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Abstract  
Natural capital is complex to value notably because of the high uncertainties surrounding the 
substitutability of its future ecosystem services. We examine a Lucas economy in which a 
consumption good is produced by combining different inputs, one of them being an ecosystem 
service that is partially substitutable with other inputs. The growth rate of these inputs and the 
elasticity of substitution evolve in a stochastic way. We characterize the socially efficient ecological 
discount rates that should be used to value future ecosystem services at different time horizons. We 
show that the inverse of the elasticity of substitution can be interpreted as the CCAPM beta of natural 
capital. We also show that any increase in risk of this beta reduces the ecological discount rate. If 
our collective beliefs about the elasticity of substitution of ecosystem services are Gaussian, the 
ecological discount rates go to minus infinity for finite maturities. In that case, a marginal increase 
in natural capital has an infinite value. We provide a realistic calibration of the model that is coherent 
with observed asset prices by using the model of extreme events of Barro (2006). The bliss maturity 
for infinite discount factors is less than 100 years in this calibration. 
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1. Introduction 

The substitutability of scarce environmental goods by manufactured goods is central to any cost-

benefit analysis of environmental policies and to the notion of sustainability. In the late 17th 

century, the French administration expanded oak forests in the perspective of being able to build 

ships two centuries later to fight the British naval forces, long before realizing that oak would be 

substituted by steel. More recently, wars have been made to control oil fields before realizing that 

oil could well be substituted by non-conventional gas reserves and by renewable sources of energy 

in the near future. Optimistic futurists believe that the need for material goods and disappearing 

natural capital will be reduced or even eliminated by new technologies. Finally, the debate about 

the preservation of natural resources and biodiversity is made complex because of the uncertainty 

about whether these resources could be substituted by other non-natural inputs in the future. 

Of course, our attitude towards the preservation of natural capital such as water, biodiversity, fossil 

fuels, climate or unspoiled natural sites is determined by the way we price it. But most natural 

assets generate ecological services that will persist for centuries, and deep uncertainties surround 

the valuation of these services by future generations. This implies that there is no consensus about 

how to value natural capital. For this reason, this notion remained up to now a metaphor rather than 

an instrument (Fenichel and Abbott (2014)). Guesnerie (2004), Hoel and Sterner (2007), Sterner 

and Persson, (2008), Gollier (2010) and Traeger (2011) have stressed the role of the evolution of 

relative prices in discounting, and thus of the degree of substitutability between different inputs. In 

a growing economy, the relative scarcity of the non-substitutable non-expendable natural capital 

will increase over time, thereby raising their relative value for future generations. This relative 

price effect can be stronger than the discounting effect, so that the same ecosystem service 

delivered latter can have a larger present monetary value. This is particularly plausible for non-

substitutable resources. In this paper, we re-examine this question in a context where the degree of 

substitutability of natural resources is uncertain. 

Suppose that the single consumption good can be produced by combining the constant service of 

some natural capital with another input, for example some physical capital. Because we take 

consumption as the numeraire, it can also be interpreted as income. Suppose that the instantaneous 

monetary value of the ecosystem service has a constant income-elasticity  . In our model, this 
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property is derived from a CES production function with an elasticity of substitution 1 /   between 

the two inputs, as shown by Ebert (2003). In other words, the elasticity of substitution of natural 

capital is also the inverse of the consumption-elasticity of the value of the ecosystem services that 

this natural capital generates. If the elasticity of substitution is small, the consumption-elasticity is 

large. In a growing economy, this implies a large relative price effect that dampens the effect of 

discounting. To illustrate, suppose that the physical capital will grow in the future so that 

consumption is expected to be multiplied by a factor 10 within the next century. If the income-

elasticity of the value of ecosystem services is equal to unity, the instantaneous value of ecosystem 

services will also be multiplied by a factor 10 within the next century. Suppose alternatively that 

we are unsure about the degree of substitutability, so that the income-elasticity of the value of 

ecosystem services is either 0 (infinite substitutability) or 2 (weak substitutability) with equal 

probabilities. In that context, the value of ecosystem services in 100 years will be either stable, or 

it will be increased by a factor 100. In expectation, the value of ecological services will be increased 

by a factor 50. Discounted to the present, this shows that the uncertainty affecting the degree of 

substitution magnifies the value of the natural asset. In this example, the uncertainty surrounding 

the substitutability of a natural asset raises its social value by a factor 5. In short, the uncertainty 

surrounding the elasticity of substitution of ecosystem services magnifies the relative price effect 

in the valuation of natural capital. 

