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Abstract

The main contribution of this paper is to propose a bootstrap test for jumps based on functions
of realized volatility and bipower variation. Bootstrap intraday returns are randomly generated
from a mean zero Gaussian distribution with a variance given by a local measure of integrated
volatility (which we call {v̂ni }). We first discuss a set of high level conditions on {v̂ni } such that
any bootstrap test of this form has the correct asymptotic size and is alternative-consistent. Our
results show that the choice of {v̂ni } is crucial for the power of the test. In particular, we should
choose {v̂ni } in a way that is robust to jumps. We then focus on a thresholding-based estimator
for {v̂ni } and provide a set of primitive conditions under which our bootstrap test is asymptotically
valid. We also discuss the ability of the bootstrap to provide second-order asymptotic refinements
under the null of no jumps. The cumulants expansions that we develop show that our proposed
bootstrap test is unable to mimic the first-order cumulant of the test statistic. The main reason is
that it does not replicate the bias of the bipower variation as a measure of integrated volatility. We
propose a modification of the original bootstrap test which contains an appropriate bias correction
term and for which second-order asymptotic refinements obtain.

1 Introduction

A well accepted fact in financial economics is the fact that asset prices do not always evolve continuously
over a given time interval, being instead subject to the possible occurrence of jumps (or discontinuous
movements in prices). The detection of such jumps is crucial for asset pricing and risk management
because the presence of jumps has important consequences for the performance of asset pricing models
and hedging strategies, often introducing parameters that are hard to estimate (see e.g. Bakshi et
al. (1997), Bates (1996), and Johannes (2004)). For this reason, many tests for jumps have been
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proposed in the literature over the years, most of the recent ones exploiting the rich information
contained in high frequency data. These include tests based on bipower variation measures (such as
in Barndorff-Nielsen and Shephard (2004, 2006), henceforth BN-S (2004, 2006), Huang and Tauchen
(2005), Andersen et al. (2007), Jiang and Oomen (2008), and more recently Mykland, Shephard and
Sheppard (2012)); tests based on power variation measures sampled at different frequencies (such as
in Aı̈t-Sahalia and Jacod (2009), Aı̈t-Sahalia, Jacod and Li (2012)), and tests based on the maximum
of a standardized version of intraday returns (such as in Lee and Mykland (2008, 2012)). In addition,
tests based on thresholding or truncation-based estimators of volatility have also been proposed with
the objective of disentangling big from small jumps, as in Aı̈t-Sahalia and Jacod (2009) and Cont and
Mancini (2011), based on Mancini (2001). See Aı̈t-Sahalia and Jacod (2012, 2014) for a review of the
literature on the econometrics of high frequency-based jump tests.

In this paper, we focus on the class of tests based on bipower variation originally proposed by
Barndorff-Nielsen and Shephard (2004, 2006). Our main contribution is to propose a bootstrap im-
plementation of these tests with better finite sample properties than the original tests based on the
asymptotic normal distribution. In particular, our aim is to improve finite sample size while retaining
good power. In order to do so, we generate the bootstrap observations under the null of no jumps,
by drawing them randomly from a mean zero Gaussian distribution with a variance given by a local
measure of integrated volatility (which we call {v̂ni }).

Our first contribution is to give a set of high level conditions on {v̂ni } such that any bootstrap
method of this form has the correct asymptotic size and is alternative-consistent. We then verify these
conditions for a specific example of {v̂ni } based on a threshold-based volatility estimator constructed
from blocks of intraday returns which are appropriately truncated to remove the effect of the jumps. In
particular, we provide primitive assumptions on the continuous price process such that the bootstrap
jump test based on the thresholding local volatility estimator is able to replicate the null distribution
of the BN-S test (2004, 2006) under both the null and the alternative of jumps. Our assumptions are
very general, allowing for leverage effects and general activity jumps both in prices and volatility. We
show that although truncation is not needed for the bootstrap jump test to control the asymptotic size
under the null of no jumps, it is important to ensure that the bootstrap jump test is consistent under
the alternative of jumps. Other choices of {v̂ni } could be considered provided they are robust to jumps.
For instance, we could rely on multipower variation volatility measures rather than truncation-based
methods to compute {v̂ni } and use our high level conditions to show the first order validity of this
bootstrap method. For brevity, we focus on the thresholding-based volatility estimator, which is one
of the most popular methods of obtaining jump robust test statistics.

The second contribution of this paper is to prove that an appropriate version of the bootstrap
jump test based on thresholding provides a second-order asymptotic refinement under the null of no
jumps. To do so, we impose more restrictive assumptions on the data generating process that assume
away the presence of drift and leverage effects. For this simplified model, we develop second-order
asymptotic expansions of the first three cumulants of the BN-S test statistic and of its bootstrap
version. Our results show that the first-order cumulant of the BN-S test depends on the bias of
bipower variation under the null of no jumps. Even though this bias does not impact the validity of
the test to first order because bipower variation is a consistent estimator of integrated volatility under
the null, it has an impact on the first order cumulant of the statistic at the second order (i.e. at the
order O

(
n−1/2

)
). Our bootstrap test statistic is unable to capture this higher order bias and therefore

does not provide a second-order refinement. We propose a modification of the bootstrap statistic that
is able to do so. Specifically, the modified bootstrap test statistic contains a correction term that is
based on an estimate of the contribution to the first order cumulant of the test statistic due to the
bias of bipower variation. Our simulations show that although both bootstrap versions of the test
outperform the asymptotic test, the modified bootstrap test statistic has lower size distortions than
the original bootstrap statistic. In the empirical application, where we apply the bootstrap jump tests
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to 5-minutes returns on the SPY index over the period June 15, 2004 through June 13, 2014, this
version of the bootstrap test detects about half of the number of jump days detected by the asymptotic
theory-based tests.

The rest of the paper is organized as follows. In Section 2, we provide the framework and state
our assumptions. In Section 3, we investigate the first-order asymptotic validity of the Gaussian wild
bootstrap based on a given {v̂ni }. Specifically, Section 3.1 contains a set of high level conditions on
{v̂ni } such that any bootstrap method is asymptotically valid when testing for jumps. Section 3.2
provides a set of primitive assumptions under which the bootstrap based on a thresholding estimator
{v̂ni } verifies these high level conditions and is therefore asymptotically valid to first order. Section
4 investigates the ability of the bootstrap to provide asymptotic refinements. In particular, Section
4.1 contains the second-order expansions of the cumulants of the original statistic whereas Section 4.2
contains their bootstrap versions. Section 5 gives the Monte Carlo simulations while Section 6 provides
an empirical application. Section 7 concludes. Appendix A contains a law of large numbers for smooth
functions of consecutive local truncated volatility estimates. This result is crucial for establishing the
properties of the bootstrap jump test based on the thresholding approach. It is of independent interest
as it extends some existing results in the literature, namely results by Jacod and Protter (2012), Jacod
and Rosenbaum (2013) and Li, Todorov and Tauchen (2016)), who focused on smooth functions of
a single local volatility estimate. In addition, an online supplementary appendix contains the proofs
of all the results in the main text. Specifically, Appendix S1 contains the proofs of the bootstrap
consistency results presented in Section 3 whereas Appendix S2 contains the proofs of the results in
Section 4 (on the asymptotic refinements of the bootstrap). Finally, Appendix S3 contains formulas
for the log version of our tests.

To end this section, a word on notation. As usual in the bootstrap literature, we let P ∗ describe the
probability of bootstrap random variables, conditional on the observed data. Similarly, we write E∗ and
V ar∗ to denote the expected value and the variance with respect to P ∗, respectively. For any bootstrap
statistic Z∗

n ≡ Z∗
n (·, ω) and any (measurable) set A, we write P ∗ (Z∗

n ∈ A) = P ∗ (Z∗
n (·, ω) ∈ A) =

Pr (Z∗
n (·, ω) ∈ A|Xn), where Xn denotes the observed sample. We say that Z∗

n →P ∗
0 in prob-P (or

Z∗
n = oP ∗ (1) in prob-P ) if for any ε, δ > 0, P (P ∗ (|Z∗

n| > ε) > δ) → 0 as n→ ∞. Similarly, we say that
Z∗
n = OP ∗ (1) in prob-P if for any δ > 0, there exists 0 < M <∞ such that P (P ∗ (|Z∗

n| ≥M) > δ) → 0
as n → ∞. For a sequence of random variables (or vectors) Z∗

n, we also need the definition of
convergence in distribution in prob-P . In particular, we write Z∗

n →d∗ Z, in prob-P (a.s.-P ), if
E∗ (f (Z∗

n)) → E (f (Z)) in prob-P for every bounded and continuous function f (a.s.−P ).

