighted graph between five authors, where the probability mass is {0.5,0.1,0.1,0.2,0.1}.
In this graph, Author 1 shares five publications with Author 2 and ten publications with Author 5, and
so on.

on the graph. On the contrary, the more papers there are between A and B, the closer A and B will
be on the graph. Of course, this graph may be embedded in a probability space with the additional
definition of a probability distribution over the authors that can be naturally proportional to the
number of citations of each author. This is a generalization of the Erdös graph. Note that this type
of example can also be encountered when dealing with movies and actors, leading, for example, to
the Bacon number and graph (see the website: www.oracleofbacon.org/).

2.2. Fréchet mean of an undirected weighted graph
Following the simple remark that the p-mean of any distribution ν of Rd is the point that minimizes

x 7−→EZ∼ν [|x−Z|p],

it is legitimate to be interested in the Fréchet mean of a graph (G,ν) where ν refers to the
probability distribution over each node. The Fréchet mean is introduced in [23] to generalize this
variational approach to any metric space. Although we have chosen to restrict our work to the
case of p= 2, which corresponds to the Fréchet mean definition, we believe that our work could be
generalized to any value of p≥ 1. If d denotes the geodesic distance w.r.t. G, we are interested in
solving the following minimization problem:

Mν := arg min
x∈E

Uν(x) where Uν(x) =
1

2

∫
G

d2(x, y)ν(y). (1)

Hence, the Fréchet mean of (G,ν), denoted Mν , is the set of all possible minimizers of Uν . Note
that this set is not necessarily a singleton and this uniqueness property generally requires some
additional topological assumptions (see [3], for example). At this point, we want to make three
important remarks about the difficulty of this optimization problem:
• The problem of finding Mν involves the minimization of Uν , which is a non-convex function

with the possibility of numerous local traps. To our knowledge, this problem cannot be efficiently
solved using either a relaxed solution or using a greedy/dynamic programing algorithm (in the
spirit of the Dijkstra method that makes it possible to compute geodesic paths [18]).

www.oracleofbacon.org/
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• It is thus natural to think about the use of a global minimization procedure, and, in particular,
the simulated annealing (S.A. for short) method. S.A. is a standard strategy to minimize a function
over discrete spaces and its computational cost is generally high. It relies on an inhomogeneous
Markov process that evolves on the graph with a transition kernel depending on the energy esti-
mates Uν . In other words, it requires the computation of Uν that depends on an integral w.r.t. ν.
Since we plan to handle large graphs, this last dependency can be a very strong limitation.
• In some cases, even the global knowledge of ν may not be realistic, and the importance of

each node can only be revealed through i.i.d. sequential arrivals of new observations in E that
are distributed according to ν. This may be the case, for example, if we consider a probability
distribution over E that is cropped while gathering interactive forms on a website.

2.3. Outline of Simulated Annealing (S.A.)
The optimization with S.A. introduces a Markov random dynamical system that evolves either in
continuous time (generally for continuous spaces) or in discrete time (for discrete spaces). When
dealing with a discrete setting, S.A. is based on a Markov kernel proposition L(., .) : V × V −→
[0,1] related to the 1-neighborhoods of the Markov chain, as introduced in [30]. It is based on
an inhomogeneous Metropolis-Hastings scheme, which is recalled in Algorithm 1. We can derive
asymptotic guarantees of the convergence towards a minimum of U as soon as the cooling schedule
is well chosen.
Algorithm 1: M.-H. Simulated Annealing

Data: Function U . Decreasing temperature sequence (Tk)k≥0

1Initialization: X0 ∈ V ;
2for k= 0 . . .+∞ do

3 Draw x′ ∼L(Xk, .) and compute pk = 1∧
{
eT
−1
k

[U(Xk)−U(x′)] L(x′,Xk)

L(Xk,x
′)

}
4 Update Xk+1 according to Xk+1 =

{
x′ with probability pk

Xk with probability 1− pk
5end
6Output: limk−→+∞Xk

When dealing with a continuous setting, S.A. uses a drifted diffusion with a vanishing variance
(εt)t≥0 over V , or an increasing drift coefficient (βt)t≥0. We refer to [32, 40] for details and we recall
its Langevin formulation in Algorithm 2.

Algorithm 2: Langevin Simulated Annealing

Data: Function U . Increasing inverse temperature (βt)t≥0

1 Initialization: X0 ∈ V ;
2 ∀t≥ 0 dXt =−βt∇U(Xt)dt+ dBt
3Output: limt−→+∞Xt

In both cases, we can see that S.A. with U = Uν given by (1) involves the computation of the
value of U in Line 4 of Algorithm 1, or the computation of ∇U in Line 2 of Algorithm 2. These two
computations are problematic for our Fréchet mean problem: the integration over ν is intractable
in the situation of large graphs and we are naturally driven to consider a noisy version of S.A. A
possible alternative method for this problem is to use a homogenization technique: replacing Uν in
the definition of pk by Uy(·) = d2(·, y), where y is a value from an i.i.d. sequence (Yn)n≥0 distributed
according to ν . Such methods have been developed in [29] as a modification of Algorithm 1 with
an additional Monte-Carlo step in Line 4, when UY (x) follows a Gaussian distribution centered
around the true value of U(x) = EY∼νUY (x). This approach is still problematic in our case since
the Gaussian assumption on the random variable d2(x,Y ) is unrealistic here. Another limitation
of this MC step relies on the fact that it requires a batch average of several (U(x,Yj))1≤j≤nk where
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nk is the number of observations involved at iteration k, although we also plan to develop an
algorithm that may be adapted to on-line arrivals of the observation (Yn)n≥0. Lastly, it is important
to observe that the non-linearity of the exponential prevents the use of only one observation Yk in
the acceptation/reject ratio involved in the S.A. since it does not lead to an unbiased evaluation
of the true transition:

EY∼ν
[
eT
−1
k

[UY (Xk)−UY (x′)]
]
6= eT

−1
k

EY∼ν [UY (Xk)−UY (x′)] .

This difficulty does not arise in the homogenization of the simulated annealing algorithm in the
continuous case since the exponential is replaced by a gradient, i.e., the process we use is a Markov
process of the form:

dXt =−βt∇UYt(Xt)dt+ dBt,

where Bt is a “Brownian motion” on the graph G, β−1
t refers to the inverse of the temperature, and

Yt is a continuous time Markov process obtained from the sequence (Yn)n∈N. This point motivates
the introduction of the quantum graph induced by the initial graph. Of course, dealing with a
continuous diffusion over a quantum graph G deserves special theoretical attention, which will be
given in Section 3.1.

2.4. Homogenized S.A. algorithm on a quantum graph
We now present the proposed algorithm for estimating Fréchet means. To do so, we first introduce
the quantum graph ΓG derived from G= (V,E) that corresponds to the set of points living inside
the edges e∈E of the initial graph. Once an orientation is arbitrarily fixed for each edge of E, the
location of a point in ΓG depends on the choice of an edge e ∈E and on a coordinate xe ∈ [0,Le]
where Le is the length of edge e on the initial graph. The coordinate 0 then refers to the initial
point of e and Le refers to the other extremity.

While considering the quantum graph ΓG, it is still possible to define the geodesic distance
between any point x ∈ ΓG and any node y ∈G. In particular, when x ∈ V , we use the initial defi-
nition of the geodesic distance over the discrete graph, although when x∈ e∈E with a coordinate
xe ∈ [0,Le], the geodesic distance between x and y is:

d(x, y) = {xe + d(e(0), y)}∧ {Le−xe + d(e(Le), y)} .

This definition can be naturally generalized to any two points of ΓG, enabling us to consider the
metric space (ΓG, d).

Consider a positive, continuous and increasing function t 7−→ αt such that:

lim
t 7−→+∞

αt = +∞ and ∀t≥ 0 βt = o(αt).

We introduce (Nα
t )t≥0, an inhomogeneous Poisson process over R+ with intensity α. It is standard

to represent Nα through a homogeneous Poisson process H of intensity 1 using the relationship:

∀t≥ 0 Nα
t =Hh(t), where h(t) =

∫ t

0

αsds.

Using this accelerated process Nα, our optimization algorithm over ΓG is based on the Markov
process that solves the following stochastic differential equation over ΓG:{

X0 ∈ ΓG

dXt =−βt∇UYNαt (Xt)dt+ dBt.
(2)
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Using the definition of Nt and the basic properties of a Poisson Process, it can be observed that
for all ε > 0 and all t≥ 0:

E
[
Nt+ε−Nt

ε

]
=

1

ε

∫ t+ε

t

αsds

Hence, α should be understood as the speed of new arrivals in the sequence (Yn)n∈N.
Our definition (2) is slightly inaccurate: for any y ∈ V (G), the function Uy is C1 except at a finite

set of points of ΓG:
• This can be the case inside an edge x∈ e with xe ∈ (0,Le) when at least two different geodesic

paths from x to y start in opposite directions. Then, we define ∇Uy(x) = 0.
• This can also be the case at a node x ∈ V when several geodesic paths start from x to y. In

that case, we once again arbitrarily impose a null value for the “gradient” of Uy at node x. This
prior choice will not have any influence on the behavior of the algorithm.

We will first detail below the theoretical objects involved in (2), then we will describe an efficient
discretization of (2) that makes it possible to derive our practical optimization algorithm.

Algorithm 3: Homogenized Simulated Annealing over a quantum graph

Data: Function U . Increasing inverse temperature (βt)t≥0. Intensity (αt)t≥0

1Initialization: Pick X0 ∈ ΓG. ;
2T0 = 0 ;
3for k= 0 . . .+∞ do
4 while Nα

t = k do
5 Xt evolves as a Brownian motion, relatively to the structure of ΓG initialized at X−Tk .