However, this simple observation should be reconsidered once one recognizes that the growth rate 

of the consumption is also uncertain. As is well-known in the Consumption-based Capital Asset 

Pricing Model (CCAPM), the income-elasticity of the flow of dividends of an asset is also its 

CCAPM beta, which determines its risk-adjusted discount rate, or expected rate of return, for this 

asset. An asset with a large income-elasticity concentrates most of its risky benefits in the good 

states, and provides smaller benefits in the bad states. This justifies penalizing this asset by using 

a large rate to discount future expected benefits. Under the CCAPM, this risk-adjusted discount 

rate is linearly increasing in the CCAPM beta, i.e., in  . This means that the uncertainty affecting 

this substitutability parameter has a discounting effect on top of the relative price effect described 

above.  The main result of this paper is that the relative price effect always dominates the 

discounting effect, so that any mean-preserving increase in the substitutability parameter   always 

reduces the ecological discount rate, i.e. the rate at which a sure increase in ecosystem service 
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should be discounted. In other words, the uncertainty surrounding the substitutability of natural 

capital always increases its value. This is in line with the precautionary principle, a general rule 

favouring the preservation of natural assets in the face of uncertainty.  

These new findings are related to some results in the finance literature. Pastor and Veronesi (2003, 

2009) show that the uncertainty affecting the growth rate of dividends of an asset increases its 

market value. In our model, the uncertainty affecting substitutability translates into an uncertain 

growth rate of natural dividends. But this risk is correlated with the systematic risk, whereas in 

Pastor and Veronesi (2003, 2009), an idiosyncratic risk is assumed, so that they are not concerned 

by the risk-adjusted discounting effect. This paper is also related to the literature on the impact on 

asset pricing of learning. Collin-Dufresne, Johannes and Lochstoer (2016) examine the case of 

learning about the trend of economic growth or about the frequency of macroeconomic 

catastrophes. Jagannathan and Wang (1996), Lettau and Ludvigson (2001) and Adrian and 

Franzoni (2008) acknowledge that most assets’ betas vary stochastically, and that this uncertainty 

affects asset pricing. This research is also linked to the recent developments aimed at valuing very 

distant cash flows (Martin (2012), Barro and Misra (2012)). Using our findings, the high price 

documented by Giglio, Maggiori, and Stroebel (2015) and Giglio, Maggiori, Rao, Stroebel and 

Weber (2018) for real estate claims maturing in 100 years and more in the United Kingdom and in 

Singapore could be due to the deep uncertainty affecting the correlation between aggregate 

consumption and the land rent in the distant future. Our model provides a new explanation for why 

assets generating benefits with an uncertain degree of substitutability with other goods and services 

are – or should be -- highly valued. 

This paper is structured as follows. In Section 2, we present a simple asset pricing model using a 

CES production function with two inputs. We specify this two-input CCAPM model by assuming 

a bivariate geometric Brownian motion for the growth of consumption and ecosystem services with 

constant relative risk aversion. We characterize the impact of uncertainty for the substitutability 

parameter in Section 4. In Section 5, we provide an analytical solution for the ecological discount 

rate when the distribution of the substitutability parameter is Gaussian. Because the CCAPM 

specification implies the well-known asset pricing puzzles, this model would generate pricing rules 

for natural capital that are inconsistent with the price of assets on financial markets. In order to 

resolve this serious limitation of the model, we follow an approach proposed by Barro (2006, 2009). 
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In Section 6, we extend the CCAPM model by introducing the possibility of infrequent extreme 

macroeconomic catastrophes, and we obtain an analytical solution for the ecological discount rates 

that are coherent with market pricing. This model is calibrated to illustrate our results. 

 

2. The model 

Consider an economy with a representative agent consuming at discrete dates 0,1,2,...t  . At any 

date t, the agent consumes tc  units of the single consumption good, which is the numeraire. We 

consider the standard utilitarian social welfare function W with 

 
0

( ),W e Eu c





   (1) 

 where   is the rate of pure preference for the present. The expectation operator in this equation is 

relative to the information set available at date 0. We assume that 1( ) / (1 )u c c     with a non-

negative relative risk aversion  , and that W  exists and is finite.  

We assume that the consumption good is produced by combining two inputs. The first input, 

available in quantity ty  at date t, is some aggregate economic capital (physical capital, labor, 

scientific knowledge,…). The second input, available in quantity tx  at date t, assembles various 

ecosystem services that are exogenously generated from natural capital. Following Guesnerie 

(2004), Hoel and Sterner (2007), Sterner and Persson, (2008), Gollier (2010), Traeger (2011) and 

Barro and Misra (2016), we assume a CES production function: 

 
1

1 1 1  ( , , ) (1 ) .t t t
t t t t tc c x y t x y            (2) 

Parameter [0,1]  measures the weight of the services of the natural capital under scrutiny in the 

aggregate good consumed by the representative agent. Parameter t  is the inverse of the 

elasticity of substitution between the economic capital and the natural capital at date t  in the 

production function. When   tends to unity, we get as a limit case the Cobb-Douglas specification with 