2 Assumptions and statistics of interest

We assume that the log-price process Xt is an Itô semimartingale defined on a probability space
(Ω,F , P ) equipped with a filtration (Ft)t≥0 such that

Xt = Yt + Jt, t ≥ 0, (1)

where Yt is a continuous Brownian semimartingale process and Jt is a jump process. Specifically, Yt
is defined by the equation

Yt = Y0 +

∫ t

0
asds+

∫ t

0
σsdWs, t ≥ 0, (2)

where a and σ are two real-valued random processes and W is a standard Brownian semimartingale
process. The jump process is defined as

Jt =

∫ t

0

∫
R

(
δ (s, x) I{|δ(s,x)|≤1}

)
(µ− ν) (ds, dx) +

∫ t

0

∫
R

(
δ (s, x) I{|δ(s,x)|>1}

)
µ (ds, dx) , (3)
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where µ is a Poisson random measure on R+×R with intensity measure ν (ds, dx) = ds⊗λ (dx), with
λ the Lebesgue measure on R, and δ a real function on Ω×R+×R. The first term in the definition of
Jt represents the “small” jumps of the process whereas the second term represents the “big” jumps.

We make the following assumptions on a, σ and Jt, where r ∈ [0, 2] .

Assumption H-r The process a is locally bounded, σ is càdlàg, and there exists a sequence of
stopping times (τn) and a deterministic nonnegative function γn on R such that

∫
γn (x)

r λ (dx) <
∞ and |δ (ω, s, x)| ∧ 1 ≤ γn (x) for all (ω, s, x) satisfying s ≤ τn (ω) .

Assumption H-r is rather standard in this literature, implying that the rth absolute power value
of the jumps size is summable over any finite time interval, i.e.

∑
s≤t |∆Xs|r <∞ for all t > 0. Since

H-r for some r implies that H-r′ holds for all r′ > r, the weakest form of this assumption occurs for
r = 2 (and essentially corresponds to the class of Itô semimartingales). As r decreases towards 0, fewer
jumps of bigger size are allowed. In the limit, when r = 0, we get the case of finite activity jumps.

The quadratic variation process of X is given by [X]t = IVt + JVt, where IVt ≡
∫ t
0 σ

2
sds is the

quadratic variation of Yt, also known as the integrated volatility, and JVt ≡
∑

s≤t (∆Js)
2 is the jump

quadratic variation, with ∆Js = Js − Js− denoting the jumps in X. Without loss of generality, we let
t = 1 and we omit the index t. For instance, we write IV = IV1 and JV = JV1.

We assume that prices are observed within the fixed time interval [0, 1] (which we think of as a
given day) and that the log-prices Xt are recorded at regular time points ti = i/n, for i = 0, . . . , n,
from which we compute n intraday returns at frequency 1/n,

ri ≡ Xi/n −X(i−1)/n, i = 1, . . . , n,

where we omit the index n in ri to simplify the notation.
Our focus is on testing for “no jumps” using the bootstrap. In particular, following Aı̈t-Sahalia and

Jacod (2009), we would like to decide on the basis of the observed intraday returns {ri : i = 1, . . . , n}
in which of the two following complementary sets the path we actually observed falls:

Ω0 = {ω : t 7−→ Xt (ω) is continuous on [0, 1]}
Ω1 = {ω : t 7−→ Xt (ω) is discontinuous on [0, 1]} ,

where Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅. Formally, our null hypothesis can be defined as H0 : ω ∈ Ω0

whereas the alternative hypothesis is H1 : ω ∈ Ω1.
Let RVn =

∑n
i=1 r

2
i denote the realized volatility and let

BVn =
1

k21

n∑
i=2

|ri−1| |ri|

be the bipower variation, where we let k1 ≡ E
(∣∣χ2

1

∣∣1/2) = E (|Z|) =
√
2/

√
π, where Z ∼ N (0, 1).

This is a special case of kq = E
(∣∣χ2

1

∣∣q/2) = E (|Z|q) = 2q/2
Γ( 1+q

2 )
Γ( 1

2)
, q > 0.

The class of statistics we consider is based on the comparison between RVn and BVn. It is now
well known that under certain regularity conditions including the assumption that X is continuous
(see BN-S (2006) and Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006)) the following joint
CLT holds:

√
n

(
RVn − IV
BVn − IV

)
st−→ N (0,Σ) , (4)

where
st−→ denotes stable convergence and

Σ =

(
2 2
2 θ

)
IQ, (5)
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with IQ ≡
∫ 1
0 σ

4
udu and θ =

(
k−4
1 − 1

)
+ 2

(
k−2
1 − 1

)
≃ 2.6090.

An implication of (4) is that under “no jumps”, i.e. in restriction to Ω0,

√
n (RVn −BVn)√

V

st−→ N (0, 1) ,

where V ≡ τ ·IQ is the asymptotic variance of
√
n (RVn −BVn) and τ = θ−2. Hence, a linear version

of the test is given by

Tn =

√
n (RVn −BVn)√

V̂n
, (6)

where

V̂n ≡ τ · ÎQn with ÎQn =
n(

k4/3
)3 n∑

i=3

|ri|4/3 |ri−1|4/3 |ri−2|4/3 .

Choosing the tripower realized quarticity ensures that ÎQn
P−→ IQ on both Ω0 and Ω1. Thus, Tn

st−→
N (0, 1), in restriction to Ω0, and the test that rejects the null of “no jumps” at significance level
α whenever Tn > z1−α, where z1−α is the 100 (1− α)% percentile of the N (0, 1) distribution has
asymptotically correct strong size, i.e. the critical region Cn = {Tn > z1−α} is such that for any
measurable set S ⊂ Ω0 such that P (S) > 0,

lim
n→∞

P (ω ∈ Cn|S) = α.

Under the alternative hypothesis, we can show that Tn is alternative-consistent, i.e. the probability
that we make the incorrect decision of “accepting the null” when this is false goes to zero:

lim
n→∞

P
(
Ω1 ∩ C̄n

)
= 0,

where C̄n is the complement of Cn. Since the above condition implies that P
(
C̄n|Ω1

)
→ 0, as n→ ∞,

we have that P (Cn|Ω1) → 1 as n→ ∞, which we can interpret as saying that the test has asymptotic
power equal to 1.

3 The bootstrap

When bootstrapping hypothesis tests, imposing the null hypothesis on the bootstrap data generating
process is not only natural, but may be important to minimize the probability of a type I error.
In particular, Davidson and MacKinnon (1999) (see also MacKinnon (2009)) show that in order to
minimize the error in rejection probability under the null (type I error) of a bootstrap test, we should
estimate the bootstrap DGP as efficiently as possible. This entails imposing the null hypothesis on
the bootstrap DGP.

In this paper, we follow this rule and impose the null hypothesis of no jumps when generating the
bootstrap intraday returns. Specifically, we let

r∗i =
√
v̂ni · ηi, i = 1, . . . , n, (7)

for some variance measure v̂ni based on {ri : i = 1, . . . , n}, and where ηi is generated independently of
the data as an i.i.d. N (0, 1) random variable. For simplicity, we again write r∗i instead of r∗i,n.

According to (7), bootstrap intraday returns are conditionally (on the original sample) Gaussian
with mean zero and volatility v̂ni , and therefore do not contain jumps. This bootstrap DGP is motivated
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by the simplified model Xt =
∫ t
0 σsdWs, where σ is independent of W and there is no drift nor jumps1.

Under these assumptions, conditionally on the path of volatility, ri ∼ N (0, vni ) , independently across

i, where vni =
∫ i/n
(i−1)/n σ

2
udu. Thus, we can think of v̂ni as the sample analogue of vni . The main goal of

Section 3.1 is to provide a set of general conditions on v̂ni under which the bootstrap is asymptotically
valid. In practice, we need to choose v̂ni and our recommendation is to use a thresholding estimator
that we define formally in Section 3.2.

The bootstrap analogues of RVn and BVn are

RV ∗
n =

n∑
i=1

r∗2i and BV ∗
n =

1

k21

n∑
i=2

∣∣r∗i−1

∣∣ |r∗i | .
The first class of bootstrap statistics we consider is described as

T ∗
n =

√
n (RV ∗

n −BV ∗
n − E∗ (RV ∗

n −BV ∗
n ))√

V̂ ∗
n

, (8)

where

E∗ (RV ∗
n −BV ∗

n ) =
n∑

i=1

v̂ni −
n∑

i=2

(
v̂ni−1

)1/2
(v̂ni )

1/2 ,

and

V̂ ∗
n = τ · ÎQ

∗
n with ÎQ

∗
n =

n(
k4/3

)3 n∑
i=3

|r∗i |
4/3
∣∣r∗i−1

∣∣4/3 ∣∣r∗i−2

∣∣4/3 .
Thus, T ∗

n is exactly as Tn except for the recentering of RV ∗
n −BV ∗

n around the bootstrap expectation
E∗ (RV ∗

n −BV ∗
n ). This ensures that the bootstrap distribution of T ∗

n is centered at zero, as is the case
for Tn under the null hypothesis of no jumps when n is large.