6 end
7 Tk+1 := inf{t :Nα

t = k+ 1};
8 At time t= Tk+1, draw Yk+1 = YNαt according to ν.
9 The process Xt jumps from X−t towards Yk+1:

Xt =X−t +βtα
−1
t

−−−−−−−→
XtYNαt , (3)

where
−−−−→
XtYNαt represents the shortest (geodesic) path from Xt to YNαt in ΓG.

10end
11Output: limt−→+∞Xt

Algorithm 3 could be studied following the road map of [5]. Nevertheless, this implies serious
regularity difficulties on the densities and the Markov semi-group involved. Hence, we have chosen
to consider Algorithm 3 as a natural Euler explicit discretization of our Markov evolution (2): for
a large value of k, the average time needed to travel from Tk to Tk+1 is approximately α−1

Tk
−→ 0 as

k−→+∞. On this short time interval, the drift term in (2) is the gradient of the squared geodesic

distance between XTk and YNα
Tk

, which is approximated by our vector
−−−→
XtYk, multiplied by βTk ,

leading to (3). Xt now evolves as a Brownian motion over ΓG between two jump times and this
evolution can be simulated with a Gaussian random variable using a (symmetric) random walk
when the algorithm hits a node of ΓG. Figure 2 proposes a schematic evolution of (Xt)t≥0 over a
simple graph ΓG with five nodes. We will prove the following result.

Theorem 1. A constant c?(Uν) exists such that if αt = 1 + t and βt = b log(1 + t) with b >
{c?(Uν)}−1, then (Xt)t≥0 defined in (2) converges a.s. to Mν defined in (1), when t goes to infinity.

A more rigorous form of this result and more details about the process defined in (2) are presented
in Section 3.2. The proof of Theorem 3 is deferred to Section 5.

3. Inhomogeneous Markov process over ΓG
This section presents the theoretical background needed to define the Markov evolution (2).
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V1

V2 V3

V4

V5

+
X−T1+XT1

YT1

Jump of size {β
T1
α−1
T1
}× d(X−

T1
, YT1

)

+X−T2

Brownian displacement YT2

+
XT2

Jump of size {β
T2
α−1
T2
}× d(X−

T2
, YT2

)

Figure 2 Schematic evolution of the Homogenized S.A. described in Algorithm 3 over the quantum graph. We
first observe a jump at time T1 towards YT1 = V1 and a Brownian motion on ΓG during T2 − T1. A
second node is then sampled according to ν: here, YT2 = V5 and a jump towards YT2 occurs at time T2.

3.1. Diffusion processes on quantum graphs
We adopt here the convention introduced in [24] and fix for any edge e ∈ E of length Le an
orientation (and parametrization se). This means that se(0) is one of the extremities of e and
se(Le) is the other one. By doing so, we have determined an orientation for ΓG.

Dynamical system inside one edge Following the parametrization of each edge, we can define the
second order elliptic operator Le as ∀(x, y, t)∈ e×V (G)×R+:

Lef(x, y, t) =−βt∇xUy(x) +
1

2
∆xf(x, y) +αt

∫
G

[f(x, y′)− f(x, y)]dν(y′), (4)

which is associated with (2) when x ∈ e: the x-component follows a standard diffusion drifted by
∇xUy(.) inside the edge e, although the y-component jumps over the nodes of the initial graph G
with a jump distribution ν and a rate αt.

Since the drift term ∇Uy(.) is measurable w.r.t. the Lebesgue measure over e and the second-
order part of the operator is uniformly elliptic, Le uniquely defines (in the weak sense) a diffusion
process up to the first time the process hits one of the extremities of e (see, e.g., [33]), which leads
to a Feller Markov semi-group.

Dynamical system near one node We adopt the notation of [26] and write e∼ v when a vertex
v ∈ V is an extremity of an edge e∈E. For any function f on ΓG, at any point v ∈ V , we can define
the directional derivative of f with respect to an edge e∼ v according to the parametrization of
e. If nv denotes the number of edges e such that e∼ v, we then obtain nv directional derivatives
designated as (def(v)):

def(v) =


lim

h−→0+

f(se(h))− f(se(0))

h
if se(0) = v

lim
h−→0−

f(se(Le +h))− f(se(Le))

h
if se(Le) = v.

It is shown in [26] that general dynamics over quantum graphs depend on a set of positive
coefficients:

A :=

{
(av, (ae,v)e∼v)∈R1+nv

+ s.t.av +
∑
e∼v

ae,v > 0 : v ∈ V

}
.
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There then exists a one-to-one correspondence between A and the set of all possible continuous
Markov Feller processes on ΓG. More precisely, if the global generator Lt is defined as

∀(x, y)∈ ΓG×V Ltf(x, y) =Le,t(f)(x, y) when x∈ e,

while f belongs to the domain:

D(L) :=

{
∀y ∈G f(., y)∈ C∞b (ΓG) : ∀v ∈ V

∑
e∼v

aedef(v, y) = 0

}
, (5)

then the martingale problem is well-posed (see [26, 22]). In our setting, the gluing conditions are
defined through the following set of coefficients A:

∀v ∈ V av = 0 and ∀e∼ v ae,v =
1

nv
.

The gluing conditions defined in (5) induce the following dynamics: when the x component of
(Xt, Yt)t≥0 hits an extremity v ∈ V of an edge e, it is instantaneously reflected in one of the nv edges
connected to v (with a uniform probability distribution over the connected edges) while spending
no time on v. Using the uniform ellipticity of Le and the measurability of the drift term, Theorem
2.1 of [26] can be adapted, providing the well-posedness of the Martingale problem associated with
(L,D(L)), and the next preliminary result can then be obtained.

Theorem 2. The operator L associated with the gluing conditions A generates a Feller Markov
process on ΓG×V ×R+, with continuous sample paths on the x component. This process is weakly
unique and follows the S.D.E. (2) on each e∈E.

For simplicity, ∆x will refer to the Laplacian operator with respect to the x-coordinate on the
quantum graph ΓG, using our gluing conditions (5) and the formalism introduced in [26].

3.2. Convergence of the homogenized S.A. over ΓG

As mentioned earlier, we use a homogenization technique that involves an auxiliary sequence of
random variables (Yn)n≥1, which are distributed according to ν. More specifically, the stochastic
process (Xt, Yt)y≥0 described above is depicted by its inhomogeneous Markov generator, which can
be split into three parts:

Ltf(x, y) =L1,tf(x, y) +L2,tf(x, y).

In the equality above, L1,t is the part of the generator that acts on Yt:

L1,tf(x, y) = αt

∫
[f(x, y′)− f(x, y)]ν(dy′), (6)

describing the arrival of a new observation Y ∼ ν with a rate αt at time t. Concerning the action
on the x component, the generator is:

L2,tf(x, y) =
1

2
4xf(x, y)−βt <OxUy,Oxf(x, y)> . (7)

Since the couple (Xt, Yt)t≥0 is Markov with a renewal of Y with ν, it can be immediately observed
that the y component is distributed at any time according to ν. We introduce the notation mt

to refer to the distribution of the couple (Xt, Yt) at time t, and we define nt as the marginal
distribution of Xt. In the following, we will also need to deal with the conditional distribution of
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Yt given the position Xt in ΓG. We will refer to this probability distribution as mt(y|x). To sum
up, we have:

L (Xt, Yt) =mt with nt(x)dx=

∫
V

mt(x, y)dy and mt(y |x) := P[Y = y |Xt = x]. (8)

A traditional method for establishing the convergence of S.A. towards the minimum of a function
Uν consists in studying the evolution of the law of (Xt)t≥0 and, in particular, its close relationship
with the Gibbs field µβt with energy Uν and inverse temperature βt:

µβt =
1

Zβt
exp(−βtUν(x)), (9)

where Zβt is the normalization factor, i.e., Zβt =

∫
e−βtUν(x)dx.

Using a slowly decreasing temperature scheme t 7−→ β−1
t , it is expected that the process (Xt)t≥0

evolves sufficiently fast (over the state space) in the ergodic sense so that its law remains close to µβt .
In addition, the Laplace method on the sequence (µβt)t≥0 ensures that the measure is concentrated
near the global minimum of Uν (see, for example, the large deviation principle associated with
(µβ)β→+∞ in [25]).

Hence, a natural consequence of the convergence “L (Xt)−→ µβt” and of the weak asymptotic
concentration of (µβt)t≥0 around Mν would be the almost sure convergence of the algorithm towards
the Fréchet mean:

lim
t−→+∞

P (Xt ∈Mν) = 1.

We refer to [32] for further details. In particular, a strong requirement for this convergence can be
considered through the relative entropy of nt (the law of Xt) with respect to µβt :

Jt :=KL(nt||µβt) =

∫
ΓG

log

[
nt(x)

µβt(x)

]
dnt(x) (10)

The function βt will be chosen as a C1 function of R+, and since µβ is a strictly positive measure over
ΓG, it implies that t 7−→ µβt(x)−1 is C1(R+×ΓG). Moreover, (t, x) 7−→ nt(x) follows the backward
Kolmogorov equation, which induces a C1(R+ × ΓG) function. Since the semi-group is uniformly
elliptic on the x-component, we have:

∀t > 0 ∀x∈ ΓG nt(x)> 0.

On the basis of these arguments, we can deduce:

Proposition 1. Assume that t 7−→ βt is C1, then (t, x) 7−→ nt(x) defines a positive C1(R+×ΓG)
function and t 7−→ Jt is differentiable for any t > 0.

If we define:
αt = λ(t+ 1) and βt = b log(t+ 1),

with b a constant smaller than c?(Uν)
−1, where c?(Uν) is the maximal depth of a well containing a

local but not global minimum of Uν , defined in (34), then our main result can be stated as follows:

Theorem 3. For any constant λ > 0 such that αt = λ(t + 1) and βt = b log(1 + t) with b >
{c?(Uν)−1}−1, then:

limJt = 0 as t−→+∞.
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This ensures that the process Xt will almost surely converge towards Mν and, therefore, towards
a global minimum of Uν .