1c x y  . 
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Let tF  denote the willingness-to-pay (or value) of one unit of ecosystem services at date t, i.e., the 

marginal rate of substitution between the ecosystem service and consumption at that date. We have 

that 

 
/

.
/

t

t t
t

t t

W x c
F

W c x
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 (3) 

This equation shows that the income-elasticity of the willingness-to-pay for the ecosystem service 

is equal to  , the inverse of the elasticity of substitution. This has already been demonstrated by 

Ebert (3003). We contemplate an action today that will increase the ecosystem services tx  at some 

arbitrary date t by 1  . In order to implement a standard cost-benefit analysis of this action, we 

characterize P , which denotes the equivalent increase in present consumption that has the same 

welfare effect than the action itself. This value is given by the marginal rate of substitution between 

future ecological services and current consumption: 
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where  
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 (5) 

is the standard pricing kernel of the CCAPM. Random variable tm  is the price at date 0 of the 

Arrow-Debreu security that delivers one unit of state-contingent consumption at date t. In general, 

it is statistically related to the future value tF  of ecological services. 

There are two approaches to interpret the pricing equation (4). The more useful for our purpose is 

based on the method of ecological discounting proposed by Malinvaud (1953) and pioneered by 

Hoel and Sterner (2007). It consists in measuring the immediate increase in ecological services that 

has the same value as one more unit of ecological services at date t, and then to translate this 

ecological discount value in monetary terms using the exchange rate 0F : 
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 0 .t tP F e   (6) 

The present value P of future ecosystem services is equal to its current value 0F  multiplied by an 

ecological discount factor  exp( )tt , which is the marginal rate of substitution between future and 

current ecosystem services. The ecological discount rate t is defined as follows: 

 1

0

ln .t
t t

F
t E m

F
    

       
 (7) 

The ecological discount rate t  is useful to characterize how the valuation of natural capital is 

related to the uncertainties surrounding growth and the degree of substitutability of natural capital. 

A more traditional method is obtained by representing price P by discounting the expected future 

value of ecological services at a risk-adjusted monetary rate tr :  

  tr t
tP e E F  (8) 

where 

 
 
 

1 ln t t
t

t

E m F
r t

E F
   (9) 

is the (risk-adjusted) monetary discount rate. Equation (9) is the standard pricing equation of the 

consumption based pricing model (Rubinstein (1976), Lucas (1978)). Of course, the monetary 

discount rate tr  and the ecological discount rate t are interrelated. In fact, we have that  

 ,t t tr f    (10) 

where tf  is the growth rate of the expected value of ecological services: 

 1

0

ln .t
t

EF
f t

F
  (11) 

Equation (10) is central to the literature on ecological discounting, as it emphasizes the role of the 

evolution of relative prices characterized by tf . In particular, the ecological discount rate t will 

be negative if the relative price effect tf  is larger than the discounting effect tr . The intensity of 
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the price effect depends upon the elasticity of substitution. For example, in the case of perfect 

substitutability ( 0  ), the value 0F  of ecological services is a constant  , so that tf  vanishes. 

Moreover, if we also assume that consumption grows at a sure rate cg , the above equations 

immediately yield the well-known Ramsey rule cr g     . 

Without loss of generality, we hereafter assume that 0 0 1x c  .   

 

3. Valuing natural capital when the elasticity of substitution is known 

The expectation operator appearing in the previous section is related to three sources of 

uncertainties. The growth of consumption and the evolution of the ecosystem services are both 

uncertain. We assume that ( , )t tx c  follows a discrete version of a bivariate geometric Brownian 

motion. Let 1ln /xt t tg x x  and  1ln /ct t tg c c  denote the per-period growth rate of respectively 

the ecosystem services and the numeraire good. We assume that the pair 
0,1,...

( , )xt ct t
g g


follows a 

stationary random walk with ( , )x cg g  being normally distributed with mean ( , )x c  , variance 

2 2( , )x c   and covariance x ck  , where  1,1k    denotes the coefficient of correlation between 

the two growth rates.  In this section, we assume that the elasticity of substitution is known, but we 

will relax this assumption later in this paper. 

Let us define function ( , ) ln exp( )t z E tz  , which is the Cumulant-Generating Function (CGF) of 

random variable z. Most results presented in this paper are derived from the following Lemma, 

which provides some well-known properties of CGF functions (see Billingsley (1995)). 

Lemma 1 : If it exists, the CGF function ( , ) ln exp( )t z E tz  has the following properties:  

i. 
1

( , ) ( ) / !n
nn

t z z t n 


   where ( )n z is the nth cumulant of random variable z.  

ii. A well-known special case is when z is 2( , )N   , so that 2 2( , ) 0.5t z t t     .  

iii. 1 ( , )t t z is increasing in t, from Ez to the supremum of the support of z when t goes from 

zero to infinity. 
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If t  takes value   with certainty, equation (7) implies that 
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 (12) 

The third equality comes from the fact that 
0,1,...