Nevertheless, and as we will study in Section 4, Tn has a higher order bias under the null which
is not well mimicked by T ∗

n , implying that this test does not yield asymptotic refinements. For this
reason, we consider a second class of bootstrap statistics based on

T̄ ∗
n =

√
n (RV ∗

n −BV ∗
n − E∗ (RV ∗

n −BV ∗
n ))√

V̂ ∗
n

+
1

2

√
n (v̂n1 + v̂nn)√

V̂ ∗
n

, (9)

where the second term accounts for the higher-order bias in Tn. This correction has an impact in finite
samples, as our simulation results show. In particular, T̄ ∗

n has lower size distortions than T ∗
n under

the null , especially for the smaller sample sizes.

Next, we provide general conditions on v̂ni under which T ∗
n

d∗−→ N (0, 1) , in prob-P independently
of whether ω ∈ Ω0 or ω ∈ Ω1. The consistency of the bootstrap then follows by verifying these high
level conditions for a particular choice of v̂ni . We verify them for a thresholding-based estimator, but
other choices of v̂ni could be considered. For instance, we could rely on local multipower realized
volatility estimators of vni , following the approach of Mykland, Shephard and Sheppard (2012)) (see
also Mykland and Zhang (2009)). Asymptotic refinements of the bootstrap based on T̄ ∗

n will be
discussed in Section 4.

1Although (7) is motivated by this very simple model, as we will prove below, this does not prevent the bootstrap
method to be valid more generally. In particular, its validity extends to the case where there is a leverage effect and the
drift is non-zero.
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3.1 Bootstrap validity under general conditions on v̂ni

We first provide a set of conditions under which a joint bootstrap CLT holds for (RV ∗
n , BV

∗
n )

′. In
particular, we would like to establish that

Σ∗−1/2

n

√
n

(
RV ∗

n − E∗ (RV ∗
n )

BV ∗
n − E∗ (BV ∗

n )

)
d∗−→ N (0, I2) ,

in prob-P , where

Σ∗
n ≡ V ar∗

(√
n

(
RV ∗

n

BV ∗
n

))
=

(
V ar∗ (

√
nRV ∗

n ) Cov∗ (
√
nRV ∗

n ,
√
nBV ∗

n )
V ar∗ (

√
nBV ∗

n )

)
,

is such that Σ∗
n

P−→ Σ. The following result gives the first and second order bootstrap moments of
(RV ∗

n , BV
∗
n )

′ . Note that since r∗i =
√
v̂ni · ηi, we can write

RV ∗
n =

n∑
i=1

v̂ni · ui and BV ∗
n =

1

k21

n∑
i=2

(
v̂ni−1

)1/2
(v̂ni )

1/2 · wi

where ui ≡ η2i and wi ≡ |ηi−1| |ηi|, with ηi ∼ i.i.d. N (0, 1). The bootstrap moments of (RV ∗
n , BV

∗
n )

′

depend on the moments and dependence properties of (ui, wi) . The proof is trivial and is omitted for
brevity.

Lemma 3.1 If r∗i =
√
v̂ni · ηi, i = 1, . . . , n, where ηi ∼ i.i.d. N (0, 1), then

(a1) E∗ (RV ∗
n ) =

n∑
i=1

v̂ni .

(a2) E∗ (BV ∗
n ) =

n∑
i=2

(
v̂ni−1

)1/2
(v̂ni )

1/2 .

(a3) V ar∗ (
√
nRV ∗

n ) = 2n
n∑

i=1
(v̂ni )

2 .

(a4) V ar∗ (
√
nBV ∗

n ) =
(
k−4
1 − 1

)
n

n∑
i=2

(v̂ni )
(
v̂ni−1

)
+ 2

(
k−2
1 − 1

)
n

n∑
i=3

(v̂ni )
1/2 (v̂ni−1

) (
v̂ni−2

)1/2
.

(a5) Cov∗ (
√
nRV ∗

n ,
√
nBV ∗

n ) = n
n∑

i=2
(v̂ni )

3/2 (v̂ni−1

)1/2
+ n

n∑
i=2

(v̂ni )
1/2 (v̂ni−1

)3/2
.

Lemma 3.1 shows that the bootstrap moments of RV ∗
n and BV ∗

n depend on multipower variation

measures of {v̂ni } . In particular, they depend on n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 , where K is a positive

integer and q ≡
∑K

k=1 qk, with qk ≥ 0.
The following assumption imposes a convergence condition on these measures as well as other

additional high level conditions on v̂ni that are sufficient for a bootstrap CLT to hold. Note that this
is a high level condition that does not depend on specifying whether we are on Ω0 or on Ω1.

Condition A Suppose that {v̂ni } satisfies the following conditions:

7



(i) For any K ∈ N and any sequence {qk ∈ R+ : k = 1, . . . ,K} of nonnegative numbers such that
0 ≤ q ≡

∑K
k=1 qk ≤ 8,

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 P−→
∫ 1

0
σqudu > 0,

as n→ ∞.

(ii) There exists α ∈ [0, 37) such that n
∑[n/(Ln+1)]

j=1

(
v̂nj(Ln+1)

)2
= oP (1), where Ln ∝ nα and [x]

denotes the largest integer smaller or equal to x.

Condition A(i) requires the multipower variations of v̂ni to converge to
∫ 1
0 σ

q
udu for any q ≤ 8. Under

this condition, the probability limit of Σ∗
n, the bootstrap covariance matrix of

√
n (RV ∗

n , BV
∗
n ) , is equal

to Σ (for this result, convergence of the multipower variations of v̂ni with q = 4 suffices). Together with
Condition A(i), Condition A(ii) is used to show that a CLT holds for

√
n (RV ∗

n − E∗ (RV ∗
n ) , BV

∗
n − E∗ (BV ∗

n ))
′

in the bootstrap world. In particular, since the vector (ui, wi)
′ is lag-one dependent, we adopt a

large-block-small-block argument, where the large blocks are made of Ln consecutive observations
and the small block is made of a single element. Part (ii) ensures that the contribution of the
small blocks is asymptotically negligible. The proof of Theorem 3.1 then follows by showing that

V̂ ∗
n = τ · ÎQ

∗
n

P ∗
−→ V = τ · IQ under Condition A(i) (this follows from the convergence of the multi-

power variations of v̂ni of eighth order, explaining why we require q ≤ 8).
Under this high level condition, we can prove the following result.

Theorem 3.1 Under Condition A, if n→ ∞, T ∗
n

d∗−→ N (0, 1), in prob-P.

Since Tn
st−→ N (0, 1) on Ω0, the fact that T ∗

n
d∗−→ N (0, 1), in prob-P, ensures that the test has

correct size asymptotically. Under the alternative (i.e. on Ω1) since Tn diverges at rate
√
n, but we

still have that T ∗
n

d∗−→ N (0, 1), the test has power asymptotically. More formally, let the bootstrap
critical region be defined as follows,

C∗
n =

{
ω : Tn (ω) > q∗n,1−α (ω)

}
,

where q∗n,1−α (ω) is such that

P ∗ (T ∗
n (·, ω) ≤ q∗n,1−α (ω)

)
= 1− α.

The bootstrap test rejects H0 : ω ∈ Ω0 against H1 : ω ∈ Ω1 whenever ω ∈ C∗
n. The following

theorem follows from Theorem 3.1 and the asymptotic properties of Tn under H0 and under H1.

Theorem 3.2 Suppose Tn
st−→ N (0, 1), in restriction to Ω0, and Tn

P−→ +∞ on Ω1. If Condition
A holds, then the bootstrap test based on T ∗

n controls the asymptotic strong size and is alternative-
consistent.

3.2 Bootstrap validity when v̂ni is based on thresholding

The results of the previous subsection ensure the consistency of the bootstrap distribution of T ∗
n for

any choice of v̂ni that verifies Condition A. In this section, we verify this condition for the following
choice of v̂ni :

v̂nj+(i−1)kn
=

1

kn

kn∑
m=1

r2(i−1)kn+m1
(∣∣r(i−1)kn+m

∣∣ ≤ un
)
,
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where i = 1, . . . , n
kn

and j = 1, . . . , kn. Here, kn is an arbitrary sequence of integers such that kn → ∞
and kn/n→ 0 and un is a sequence of threshold values defined as

un = αn−ϖ for some constant α > 0 and 0 < ϖ < 1/2.

We will maintain these assumptions on kn and un throughout. The estimator v̂ni is equal to n−1

times a “spot volatility” estimator that is popular in the high-frequency econometrics literature under
jumps (see e.g. Mancini (2001) and Aı̈t-Sahalia and Jacod (2009)). By excluding all returns containing
jumps over a given threshold when computing v̂ni , we guarantee that the bootstrap distribution of T ∗

n

converges to a N (0, 1) random variable, independently of whether there are jumps or not. This is
crucial for the bootstrap test to control asymptotic size and at the same time have power.

The following lemma is auxiliary in verifying Condition A.

Lemma 3.2 Assume that X satisfies (1), (2) and (3) such that Assumption H-2 holds. Let q =∑K
k=1 qk with qk ≥ 0 and K ∈ N. If either of the following conditions holds:

(a) q > 0 and X is continuous;

(b) q < 2 ;

(c) q ≥ 2, Assumption H-r holds for some r ∈ [0, 2), and q−1
2q−r ≤ ϖ < 1

2 ; then

n−1+q/2
n∑

i=K

K∏
k=1

(
v̂ni−k+1

)qk/2 P−→
∫ 1

0
σqudu > 0.