The idea of the proof is to obtain a differential inequality for Jt, which implies its convergence
towards 0. It is well known that the Gibbs measure µβt is the unique invariant distribution of the
stochastic process that evolves only on the x component, whose Markov generator is given by:

L̂2,t(f)(x) =
1

2
∆xf −βt〈∇xf,∇xUν〉. (11)

Therefore, a natural step of the proof will be to control the difference between L2,t and L̂2,t and
to use this difference to study the evolution of mt and nt. It can be seen that L̂2,t may be written
as an average action of the operator thanks to the linearity of the gradient operator:

L̂2,t(f) =
1

2
∆xf −βtEy∼ν〈∇xf,∇xUy〉.

When Xt = x, we know that Yt is distributed according to the distribution mt(y|x). Consequently,
the average action of L2,t on the x component is:

L̃2,t(f) =
1

2
∆xf −βtEy∼mt(.|x)〈∇xf,∇xUy〉=

1

2
∆xf −βt

∫
V

〈∇xf,∇xUy〉mt(y|x)dy, (12)

whose expression may be close to that of L̂2,t if mt(.|x) is close to ν.
Thus, another important step is to choose appropriate values for αt and βt, i.e., to find the

balance between the increasing intensity of the Poisson process and the decreasing temperature
schedule, in order to quantify the distance between ν and mt(.|x). The main core of the proof
brings together these two aspects and is detailed in Section 5.

Another important step will be the use of functional inequalities (Poincaré and log-Sobolev
inequalities) over ΓG for the measure µβ when β = 0 and β −→+∞. The proof of these technical
results are given in Section 6.3.

Corollary 1. Assume that βt = b log(t+ 1) with b < c?(Uν)
−1 and αt = λ(t+ 1)γ with γ ≥ 1,

then for any neighborhood N of Mν:

lim
t−→+∞

P[Xt ∈N ] = 1.

Proof: The argument follows from Theorem 3. Consider any neighborhood N of Mν . The conti-
nuity of Uν shows that:

∃δ > 0 N c ⊂ {x∈ ΓG :U(x)>minU + δ}.

Hence,

P[Xt ∈N c] ≤ P[U(Xt)>minU + δ]

=

∫
ΓG

1U(x)>minU+δdnt(x)

=

∫
ΓG

1U(x)>minU+δdµβt(x) +

∫
ΓG

1U(x)>minU+δ[nt(x)−µβt(x)]dx

≤ µβt {U >minU + δ}+ 2dTV (nt, µβt)

≤ µβt {U >minU + δ}+
√

2Jt,

where we used the variational formulation of the total variation distance and the Csiszár-
Kullback inequality. As soon as limt−→+∞ Jt = 0, we can conclude the proof observing that
µβt {U >minU + δ} −→ 0 as βt −→+∞. �
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It can actually be proven (not shown here) that limt−→+∞P[Xt ∈ N ] = 1 if and only if the
constant b is chosen to be lower than c?(Uν)

−1. This means that this algorithm does not allow
faster cooling schedules than the classical S.A. algorithm. Nevertheless, this is a positive result
since this homogenized S.A. can be numerically computed quickly and easily on large graphs.
Finally, we should consider this result to be theoretical. However, in practice, the simulation of this
homogenized S.A. is performed during a finite horizon time and efficient implementations certainly
deserve a specific theoretical study following the works of [17] and [46].

4. Numerical simulation results
We now present different practical aspects of our strategy. After giving numerical details about
how to make it usable on large graphs, plus different insights into its calibration, we will present
results obtained on social network subgraphs of Facebook2 and a citation subgraph of zbMATH.

4.1. Algorithmic complexity
It is widely recognized that the algorithmic complexity of numerical strategies dealing with graphs
can be an issue. The number of vertices and edges of real-life graphs can indeed be quite large.
For instance, the zbMATH subgraph of Section 4.3.2 has 13000 nodes and approximately 48000
edges. In this context, it is worth justifying that the motion of (Xt)t≥0 on the graph ΓG across the
iterations of Algorithm 3 is reasonably demanding in terms of computational resources. We recall
that this motion is driven by a Brownian motion (lines 4 to 6 of Algorithm 3) and an attraction
towards the vertex YNαt (line 9 of Algorithm 3) at random times (Tk)k≥0. The number of vertices
and undirected edges with non-null weights in ΓG is also N and |E|, respectively. Note finally that
N − 1≤ |E| ≤N(N − 1)/2 if ΓG has a unique connected component.

Neighborhood structure A first computational issue that can arise when moving Xt is to find all
possible neighbors of a specific vertex v. This is indeed performed every time Xt moves from one
edge to another and directly depends on how ΓG is encoded in the memory. Encoding ΓG in a list
of edges with non-null weights is common practice. In that case, the computer checks the vertex
pairs linked by all edges to find those containing v, so the algorithmic cost is 2|E|. A second classic
strategy is to encode the graph in a connectivity matrix. In this case, the computer has to go
through all the N indexes of the columns representing v to find the non-null weights. We instead
sparsely encode the graph in a list of lists: the main list has a size N and each of its elements lists
the neighbors of a specific vertex v. If the graph only contains edges with strictly positive weights,
this strategy has a computational cost N , and in all of the other cases, the cost is <N . On average,
the computational cost is 2|E|/N so that this strategy is particularly advantageous for sparse
graphs, where |E|<<N(N − 1)/2, which are common for the targeted applications. For instance,
|E|= 4 ∗ 103 and N(N − 1)/2 = 1.24 ∗ 105 on the smallest Facebook subgraph of Section 4.3.1, and
|E|= 4.8 ∗ 104 and N(N − 1)/2 = 8.44 ∗ 107 on the zbMATH subgraph of Section 4.3.2.

Geodesic paths Another potential issue with our strategy is that it seeks at least one optimal
path between the vertices Xt and YNαt at each jump time (line 9 of Algorithm 3). This may be
efficiently done using a fast marching propagation algorithm (see, e.g., [18] for details), where:

(i) the distance to Xt is iteratively propagated on the whole graph ΓG until no more optimal
distance to reach Xt is updated, and

(ii) considering the shortest path between Xt and YNαt .
In this case, step (i) is particularly time-consuming and cannot be reasonably performed at each
step of Algorithm 3. Fortunately, the algorithmic cost to compute the distance between all pairs of
vertices is equivalent to that of computing step (i). We then compute these distances once and for

2 Subgraphs obtained on the Stanford Large Network Dataset Collection: https://snap.stanford.edu/data/

https://snap.stanford.edu/data/
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all at the beginning of the computations and store the result in a N ×N matrix in the RAM of

the computer 3. We can therefore very quickly use these results at each iteration of the algorithm

and, in particular, deduce the useful part of the geodesic paths involved to travel from Xt to YNαt .

The only limitation of this strategy is that the distance matrix can be memory-consuming. It can

therefore be used on small to large graphs but not on huge graphs (typically when N > 105) on

current desktops. An extension to deal with this scalability issue is a current subject of research,

and we will therefore not describe applications of Algorithm 3 on huge graphs in this work.

4.2. Parameter tuning

Several parameters influence the behavior of the simulated process Xt. Some of them are directly

introduced in the theoretical construction of the algorithm, i.e., the intensity of the Poisson process

or the temperature schedule. Other ones come from the practical implementation of the algorithm,

i.e., the maximal time up to which we generate Xt. The theoretical result given in Theorem 3 gives

an upper bound for the probability of Xt to be not too distant from the set of global minima. This

bound depends on βt and αt as well as on different characteristics of the graph such as its diameter

and number of nodes. We then propose an empirical strategy for parameter tuning, which we will

use later in Section 4.3.

For a graph G with N nodes and a diameter DG, we define:

T ∗max = 100 + 0.1N and β∗t = 2 log(t+ 1)/DG.

We then choose the intensity of the Poisson process so that it will generate a reasonably large

amount of Yn at the end of the algorithm, depending on the discrete probability distribution ν.

More specifically, let S∗ be the average number of jumping times between T ∗max− 1 and T ∗max. We

then set S∗ = 1000, which can be obtained by choosing:

α∗t = λ(2t+ 2) with λ=
S∗

2T ∗max + 1
.

4.3. Results

This section presents results obtained on graphs of different sizes and using different parameters.

We used the empirical method of Section 4.2 to define default parameters and altered them to

quantify the sensitivity of our algorithm to parameter variations.

Since the process Xt lives on a quantum graph, its location at time t is between two vertices, on

an edge of ΓG. However, our primary interest is to study the properties of the initial discrete graph

and therefore, the output of the algorithm will be the vertex considered as the graph barycenter.

To achieve this, we associate a frequency to each vertex. For a vertex v, this frequency is the

portion of time during which v was the closest vertex to the simulated process Xt. In our results,

we consider frequencies computed over the last 10% of the iterations of the algorithm.

4.3.1. Facebook subgraphs

3 In our experiments, we used the all-shortest-paths function of the Python library NetworkX.
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Experimental protocol We first tested our algorithm on three subgraphs of Facebook from the

Stanford Large Network Dataset Collection: (FB500) has 500 nodes and 4337 edges and contains

two obvious clusters; (FB2000) has 2000 nodes and 37645 edges and fully contains (FB500);

and (FB4000) has 4039 nodes and 88234 edges and fully contains (FB2000). For each of these

subgraphs, we considered the probability measure ν as the uniform distribution over the graph’s

vertices and used a length of 1 for all edges. We also explicitly computed the barycenter of these

graphs using an exhaustive search procedure. We are able to do that because we considered a

simplified case where the distribution over the nodes is uniform. For example, this exhaustive search

procedure required approximately 6 hours for the (FB4000) subgraph. Nevertheless, it allowed us

to compare our strategy with ground-truth results.