( , )xt ct t
g g


follows a stationary random walk. Now, 

observe that ( )x cz g g      is normally distributed. Applying property ii of Lemma 1 allows 

us to rewrite the above equation as ( )t t    with 

 2( ) 0.5 ,fr a b       (13) 

with 

 2 20.5 ,f c cr        (14) 

   ,c x c c xa k         (15) 

 2 2( ) 2 0.c x c x x cb Var g g k          (16) 

Equation (13) generalizes the characterization of the ecological discount rate obtained by Traeger 

(2011) when there is no uncertainty ( 0c x   ). In that case, we obtain that 

  ( ) .c c x           (17) 

 Traeger refers to term c as the “overall growth effect”. In a growing economy, investing for the 

future increases intergenerational inequalities, and is therefore socially undesirable. The discount 

rate (net of the rate of pure preference for the present) can then be interpreted as the minimum rate 

of return necessary to compensate this adverse effect of investing. Traeger also refer to term 

 c x    as the “real substitutability effect”, but is a relative price effect. When consumption 

grows faster than ecoservices, the willingness-to-pay for them increases with time at a rate equals 
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to the product of the income-elasticity  by c x  . This reduces the ecological discount rate by 

that amount. 

When the growth of consumption and ecoservices are uncertain, the easiest way to interpret 

equations (13)-(16)  is to rely on equation (10), which states that the ecological discount rate is 

equal to the difference between the monetary discount rate and the growth rate of the expected 

value of ecological services. Using Lemma 1 and equations (9) and (11), we obtain the following 

characterization when t   is certain: 

 ( )t f c c xr r k      (18) 

 2( ) 0.5 .t c xf b       (19) 

Let us start with the case 0  , which means that the value of ecosystem services is a known 

constant, thereby eliminating the relative price effect ( 0tf  ). In that case, the ecological and 

monetary discount rates simplify to fr , so that fr  can be interpreted as the risk-free interest rate. 

Equation (14) tells us that it corresponds to the Ramsey rule adapted to an uncertain growth rate of 

consumption. The last term in this equation reduces the interest rate to induce more precautionary 

investments in natural capital. In fact, equation (14) is the well-known extended Ramsey rule 

(Cochrane (2001)). 

When natural and physical capitals are imperfectly substitutable, the uncertain growth of 

consumption and natural capital implies that the value of future ecological services is uncertain. 

This uncertainty has two effects on discount rates. First, notice that this value is correlated with 

aggregate consumption. The CCAPM tells us that in that case, a risk premium must be added to 

the interest rate fr  to determine the risk-adjusted monetary discount rate tr . This risk premium is 

given by the last term in equation (18). From the CCAPM, we know that it is positive if 

     ln ln( ) ln lnt t tF c x      and  ln tc  are positively correlated. This is the case when 

 c xk    is positive. On the contrary, when  c xk    is negative, the value of natural 

capital and consumption are negatively correlated, and the monetary discount rate tr  is smaller than 

the risk-free rate fr . This is because investing in natural capital hedges the macroeconomic risk in 
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this economy. When consumption and ecological growth rates are independent ( 0k  ),  can be 

interpreted as the CCAPM beta of natural capital, i.e., the elasticity of the value of natural capital 

to changes in aggregate consumption. When these growth rates are positively correlated, this 

elasticity is reduced.  

But when the two types of capital are imperfectly substitutable ( 0  ), the growth rate of the 

expected value of ecological services is not zero. This yields a second effect of growth uncertainty 

on the ecological discount rate. This relative price effect introduces a wedge between the two 

discount rates, as stated by equation (10): The difference between the ecological discount rate and 

the monetary discount rate is equal to the growth rate tf  of tEF , which is a quadratic function of 

  (equation (19)). This quadratic term will be a key element in our analysis of the effect of the 

uncertainty affecting t . 

Observe that parameter b is positive, so that the ecological discount rate is a hump-shaped quadratic 

function of  , with a maximum at  /a b   . The ecological discount rate and thus the value of 

natural capital are non-monotone in the elasticity of substitution of the ecosystem services. To 

understand this result, remember that the substitutability parameter   can be interpreted as the 

CCAPM beta of natural capital. This implies that the monetary discount rate is linearly increasing 

in  , as shown by equation (18). Remember also from equation (10) that the ecological discount 

rate is the difference between the monetary discount rate and the growth rate tf  of the monetary 

value tF  of ecological service. From equation (19), this relative price effect is a quadratic convex 

function of  . Thus, the ecological discount rate is a quadratic concave function of  . As already 

explained in Dietz, Gollier and Kessler (2018), a project with a large  is not necessarily a bad 

news for its social valuation. It is true that a large   implies that the project’s social benefit is 

positively correlated with aggregate consumption. It increases the macroeconomic risk, and should 

be penalized for this by adding a risk premium in the monetary discount rate. But a large   also 

means a smaller elasticity of substitution. In a growing economy, the monetary value tF of the 

ecological services will thus grows faster. It is therefore possible that a larger   increases the 
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monetary value faster than it reduces the discount factor, with a positive net effect for the present 

value of the service. This happens when   is larger than –a/b. 