Lemma 3.2 follows from Theorem A.1 in Appendix A, a result that is of independent interest
and can be seen as an extension of Theorem 9.4.1 of Jacod and Protter (2012) (see also Jacod and
Rosenbaum (2013)). In particular, Theorem A.1 provides a law of large numbers for smooth functions
of consecutive truncated local realized volatility estimators defined on non-overlapping time intervals.
Instead, Theorem 9.4.1 of Jacod and Protter (2012) only allows for functions that depend on a sin-
gle local realized volatility estimate even though they are possibly based on overlapping intervals.
Recently, Li, Todorov and Tauchen (2016) focus on single local realized volatility estimate based on
non-overlapping intervals and extend the limit results of Theorem 9.4.1 of Jacod and Protter (2012)
to a more general class of volatility functionals that do not have polynomial growth. Here we restrict
our attention to functions that have at most polynomial growth, which is enough to accommodate the
blocked multipower variations measures of Lemma 3.2.

Given this result, we can state the following theorem.

Theorem 3.3 Assume that X satisfies (1), (2), (3) such that Assumption H-2 holds. If in addition,
either of the two following conditions holds:

(a) X is continuous; or

(b) Assumption H-r holds for some r ∈ [0, 2) and 7
16−r ≤ ϖ < 1

2 ;

then the conclusion of Theorem 3.1 holds for the thresholding-based bootstrap test T ∗
n .

Theorem 3.3 shows that the thresholding-based statistic T ∗
n is asymptotically distributed as a

standard normal random variable independently of whether the null of no jumps is true or not. This
guarantees that the bootstrap jump test has the correct asymptotic size and is consistent under the
alternative of jumps. Note that under the null, when X is continuous, the result holds for any level of
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truncation, including the case where un = ∞, which corresponds to no truncation. Nevertheless, to
ensure that T ∗

n is also asymptotically normal under the alternative hypothesis of jumps some truncation
is required. Part (b) of Theorem 3.3 shows that we should choose un = αn−ϖ with 7

16−r ≤ ϖ < 1
2 , a

condition that is more stringent than the usual condition on ϖ (which is 0 < ϖ < 1/2). The lower
bound on ϖ is an increasing function of r, a number that is related to the degree of activity of jumps
as specified by Assumption H-r. For finite activity jumps where r = 0, ϖ should be larger or equal
than 7/16 but strictly smaller than 1/2. As r increases towards 2 (allowing for an increasing number
of small jumps), the range of values of ϖ becomes narrower, implying that we need to choose a smaller
level of truncation in order to be able to separate the Brownian motion from the jumps contributions
to returns.

The following result is a corollary to Theorem 3.3.

Corollary 3.1 Assume that X satisfies (1), (2), (3) such that Assumption H-r holds for some r ∈
[0, 2) and let un = αn−ϖ with 7

16−r ≤ ϖ < 1
2 . Then, the conclusions of Theorem 3.2 are true for the

thresholding-based bootstrap test T ∗
n .

This result shows that the thresholding-based bootstrap jump test has the correct asymptotic size
and is consistent under the alternative of jumps provided we choose a truncation level un = αn−ϖ with

7
16−r ≤ ϖ < 1

2 , where r is [0, 2). In particular, if we choose ϖ in the vicinity of 1/2, as commonly done
in applications, the bootstrap test is consistent under the alternative of jumps for a wide spectrum of
jump activities including finite activity. For example, ifϖ = 0.45, the set of r such thatϖ ≥ 7/ (16− r)
is [0, 0.444] and when ϖ = 0.48, this set becomes [0, 1.417].

4 Second-order accuracy of the bootstrap

In this section, we investigate the ability of the bootstrap test based on the thresholding local realized
volatility estimator to provide asymptotic higher-order refinements under the null hypothesis of no
jumps. Our analysis is based on the following simplified model for Xt,

Xt =

∫ t

0
σsdWs, (10)

where σ is càdlàg locally bounded away from 0 and
∫ t
0 σ

2
sds < ∞ for all t ∈ [0, 1] . In addition, we

assume that σ is independent of W. Thus, we not only impose the null hypothesis of no jumps under
which Jt = 0, but we also assume that there is no drift nor leverage effects. Under these assumptions,
conditionally on the path of volatility, ri ∼ N (0, vni ) independently across i, a result that we will
use throughout this section. Allowing for the presence of drift and leverage effects would complicate
substantially our analysis. In particular, we would not be able to condition on the volatility path
σ when deriving our expansions if we relaxed the assumption of independence between σ and W .
Allowing for the presence of a drift would require a different bootstrap method, the main reason being
that the effect of the drift on the test statistic is of order O

(
n−1/2

)
and our bootstrap returns have

mean zero by construction (see Gonçalves and Meddahi, 2009). We leave these important extensions
for future research.

To study the second-order accuracy of the bootstrap, we rely on second-order Edgeworth expansions
of the distribution of our test statistics Tn and T ∗

n . As is well known, the coefficients of the polynomials
entering a second-order Edgeworth expansion are a function of the first three cumulants of the test
statistics (cf. Hall, 1992). In order to derive these higher-order cumulants, we make the following
additional assumption. We rely on it to obtain the limit of the first order cumulant of Tn (cf. κ1,1
below).

10



Assumption V The volatility process σ2u is pathwise continuous, bounded away from zero and

Holder-continuous in L2(P ) on [0, 1] of order δ > 1/2, i.e., E
((
σ2u − σ2s

)2)
= O(|u− s|2δ).

Thus, we not only impose that the volatility path is continuous, but we also rule out stochastic
volatility models driven by a Brownian motion. Examples of processes that satisfy Assumption V
include fractional Brownian motion with Hurst parameter H > 1/2.

4.1 Second-order expansions of the cumulants of Tn

Next we provide asymptotic expansions for the cumulants of Tn. For any positive integer i, let κi (Tn)
denote the ith cumulant of Tn. In particular, recall that κ1 (Tn) = E(Tn), κ2 (Tn) = V ar(Tn) and
κ3 (Tn) = E(Tn − E(Tn))

3. In addition, for any q > 0, we let σq =
∫ 1
0 σ

q
udu.

Theorem 4.1 Assume that X satisfies (10) and Assumption V holds, where σ is independent of W .
Then, conditionally on σ, we have that

κ1 (Tn) =
1√
n

 1

2
√
τ

σ20 + σ21√
σ4

− a1
2

σ6(
σ4
)3/2


︸ ︷︷ ︸

≡κ1=κ1,1+κ1,2

+O

(
1

n

)
;

κ2 (Tn) = 1 +O

(
1

n

)
; and

κ3 (Tn) =
1√
n

(
a2 +

3

2
(a1 − a3)

)
σ6(
σ4
)3/2

︸ ︷︷ ︸
≡κ3

+O

(
1

n

)
,

where τ = θ − 2 =
(
k−4
1 − 1

)
+ 2

(
k−2
1 − 1

)
− 2 and the constants a1, a2 and a3 also depend on

kq = E |Z|q, Z ∼ N (0, 1) , for certain values of q > 0; their specific values are given in Lemma S2.5
in the Appendix.

Theorem 4.1 shows that the first and third order cumulants of Tn are subject to a higher order bias
of order O

(
n−1/2

)
, given by the constants κ1 and κ3. Since the asymptotic normal approximation

assumes that the values of these cumulants are zero, this induces an error of order O
(
n−1/2

)
for the

asymptotic normal approximation when approximating the null distribution of Tn.
The bootstrap is asymptotically second-order accurate if the bootstrap first and third order cumu-

lants mimic κ1 and κ3. As it turns out, this is not true for the bootstrap test based on T ∗
n . The main

reason is that it fails to capture κ1,1, a bias term that is due to the fact that bipower variation is a
biased (but consistent) estimator of IV . To understand how this bias impacts the first order cumulant
of Tn, note that we can write

Tn =

√
n (RVn −BVn)√

V̂n
= (Sn +An)

(
1 +

1√
n
(Un +Bn)

)−1/2

, (11)
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where

Sn =

√
n (RVn −BVn − E (RVn −BVn))√

Vn
;

An =

√
nE (RVn −BVn)√

Vn
; Un =

√
n
(
V̂n − EV̂n

)
√
Vn

;

Bn =

√
n
(
EV̂n − Vn

)
√
Vn

, and Vn = V ar
(√
n (RVn −BVn)

)
.

By construction, conditionally on σ, E (Sn) = 0 and V ar (Sn) = 1; the variable Sn drives the usual
asymptotic normal approximation. The term An is deterministic (conditionally on σ) and reflects
the fact that E (RVn −BVn) ̸= 0 under the null of no jumps. In particular, we can easily see that
E (RVn −BVn) = IV − E (BVn) . Thus, An reflects the bias of BVn as an estimator of IV. We can
show that An = O

(
n−1/2

)
, implying that to order O

(
n−1

)
, the first-order cumulant of Tn is

κ1 (Tn) =
1√
n

(√
nAn − 1

2
E (SnUn)

)
︸ ︷︷ ︸

−→κ1,1+κ1,2≡κ1

+O

(
1

n

)
.

