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Abstract

A code is a technical language that members of an organization learn in order to
communicate among themselves and with members of other organizations. What
are the features of an optimal code and how does it interact with the characteris-
tics of the organization? This paper develops a theory of codes in organizations
and studies the properties of optimal codes. There exists a fundamental tradeoff
between choosing a specialized code, which simplifies communication within di-
visions, and a common code which facilitates communication between divisions.
In turn, code specialization interacts with other endogenous features of the orga-
nization like its scope and the level of centralization of communication. We show
that an exogenous decrease in information costs leads to larger, less centralized
organizations which rely on common codes, rather than hierarchies, for commu-
nication. Our analysis illuminates some aspects of the impact of IT innovation on
organizational structure described by the empirical literature. We show that the
causal mechanism we propose is consistent with the evidence in some detailed
case studies of decentralization and organization. We also study how conflicts
of interests among organizations can lead to the adoption of biased codes or to
excessive code variety.



1 Introduction

Accounting systems, human resource and other organizational data bases are par-
ticular types of codes.1 In recent years, the management of these codes within
firms has become more centralized, while communications have become less hi-
erarchical and while, at the same time, decision making has become more decen-
tralized. Robert J. Herbold, Chief Operating Officer for Microsoft from 1994 to
2001, described this apparent paradox as follows: “standardizing specific prac-
tices and centralizing certain systems also provided, perhaps surprisingly, benefits
usually associated with decentralization.” In this paper, we develop a theory of
codes and of their influence on the organization of firms, which enables us to
analyze these links and provides a number of broader insights on how communi-
cation costs shape different aspects of organizational design and of the interaction
between individual agents in these organizations.

Our theory builds on previous informal discussions in the economics liter-
ature, most notably by Arrow (1974), which emphasize the role of specialized
codes in reducing the constraints on organizational performance imposed by in-
dividual bounded rationality.2 The main focus of our analysis is to understand
when subsets of agents who deal repeatedly with each other choose to design spe-
cialized codes, which are more efficient for their specific circumstances and when,
instead, they prefer to use less precise common codes.

We start, in Section 2, by building a simple model of codes. Our agents are
subject to two forms of bounded rationality. They have a limited ability to learn
codes, but they also have a limited ability to solve problems. The use of a code fa-
cilitates communication, which in turn decreases the cost of incomplete informa-
tion. We focus on the structure of optimal codes, and on their organizational con-
sequences. We will not study the other obvious important issue in this framework,
which is the optimal richness of codes and the trade-offs between investment in
learning a new code and spending more resources on production activities.3

We identify some of the properties of efficient codes. Efficient codes use pre-
cise words for frequent events and vague words for more unusual ones. A more
unequal distribution of events increases the value of the creation of a specialized

1For our purpuses, an organizational code is a technical language that an organization adopts
to facilitate communication. It contains expressions that have a certain, well-specified meaning
only within the set of users of that code. Those same expression convey a different meaning, or no
meaning at all, to the rest of the population.

2Despite the existence of this pathbreaking initial analysis by Arrow, and the fact that specalied
codes are widespread, there has been little formal analysis of the properties of codes, and their
consequences for the organizations of firms have been nearly completely neglected. We review
the brief literature in the conclusion.

3Garicano (2000) provides an example of the study of a similar tradeoff. The agents can learn
how to process more tasks, but this has a cost.

1



code, since the precision of the words can be more tightly linked to the character-
istics of the environment.

We show that when more than two agents communicate with one another,
bounded rationality imposes sharply decreasing returns to the diversity of codes.
Tailoring words to the needs of particular agents restrains the group of agents
which can usefully learn them. As a consequence, agents will use either entirely
separate codes or common codes: “dialects” cannot be optimal. This code com-
monality is a key determinant of the decreasing returns to scope in organizations,
and shapes both organizational scope and their use of integrating mechanisms,
which we study next.

When would a set of agents choose to use a common code over all its parts,
so that all of them can communicate with each other? In Section 3, we argue that
the choice would trade off the improved coordination between different services
and the resulting degradation of communications within services. We identify the
variables that determine the terms of these trade-offs: a common code is more
likely to be adopted if the degree of synergy among services is high, the cost of
imprecise communication is high and when the distribution of events in different
services is similar.

We illustrate the limits that bounded rationality places on the richness of a
common code, and thus the limits imposed by codes on organizational scope, with
an example of a friendly fire incident between US airplanes and Army helicopters.
A complex set of rules meant to facilitate between service communication was
actually understood differently by the different services and resulted in a tragic
communication failure which we explore.