 

4. Uncertain substitutability, ecological discounting and value 

We hereafter consider that t  is a random variable whose distribution characterizes our current 

beliefs about the degree of substitutability of the services provided by the natural capital at date t. 

Using the law of iterated expectations, we have that  

 ( ) ,t tt te E e        (20) 

where function (.)  is characterized by equation (13). When t  is uncertain, the ecological 

discount factor equals the expectation of the ecological discount factor conditional on t . This is 

summarized in the following proposition. 

Proposition 1: Let t  denote the inverse of the degree of substitutability of the ecosystem services. 

The ecological discount rate t associated with time horizon t is given by the following equation: 

  1 2, 0.5 ,t f t tr t t a b       (21) 

where fr , a and b are three scalars defined respectively in equations (14), (15) and (16). 

In the remainder of this section, we use equation (21) to derive some properties of the impact of 

the uncertainty affecting the degree of substitutability on the ecological discount rate and on the 

value of natural capital. It is a direct consequence of the fact that the conditional discount rate 

( )  is non-monotone in   that first-order stochastic changes in the distribution of t  have an 

intrinsically ambiguous effect on the ecological discount rate, and therefore on the value of natural 

capital. However, we show in Proposition 2 that a mean-preserving spread in t  always raises the 

value of natural capital. This is the main result of this paper. 
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Proposition 2: The ecological discount rate t is reduced by any mean preserving spread of t . 

In this sense, the uncertainty affecting the degree of substitutability of ecosystem services always 

raises the economic value of the natural capital that generates them.  

Proof: We can rewrite equation (21) as follows: 

 1 ln ( ),t f tr t Eh    (22) 

where   2( ) exp 0.5h t a b    . Observe that because b is non-negative, function h 

compounds two convex functions, so is convex. By Jensen’s inequality, ( )tEh  is increased by any 

mean-preserving spread of t . This concludes the proof.   

There are two reasons why an increase in risk about t  reduces the ecological discount rate. The 

first reason can be identified in the special case of short maturities. Indeed, we know from property 

iii of Lemma 1 that the limit of 1 2( , 0.5 )t t a b    when t vanishes is equal to the expectation of  

20.5a b  . This implies that 

  22
0 0 0 0 0lim 0.5 0.5 .t t f fr aE bE r aE b E    
            (23) 

If 0 
is uncertain, the ecological discount rate for short maturities is reduced by  00.5bVar 


. 

The second technical reason of the negative impact of the uncertain   on the ecological discount 

rate is due to the fact that 1 2( , 0.5 )t t a b    is increasing in t when   is uncertain. This is 

reminiscent of an argument made by Weitzman (1998, 2001) who claimed that the uncertainty 

affecting future discount rates should induce us to use a certainty equivalent discount rate smaller 

than its expected value. 

In Proposition 3, we show that the term structure of ecological discount rates is decreasing when 

the uncertainty affecting t  is increasing with maturity, in the sense of Rothschild and Stiglitz 

(1970).  
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Proposition 3: Suppose that, for all 't t , 't is a mean-preserving spread of t . Under this 

condition, the term structure of ecological discount rates t is decreasing.   

Proof: Consider any pair ( , ')t t  such that 't  is larger than t. Because 1 ( , )t t z is increasing in t by 

property iii of Lemma 1, equation (21) implies that 

 
 
 

1 2
' ' '

1 2 1
' ' '

' ', 0.5

, 0.5 ln ( ),

t f t t

f t t f t

r t t a b

r t t a b r t Eh

   

   



 

  

    
 (24) 

where   2( ) exp 0.5h t a b     is convex in  . By Jensen’s inequality, it implies that 

'( ) ( )t tEh Eh  . Combining these two results implies that   

 1 1
' 'ln ( ) ln ( ) .t f t f t tr t Eh r t Eh          (25) 

This concludes the proof.   

The decreasing nature of the term structure of the ecological discount rate says something important 

about the intrinsic value of natural capital. In a world in which the degree of substitutability of the 

ecosystem services is uncertain, natural capital is particularly valuable if it can deliver ecological 

benefits in the distant future. An economic intuition of this central result of this paper can be 

derived from two observations. First, from equation (20), we know that the ecological discount rate 

equals the expectation of the ecological discount factors conditional on t . Second, the discount 

factor exp( ( ) )t  is a convex function of  , and the degree of convexity of this function is 

increasing in t. These two observations implies that the term structure of the ecological discount 

rates must be decreasing when the distribution of t  becomes more dispersed for longer maturities. 