We used the strategy of Section 4.2 to define default parameters adapted to each subgraph. We

also tested different values for parameters β, S and Tmax in order to quantify their influence. We

repeated our algorithm 100 times for each parameter set to evaluate the algorithm stability.

In the tables representing quantitative results, Error represents the number of times, out of

100, that the algorithm converged to a node different from the ground-truth barycenter. It is a

rough indicator of the ability of the algorithm to locate the barycenter of the graph, that could be

replaced by a measure of the average distance between the last iterations of the algorithm and the

ground-truth barycenter (not shown in this work). For each subgraph and parameter set, column

Av. time contains the average times in seconds for the barycenter estimation, keeping in mind that

the Dijkstra algorithm was performed once for all before the 100 estimations. This preliminary

computation requires approximately 1, 30 and 80 seconds on a standard laptop.

Effect of β From a theoretical point of view, (βt)t≥0 should be chosen in relation to the constant

c?(Uν), which is unknown in practice. Therefore, the practical choice of (βt)t≥0 is a real issue to

obtain a good behavior of the algorithm. Table 1 gives the results obtained on our algorithm with

different values of βt.

FB500 FB2000 FB4000
β Error Med. Freq. Av. time Error Med. Freq. Av. time Error Med. Freq. Av. time
1
4
β∗ 15 % 0.6042 0.95 s 28 % 0.3519 10.12 s 27 % 0.3314 12.41 s

1
2
β∗ 2 % 0.4184 1.38 s 1 % 0.7268 4.25 s 5 % 0.6534 14.11 s
β∗ 0 % 0.8008 1.48 s 0 % 0.9418 12.36 s 1 % 0.8913 13.55 s
2β∗ 0 % 0.8321 11.31 s 0 % 0.9892 8.52 s 0 % 0.9647 16.79 s
4β∗ 0 % 0.8233 13.19 s 0 % 0.9930 15.58 s 0 % 0.9824 31.43 s
8β∗ 0 % 0.7717 2.36 s 0 % 0.9750 23.25 s 0 % 0.9445 44.46 s

Table 1 Experiments on the three Facebook subgraphs, while varying the values of (βt)t≥0.

We can observe that when (βt)t≥0 is too small, then the behavior of the algorithm is deteriorated,

revealing the tendancy of the process (Xt)0≤t≤T∗max
to have an excessively slow convergence rate

towards its local attractor in the graph. Roughly speaking, in such a situation, the process does

not learn fast enough. When the value of β is chosen in the range [β∗; 2β∗], we can observe a really

good behavior of the algorithm: it almost always locates the good barycenter in a quite reasonable

time of computation (less then 20 seconds for the largest graph). Finally, we can observe in the

column, Med. Freq., that in most of the last iterations of the algorithm (more than 80%), the

process evolves around its estimated barycenter, so that the decision to produce an estimator is

quite easy when looking at an execution of the algorithm.
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Effect of S and Tmax Table 2 gives the results obtained with our algorithm while using different
values of S and Tmax. As expected, we observe that increasing the ending time of simulation always
improves the convergence rate (column Error in Table 2) of the algorithm towards the right node.
The behavior of the algorithm is also improved by increasing the value of S, which quantifies the
number of arrivals of nodes observed along the averaging procedure. Of course, the counterpart of
increasing both S and Tmax is an increasing cost of simulation (see column Av. time).

FB500 FB2000 FB4000
S Tmax Error Med. Freq. Av. time Error Med. Freq. Av. time Error Med. Freq. Av. time
1
2
S∗ T ∗max 2 % 0.7667 0.59 s 0 % 0.9344 3.22 s 0 % 0.8614 6.70 s
S∗ 2T ∗max 0 % 0.8049 2.79 s 0 % 0.9610 9.30 s 0 % 0.8970 24.42 s
S∗ 4T ∗max 0 % 0.8101 5.60 s 0 % 0.9677 22.21 s 0 % 0.9222 54.73 s
2S∗ T ∗max 1 % 0.8345 2.26 s 0 % 0.9512 8.39 s 0 % 0.9062 20.95 s
2S∗ 2T ∗max 0 % 0.8361 4.57 s 0 % 0.9586 23.30 s 0 % 0.9121 23.30 s
2S∗ 4T ∗max 0 % 0.8423 11.16 s 0 % 0.9735 11.16 s 0 % 0.9366 96.84 s

Table 2 Experiments on the three Facebook subgraphs, while varying the values of S and Tmax.

As an illustration of the (small) complexity of the Facebook sub-graphs used for benchmarking
our algorithm, we provide a representation of the FB500 graph in Figure 3. This representation
has been obtained with the help of Cytoscape software and is not a result of our own algorithm.
In Figure 3, the red node is the estimated barycenter, which is also the ground-truth barycenter
located by a direct exhaustive computation. The blue nodes are the “second rank” nodes visited
by our method.
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Figure 3 Region of interest presenting the results obtained on the FB500 graph.

4.3.2. zbMATH subgraph The zbMATH subgraph built from zbMATH4 has been obtained
by an iterative exploration of the co-authorship relationship in an alphabetical order. We thus nat-
urally obtained a connected graph. This graph has been weighted by the complete number of cita-
tions obtained by each author, leading to the distribution probability ν ∝ ](number of citations).
Finally, all the edges in the graph are fixed to have a length of 1. This exploration was initialized on
the entry of the first author’s name (i.e., S. Gadat) and we stopped the process when we obtained
13000 nodes (authors) on the graph. This stopping criterion in the exploration of the zbMATH
database corresponds to a technical limitation of 40 GB memory required by the distance matrix

4 https://zbmath.org/authors/

https://zbmath.org/authors/
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obtained with the Dijsktra algorithm. In particular, this limitation and the starting point of the
exploration induce an important bias in the community of authors used to build the subgraph from
the zbMATH dataset: the researchers obtained in the subgraph are generally French and applied
mathematicians. The graph is more or less focused on the following research themes: probabil-
ity, statistics and P.D.E. Consequently, the results provided below should be understood as an
illustration of our algorithm and not as a bibliometric study!

Our experiments rely on the same choice of parameters (β∗t )t≥0, S
∗, T ∗max and α∗t as above,

indicated at the beginning of Section 4.2. Again, our algorithm produces the same outputs but of
course, in this situation, we do not know the ground-truth barycenter of the zbMath subgraph.
In Figure 4, we present a representation of the subgraph obtained with Cytoscape software, and a
zoom on a region of interest (ROI for short) in Figure 4.

Again, the main nodes visited by our algorithm are represented with a red square and the size
of the used square is larger when the node is frequently visited. According to the results obtained
on the Facebook subgraphs, we then assume that the larger red square is the barycenter of the
zbMath subgraph.
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Figure 4 Left: General overview of the zbMath subgraph extracted for our experiments, containing approximately
13000 nodes. Right: Region of interest presenting the main results obtained on the zbMATH subgraph.

It is also possible to assert the robustness of our method with respect to several Monte Carlo
runs of our algorithm. We have produced some boxplots for each of the main authors located in the
subgraph, according to the occupation measure of the process over the last 10% of the iterations
with 10 Monte-Carlo replications. These “violin” plots are represented in Figure 5. Each execution
of the algorithm requires approximately 3 hours of computations. The algorithm seems to produce
reliable conclusions concerning the top nodes visited all along the ending iterations. Nevertheless,
it appears to be necessary to extend our investigations in order to obtain a scalable method for
handling larger graphs.

5. Proof of the main result (Theorem 3)
We establish a differential inequality that will imply the convergence of Jt. The computations
actually lead us to a system of two differential inequalities. We therefore introduce another quantity
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Figure 5 “Violin” plot of the occupation measure of the algorithm on the zbMATH subgraph for 10 MC repli-
cations. The average frequency is located in the middle of the “violin” plot, although the minimal and
maximal values are shown in the extremity of the representation.

It that measures the average closeness (w.r.t. x) of the conditional law of y given x at time t to ν,
defined as:

It :=

∫
KL(mt(.|x)||ν)dnt(x) =

∫ [∫
log

mt(y|x)

ν(y)
mt(y|x)dy

]
.dnt(x) (13)

The next proposition links the evolution of Jt (in terms of an upper bound of ∂tJt) with the
spectral gap of µβt over ΓG, the diameter of the graph DG and the divergence It.

5.1. Study of ∂tJt

Proposition 2. Let c?(Uν) be the term defined in Equation (34) and CΓG be the constant given
in Proposition 5. We then have:

∂tJt ≤D2
Gβ
′
t + 8D2

Gβ
2
t It−

e−c
?(U)βt

CΓG(1 +βt)
Jt.

Proof: We compute the derivative of Jt and separately study each of the three terms:

∂tJt =

∫
∂t{log(nt(x))}dnt(x)︸ ︷︷ ︸

J1,t

−
∫
∂t{log(µβt(x))}dnt(x)︸ ︷︷ ︸

J2,t

+

∫
log

[
nt(x)

µβt

]
∂tnt(x)dx︸ ︷︷ ︸

J3,t

(14)

Study of J1,t: This term is easy to deal with:

J1,t =

∫
ΓG

∂t{log(nt(x))}nt(x)
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=

∫
ΓG

∂t{nt(x)}
nt(x)

nt(x) =

∫
ΓG

∂t{nt(x)}dx= ∂t

{∫
ΓG

nt(x)dx

}
= ∂t{1}= 0. (15)

Study of J2,t: Using the definition of µβt given in Equation (9), we obtain for the second term:

J2,t =−
∫

ΓG

∂t{log(µβt(x))}dnt(x) =−
∫

ΓG

∂t{−βtUν(x)− logZβt}dnt(x)

= β′t

∫
ΓG

Uν(x)dnt(x) +
∂t{Zβt}
Zβt

.