Hierarchies provide an alternative method for coordinating two services. We
represent a hierarchical superior as a translator, who enables services with dif-
ferent codes to cooperate. When communication costs are high, hierarchies are
more efficient; when they are low, common codes and horizontal communications
are more efficient. The reorganization of Microsoft under Robert J. Herbold in
the 1990s, which we discuss in some detail in section 3.4.2 provides an illustra-
tion of these trade-offs and of the substitution of hierarchical communication by
horizontal communication mediated by a common code.

Finally, section 4 studies how conflicts between organizations shape code
adoption and organizational structure. We identify a first mover advantage: a
shared code is suboptimally skewed towards the needs of early adopters. More-
over, there can exist too little code commonality, as, for each group of users,
investing in a common code generates positive externalities towards other users.
This implies that coordination within organizations will be better than coordina-
tion between organizations, which appears consistent with the evidence.4 Some

4See Simester and Knez (2002), which compares coordination with internal and with external
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evidence for these strategic effects and inefficiencies in adoption of common codes
is provided by the interactions between the firms that engineered the B-2 stealth
bomber, which we discuss in section 4.3. Thus taking into account these strategic
considerations that arise when individuals can separately choose codes yields a
number of insights on organizational dysfunctions and the way that organizations
may deal with them. For instance, organizations must limit the flexibility of indi-
vidual divisions (or individual agents) to choose their own codes, in order to avoid
excessive code variety with the ensuing loss in between service communication..

In section 5, we discuss links with previous literature, and directions for future
research. Appendix A presents the proof of proposition 6 whereas Appendix B
presents an extension of the results which are presented in the body of the paper.

2 A Theory of Codes

In this section, we lay down a simple theory of the choice of codes, beginning
by the case of two agents who need to communicate with each other, in subsec-
tions 2.1 to 2.3, and turning to the case of an agent who needs to communicate
with several other agents in subsection 2.4.

2.1 Model

A “salesman” must communicate to an “engineer” information about the charac-
teristicsx of potential clients; characteristics are drawn with probabilityfx from
a finite setX.

A codeC is a partition{W1,W2, . . . ,WK} of the setX. By uttering the word
k, the salesman lets the engineer know that the characteristicsx belong to the
subsetWk. We will speak about the thebreadth of word k, the number of events
nk ≡ �Wk that it contains, and about its frequency,pk ≡ ∑

x∈Wk
fx.

The bounded rationality of the agents is represented by the maximum number
of words,K, that they can learn.

Having received wordk from the salesman, the engineer still must identify
the precise characteristicsx of the client. Thisdiagnosis stage takes time and/or
energy. The broader the word, the harder the search: the diagnosis cost is an
increasing functiond of the breadthnk of k. The expected diagnosis cost of code

suppliers in the provision of similar parts by a high tech firm. They find that coordination with
external suppliers involves slower reactions and less information exchange on the product design
than coordination with internal suppliers on similar pieces, which is what the theory we develop
would lead us to expect.
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C is therefore

D (C) =
K∑

k=1

pkd (nk) . (1)

If, as we shall assume under further notice, the value of serving a client is high
enough that the organization would never want to exclude clients with certain
values ofx just for the sake of saving on diagnosis costs, the profit maximizing
code is the code that minimizes the expected diagnosis cost.

The following simple example might make these definitions more concrete.
The salesman is an interior decorator while the engineer is a craftsman who col-
laborates with the decorator. The characteristicsx are the client’s preference about
some fixture. Through an informal conversation, the client conveysx to the deco-
rator (“The door knob should have that self-ironic retro feel that is so hot in Paris
these days”). The decorator then telephones the craftsman, who has access to a
well-stocked warehouse, to ask him to install the appropriate fixture. Our key as-
sumption is that the decorator cannot convey all the information he has acquired
to the craftsman. Instead, they share a code to describe fixtures, and their bounded
rationality necessitates a coarse code. After receiving the approximate description
of the desired fixture, the craftsman collects all the fixtures in his warehouse that
fit the description and transports them to the client’s house for perusal. The diag-
nosis cost is given by the time spent putting together the possible fixtures and by
the cost of transportation. It is natural to assume that the diagnosis cost increases
in the coarseness of the description.5

2.2 Optimal codes

In this subsection, we derive some properties of the optimal code that two agents
would use.