Again, this result is in line with Weitzman (1998, 2001) who showed that the term structure of the 

discount rates must be decreasing when the rate at which sure benefits must be discounted in the 

future is uncertain.  
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Because of the presence of a term in 2  is ( )  , there is usually no analytical solution to 

2( , 0.5 )t a b   . However, if one knows the first few cumulants of random variable 

20.5t ta b  , one can approximate equation (21) by using property i of lemma 1: 

  
1

2

1
0.5 .

!

n

t f n t tn

t
r a b

n
   





    (26) 

For example, if the distribution of t  is independent of t in the neighborhood of 0t  , then the 

above equation implies that 

  2
0 0 0lim 0.5 0.5 .t

t Var a b
t

  
  


  


 (27) 

One can finally use property iii of Lemma 1 to determine the asymptotic value of the ecological 

discount rate. Suppose that the support of the distribution of t  is bounded when t tends to infinity, 

with  min maxlim supp ,t t    . We know that 1 ( , )t t x  converges to the supremum of the 

support of 20.5t ta b  . This implies that the ecological discount rates asymptotically tend to  

 
2 *

min min min

2 *
max max max

( ) 0.5 /
lim

( ) 0.5 / ,

f

t t

f

r a b if a b

ifr a b a b

    


    

      
    

 (28) 

where *
min max0.5( )    is the center of the support of  .  

 

5. The Gaussian case 

We now examine the special case in which the beliefs about t  can be represented by a normal 

distribution. The proof of the following result is relegated to the Appendix. 

Proposition 4 : Suppose that random variable t  is normally distributed with mean 
t

 and 

standard deviation 
t

 . Then, as long as 2 1
t

b t  ,   
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  
2 2 2

2
2

0.5 0.51
ln 1

2 1
t t t

t

t

t f

a b a t
r b t

t b t
  




  
 


 

   


 (29) 

When 2

t
b t  tends to 1, t tends to  . 

This proposition provides an analytical solution for the ecological discount rate at all maturities t 

such that 2

t
b t is smaller than unity.  It is unbounded below for all other maturities. This means 

that any natural capital that delivers a positive service in time horizons t such that 2 1
t

b t   has an 

infinite value. Technically, this is because the conditional ecological discount rate ( )t  is a 

quadratic function of t . This fattens the tails of the distribution of the future benefits of ecological 

services. This result is in the spirit of Weitzman (2007), who shows how introducing uncertainty 

on the variance of future consumption growth can generate an unbounded negative interest rate. 

An immediate application of Proposition 4 is when parameter   is constant over time, but 

unknown at date 0. The term structure of ecological discount rates is defined in this case by 

equation (29) with 
t    and 2 2

t   . The true value of   will be learned over time by 

observing the correlation between consumption and the value of ecological services. The analysis 

of the impact of learning on the future term structure of ecological discount rates would necessitate 

the quantification of the posterior distributions of  . However, because we focus our analysis on 

the current term structure of discount rates, this analysis can be skipped.  

In Corollary 1, we illustrate Proposition 4 in another special case in which t  evolves stochastically 

from the current 0 by following an arithmetic Brownian motion. This is a direct application of 

Proposition 4 with  0t
t      and 2 2

t
t   . 

Corollary 1: Suppose that t  follows an arithmetic Brownian motion with drift   and volatility

 . This implies that the term structure of ecological discount rates exists for all maturities 

2 1/2( )t T b 
  , with 
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      2 2 2 2
0 02 2

2 2

0.5 0.51
ln 1 .

2 1t f

a t b t a t
r b t

t b t
  




    
 



   
   


 (30) 

This term structure tends to   for maturities tending to T.  

When the inverse of the elasticity of substitution follows a Brownian motion, the term structure of 

ecological discount rates is decreasing and tends to   when the maturity tends to 2 1/2( )T b 
 . 

For example, if natural capital delivers a sure flow of services, we have that 0x   and 2
cb  , 

which implies in turn that 1/ cT   . The volatility of the growth rate of aggregate consumption 

over the last century in the western world has been between 2% and 4% per year. If we assume that 

the volatility of the growth rate of  is also between 2% and 4%, we find that the bliss maturity T 

is somewhere between 625 and 2500 years. If the natural capital delivers a positive service above 

this bliss maturity T, it has an unbounded economic value, at the margin. 