According to the definition of Zβt , we have:

∂t{Zβt}
Zβt

=Z−1
βt
∂t

{∫
ΓG

e−βtUν(x)dx

}
=−β′t

∫
ΓG

Uν(x)
e−βtUν(x)

Zβt
dx=−∂t{βt}

∫
ΓG

Uν(x)µβt(x)dx.

Hence, we obtain

J2,t = β′t

∫
ΓG

Uν(x)[nt(x)−µβt(x)]dx

The graph has a finite diameter DG. We therefore have:

∫
ΓG

Uν(x)dnt(x)≤D2
G. The same inequality

holds using the measure µβt so that:
|J2,t| ≤ D2

Gβ
′
t. (16)

Study of J3,t: The last term J3,t involves the backward Kolmogorov equation. First, since nt is

the marginal law of Xt, we have: nt(x) =

∫
mt(x, y)dy.

Using the backward Kolmogorov equation for the Markov process (Xt, Yt)t≥0 and the Fubini
theorem, we have, for any smooth enough function ft : x∈ ΓG 7−→R :

∫
ΓG

ft(x)∂t{nt(x)}dx=

∫
ΓG

ft(x)∂t

{∫
V

mt(x, y)dy

}
dx=

∫
ΓG

∫
V

ft(x)∂t{mt(x, y)}dxdy

=

∫
ΓG

∫
V

Lt(ft)(x)mt(x, y)dxdy=

∫
ΓG

∫
V

[L1,t +L2,t](ft)(x)mt(x, y)dxdy,

where L1,t and L2,t are defined in Equations (6) and (7). Since the function ft is independent of y,
we have L1,t(ft) = 0. For the part corresponding to L2,t, we have:

∫
ΓG

∫
V

L2,t(ft)(x)mt(x, y)dxdy

=

∫
ΓG

∫
V

[
1

2
∆xft(x)−βt∇xUy(x)∇xft(x)

]
mt(x, y)dxdy

=

∫
ΓG

1

2
∆xft(x)nt(x)dx−βt

∫
ΓG

∫
V

∇xUy(x)∇xft(x)nt(x)mt(y|x)dxdy.

because nt is the marginal distribution of Xt and mt(y|x)×nt(x) =mt(x, y).

Thus, for any smooth enough function ft(x), using the operator introduced in (12), we have:∫
ΓG

ft(x)∂tnt(x)dx=

∫
ΓG

L̃2,t(ft)(x)nt(x)dx.
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Replacing ft(x) by log
nt(x)

µβt(x)
, we obtain:

J3,t =

∫
ΓG

log
nt(x)

µβt
∂tnt(x) =

∫
ΓG

L̃2,t

[
log

nt(x)

µβt(x)

]
nt(dx).

Since µβt is the invariant distribution of L̂2,t (see Equation (11)), it is natural to insert L̂2,t:

J3,t =

∫
ΓG

L̃2,t

[
log

nt(x)

µβt(x)

]
nt(dx)

=

∫
ΓG

L̂2,t

[
log

nt(x)

µβt(x)

]
nt(dx)−

∫
ΓG

(
L̂2,t−L̃2,t

)[
log

nt(x)

µβt(x)

]
nt(dx)︸ ︷︷ ︸

:=κt

. (17)

Since L̂2,t is a diffusion operator and µβt is its invariant measure, it is well known (see, e.g., [7])
that the action of L̂2,t on the entropy is closely linked to the Dirichlet form in the following way:

∫
ΓG

L̂2,t

[
log

nt(x)

µβt(x)

]
nt(dx) =−2

∫
ΓG

(
∇x

{√
nt(x)

µβt(x)

})2

µβt(dx), (18)

and therefore translates a mean reversion towards µβt in the first term of (17).

We now study the size of the difference between L̂2,t and L̃2,t and introduce the “approximation”
term of ∇xUν(x) at time t:

R̃t(x) =

∫
V

∇x(Uy)(x)mt(y|x)dy.

The relationship ∇x log(f) = 2∇x
√
f√

f
, the Cauchy-Schwarz inequality and 2ab≤ a2 + b2 yield:

|κt| = βt

∣∣∣∣∫
ΓG

(
R̃t(x)−∇xUν(x)

)
∇x
{

log
nt(x)

µβt(x)

}
nt(dx)

∣∣∣∣
= 2βt

∣∣∣∣∣
∫

ΓG

(
R̃t(x)−∇xUν(x)

)
∇x

{√
nt(x)

µβt(x)

}√
µβt(x)

nt(x)
nt(dx)

∣∣∣∣∣
≤ 2βt

√∫
ΓG

(
R̃t(x)−∇xUν(x)

)2

nt(dx) ·

√√√√∫
ΓG

∇x

(√
nt(x)

µβt(x)

)2

µβt(x)dx

≤ β2
t

∫ (
R̃t(x)−∇xUν(x)

)2

nt(x)dx+

∫
ΓG

(
∇x

{√
nt(x)

µβt(x)

})2

µβt(dx)

If dTV denotes the total variation distance, the first term of the right hand side leads to:∣∣∣R̃t(x)−∇xUν(x)
∣∣∣= ∣∣∣∣∫

V

∇xd2(x, y)[mt(y|x)− ν(y)]dy

∣∣∣∣
≤ ‖∇xd2(x, y)‖∞

∣∣∣∣∫
V

[mt(y|x)− ν(y)]dy

∣∣∣∣
≤ 2‖∇xd2(x, y)‖∞dTV (mt(.|x), ν)

≤
√

2‖∇xd2(x, y)‖∞

√∫
V

log
mt(y|x)

ν(y)
mt(y|x)dy
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where the last line comes from the Csiszár-Kullback inequality. Since d2(·, y) is differentiable a.e.
and its derivative is bounded for all y ∈ V by 2DG, we can use It defined in Equation (13) to obtain:∫

ΓG

(
R̃t− R̂t

)2

(x)nt(x)dx≤ 8D2
GIt

Consequently, we obtain:

|κt| ≤ 8D2
Gβ

2
t It +

∫
ΓG

(
∇x

{√
nt(x)

µβt(x)

})2

µβt(dx) (19)

Taking the inequalities (18) and (19), we now obtain in (17):

J3,t ≤ 8D2
Gβ

2
t It−

∫
ΓG

(
∇x

{√
nt(x)

µβt(x)

})2

µβt(dx)

We denote ft =
√

nt
µβt

. Since ‖f‖22,µβt = 1, one can easily see that Entµβt (f
2
t ) = Jt. Now, the Loga-

rithmic Sobolev inequality on the (quantum) graph ΓG for the measure µβt stated in Proposition
5 shows that: ∫

ΓG

(
∇x

{√
nt(x)

µβt(x)

})2

µβt(dx)≥ e−c
?(Uν)βt

CΓG(1 +βt)
Jt,

where c?(Uν) is defined in Equation (34) and is related to the maximal depth of a well containing
a local but not global minimum. We thus obtain:

J3,t =

∫
L̃2,t

[
log

nt(x)

µβt(x)

]
nt(dx)≤ 8D2

Gβ
2
t It−

e−c
?(Uν)βt

CΓG(1 +βt)
Jt.

The proof is concluded by regrouping the three terms. �

5.2. Study of ∂tIt
Proposition 3. Assume that DG ≥ 1 and βt is an increasing inverse temperature with βt ≥ 1,

then:
∂tIt ≤−αtIt− ∂tJt +D2

G[β′t + 6β2
t ]. (20)

Proof: We compute the derivative of It. Observing that mt(x, y) = nt(x)mt(y|x), we have:

∂tIt = ∂t

{∫
ΓG

nt(x)

(∫
V

log
mt(y|x)

ν(y)
mt(y|x)dy

)
dx

}
= ∂t

{∫
ΓG

∫
V

log
mt(y|x)

ν(y)
mt(x, y)dxdy

}
=

∫
ΓG

∫
V

∂t{logmt(y|x)}mt(x, y)dxdy︸ ︷︷ ︸
:=I1,t

−
∫

ΓG

∫
V

∂t{log ν(y)}mt(x, y)dxdy︸ ︷︷ ︸
:=I2,t

+

∫
log

mt(y|x)

ν(y)
∂tmt(x, y)dxdy︸ ︷︷ ︸

:=I3,t

The computation of the first two terms is straightforward. For the first one we have:

I1,t =

∫
ΓG

∫
V

∂t{logmt(y|x)}mt(x, y) =

∫
ΓG

∫
V

∂tmt(y|x)

mt(y|x)
mt(x, y)dxdy

=

∫
ΓG

∫
V

∂tmt(y|x)nt(x)dxdy=

∫
ΓG

nt(x)

(∫
V

∂tmt(y|x)dy

)
dx
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=

∫
ΓG

nt(x)∂t


∫
V

mt(y|x)dy︸ ︷︷ ︸
:=1

 dx= 0

The computation of I2,t is easy since ν does not depend on t, implying that I2,t = 0.