The limit of
√
nAn is κ1,1. This follows by writing

√
nAn =

nE (IV −BVn)√
Vn

=
n√
Vn

(
n∑

i=1

vni −
n∑

i=2

∣∣vni−1

∣∣1/2 |vni |1/2
)
,

where IV =
∑n

i=1 v
n
i , and noting that by Lemma S2.3 (in Appendix S2), under Assumption V,

n

(
n∑

i=1

vni −
n∑

i=2

∣∣vni−1

∣∣1/2 |vni |1/2
)

P−→ 1

2

(
σ20 + σ21

)
, (12)

and Vn
P−→ τσ4.

Next we show that the bootstrap test based on T ∗
n does not replicate κ1,1 and therefore is not

second-order correct. We then propose a correction of this test and show that it matches κ1 and κ3.

4.2 Second-order expansions of the bootstrap cumulants

Let κ∗1n and κ∗3n denote the leading terms of κ∗1 (T
∗
n) and κ

∗
3 (T

∗
n), the first and third order cumulants

of T ∗
n , respectively. In particular,

κ∗1 (T
∗
n) =

1√
n
κ∗1n + oP

(
1√
n

)
and κ∗3 (T

∗
n) =

1√
n
κ∗3n + oP

(
1√
n

)
,

where κ∗1n and κ∗3n depend on n since they are a function of the original sample. Their probability
limits are denoted by κ∗1 and κ∗3 and the following theorem derives their values.

Theorem 4.2 Assume that X satisfies (10) and Assumption V holds, where σ is independent of W .
Suppose that kn → ∞ such that kn/n→ 0,

√
n/kn is bounded and un is a sequence of threshold values

defined as un = αn−ϖ for some constant α > 0 and 0 < ϖ < 1/2. Then, conditionally on σ, we have

κ∗1 = κ1,2 ̸= κ1 and κ∗3 = κ3

where κ1,2, κ1 and κ3 are defined as in Theorem 4.2.
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Theorem 4.2 shows that the bootstrap test based on T ∗
n only captures the first order cumulant

κ1 partially and therefore fails to provide a second order asymptotic refinement. The main reason is
that by construction the bootstrap analogue of An (which we denote by A∗

n) is zero for T ∗
n . Because

the original test has An ̸= 0 , the bootstrap fails to capture this source of uncertainty. Note that the
conditions on un used by Theorem 4.2 specify that ϖ ∈ (0, 1/2) , but the result actually follows under
no restrictions on un since we assume that X is continuous (this explains also why we do not require
strengthening the restrictions on ϖ as we did when proving Theorem 3.3).

Our solution is to add a bias correction term to T ∗
n that relies on the explicit form of the limit of√

nAn. In particular, our adjusted bootstrap statistic is given by

T̄ ∗
n =

√
n (RV ∗

n −BV ∗
n − E∗ (RV ∗

n −BV ∗
n ))√

V̂ ∗
n

+
1

2

√
n (v̂n1 + v̂nn)√

V̂ ∗
n

= T ∗
n + R̄∗

n,

where R̄∗
n can be written as R̄∗

n =
√

V ∗
n

V̂ ∗
n
A∗

n with

A∗
n =

1

2

√
n (v̂n1 + v̂nn)√

V ∗
n

.

Since nv̂ni is equal to a spot volatility estimator, it follows that

√
nA∗

n =
1

2

n (v̂n1 + v̂nn)√
V ∗
n

P−→ 1

2

(
σ20 + σ21

)√
τσ4

≡ κ1,1

under our assumptions. Hence, T̄ ∗
n is able to replicate the first and third order cumulants through

order O
(
n−1/2

)
and therefore provides a second-order refinement. The following theorem provides the

formal derivation of the cumulants of T̄ ∗
n . We let κ∗1 and κ∗3 denote the probability limits of κ∗1n and

κ∗3n, the leading terms of the first-order and third-order bootstrap cumulants of T̄ ∗
n .

Theorem 4.3 Under the same assumptions as Theorem 4.2, conditionally on σ, we have

κ̄∗1 = κ1 and κ̄∗3 = κ3

where κ1 and κ3 are defined as in Theorem 4.2.

5 Monte Carlo simulations

In this section, we assess by Monte Carlo simulations the performance of our bootstrap tests. Along
with the asymptotic test of BN-S (2006), we report bootstrap results using v̂ni based on the thresholding
estimator (cf. Section 3.2). We follow Jacod and Rosenbaum (2013) and set kn = [

√
n], the integer

part of
√
n. As their results show (see also Jacod and Protter (2012)), this yields the optimal rate

of convergence for the spot volatility estimator nv̂ni . We also follow Podolskij and Ziggel (2010) and
choose ϖ = 0.4 and α = 2.3

√
BVn for the truncation parameters.

We present results for the SV2F model given by2

dXt = adt+ σu,tσsv,tdWt + dJt,

σu,t = C +A · exp (−a1t) +B · exp (−a2 (1− t)) ,

σsv,t = s-exp (β0 + β1τ1,t + β2τ2,t) ,

dτ1,t = α1τ1,tdt+ dB1,t,

dτ2,t = α2τ2,tdt+ (1 + ϕτ2,t) dB2,t,

corr (dWt, dB1,t) = ρ1, corr (dWt, dB2,t) = ρ2.

2The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√

x0−x2
0+x2

if x > x0, with x0 = log(1.5).
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The processes σu,t and σsv,t represent the components of the time-varying volatility in prices. In
particular, σsv,t denotes the two factors stochastic volatility model commonly used in this literature.
We follow Huang and Tauchen (2005) and set a = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137,
α2 = −1.386, ϕ = 0.25, ρ1 = ρ2 = −0.3. At the start of each interval, we initialize the persistent

factor τ1 by τ1,0 ∼ N
(
0, −1

2α1

)
, its unconditional distribution. The strongly mean-reverting factor τ2

is started at τ2,0 = 0. The process σu,t models the diurnal U -shaped pattern in intraday volatility. In
particular, we follow Hasbrouck (1999) and Andersen et al. (2012) and set the constants A = 0.75,
B = 0.25, C = 0.88929198, and a1 = a2 = 10. These parameters are calibrated so as to produce a
strong asymmetric U-shaped pattern, with variance at the open (close) more than 3 (1.5) times that at
the middle of the day. Setting C = 1 and A = B = 0 yields σu,t = 1 for t ∈ [0, 1] and rules out diurnal
effects from the observed process X. In our experiment, we first consider a setup without diurnal
effects followed by one with diurnal effects in X. Finally, Jt is a finite activity jump process modeled
as a compound Poisson process with constant jump intensity λ and random jump size distributed as
N(0, σ2jmp). We let σ2jmp = 0 under the null hypothesis of no jumps in the return process. Under

the alternative, we let λ = 0.058, and σ2jmp = 1.7241. These parameters are motivated by empirical
studies by Huang and Tauchen (2005) and Barndorff-Nielsen, Shephard, and Winkel (2006), which
suggest that the jump component accounts for 10% of the variation of the price process.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23, 400, so that
[0, 1] is meant to span 6.5 hours. The observed process X is generated using an Euler scheme. We
then construct the 1/n-horizon returns ri = Xi/n −X(i−1)/n based on samples of size n. Results are
presented for four different samples sizes: n = 48, 96, 288, and 576, corresponding approximately to
“8-minute”, “4-minute”, “1,35-minute”, and “40-second” frequencies.

Table 1 gives the rejection rates. We report results without jumps and with finite activity jumps.
Test results from both the linear test statistic and its log version3 are reported using asymptotic-theory
based critical value as well as bootstrap critical values. All tests are carried out at 5% nominal level.
The rejection rates reported in the left part of Table 1 (under no jumps) are obtained from 10,000
Monte Carlo replications with 999 bootstrap samples for each simulated sample for the bootstrap
tests. For finite activity jumps, since Jt is a compound Poisson process, even under the alternative, it
is possible that no jump occurs in some sample over the interval [0,1] considered. Thus, to compute
the rejection rates under the alternative of jumps we rely on the number n0 of replications, out of
10,000, for which at least one jump has occurred. For our parameter configuration, n0 = 570.

Starting with size, the results show that the linear version of the test based on the asymptotic
theory of BN-S (2006) (labeled “AT” in Table 1) is substantially distorted for the smaller sample
sizes. In particular, for the SV2F model without diurnal effects, the rejection rate is three times larger
than the nominal level of the test (at 15.69%) for n = 48. Although this rate drops as n increases, it
remains significantly larger than the nominal level even when n = 576, with a value equal to 8.27%.
As expected, the log version of the test statistic has smaller size distortions: the rejection rates are
now 13.04% and 7.68% for n = 48 and n = 576, respectively. The rejection rates of the bootstrap
tests are always smaller than those of the asymptotic tests and therefore the bootstrap outperforms
the latter under the null. This is true for both bootstrap jump tests based on (8) and (9) (denoted
“Boot1” and “Boot2”, respectively) and for both the linear and the log versions of the test. Note that
our bias correction adjustment of the bootstrap test is specific to the linear version of the statistic (as
it depends on its cumulants). Since we have not developed cumulant expansions for the log version of
the statistic, we do not report the analogue of “Boot2” for this test.