Proposition 1. In an optimal code, broader words describe less frequent events:
if nk > nk′ , then fx ≤ fx′ for any x ∈ Wk and x′ ∈ Wk′ .

Proof. Let k andk′ be two words such thatnk > nk′ in an optimal codeC.
FromC, construct a new codẽC by moving eventx from wordk to wordk′

5A further interpretation of this cost of receiving an imprecise message or word is the mis-
pecification of the product that results when the engineer cannot fit precisely the product to the
customer needs. This mispecification cost is, like the diagnosis cost, higher the broader the word.
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and eventx′ from wordk′ to wordk. We must have

0 ≥ D (C) − D
(
C̃
)

= d (nk) pk + d (nk′) pk′

− d (nk) (pk + fx′ − fx) − d (nk′) (pk′ + fx − fx′)

= (d (nk) − d (nk′)) (fx − fx′),

which proves the result.

Proposition 1 implies that events of similar frequencies are grouped together
in an optimal code: iffx < fx′ < fx′′ andx andx′′ belong to the same word, then
x′ also belongs to that word.

Proposition 1 relates word breadth to event frequency. The next result, Propo-
sition 2, relates word length to word frequency; it requires the additional assump-
tion that the functiond is (weakly) convex.

Proposition 2. Assume

d(n + 1) − d(n) ≥ d(n′ + 1) − d(n′) (2)

whenever n ≥ n′ ≥ 1. Unless integer constraints make it impossible, in an
optimal code broader words are used less frequently: if nk − nk′ ≥ 2, then pk′ ≥
pk.

Proof. Let k andk′ be two words such thatnk − nk′ ≥ 2 in an optimal codeC.
FromC, construct a new codẽC by moving an eventx from wordk to word

k′.
We have

D (C) − D
(
C̃
)

= d (nk) pk + d (nk′) pk′ − d (nk − 1) (pk − fx)

− d (nk′ + 1) (pk′ + fs)

= [d(nk) − d(nk−1)]pk − [d(nk′ + 1) − d(nk′)]pk′

+ fx[d(nk−1) − d(nk′+1)]

≥ [d(nk) − d(nk−1)]pk − [d(nk′ + 1) − d(nk′)]pk′

(d is increasing)

≥ [d(nk) − d(nk−1)](pk − pk′) (by (2)).

BecauseD (C)−D
(
C̃
)
≤ 0, we must havepk ≤ pk′, which proves the result.
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We have assumed that events could be allocated between words arbitrarily.
In some instances, however, the “meaning” of events imposes constraints on the
languages which can be constructed. For example, if we are partitioning the color
spectrum into discrete color words, most words will group contiguous points of
the spectrum. In Appendix B we extend Propositions 1 and 2 to environments
where events have a natural ordering: we show that for two contiguous words,
the broader word is used less often and describes events with a lower average
frequency.

2.3 The value of a code

Firms face environments with varying degrees of uncertainty, and this affects the
value of the codes that they use. In this subsection, we show that the value of a
minimal common language is greater when there is less uncertainty. On the other
hand, more uncertainty increases the benefits of enriching a code, by incorporating
new words.

We consider two distributions of the same set events,f andf̃ . The distribution
f̃ is more unequal thanf if for any n any word that contains then events with the
smallest frequency according tof has a greater probability according tof than to
f̃ . More precisely:6

Definition 1. The distribution f̃ is more unequal than the distribution f if fW ≥
f̃W for any word W such that x ∈ W and x′ /∈ W implies fx ≤ fx′ . If for such a
word fW > f̃W ′ , then f is strictly more unequal than f̃ .

With this definition, we can show that communication cost is decreasing in
inequality:7

Proposition 3. If distribution f̃ is more unequal than distribution f , the minimal
diagnosis cost associated with f̃ is (weakly) smaller than the minimal diagnosis
cost associated with f .

Proof. By proposition 1, we can name the words in the optimal code for distri-
bution f in such a way thatk < k′ implies thatfx ≤ fx′ for all x ∈ Wk and
x′ /∈ Wk′. This implies

d (nk−1) − d (nk) ≥ 0 for all k. (3)

6Note that the inequality of distribution defines an order on distributions.f is more unequal
thanf̃ if and only if the distributions are equal up to a renaming of events. Furthermore, it is easy
to prove that iff is strictly more unequal thañf , thenf̃ cannot be strictly more unequal thanf .