  

6. A credible calibration 

Up to know, we assumed for simplicity that the growth rates of consumption and ecological 

services are governed by a Brownian process. We know from three decades of research on asset 

pricing that when this assumption is combined with constant relative risk aversion, this leads to 

shocking puzzles, such as the equity premium puzzle and the risk-free rate puzzle. One possible 

solution to these puzzles has been proposed by Barro (2006, 2009). Barro introduced the possibility 

that consumption growth be subject of very infrequent disasters. This is modelled by assuming that 

the annual growth rate of consumption is i.i.d. with a probability distribution being a mixture of 

two normal distributions. Most often, the annual growth rate is extracted from a “business-as-

usual” urn calibrated from historical data. But in rare instances, the annual growth rate is extracted 

from a “catastrophe” urn, with a very negative mean and a large standard deviation. The possibility 

of catastrophes can explain why, over the last century or so, the observed real interest rates have 

been so small, and the equity premium have been so large.  
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In the spirit of Barro, we assume in this section that the pair of random variables ( , )xt ctg g  exibits 

no serial correlation and is sensitive to the state of nature denoted i, with i=1,…,n. The state of 

nature occurring at date t stipulates from which of the n urns the pair ( , )xt ctg g is extracted at date 

t. The probability 0ip   of occurrence of state i is time-independent, with 1i ip  . Following 

Martin (2012), we assume that ( , )xt ctg g  conditional on state i is normally distributed with mean 

( , )x i  , variance 2 2( , )x i   and covariance i x ik  , where  1,1ik    denotes the coefficient of 

correlation between the two growth rates conditional on state i. As stated in this notation, we 

assume for simplicity that the trend and volatility of the growth of ecological services are state-

independent.  

Following the same line of developments as in sections 3 and 4, it is easy to show that equation 

(21) has a simple generalization in this new framework. It yields the following pricing equation: 

 1 2

1

1
ln exp

2

tn

t i fi i t i t
i

t E p r a b  



                  
  (31) 

with 

 2 20.5 ,fi i ir        (32) 

  ,i i x i i i xa k         (33) 

and 

 2 2( ) 2 0.i i x i x i x ib Var g g k          (34) 

If t  is Gaussian, one can use the same trick (Lemma 2 in the Appendix) to derive an analytical 

solution for the expectation operators appearing in the right-hand side of equation (31). To keep 

the analysis simple, let us assume that there are only two possible states (n=2). In that case, this 

equation can be rewritten as follows: 

    
2

1 1 2
1 2 1 2 1 2

0

!

!( )
ln exp ( ( ) ( ) ,

!
)

2

t j jt
t

t t f f
j

p p
t E t j a ja t j b jb t j r jr

t

j t j

 






   
                 

  
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or, equivalently, using Lemma 2, assuming that 2
1 2max( , )

t
b b t  is smaller than unity, 

 
 

 
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p p R
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j t b jj b 









 
  
    
  (35) 

with  
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( ) ( ) ( )
2 2 ( ) .

1

t t

t

tj f f
z

t j a ja t j a ja t j b jb
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 




       
   


 (36) 

Equation (35) provides a simple analytical method to compute the term structure of discount rates.  

We calibrate this equation by using the parameter values that are described in Table 1. We assume 

that the ecological services are constant through time. In the business-as-usual state, the trend of 

consumption growth is 2% and the volatility of consumption is 4%, in line with the U.S. data during 

the last century. In the catastrophe state, in the spirit of Martin (2012), we assume an expected 

reduction of consumption of 30%, and a standard deviation of this reduction of 25%. The 

coefficient of relative risk aversion is 3 and the probability of the catastrophe state is 1.7% per year, 

as in Barro (2006). 

Parameter Value Interpretation 

  0 Rate of pure preference for the present
  3 Relative risk aversion 

1  2% Trend of consumption growth in the BAU state 

1  4% Volatility of consumption growth in the BAU state 

2p  1.7% Probability of catastrophe 

2  -30% Trend of consumption growth in the catastrophe state 

2  25% Volatility of consumption in the catastrophe state 

x  0% Trend of growth of ecological services 

x  0% Volatility of growth of ecological services 

1 2k k  0 Coefficient of correlation between consumption and ecological services 

Table 1: Calibration of the model with one Business-As-Usual (BAU) state and one catastrophe 

state. 
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In this economy, putting 0t  in equation (31) implies that the equilibrium interest rate is equal 

to  

  
2

1

ln exp 1.22%.f i fi
i

r p r


  
     

  
  (37) 

Similarly, we can examine how this model would predict the price of a claim on aggregate 

consumption. Because tx is constant, equation (3) tells us that selecting 1t    points to an asset 

generating this consumption claim. Using equations (10) and (31), we obtain that the equilibrium 

aggregate risk premium is equal to 

 
2 2

1 1
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1 1
ln exp ln exp

2 2

2.18%.
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p r a b p b r

 

 
 

  
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       



   (38) 

These equilibrium returns are in line with observed asset prices, which suggests that this calibration 

provides asset prices that are coherent with market prices.2  

Consider now a natural capital that is partially substitutable to physical capital. We first assume 

that  , the inverse of the elasticity of substitution, is constant but unknown. Our collective beliefs 

about   is represented by a normal distribution with a mean 1   and a standard deviation 