When X has diurnality patterns in volatility, we apply the tests to both raw returns and to
transformed returns with volatility corrected for diurnal patterns. We use the nonparametric jump
robust estimation of intraday periodicity in volatility suggested by Boudt, Croux and Laurent (2011)

3See the online Appendix S3 for details on the log-transform of the test statistic Tn and the bootstrap-related formulas.
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for diurnal patterns correction. In the process, standardized returns are obtained using an estimate
σ̂u,i of intraday volatility pattern from 2,000 simulated days. The results for the tests based on the
raw returns (without diurnality correction) appear in the middle panel of Table 1 whereas the bottom
panel contains results for tests based on the transformed returns. We can see that the test based
on the asymptotic theory of BN-S (2006) has large distortions driven by the difference in volatility
across blocks, even if the sample size is large. For n = 576, the null rejection rate is 13.29% for the
linear version of the test and 11.74% for the log version. These are more than twice as large as the
desired nominal level of 5%. The overrejection is magnified for smaller sample sizes. For instance, for
n = 48 they are equal to 32.61% and 28.91%, respectively. As expected, (in the bottom part of Table
1) corrections for diurnal effects help reduce the distortions. For n = 48, the rates are now equal to
14.82% and 12.10%, whereas for n = 576 they are 8.47% and 7.91%. The bootstrap null rejection
rates are always smaller than those of the asymptotic theory-based tests, implying that the bootstrap
outperforms the latter. This is true even for the bootstrap test applied to the non-transformed intraday
returns, which yields rejection rates that are closer to the nominal level than those obtained with the
asymptotic tests based on the correction of the diurnal effects (compare “Boot2” in the middle panel
with “AT” in the bottom panel). This is a very interesting finding since it implies that our bootstrap
method is more robust to the presence of diurnal effects than the asymptotic theory-based tests. Of
course, even better results can be obtained for the bootstrap tests by resampling the transformed
intraday returns and this is confirmed by Table 1, which shows that the results for bootstrap tests
(especially Boot2) with diurnal effects correction are systematically closer to 5% than those with no
correction of diurnal effects.

These results also reveal that Boot2 outperforms Boot1, in particular for small sample sizes. This
shows that taking into account the asymptotically negligible bias in Tn, only relevant at the second-
order, is very useful for smaller values of n.

Overall, the left panel of Table 1 shows that the bootstrap reduces dramatically the size distortions
that we can see from asymptotic tests and this across sample sizes whether the linear or log version
of the test is used.

Turning now to the power analysis, results in Table 1 (right panel) show that the main feature
of notice is that the bootstrap tests have lower power than their asymptotic counterparts, especially
in presence of diurnal effects. This is expected given that the asymptotic tests have much larger
rejections under the null than the bootstrap tests. In particular, this explains the large discrepancy
between the bootstrap and the asymptotic test when both are applied to the non-transformed data.
As n increases, we see that this difference decreases. The results also show that power is largest for
tests (both asymptotic and bootstrap-based) applied to the transformed returns. For these tests, the
difference in power between the bootstrap and the asymptotic tests is very small. Given that the
bootstrap essentially eliminates the size distortions of the asymptotic test, these two findings strongly
favor the bootstrap over the asymptotic tests.

Overall, Table 1 shows that Boot2 is the best choice. This is especially true when using smaller
values of n. Therefore, our recommendation is to choose Boot2.

6 Empirical results

This empirical application uses trade data on the SPDR S&P 500 ETF (SPY), which is an exchange
traded fund (ETF) that tracks the S&P 500 index. Data on SPY have been used by Mykland, Shephard
and Sheppard (2012) (see also Bollerslev, Law and Tauchen (2008)). Our primary sample comprises 10
years of trade data on SPY starting from June 15, 2004 through June 13, 2014 as available in the New
York Stock Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has been cleaned
according to the procedure outlined by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). We
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Table 1: Rejection rates of of asymptotic and bootstrap tests, nominal level α = 0.05.

Size Power
Linear test Log test Linear test Log test

n AT Boot1 Boot2 AT Boot1 AT Boot1 Boot2 AT Boot1

SV2F model without diurnal effects, SV2F model without diurnal effects,
no jumps jumps

48 15.69 7.20 5.99 13.04 7.19 80.26 73.50 72.18 78.20 73.31
96 12.81 6.87 5.99 11.20 7.07 83.27 79.14 78.76 82.33 78.95
288 9.81 6.43 5.87 8.90 6.32 88.16 87.03 86.65 87.78 87.03
576 8.27 5.91 5.56 7.68 5.83 88.53 88.16 88.16 88.53 88.16

SV2F model with diurnal effects, SV2F model with diurnal effects,
no correction, no jumps no correction, jumps

48 32.61 16.31 14.28 28.91 14.68 86.09 78.20 77.26 85.53 77.82
96 25.28 13.98 12.26 22.23 14.32 86.65 82.71 81.02 85.34 82.52
288 16.42 10.01 8.95 14.39 9.53 88.91 86.65 86.28 88.35 86.47
576 13.29 8.64 7.99 11.74 8.41 88.72 87.59 87.22 88.16 87.59

SV2F model with diurnal effects, SV2F model with diurnal effects,
correction, no jumps correction, jumps

48 14.82 6.69 5.48 12.10 6.73 91.03 89.14 88.79 90.52 89.14
96 12.47 6.83 6.01 10.97 6.86 92.41 91.38 91.03 92.41 91.21
288 9.94 6.31 5.59 8.93 6.25 94.48 93.79 93.62 94.31 93.79
576 8.47 6.04 5.59 7.91 5.96 94.14 93.97 93.97 94.14 93.97

Notes: ‘AT’ is based on (6), i.e., the asymptotic theory of BN-S (2006); ‘Boot1’ and ‘Boot2’ are
based on bootstrap test statistics T ∗

n (cf. (8)) and T̄ ∗
n (cf. (9)), respectively. ‘Boot2’ takes

into account the asymptotically negligible bias in Tn which may be relevant at the second-
order, and under certain conditions provides the refinement for the bootstrap method.
We use 10,000 Monte Carlo trials with 999 bootstrap replications each.

also removed short trading days leaving us with 2497 days of trade data.
Figure 1 shows the series of daily returns on SPY over the 2497 trading days considered. The

2008 financial crisis is noticeable with large returns appearing in the third quarter of 2008 and the
first quarter of 2009. We can actually distinguish three subperiods for SPY: ‘Before crisis’, from the
beginning of the sample (June 15, 2004) through August 29 2008 (1053 trading days); ‘Crisis’, from
September 2, 2008 through May 29, 2009 (185 trading days), and ‘After crisis’, from June 1, 2009
through June 13, 2014 (1259 trading days).

Table 2 (left panel) gives some summary statistics on daily returns and 5-min-return-based realized
volatility (RV ) and realized bipower variation (BV ) over the mentioned periods. The average daily
returns before and after the crisis are positive (1.53 and 6.42 basis points, respectively) whereas the
average return over the crisis is -12.9 basis points. Daily averages of RV and BV are also quite high
during the crisis period with both culminating to 6 times their respective levels across the whole sample.
The average contribution of jumps to realized volatility as measured by RJ = (RV −BV ) /RV also
deepens during the crisis period to 5%, whereas the 7% found for the full sample and in pre- and
post-crisis periods seems in line with the findings of Huang and Tauchen (2005) for S&P 500 future
index.
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Figure 1: Daily returns on SPY from June 15, 2004 through June 13, 2014.

Table 2: This table gives the average daily return, realized volatility (RV), realized bipower variation (BV) and

the contribution of jumps to realized volatility (RJ) of SPY over each period along with their standard

deviations (SD). RV and BV are based on 5-min intra-day returns. These statistics are also reported

over days identified with and without jumps by the asymptotic approximation of the log-test-statistic

and the bootstrap approximation of the linear test statistic. (α = 0.05). In the table, ‘Ret.’ stands

for return.