For the third term, we use the backward Kolmogorov equation and obtain:

I3,t =

∫
ΓG

∫
V

log
mt(y|x)

ν(y)
∂tmt(x, y) =

∫
ΓG

∫
V

Lt
(

log
mt(y|x)

ν(y)

)
mt(x, y)dx dy

=

∫
ΓG

∫
V

L1,t

(
log

mt(y|x)

ν(y)

)
mt(x, y)dx dy︸ ︷︷ ︸

:=I1
3,t

+

∫
ΓG

∫
V

L2,t

(
log

mt(y|x)

ν(y)

)
mt(x, y)dx dy︸ ︷︷ ︸

:=I2
3,t

The jump part L1,t exhibits a mean reversion on the entropy on the conditional law: applying the
Jensen inequality for the logarithmic function and the measure ν, we obtain:

I1
3,t = αt

∫
ΓG

∫
V

[∫
V

(
log

mt(y
′|x)

ν(y′)
− log

mt(y|x)

ν(y)

)
ν(y′)dy′

]
mt(x, y)dxdy

= αt

∫
ΓG

∫
V

[∫
V

(
log

mt(y
′|x)

ν(y′)

)
ν(y′)dy′

]
mt(x, y)dxdy−αtIt

≤ αt
∫

ΓG

∫
V

log

(∫
V

mt(y
′|x)

ν(y′)
ν(y′)dy′

)
mt(x, y)dxdy−αtIt

≤ αt
∫

ΓG

∫
V

log

(∫
V

mt(y
′|x)dy′

)
mt(x, y)dxdy−αtIt

≤ αt
∫

ΓG

∫
V

log 1 ·mt(x, y)dxdy−αtIt ≤−αtIt (21)

If we consider the action of L2,t on the entropy of the conditional law, using mt(x, y) =mt(y|x)nt(x)
yields:

I2
3,t =

∫
ΓG

∫
V

L2,t

(
log

mt(y|x)

ν(y)

)
mt(x, y)dx dy

=

∫
ΓG

∫
V

L2,t

(
log

mt(x, y)

ν(y) ·nt(x)

)
mt(x, y)dx dy

=

∫
ΓG

∫
V

L2,t log (mt(x, y))mt(x, y)dxdy−
∫

ΓG

∫
V

L2,t log (nt(x, y))mt(x, y)dxdy, (22)

because L2,t(ν)(y) = 0 (L2,t only involves the x component). We now study the first term of (22):

∫
ΓG

∫
V

L2,t (logmt(x, y))dmt(x, y) =
1

2

∫
ΓG

∫
V

∆x [logmt(x, y)] dmt(x, y)

−βt
∫

ΓG

∫
V

<∇xUy,∇x logmt(x, y)> dmt(x, y)

=
1

2

∫
ΓG

∫
V

∂2
x {logmt(x, y)}dmt(x, y)

−βt
∫
∂xUy∂x logmt(x, y)dmt(x, y)
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The first term of the right-hand side deserves special attention:∫
ΓG

∫
V

∂2
x {logmt(x, y)}dmt(x, y) =

∫
ΓG

∫
V

∂x

{
∂x{mt(x, y)}
mt(x, y)

}
dmt(x, y)

=

∫
ΓG

∫
V

∂2
x{mt(x, y)}
mt(x, y)

dmt(x, y)−
∫

ΓG

∫
V

[∂x{mt(x, y)}]2

mt(x, y)
dxdy

=

∫
ΓG

∫
V

∂2
x{mt(x, y)}dxdy− 4

∫
ΓG

∫
V

(
∂x
√
mt(x, y)

)2

dxdy

=
∑
e∈E

∫
V

[∂xmt(e(Le), y)]− ∂xmt(e(0), y)dy

− 4

∫
ΓG

∫
V

(
∂x
√
mt(x, y)

)2

dxdy,

where {e(s),0≤ s≤ Le} is the parametrization of the edge e ∈ E introduced in Section 3.1. The
gluing conditions (5) yield:∑

e∈E

∫
V

∂xmt(e(Le), y)− ∂xmt(e(0), y) =

∫
V

∑
v∈V

[∑
e∼v

−demt(v, y)

]
= 0.

As a consequence, we obtain:∫
ΓG

∫
V

L2,t (logmt(x, y))dmt(x, y) =−2

∫
ΓG

∫
V

(
∂x
√
mt(x, y)

)2

dxdy

−βt
∫

ΓG

∫
V

∂xUy∂x logmt(x, y)dmt(x, y) (23)

The Cauchy-Schwarz inequality applied on the second term leads to:∣∣∣∣βt ∫
ΓG

∫
V

∂xUy∂x logmt(x, y)dmt(x, y)

∣∣∣∣≤ βt‖∂xd2(., .)‖2,mt

√∫
ΓG

∫
V

(∂x logmt(x, y))
2
dmt(x, y)

≤ βt||∂xd2(x, y)||∞

√∫
ΓG

∫
V

(∂x logmt(x, y))
2
mt(x, y)dxdy

≤ 4βtDG

√∫
ΓG

∫
V

(
∂x
√
mt(x, y)

)2

dxdy

≤ 2D2
Gβ

2
t + 2

∫
ΓG

∫
V

(
∂x
√
mt(x, y)

)2

dxdy

Inserting this in Equation (23) leads to:∫
ΓG

∫
V

L2,t logmt(x, y)dmt(x, y)≤ 2D2
Gβ

2
t . (24)

We study the second term of (22) and use the proof of Proposition 2: the decomposition (14) with
Equations (15) and (16) yield:

∂tJt ≤ β′tD2
G +

∫
L2,t

(
log

nt(x)

µβt(x)

)
mt(dx,dy).

This implies:

−
∫

ΓG

∫
V

L2,t (lognt(x))mt(dx,dy)≤−∂tJt +β′tD2
G−

∫
L2,t (logµβt(x))mt(dx,dy). (25)
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Using the definition of µβt , we obtain:

−
∫

ΓG

∫
V

L2,t log
e−βtUν(x)

Zβt
=

∫
ΓG

∫
V

[L2,t (βtUν(x)) +L2,t (logZβt)]mt(dx,dy)

= βt

∫
ΓG

∫
V

L2,t (Uν(x))mt(dx,dy)

= βt

∫
ΓG

∫
V

1

2
∆xUν(x)−βt∇xUy(x)∇xUν(x)mt(dx,dy)

≤ βt
2

+ 4β2
tD2

G

This inequality used in (25) yields:

−
∫
L2,t (lognt(x))mt(x, y) =−∂tJt +β′tD2

G +
βt
2

+ 4β2
tD2

G (26)

We now use (24) and (26) in (22) and our assumptions βt ≥ 1 and DG ≥ 1 to obtain:

I2
3,t ≤−∂tJt +D2

G[β′t + 6β2
t ] (27)

Combining (21) and (27) leads to the desired inequality given by Equation (20). �

5.3. Convergence of the entropy
The use of Propositions 2 and 3 makes it possible to obtain a system of coupled differential inequal-
ities.

Proof of Theorem 3: If we denote a=D2
G, we can write:{

J ′t ≤− e−c
?(Uν )βt

CΓG
(1+βt)

Jt + aβ′t + 8aβ2
t It

I ′t ≤−αtIt−J ′t + a(β′t + 6β2
t )

We introduce an auxiliary function Kt = Jt+ktIt, where kt is a smooth positive decreasing function
for t large enough, so that lim

t→∞
kt = 0. We use the system above to deduce that:

K ′t = J ′t + k′tIt + ktI
′
t

≤ J ′t + ktI
′
t

≤ J ′t + kt(−αtIt−J ′t) + akt(β
′
t + 6β2

t )
≤ (1− kt)J ′t − ktαtIt + akt(β

′
t + 6β2

t ).

In the first inequality, we use the fact that k′t ≤ 0 and It is positive. The second inequality is given
by (20). The upper bound of Proposition 2 now leads to:

K ′t ≤−εt(1− kt)Jt− ktαtIt + 8a(1− kt)β2
t It + aβ′t + 6aktβ

2
t ,

where we denoted εt = e−c
?(Uν )βt

CΓG
(1+βt)

. We choose the function kt to obtain a mean reversion on Kt:

kt :=
8aβ2

t

αt + 8aβ2
t − εt/2

. (28)

Note that this function is decreasing for sufficiently large t as soon as βt = o(αt), which is the
case according to the choices described in Theorem 3. Moreover, a straightforward consequence is
limt−→+∞ kt = 0. This ensures that a positive T0 exists such that:

∀t≥ T0 0≤ kt ≤
1

2
.
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Consequently, we deduce that:

∀t≥ T0 K ′t ≤−εt(1− kt)Jt− kt
εt
2
It + aβ′t + 6aβ2

t kt

≤−εt
2
Jt− kt

εt
2
It + aβ′t + 6aβ2

t kt ≤−
εt
2
Kt + aβ′t + 6aβ2

t kt︸ ︷︷ ︸
:=ηt

The next bound is an easy consequence of the Gronwall Lemma:

∀t≥ T0 Kt ≤KT0
e
−

∫ t

T0

εs
2

ds
+

∫ T

T0

ηse
−

∫ t

s

εu
2

du
ds,

which in turn implies that Kt −→ 0 as t−→+∞ as soon as ηt = ot∼+∞(εt) with
∫∞

0
εudu= +∞.

We are now looking for a suitable choice for αt and βt. Let us assume that αt ∼ λtγ for any γ > 0.
This choice leads to:

kt ∼
8ab2 log(t+ 1)2

λtγ
,

so that:

ηt ∼
ab

t
+

48a2b4 log(t+ 1)4

λtγ
=O(t−(1∧γ) log(t)4).

At the same time, we can check that εt ∼ t−c
?(Uν )b

bCΓG
log t

. Now, our conditions on ηt and εt imply that:∫ ∞
0

εudu= +∞ ⇐⇒ b c?(Uν)≤ 1.

At the same time:

ηt = o(εt) ⇐⇒ 1∧ γ > bc?(Uν).