0.5  . Figure 1 describes the term structure of discount rates to be used today to value the 

ecological services generated by this natural capital at different maturities. These discount rates are 

remarkably constant around 1.62% for maturities below 41 years, but they plunges abruptly for 

longer maturities. For example, the ecological services delivered in 45 and 50 years should be 

discounted at rates  45 8.66%    and 50 182.64%   , respectively.  They tend to minus infinity 

when for maturities tending to 2
2( ) 64T      years. The large standard deviation 2 1 / 4  of 

                                                            
2 Suppose alternatively that there is no catastrophe (p2=0). In that case, the equilibrium interest rate would be equal to 
5.28%, whereas the equilibrium aggregate risk premium would be equal to 0.48%.  
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the growth rate of consumption in the catastrophe state is the key reason for why this bliss maturity 

T is so short.  

 

Figure 1: Term structure of ecological discount rates for the calibration described in Table 1, 

assuming 1   and 0.5  . 

In the remainder of this paper, we show how the ecological discount rate is affected by the 

substitutability parameters   and  . We first examine the role of the expected beta. We have 

shown and explained in Section 3 that when the substitutability parameter   is certain, the 

ecological discount rate   is a quadratic function of   with a minimum at /a b . It is the 

consequence of the fact that the monetary discount rate is linearly increasing in the CCAPM  , 

and that the expected growth rate of the willingness-to-pay is quadratic in  . As shown in Figure 

2, this property of a hump-shaped relationship between the ecological discount rate and the 

expected   is preserved when   is uncertain. 
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Figure 2: Ecological discount rates at maturities t=1 year and t=40 years as a function of the 

expected  , under the calibration described in Table 1 and assuming 0.5  . 

In Figure 3, we illustrate the central message of this paper that the uncertainty affecting the 

elasticity of substitution between natural and physical capital tends to reduce the ecological 

discount rate, and thus to raise the value of natural capital today. Under the calibration described 

in Table 1, we consider different types of natural capital, all with the same expected beta ( 1  ), 

but with different degree of uncertainty. For short maturities, increasing the standard deviation of 

random variable   from 0 to 1 reduces the ecological discount rate from 1.76% to 1.18%. For a 

40-year maturity, the effect of increasing uncertainty is more dramatic because an increase in   

reduces the bliss maturity 2
2( )T    . 
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Figure 3: Ecological discount rates at maturities t=1 year and t=40 years as a function of the 

standard deviation of  , under the calibration described in Table 1 and assuming 1  . 

 

7. Conclusion 

The uncertainty affecting the substitutability of ecosystem services in the future is an important 

source of complexity to estimate the economic value of natural capital. We have shown in this 

paper that taking account of this uncertainty may indeed have a crucial importance, in particular if 

this natural capital is expected to deliver services in the distant future. This uncertainty makes the 

investment in natural capital risky, because the monetary benefits generated by it become uncertain 

even when its ecological benefit is certain. The main result of this paper is that the economic value 

of natural capital is always increased by the uncertainty surrounding the elasticity of substitution.     

We have also shown that, because of this uncertainty, the rate at which ecosystem services must be 

discounted is always decreasing with the time horizon at which they materialize. In the Gaussian 

case, any marginal increment of ecosystem service has an infinite economic value if it is delivered 

in a time horizon that is larger than some “bliss maturity”. If infrequent catastrophic 

macroeconomic events are introduced into the model as suggested by Barro (2006), this bliss 

maturity could be measured in decades rather than in centuries. 
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Appendix : Proof of Proposition 4 

We first prove the following Lemma. 

Lemma 2: Suppose that random variable z is normally distributed with mean z and standard 

deviation z . Consider any pair 2( , )a b  such that 2
zb   . Then, we have that 
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Proof: We have that 
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After rearranging terms in the integrant, this is equivalent to 
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Notice that ̂ exists only if we assume that 21/ zb  . Notice also that the bracketed term in 

equation (41) is the integral of the density function of the normal distribution with mean ̂  and 

variance 2̂ . This must be equal to unity. This equation can thus be rewritten as 
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 (42) 

This concludes the proof of Lemma 2.   

Equation (29) in Proposition 4 is a direct consequence of applying Lemma 2 to equation (21). It 

remains to prove that t tends to   when 2

t
b t  tends to 1 from below. Observe in equation (29) 

that the second term in the right-hand side of the equality tends to  . We would be done if the 

numerator of the last term is positive when 2

t
b t  tends to 1. It is equal to 
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which is a quadratic function of a, with a minimum at * 2 2/
t t

a t    . This implies that this 

numerator is always larger than 

 
2 2 2

*
2 2 2

( ) ( ) 0.5 0.5 0.t t t

t t t

num a num a
t t t

  

  

  
  

      (44) 

Thus, the numerator of the last term of equation (29) is positive, and t tends to   when 2

t
b t  

tends to 1.   

 