Ret. ×104 RV × 104 BV × 104 RJ Ret. ×104 RV × 104 BV × 104 RJ

Full sample: June 15, 2004 Days identified with jumps by
through June 13, 2014 (2497 days) the asymptotic log test (581 days)

Mean 2.93 0.99 0.95 0.07 10.69 0.82 0.64 0.22
SD 126.00 2.60 2.52 0.11 129.63 1.96 1.52 0.07

Before crisis: June 15, 2004 Days identified without jumps by
through August 29, 2008 (1053 days) the asymptotic log test (1916 days)

Mean 1.53 0.55 0.51 0.07 0.58 1.05 1.04 0.02
SD 86.91 0.66 0.64 0.11 124.82 2.76 2.75 0.08

During crisis: September 2, 2008 Days identified with jumps by
through May 29, 2009 (185 days) the bootstrap linear test (342 days)

Mean -12.90 6.06 5.82 0.05 14.06 0.81 0.60 0.25
SD 313.03 7.30 7.03 0.11 140.96 1.95 1.44 0.07

After crisis: June 1, 2009 Days identified without jumps by
through June 13, 2014 (1259 days) the bootstrap linear test (2155 days)

Mean 6.42 0.63 0.60 0.07 1.16 1.02 1.00 0.04
SD 103.94 1.07 1.14 0.12 123.41 2.68 2.65 0.09
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Table 3 shows the percentage of days identified with a jump (“jump days”) by the asymptotic and
bootstrap tests. We consider the asymptotic version of the linear and the log test statistics as well as
their bootstrap versions. For the linear bootstrap test, we rely on “Boot2”, the adjusted bootstrap
statistic that promises second-order refinements (and which does best in finite samples according to
our simulations). For the log version of the bootstrap test, we rely on “Boot1”. These tests are applied
to data with and without correction for diurnal effects and are based on 5-min returns throughout.
This yields 78 daily observations over the 6.5 hours of the trading session.

In line with the simulation findings, the asymptotic tests tend to substantially over detect jumps
compared to the bootstrap tests, which throughout detect about half of the number of jump days
detected by the asymptotic tests. More precisely, with no account for diurnal effects, the asymptotic
(linear and log) tests detect 26.31% and 23.27% jump days, respectively out of the 2497 days in our
sample, while the bootstrap tests detect 13.7% and 16.9% jump days. These percentages are about
the same as what is obtained before and after crisis. During the crisis though, less jump days (in
proportion) are detected, with the asymptotic tests detecting around 20%, while the bootstrap linear
and log tests detect about 10.8% and 13.3% jump days, respectively.

Given the results of the jump tests (both asymptotic and bootstrap-based), we can compute the
summary statistics for days with and without jumps. The results are contained in the right panel of
Table 2. Besides the fact that the bootstrap finds less jump days, average returns are higher by around
4 basis points on bootstrap-jump-days with higher standard deviation. The average contribution of
jumps to realized volatility is substantially higher on jump days than on no-jump-days by a ratio of
about 10-to-1 for the asymptotic (log) test and 5-to-1 for the bootstrap test.

Table 3: Percentage of days identified as jumps day by daily statistics (nominal level α = 0.05) using
intra-day 5-min returns.

No correction for diurnal effects With correction for diurnal effects
AT-lin AT-log Boot2-lin Boot1-log AT-lin AT-log Boot2-lin Boot1-log

Full sample: June 15, 2004 through June 13, 2014 (2497 days)

26.31 23.27 13.70 16.90 24.23 20.54 12.66 14.46

Before crisis: June 15, 2004 through August 29, 2008 (1053 days)

25.55 22.41 13.11 16.43 22.41 18.99 12.73 14.06

During crisis: September 2, 2008 through May 29, 2009 (185 days)

21.62 19.46 10.81 13.51 24.32 21.62 11.35 12.97

After crisis: June 1, 2009 through June 13, 2014 (1259 days)

27.64 24.54 14.61 17.79 25.73 21.68 12.79 15.01

Notes: ‘AT-lin’ and ‘Boot2-lin’ (‘AT-log’ and ‘Boot1-log’) stand for asymptotic
and bootstrap tests using the linear (log) version of the test statistic.
‘Boot2-lin’ test uses the second-order corrected bootstrap test statistic
for asymptotic refinement.

We also report test results applied to returns corrected for diurnal effects. This is of particular
relevance in the current application since, as shown by Figure 2, diurnal patterns seem to be in display
in our samples. Figure 2 displays graphs of average absolute 5-min returns over the days in the specified
sample. (See Andersen and Bollerslev (1997).) The U-shape of these graphs highlights the fact that
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Figure 2: Diurnal pattern of SPY. The graph displays the average (over the specified samples) of absolute

5-min intraday returns of each trading day. ‘Before crisis’ refers to the sample from June 15, 2004

through August 29, 2008 (before the 2008 financial crash). ‘During crisis’ refers to the period from

September 2, 2008 through May 29, 2009 and ‘After crisis’ refers to the period from June 1, 2009

through June 13, 2014.

the market seems to be more volatile early and late in daily trading sessions compared to the mid-day
volatility. We can also see that the gap between early/late and mid-day volatilities is magnified in the
crisis period. After correction for diurnal effects, less jumps days are detected by all the tests before
and after crisis. For instance, before the crisis, the asymptotic tests move from 25.55% and 22.41%
to 22.41% and 18.99% whereas the bootstrap tests move from 13.11% to 12.73% for the linear test
and from 16.43% to 14.06% for the log test. However, in the crisis period, while the bootstrap still
detects about the same number of jump days, the asymptotic tests detect substantially more jumps
after diurnal effects correction. It is also worthwhile to point out that the gap between the bootstrap
linear and log tests narrows as diurnal effects are accounted for. Overall, the bootstrap tests seem
more robust to diurnality than the asymptotic tests.

7 Conclusion

The main contribution of this paper is to propose bootstrap methods for testing the null hypothesis
of “no jumps”. The methods generate bootstrap intraday returns from a Gaussian distribution with
variance given by a local realized measure of integrated volatility {v̂ni }. We first provide a set of high
level conditions on {v̂ni } such that any bootstrap method of this form is asymptotically valid when
testing for jumps using the test statistic proposed by Barndorff-Nielsen and Shephard (2006). This
means in particular that the bootstrap is able to control size and is consistent under the alternative
of jumps. Our results show that the choice of {v̂ni } is crucial for ensuring that the bootstrap test is
asymptotically normally distributed, independently of whether the null or the alternative hypothesis
is true. In particular, to ensure that this holds under the alternative, we should choose {v̂ni } in a
manner that is robust to jumps. A popular estimator is the thresholding estimator and we provide a
detailed analysis of the bootstrap test based on this choice of {v̂ni } .

A second contribution of this paper is to discuss the ability of the bootstrap to provide second-
order asymptotic refinements over the usual asymptotic mixed Gaussian distribution under the null
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of no jumps. We develop second-order asymptotic expansions of the cumulants of the test statistic
of Barndorff-Nielsen and Shephard (2006) and show that the bias inherent in bipower variation as an
estimator of integrated volatility has an impact on the first-order cumulant of this test, up to order
O
(
n−1/2

)
. More importantly, our bootstrap test is not able to match this cumulant effect and is

therefore not second-order accurate. We then propose a modification of the original bootstrap test
for which an asymptotic refinement exists. The modification consists of adding a bias correction term
that estimates the contribution of the bipower variation bias to the first-order cumulant of the original
test. Our simulations show that this adjustment is important in finite samples, especially for the
smaller sample sizes when sampling is more sparse.

An interesting finding from the Monte Carlo simulations is that the bootstrap is more robust to the
presence of diurnality effects in volatility than the usual asymptotic approximations. In particular,
the adjusted bootstrap test statistic applied to raw returns generated from a two-factor stochastic
volatility model with diurnal patterns in volatility has size properties that are analogous to those of
the asymptotic test based on standardized returns constructed from on a nonparametric estimate of
the diurnality pattern. Applying the bootstrap to the standardized returns yields even better size
control. We also illustrate the usefulness of our bootstrap jumps test by applying it to 5-min returns
on the SPY index over the period from June 15, 2004 through June 13, 2014. Overall, the main finding
is that the bootstrap detects about half of the number of jump days detected by the asymptotic-theory
based tests.

Appendix A: A law of large numbers for functions of non-overlapping
local volatility estimates

In this section, we state and prove Theorem A.1, a result that is auxiliary in proving Lemma 3.2.
As noted in the main test, Theorem A.1 has merit on its own right as it extends Theorem 9.4.1
of Jacod and Protter (2012) to the case of smooth functions of consecutive local realized volatility
estimates rather than a single local estimate. Contrary to Jacod and Protter (2012) who allow for the
possibility that the local estimates entering the sum are based on overlapping intervals, here we focus
our attention in the non-overlapping case. This is enough to cover the blocked multipower variation
measures of Lemma 3.2.

Let

ĉj,n =
n

kn

kn∑
m=1

r2(j−1)kn+m1{|r(j−1)kn+m|≤un},

j = 1, . . . , n
kn
, with ri ≡ X i

n
−X i−1

n
, i = 1, . . . , n; un = αn−ϖ, ϖ ∈ (0, 12) and kn is a sequence of

integers satisfying kn → ∞ and kn
n → 0 as n→ ∞.

Theorem A.1 Assume that X satisfies Assumption H-2, and let g be a continuous function on Rℓ
+

satisfying for some p ≥ 0:

|g(x1, . . . , xℓ)| ≤ K (1 + |x1|p + · · ·+ |xℓ|p) .

If either one of the following conditions holds:

(a) X is continuous;

(b) p < 1;
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(c) Assumption H-r holds for some r ∈ [0, 2) and p ≥ 1, ϖ ≥ 2p−1
4p−r ; then

Gn ≡ kn
n

n/kn∑
j=ℓ

g (ĉj,n, ĉj−1,n, . . . , ĉj−ℓ+1,n)
P→
∫ 1

0
g(σ2s , . . . , σ

2
s)ds.