Of course, these definitions are very close in spirit to first order stochastic dominance.
7The assumption that the diagnosis cost is convex is not needed.
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Let Pk =
∑

k′≤k pk′ andP̃k =
∑

k′≤k p̃k′; then

Pk > P̃k for all k. (4)

We have∑
k
pkd (nk) = P1d (n1) + (P2 − P1) d (n2) + ...

+ (PK−1 − PK−2) d (nK−1) + (1 − PK−1) d (nK)

= P1 (d (n1) − d (n2)) + ...

+ PK−1 (d (nK−1) − d (nK)) + d (nK)

≥ P̃1 (d (n1) − d (n2)) + ...

+ P̃K−1 (d (nK−1) − d (nK)) + d (nK) (by (3) and 4))

=
∑

k
p̃kd (nk) .

This concludes the proof, as
∑

k p̃kd (nk) is not smaller than the minimal diagno-
sis cost for̃p.

In an unequal distribution, there are a few extremely likely events and a large
number of rare events. Communication costs are low, because the optimal code
assigns likely events to narrow words, and narrow words are very probable. The
worst-case scenario occurs when all events are equiprobable: words will divide
the event space into equiprobable sets, and this will impose a high communication
cost.

An immediate consequence of proposition 3 is that increasing the number of
words from 1 toK > 1 lowers communication costs more for more unequal
distributions. On the other hand, moving fromK words to a very large number
of words (perfect communication) lowers communication less for a more unequal
distribution.

2.4 Shared codes and dialects

The organizational analysis of section 3 relies heavily on the insight that commu-
nications between organizational units require the use of a common code. In this
subsection, we provide some background for this analysis by studying the choice
of code by an engineer who needs to communicate with two8 salesmen,A andB,
who face the same set of eventsX but have different distributionsfA

x andfB
x . The

stark model which we are using implies that there are no “dialects”; at the end of

8It should be clear that the assumption that there are two agents is made only for ease of
exposition and is totally unnecessary for the results.
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this subsection, we explain how it could be enriched in order to allow for their
existence. We also argue that this should not affect our main insights.

There are three agents, the engineer and salesmenA andB, who face the same
set of eventsX but have different distributionsfA

x andfB
x . Per period, salesmanA

receives requests frommA clients, and salesmanB requests frommB clients.
Each of the three agents can learn at mostK words. AgentA uses codeCA,

agentB uses codeCB, and the engineer, who must understand both agents, knows
codeCA ∪CB (of course, he only uses the relevant part of this code when commu-
nicating with a salesman).

For instance, withX = {1, 2, 3, 4, 5, 6}, we could have

CA = {{1, 4}, {2, 5}, {3, 6}}, (5)

CB = {{1, 2, 3}, {4, 5, 6}}. (6)

Then, the engineer must know five words, whileA knows 3 andB knows 2.
Proposition 4 shows that the same code, which saturates the rationality con-

straints of all the agents, will be used in communicating with both salesmen.

Proposition 4. The optimal codes contain K words and satisfy CA = CB .

Proof. Clearly, an optimal code saturates the bounded rationality of the engineer,
with CA ∪ CB containingK words. We must still proveCA = CB.

Suppose thatCA �= CB, which implies that bothCA andCB contain at most
K − 1 words. We callkmin be the narrowest noncommon word of these two
codes,9 and, without loss of generality, assume that it belongs toCA.

TransformCB into C̃B by addingkmin as follows:k ∈ C̃B if and only if k =
kmin or W = W ′/(W ′∩Wk) for someW ′ ∈ CB. Because#C̃B = #CB +1 ≤ K,
the bounded rationality of agentB is still satisfied, and because#(CA ∪ C̃B) =
#(CA ∪ CB), the bounded rationality of the engineer is also satisfied

For every eventx ∈ X, the length of the word iñCB that containsx is not
larger than the length of the word inCB that containsx. Moreover, as̃CB contains
one more word thanCB, at least one event must be in a strictly narrower word in
C̃B than it was inCB. The new codes are strictly more efficient than the original
ones, which proves the result.

Two examples can illustrate the proof of proposition 4. First, withK = 5,
consider the codes of equations (5) and (6). The narrowest noncommon words10

are {1, 4}, {2, 5}, and {3, 6}; let us introduce{1, 4} into CB. Then, C̃B =

9That isk ∈ argmink̃ nk̃ subject toWk̃ ∈ C1 ∪C2 andWk̃ /∈ C1 ∩ C2.
10We are taking some liberty with our terminology. Strictly speaking, we have defined a word

to be thename of a set of events. In this discussion, a word is the set of events itself. This should
create no confusion, and lighten considerably the exposition.
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{{1, 4}, {2, 3}, {5, 6}}; every event is now represented by a shorter word, and di-
agnosis cost must go down while the engineer must still learn five words,{1, 4},
{2, 3}, {5, 6}, {2, 5} and{3, 6}. Notice thatCA and C̃B are still not efficient: if
we add{2, 5} to C̃B, the engineer must still learn five words ({1, 4}, {2, 5}, {3},
{6} and{3, 6}}), and the codes are more efficient.