The optimal calibration of our parameters γ and b (minimal value of γ, maximal value of b) induces
the choice γ = 1 and b < c?(Uν)

−1. Up to the choices αt ∼ λt and βt ∼ b log(t), we deduce that
Kt −→ 0 when t goes to infinity. Since It, kt and Jt are positive, this also implies that Jt −→ 0
when t goes to infinity. �

6. Functional inequalities
This section is devoted to the proof of the Log-Sobolev inequality for the measure (µβ)β>0. We dealt
with the Dirichlet form using this inequality (see Equation (18)) in Proposition 2. In particular, we
need to obtain an accurate estimate when β −→+∞. For this purpose, we introduce the generic
notation for Dirichlet forms (see, i.e., [7] for a more in-depth description):

∀β ∈R∗+ ∀f ∈W 1,2(µβ) Eβ(f, f) = ‖Of‖2µβ =

∫
ΓG

|Of(x)|2dµβ(x).

If we denote < f >µβ= µβ(f) =

∫
ΓG

fdµβ, we are interested in showing the Poincaré inequality:

‖f−< f >µβ ‖
2
2,µβ

=

∫
ΓG

(f−< f >µβ )2dµβ ≤ λ(β)Eβ(f, f) (29)
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and the Log-Sobolev Inequality (referred to as LSI below):∫
ΓG

f2 log

(
f

‖f‖2,µβ

)2

dµβ ≤C(β)Eβ(f, f) (30)

The specific feature of this functional inequality deals with the quantum graph settings and
deserves careful adaptation of the pioneering work of [31]. This technical section is split into two
parts. The first one establishes a preliminary estimate when β = 0 (i.e., when dealing with the
uniform measure on ΓG). The second one then uses this estimate to derive the asymptotic behavior
of the LSI when β −→+∞.

6.1. Preliminary control for µ0 on ΓG
We consider µ0 the normalized Lebesgue measure and use the standard notation for any measure
µ on ΓG:

‖f‖W1,p(µ) := ‖f‖p,µ + ‖∇f‖p,µ
Let us establish the next elementary result:

Lemma 1. The ordinary Sobolev inequality holds on ΓG, i.e., for all measurable functions f we
have:

‖f−< f >0 ‖2p,µ0
≤ e2/eL2

[
DGL

2
+ 1

]
E0(f, f), (31)

where DG is the diameter of the graph and L its perimeter defined by:

L=
∑
e∈E

Le.

Proof: First, let us remind the reader that for a given interval I in dimension 1 equipped with the
Lebesgue measure λI , the Sobolev space W 1,p(λI) is continuously embedded in L∞(I) (compact
injection when I is bounded). In particular, it can be shown (see, e.g., [16]) that while integrating
w.r.t. the unnormalized Lebesgue measure:

∀p≥ 1 ‖f‖L∞(I) ≤ e1/e‖f‖W1,p(λI ).

We now consider f ∈W 1,p(µ0). Since G has a finite number of edges we can write: ΓG =
⋃n

i=1 ei,
where each ei can be seen as an interval of length `i. We have seen that for each edge ei:

‖f‖L∞(ei) ≤ e
1/e‖f‖W1,p(λei )

.

We can use a union bound since ΓG represents the union of edges, and deduce that:

‖f‖L∞(ΓG) = max
1≤i≤n

‖f‖L∞(ei) ≤ e
1/e max

1≤i≤n
‖f‖W1,p(λei )

≤ e1/e‖f‖W1,p(λΓG
),

where the inequality above holds w.r.t. the unnormalized Lebesgue measure. If L denotes the sum
of the lengths of all edges in ΓG, we obtain:

‖f‖L∞(ΓG) ≤ e1/eL‖f‖W1,p(µ0). (32)

Second, we establish a simple Poincaré inequality for µ0 on ΓG. For any function f ∈W 1,2(µ0),
we use the equality:

‖f−< f >0 ‖22,µ0
=

1

2

∫
ΓG

∫
ΓG

[f(x)−f(y)]2dµ0(x)dµ0(y) =
1

2

∫
ΓG

∫
ΓG

[∫
γx,y

f ′(s)ds

]2

dµ0(x)dµ0(y).
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where γx,y is the shortest path that connects x to y, parametrized with speed 1 and f ′(s) refers to
the derivative of f w.r.t. this parametrization at time s. It should be noted that such a path exists
because the graph ΓG is connected. The Cauchy-Schwarz inequality yields:

‖f−< f >0 ‖22,µ0
≤ 1

2

∫
ΓG

∫
ΓG

[∫
γx,y

|∇f(s)|2ds

]
|γx,y|dµ0(x)dµ0(y)≤ DGL

2
‖∇f‖22,µ0

. (33)

The Sobolev inequality is now an obvious consequence of the previous inequality: consider f ∈
W 1,p(µ0) and note that since µ0(ΓG) = 1, then (32) applied with p= 2 leads to:

∀q≥ 1 ‖f−< f >0 ‖2q,µ0
=

(∫
ΓG

|f−< f >0 |qdµ0

)2/q

≤ ‖f−< f >0 ‖2L∞(ΓG)µ0(ΓG)

≤ e2/eL2‖f−< f >0 ‖2W1,2(µ0).

We can use the Poincaré inequality established for µ0 on ΓG in Equation (33) and obtain:

∀q≥ 1 ‖f−< f >0 ‖2q,µ0
≤ e2/eL2

[
DGL

2
+ 1

]
‖∇f‖22,µ0

= e2/eL2

[
DGL

2
+ 1

]
E0(f, f),

which concludes the proof. �
Remark 1. The constants obtained in the proof of Lemma 1 above could certainly be improved.

Nevertheless, such an improvement would have little importance for the final estimates obtained
in Proposition 5.

6.2. Poincaré Inequality on µβ
In the following, we show a Poincaré Inequality for the measure µβ for large values of β. This
preliminary estimate will be useful for deriving LSI on µβ. This functional inequality is strongly
related to the classical minimal elevation of the energy function Uν for joining any state x to any
state y.

We first introduce some useful notations. For any couple of vertices (x, y) of ΓG, and for any
path γx,y that connects them, we define h(γx,y) as the highest value of Uν on γx,y:

h(γx,y) = max
s∈γx,y

Uν(s).

We define H(x, y) as the smallest value of h(γx,y) obtained for all possible paths from x to y:

H(x, y) = min
γ:x→y

h(γ)

Now, for any pair of vertices x and y, the notation γx,y will be reserved for the path that attains
the minimum in the definition of H(x, y). Such a path exists for any x, y because ΓG is connected
and possesses a finite number of paths that connect any two given vertices.

Finally, we introduce the quantity that will mainly determine the size of the spectral gap involved
in the Poincaré inequality and the constant in the LSI (see the seminal works of [25] for a LDP
probabilistic interpretation and [32] for a functional analysis point of view):

c?(Uν) := max
(x,y)∈Γ2

G

[H(x, y)−Uν(x)−Uν(y)] + min
x∈ΓG

Uν(x) (34)

In the following, every time we write minUν we refer to min
x∈ΓG

Uν(x).
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Theorem 4 (Poincaré inequality for µβ). For all measurable functions g defined on ΓG:

V arµβ (g)≤ |E|maxe∈E Lee
2DG

2
eβc

?(Uν)Eµβ (g, g).

Proof: Since the graph ΓG is connected, for any two points x and y, we can find a minimal path
γx,y that links them and that minimizes H. We denote x0 = x,x1, · · ·xl, xl+1 = y where the sequence
x1, · · · , xl refers to the nodes included in the path γx,y.

V arµβ (g) =
1

2

∫
ΓG

∫
ΓG

(g(y)− g(x))2dµβ(x)dµβ(y)

=
1

2

∫
ΓG

∫
ΓG

(
l∑
i=0

(g(xi+1)− g(xi)

)2

dµβ(x)dµβ(y)

=
1

2

∫
ΓG

∫
ΓG

(
l∑
i=0

∫ xi+1

xi

g′(s)ds

)2

dµβ(x)dµβ(y)

=
1

2

∫
ΓG

∫
ΓG

(∫
γx,y

g′(s)ds

)2

dµβ(x)dµβ(y)

≤ 1

2

∫
ΓG

∫
ΓG

∫
γx,y

|∇g(s)|2ds|γx,y|dµβ(x)dµβ(y),

The last line is implied by the Cauchy-Schwarz inequality.

We can organize the terms involved in the above upper bound in the following way: for any edge
of the graph e∈E, we denote Ve the set of points (x, y) such that γx,y ∩ e 6= ∅. We therefore have:

V arµβ (g)≤ 1

2

∑
e∈E

∫
e

|∇g(s)|2ds

∫
Ve

|γx,y|dµβ(x)dµβ(y)

≤ 1

2

∑
e∈E

∫
e

|∇g(s)|2µβ(s)

∫
Ve

|γx,y|
1

µβ(s)
dµβ(x)dµβ(y)ds

≤ 1

2

∑
e∈E

[∫
e

|∇g(s)|2µβ(s)ds

][
sup
s̃∈e

1

µβ(s̃)

∫
Ve

|γx,y|dµβ(x)dµβ(y)

]
≤ 1

2

∫
ΓG

|∇g(s)|2µβ(s)ds sup
s̃∈ΓG

1

µβ(s̃)

∫
Ves̃

|γx,y|dµβ(x)dµβ(y)

In this case, es̃ denotes the edge of the graph that contains the point s̃ and the set Ves̃ is still
the set of couples (x, y) defined above, associated with each edge es̃. We introduce the quantity A
defined as:

A= sup
s̃∈ΓG

1

µβ(s̃)

∫
Ves̃

|γx,y|dµβ(x)dµβ(y).

Using this notation, we have obtained that for all functions g, we have the Poincaré inequality:

V arµβ (g)≤ A
2
Eµβ (g, g). (35)

All that remains to be done is to obtain an upper bound of A.