In the proof, we will follow the standard localization argument of Jacod and Protter (2012) and
assume without loss of generality that the following stronger version of Assumption H-r holds:

Assumption SH-r Assumption H-r holds, and in addition the processes a and σ are bounded, and
|δ(ω, t, x)| ∧ 1 ≤ γ(x) with

∫
|γ(x)|rdx <∞.

Proof. The proof follows the lines of the proof of Theorem 9.4.1 of Jacod and Protter (2012). By
localization, we assume without loss of generality that SH-r holds throughout the proof with r = 2
for p < 1. Also, upon proving separately the convergence for g+ and g−, we assume that g ≥ 0.
Throughout the proof, K is a generic constant.

Step 1 : We first assume that g is bounded. For all s ∈ [0, 1] and l = 1, . . . , ℓ, let ĉ
(l)
n (s) = ĉj+l,n

when (j − 1)knn ≤ s < j knn , where we set ĉj,n to 0 if j > n/kn. We have

Gn =
kn
n
g (ĉℓ,n, ĉℓ−1,n, . . . , ĉ1,n) +

∫ 1−ℓ kn
n

0
g
(
ĉ(ℓ)n (s), . . . , ĉ(1)n (s)

)
ds.

Thus

E

(∣∣∣∣Gn −
∫ 1

0
g
(
σ2s , . . . , σ

2
s

)
ds

∣∣∣∣) ≤ K
kn
n

+

∫ 1−ℓ kn
n

0
an(s)ds, (A.1)

with an(s) = E
∣∣∣g (ĉ(ℓ)n (s), . . . , ĉ

(1)
n (s)

)
− g

(
σ2s , . . . , σ

2
s

)∣∣∣. By the right continuity assumption for σ2s ,

the proof of Theorem 9.3.2(a) of Jacod and Protter (2012) readily applies to the functions ĉ
(l)
n (s) :

l = 1, . . . , ℓ and we can claim that ĉ
(l)
n (s)

P→ σ2s for all s ∈ [0, 1). Hence, g
(
ĉ
(ℓ)
n (s), . . . , ĉ

(1)
n (s)

)
−

g
(
σ2s , . . . , σ

2
s

)
converges in probability to 0. Since g is bounded, the bounded convergence theorem

guarantees that an(s) tends to 0 as n → ∞ and stays bounded from the boundedness of g. We can
therefore claim that the right hand side of (A.1) tends to 0 by the dominated convergence theorem
and the conclusion of the theorem follows.

Step 2 : Let ψ be a C∞ function : R+ → [0, 1] with 1[0,∞)(x) ≤ ψ(x) ≤ 1[ 1
2
,∞)(x), and ψε(x) =

ψ(|x|/ε) and ψ′
ε = 1− ψε. For m ≥ 2, let

g′m(x1, . . . , xℓ) = g(x1, . . . , xℓ)

ℓ∏
l=1

ψ′
m(xl)

and gm = g − g′m. The function g′m is continuous and bounded and hence Step 1 allows us to claim
that for m fixed,

kn
n

n/kn∑
j=ℓ

g′m (ĉj,n, ĉj−1,n, . . . , ĉj−ℓ+1,n)
P→
∫ 1

0
g′m(σ2s , . . . , σ

2
s)ds.

Note also that
∫ 1
0 g

′
m(σ2s , . . . , σ

2
s)ds =

∫ 1
0 g(σ

2
s , . . . , σ

2
s)ds for m large enough since σ2s is bounded under

SH-r and the fact that ψ′
m(x) = 1 for |x| ≤ m/2.
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It remains to show that kn
n

∑n/kn
j=ℓ gm (ĉj,n, ĉj−1,n, . . . , ĉj−ℓ+1,n) is negligible for large n and m. By

assumption, we have

gm(x1, . . . , xℓ) ≤ K

(
1 +

ℓ∑
l=1

|xl|p
)(

1−
ℓ∏

l=1

ψ′
m(xl)

)

but

1−
ℓ∏

l=1

ψ′
m(xl) ≤

ℓ∑
l=1

1{|xl|≥m
2
},

since if |xl| ≤ m/2, ψ′
m(xl) = 1 and both sides of the inequality are nil if |xl| ≤ m/2 for all l. If

|xl| > m/2 for some l, then
ℓ∑

l=1

1{|xl|≥m
2
} ≥ 1 ≥ 1 −

ℓ∏
l=1

ψ′
m(xl). Also, if |xl| > m/2 for some l, we

have that 1 +
ℓ∑

l=1

|xl|p ≤ 2
ℓ∑

l=1

|xl|p. Thus,

gm(x1, . . . , xℓ) ≤ 2K
ℓ∑

l,l′=1

|xl|p1{|xl′ |≥
m
2
}.

Therefore, to complete the proof, it suffices to show that

lim
m→∞

lim sup
n→∞

E

kn
n

n/kn∑
j=ℓ

ĉpj−l+1,n1{ĉj−l′+1,n>m}

 = 0, (A.2)

for all l, l′ = 1, . . . , ℓ.
Letting κ = 0 when X is continuous and κ = 1 otherwise, for q ≥ 2, following the argument in the

proof of Jacod and Protter (2012), we have, for i = 1, . . . , n,

E(|ri|q) ≤ Kq

(
1

nq/2
+ κ

1

n(q/2)∧1

)
and, from the cr-inequality, we deduce that

E
(
ĉpj,n

)
≤ Kq

(
1 + κ

1

nq∧1−q

)
.

Now, by successive application of the Hölder and Markov inequalities, we have for any q > p:

E
(
ĉpi,n1{ĉj,n>m}

)
≤

(
E
(
ĉqi,n

)) p
q
(P (ĉj,n ≥ m))

1− p
q

≤
(
E
(
ĉqi,n

)) p
q

(
1

mq
E
(
ĉqj,n

))1− p
q

≤ Kq

mq−p

(
1 + κ

1

nq∧1−q

)
.

Take q = 2p if X is continuous and q = 1 > p otherwise and conclude (A.2).
We consider now p ≥ 1. With the same alternative decomposition of X as that in Jacod and

Protter (2012, Eq. (9.2.7)), we write ri = r1i + r2i, with r1i and r2i the increments of the process X ′

and X ′′, respectively and as defined in the reference. We have that

r2i 1{|ri|≤un} = (r1i + r2i)
21{|r1i+r2i|≤un} ≤ 2

(
r21i + (r22i ∧ u2n)

)
= 2

(
r21i + u2n

(
r22i
u2n

∧ 1

))
≤ K

(
r21i + u2n (n

ϖ|r2i| ∧ 1)2
)
.
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(Where we use for the last inequality the fact that (a/b)∧ 1 ≤ max(1, 1/b)[a∧ 1], with a, b > 0.) Thus
ĉj,n ≤ ζ ′j,n + ζ ′′j,n with

ζ ′j,n = K
1

kn

kn∑
m=1

(
√
nr1,(j−1)kn+m)2, ζ ′′j,n = K

v2n
kn

kn∑
m=1

(
nϖ|r2,(j−1)kn+m| ∧ 1

)2
,

with vn =
√
nun.

Note that

ĉi,n1{ĉj,n≥m} ≤
ĉi,nĉj,n
m

≤ 1

2m

(
ĉ2i,n + ĉ2j,n

)
≤ 1

m

(
ζ ′

2

i,n + ζ ′′
2

i,n + ζ ′
2

j,n + ζ ′′
2

j,n

)
and by the cr-inequality,

E
(
ĉpi,n1{ĉj,n≥m}

)
≤ 4p−1

mp

(
E(ζ ′

2p

i,n) + E(ζ ′′
2p

i,n ) + E(ζ ′
2p

j,n) + E(ζ ′′
2p

j,n )
)
.

On the other hand, Eqs. (9.2.12) and (9.2.13) of Jacod and Protter (2012) ensure that

E
(
(
√
n|r1i|)q|F i−1

n

)
≤ Kq and E

(
(nϖ|r2i|)2 ∧ 1|F i−1

n

)
≤ Kn−1+rϖϕn,

with ϕn → 0 as n→ ∞. Thus, a further application of the cr-inequality gives E(ζ ′
2p

j,n) < K and

E(ζ ′′
2p

j,n ) ≤ K
v4pn
kn

kn∑
m=1

E
((
nϖ|r2,(j−1)kn+m| ∧ 1

)4p) ≤ K
v4pn
kn

kn∑
m=1

E
((
nϖ|r2,(j−1)kn+m| ∧ 1

)2)
≤ Kn4p(−ϖ+ 1

2
)n−1+rϖϕn = Kn−wϕn,

with w = 1− 2p+ϖ(4p− r). Thus,

E
(
ĉpi,n1{ĉj,n≥m}

)
≤ K

mp

(
1 + n−wϕn

)
.

Since w ≥ 0 under the maintained assumptions, (A.2) follows.
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