A more complicated example starts from

CA = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11, 12, 13, 14, 15, 16}},
CB = {{1, 4, 7, 11}, {2, 5, 8, 12}, {3, 6, 9, 13}, {10, 14, 15, 16}}.

If we take{1, 2, 3} as the narrowest noncommon word, the new code forB is

C̃B = {{1, 2, 3}, {4, 7, 11}, {5, 8, 12}, {6, 9, 13}, {10, 14, 15, 16}}.

All events but10, 14, 15 and16 are now represented by shorter words.
We have shown that the engineer will use the same code to speak to both sales-

men? Which code will be chosen? It is easy to see it will be the code which would
have been chosen had the engineer faced only one salesman with a distribution of
events equal to the expected distribution of events for the two salesmen. This is
formalized in the next proposition.

Corollary 1. Propositions 1 and 2 apply as stated to the common code if one
defines

fx =
mAfA

x + mBfB
x

mA + mB

.

Of course, in reality, we would expect the engineer (and more generally hier-
archical superiors) to know more words than salesmen, for two reasons. First, if
bounded rationality imposed a cost on the acquisition of language rather than an
absolute limit on the number of words that can be learned, it would be optimal
for the engineer to learn more words than the salesmen. Second, if some agents
have different abilities, it would be optimal to choose agent who is able to learn
the most words as the engineer. Presumably, it would be optimal for the salesmen
to share some words, while using specific words to communicate to the engineer
events that they encounter much more often than the other salesman.

Garicano (2000) and Garicano and Rossi-Hansberg (2003) build theories of
hierarchies where agents who have the ability to complete more tasks are chosen
as “supervisors”; it may be possible to build similar theories, where the supervi-
sors are able to learn more words. We take a small step in that direction in 3.3,
where we assume that the firm can hire, at an additional cost, an agent with a
largerK.
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2.5 Two Word Codes

To facilitate the organizational analysis that follows, we modify the framework
which we have used up to this point: we consider two word codes, a linear diag-
nosis cost, and assume a continuum of events.

Each salesman deals with consumersx ∈ [0, 1] with cumulative distribution
functions

F (x; b) = (1 − b) x + bx2,

and density
f(x; b) = (1 − b) + 2bx,

whereb ∈ [−1, 1] measures the inequality of the distribution of events.
The diagnosis cost is linear: if the engineer knows that the client’s character-

istics fall in an interval, his diagnosis cost issλ times the size of that interval.
With an engineer and a single salesman, we can adapt proposition 1 to show

that they will use a “right word” and a “left word”, separated byx̂(b) which mini-
mizes

s(x) = F (x; b) x + (1 − F (x; b)) (1 − x) , (7)

which implies,11

x̂(b) = argminx s(x) =
1

6b

(
3b − 2 +

√
(3b2 + 4)

)
. (8)

The corresponding expected diagnosis cost is

λD∗(b) = λ × 8 + 36 b2 − (4 + 3 b2)
3
2

54 b2
. (9)

The variations ofD∗ andx̂ as a function ofb are represented on figure 1. The
diagnostic cost is convex inb, and is maximal forb = 0. The cutoff event̂x
increases close to linearly inb.

3 Integration, separation and hierarchy

In the previous section, we studied the optimal code for exogenously given or-
ganizations. In this section, we optimize jointly on organizational structure and
code: who should communicate with whom? what code should they use?

We develop a simple model with two services, each composed of one salesman
and one engineer. We shall study communication and coordination among the two

11The functions is not convex inx. However, the quadratic functions′(x) is convex with
s′(0) < 0. Hence, there exists a uniquex̂(b) ∈ (0, 1) such thats′(x̂(b)) = 0, s(x) is decreasing
on [0, x̂(b)] and increasing on[x̂(b), 1]. Profits are single peaked, with a maximum atx̂(b).
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b10

0.472

0.5

D∗(b)

b10
0.5

0.608

x̂(b)

Figure 1: The variationsD∗ andx̂ (equations (9) and (8)) as a function ofb.