A= sup
s̃∈ΓG

1

µβ(s)

∫
Ves̃

|γx,y|dµβ(x)dµβ(y)
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= sup
s̃∈ΓG

Zβe
βUν(s̃)

∫
Ves̃

e−β(Uν(x)+Uν(y))

Z2
β

|γx,y|dxdy

=
1

Zβ
sup
s̃∈ΓG

∫
Ves̃

eβ(Uν(s̃)−Uν(x)−Uν(y))|γx,y|dxdy

Since γx,y is the minimal path for H(x, y), we have H(x, y) = max
s∈γx,y

Uν(s). Therefore:

A≤ 1

Zβ
sup
s̃∈ΓG

∫
Ves̃

eβ((H(x,y)−Uν(x)−Uν(y))|γx,y|dxdy

≤ 1

Zβ
sup
s̃∈ΓG

∫
Ves̃

eβ(c?(Uν)−min(Uν))|γx,y|dxdy

≤ eβ(c?(Uν)−min(Uν))

Zβ
sup
s̃∈ΓG

∫
Ves̃

|γx,y|dxdy

≤ eβ(c?(Uν)−min(Uν))

Zβ
|E|max

e∈E
Le.

Using the definition of Zβ, we have:

A≤ eβc
?(Uν)|E|maxe∈E Le∫

ΓG

e−β(Uν(x)−min(Uν))dx

. (36)

If x? ∈Mν is a Fréchet mean that minimizes Uν , we designate B
(
x?,

1

β

)
, as the ball of center x?

and radius
1

β
, for the geodesic distance d on the graph ΓG. It is easy to check that:

|Uν(x)−Uν(x?)|=
∣∣EY∼ν [d2(x,Y )− d2(x?, Y )

]∣∣≤EY∼ν ∣∣d2(x,Y )− d2(x?, Y )
∣∣≤ 2DG× d(x,x?).

We can then deduce a lower bound on the denominator involved in (36):∫
ΓG

e−β(Uν(x)−min(Uν))dx≥
∫
B

x?, 1
β

 e
−β(Uν(x)−min(Uν))dx

≥
∫
B

x?, 1
β

 e
−2DGβd(x,x?)dx

≥ e−2DG

∫
B

x?, 1
β

 dx.

The Lebesgue measure of B
(
x?,

1

β

)
may be lower bounded by β−1 since there is, at the least, one

path in ΓG passing by the point x?. Inserting this inequality in (36) gives:

A≤ |E|max
e∈E

Lee
2DG βeβc

?(Uν).

Using this upper bound in (35) leads to the desired Poincaré inequality. �
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6.3. Sobolev Inequalities on µβ
6.3.1. Preliminary control on Dirichlet forms The next result will be useful to derive

a LSI for µβ from a Poincaré inequality on µβ (given in Theorem 4). It generalizes the Poincaré
inequality for p norms with p > 2 while using the Sobolev inequality given in Lemma 1.

First, we introduce the maximal elevation of Uν as:

M = sup
x∈ΓG

Uν(x)− inf
x∈ΓG

Uν(x). (37)

Note that in our case, M may be upper bounded by D2
G.

Proposition 4. For any p > 2 and all measurable functions f , we have:

∀β ≥ 0 ‖f−< f >β ‖2p,µβ ≤ 4L2

(
DGL

2
+ 1

)
e2/e+MβEβ(f, f). (38)

Proof: The Jensen inequality applied to the convex function x 7−→ xp yields:

‖f−< f >β ‖pp,µβ =

∫
ΓG

|f−< f > |pβdµβ

=

∫
ΓG

∣∣∣∣f(x)−
∫

ΓG

f(y)dµβ(y)

∣∣∣∣p dµβ(x)

=

∫
ΓG

∣∣∣∣∫
ΓG

f(x)− f(y)dµβ(y)

∣∣∣∣p dµβ(x)

≤
∫

ΓG

∫
ΓG

|f(x)− f(y)|p dµβ(y)dµβ(x)

≤
∫

ΓG

(|f(x)−< f >0 |+ |f(y)−< f >0 |)p dµβ(y)dµβ(x)

Again, the Jensen inequality |a+ b|p ≤ 2p−1[|a|p + |b|p] implies that:

‖f−< f >β ‖pp,β ≤ 2p−1

∫
ΓG

|f(x)−< f >0 |p + |f(y)−< f >0 |pdµβ(y)dµβ(x)

≤ 2p
∫

ΓG

|f(x)−< f >0 |pdµβ(x) = 2p‖f−< f >0 ‖pp,µβ

We conclude that:
‖f−< f >β ‖2p,µβ ≤ 4‖f−< f >0 ‖2p,µβ . (39)

Using the fact that:

µβ(x) =
e−βminUν

Zβ
≤ e−βminUν

Zβ
×Z0µ0(x),

we also have: ‖f−< f >0 ‖pp,µβ ≤
Le−βminUν

Zβ
‖f−< f >0 ‖pp,µ0

, since Z0 is the perimeter L of the

graph ΓG. Consequently, we obtain:

‖f−< f >0 ‖2p,µβ =
(
‖f−< f >0 ‖pp,µβ

)2/p

≤
(
Le−βminUν

Zβ

)2/p

‖f−< f >0 ‖2p,µ0

Using inequality (39), the fact that Zβ ≤Le−βminUν and the assumption 2/p < 1, we conclude that:

‖f−< f >β ‖2p,µβ ≤
4Le−βminUν

Zβ
‖f−< f >0 ‖2p,µ0

.
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The Sobolev inequality (1) implies that:

‖f−< f >β ‖2p,µβ ≤
4L3 (DGL/2 + 1)e2/e−βminUν

Zβ
E0(f, f). (40)

We now find an upper bound for the Dirichlet form E0(f, f) that involves Eβ(f, f):

E0(f, f) =

∫
ΓG

<Of,Of > dµ0

=Zβ

∫
ΓG

<Of,Of > eβUν(x) e
−βUν(x)

Zβ
dµ0

≤
Zβ exp

(
β sup
x∈ΓG

Uν(x)

)
Z0

∫
ΓG

<Of,Of > dµβ

≤
Zβ exp

(
β sup
x∈ΓG

Uν(x)

)
L

Eβ(f, f) (41)

Putting (40) and (41) together concludes the proof. �

6.3.2. Log-Sobolev Inequality on µβ For all probability measures µ and all measurable
functions f , we denote:

Entµ(f2) =

∫
ΓG

f2 log

(
f2

‖f‖22,µ

)
dµ

Proposition 5. The Log-Sobolev Inequality holds on ΓG. A constant CΓG exists such that for
all β ≥ 0 and all µβ-measurable functions f , we have:

Entµβ (f2)≤CΓG [1 +β]ec
?(Uν)βEβ(f, f)

Proof: We consider β ≥ 0 and a µβ measurable function f . We apply the Jensen inequality for the
logarithmic function and the measure f2/‖f‖22,µβdµβ to obtain:

∫
ΓG

(
f

‖f‖2,µβ

)2

log

(
f2

‖f‖22,µβ

)
dµβ =

2

p− 2

∫
ΓG

(
f

‖f‖2,µβ

)2

log

(
|f |p−2

‖f‖p−2
2,µβ

)
dµβ

≤ 2

p− 2
log

(∫
ΓG

|f |p−2

‖f‖p−2
2,,µβ

f2

‖f‖22,,µβ
dµβ

)

≤ 2

p− 2
log

(
‖f‖pp,µβ
‖f‖p2,µβ

)
=

p

p− 2
log

(
‖f‖2p,µβ
‖f‖22,µβ

)
.

Observing that for all x, δ > 0 we have log(xδ)≤ δx, we obtain log(x)≤ xδ+ log(δ−1). Therefore:

∀δ > 0

∫
ΓG

f2 log

(
f

‖f‖2,µβ

)2

dµβ = ‖f‖22,µβ

∫
ΓG

(
f

‖f‖2,µβ

)2

log

(
f2

‖f‖22,µβ

)
dµβ

≤
p‖f‖22,µβ
p− 2

log

(
‖f‖2p,µβ
‖f‖22,µβ

)

≤
p‖f‖22,µβ
p− 2

[
δ
‖f‖2p,µβ
‖f‖22,µβ

+ log
1

δ

]
.
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Replacing f with f−< f >β and choosing δ= e−Mβ leads to:∫
ΓG

(f−< f >β)2 log

(
f−< f >β

‖f−< f >β ‖2,β

)2

dµβ

≤ p

p− 2

[
e−βM‖f−< f >β ‖2p,µβ +Mβ‖f−< f >β ‖22,µβ

]
.

Proposition 4 and the Poincaré inequality established in Theorem 4 yields:

Entµβ
[
(f−< f >β)2

]
=

∫
ΓG

(f−< f >β)2 log

(
f−< f >β

‖f−< f >β ‖2,µβ

)2

dµβ

≤ p

p− 2

(
4L2DGL+ 2

2
e2/e +Mβ|E|max

e∈E
Le
e2DG

2
βec

?(Uν)β

)
Eβ(f, f) (42)

It remains to use Rothau’s Lemma (see Lemma 5.1.4 of [7]) that states that for any measure µ and
any constant a:

Entµ(g+ a)2 ≤Entµg
2 + 2

∫
ΓG

g2dµ.

Let p= 4 in Equation (42). Putting this together with Rothau’s Lemma and Theorem 4, we obtain
the following:

Entµβ (f2) =

∫
ΓG

f2 log

(
f2

‖f‖22,µβ

)
dµβ

≤Entµβ
[
(f−< f >β)2

]
+ 2V arµβ (f)

≤Eβ(f, f)
[
β|E|max

e∈E
Lee

2DG(1 +Mβ)ec
?(Uν)β + 4L2(2 +DGL)e2/e

]
≤CΓG [1 +β]ec

?(Uν)βEβ(f, f),

where CΓG is a large enough constant (independent of β) that could be made explicit in terms of
constants DG, |E| and L since we trivially have M ≤D2

G. �
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