Salesman A

Engineer A
only

Salesman B

Engineer B
only

Engineers
A & B

(1 − p)2 p2 (1 − p)2p2

Figure 2: This figure illustrates the synergies between the two services discussed
in section 3.1.

services, focussing on three possible organizational forms:separation, where the
two services use different codes;integration where the two services share the
same code;translation, where there exists a hierarchical structure supplying an
interface between the services. We will identify the environments in which each
of these organizational forms is optimal.

3.1 Synergies

In order to model the benefits of coordination between the services, we assume
that they can help each other manage overflows of clients. A service has limited
capacity: in each period, it can accommodate only one client. On the other hand,
the number of clients who knock at its door is random, it can be zero, one or two.
With positive probability, there is excessive load in one service and excessive
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capacity in the other. When this happens, the firm benefits from diverting some
business from the overburdened service to the other.

More precisely, each engineer has the ability to attend to the needs of at most
one client. The client arrival process is as follows (see Figure 2):

y =




0 with probabilityp,
1 with probability(1 − 2p),
2 with probabilityp,

wherep belongs to the interval[0, 1/2]. This arrival process captures the effect
of the variability in the expected number of clients of each type. Ifp is low, then
each salesman is likely to find one client per period of each type. Whenp is high,
although on average still 1 client is arriving, it is quite likely that either none or
2 will arrive. Thusp measures the importance of the synergy between the two
services: a highp means that the services are likely to need to share clients, while
a lowp means that each service is likely to have its capacity fully utilized.

The two salesmen face different distributions of consumers, which, simplicity,
are assumed to be symmetric to each other. SalesmanA face consumers whose
characteristics are drawn from the distributionF (x; b), while salesmanB faces
distributionF (x; 1 − b). The parameterb ∈ [0, 1] measures the inequality of the
probability of different events for each salesman. Note that the distribution of
characteristics of clients over all the clients who approach the firm isF (x; 0).

The profit of the firm when it solves a client’s problem is 1. The per-client
diagnosis costs isλ: if the engineer knows that the client’s characteristics fall
in an interval of sizes, his diagnosis cost issλ. We assume that the diagnosis
cost is sufficiently high to ensure that information must transit through a salesman
before being sent to an engineer (λ > 1) but not so high that profit risks becoming
negative (λ < 2).

Remark 1. In order to lighten the notation, in the main text we discuss a symmetric
version of our model. Propositions12 5, 6 and 7 generalize basically as is to an
“extended” version, where

a) the distributions of characteristics of the clients are anyF (x; bA) andF (x; bB),
without necessarily havingbA = −bB;

b) the salesman of servicei ∈ {A,B}, receives 0 client with probabilityp0,
1 client with probabilityp1, and 2 clients with probabilityp2. Thus, there
are two measures of the synergy between the two services: whenp0 is high,
each service is more likely to be able to accommodate clients who arrived
at the other service. Whenp2 is high, each service is more likely to be able
to use the help of the other service.

12A proposition analogous to 8 also holds.
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We comment on the consequences of these more general assumptions in footnotes,
and, in appendix A, we provide the proof of proposition 6 for the extended version.

3.2 Integration or separation?

In this section, we study the choice between segregation of services, where the
salesman from servicei only communicates with the engineers of his service, and
integration where a salesman can communicate with either engineer.

In an integrated organization, a salesman must be able to communicate to the
engineer from the other service the needs of his customer: indeed, as seen above,
becauseλ > 1 sending the problem to the engineer without explanation is not
profitable. The proof of proposition 4 can easily be adapted to show that the two
services must use the same code, and the proof of corollary 1 can be adapted to
prove that the optimal common language isx̂(0) = 1

2
, the language which would

be optimal with one engineer receiving messages from one salesman for which
the density of characteristics is the average density of the two services,F (x; 0).
Total profits are

ΠI = 2(1 − p + p2) (1 − λD∗ (0)) , (10)

where1−λD∗ (0) = 1− 1
2
λ is the expected total profit from serving one customer

and(1 − 2p) + p + p2 = 1 − p + p2 is the expected number of customers served
by each service.

By (9), in isolation, each service has profits(1 − p) (1 − λD∗(b)), where
(1− p) is the expected number of customers it accommodates and1−λD∗(b) the
profit from serving one customer (note that, by symmetryD∗(b) = D∗(1 − b)).
Therefore, the total profit in aseparated organization is

ΠS = 2(1 − p) (1 − λD∗(b)) . (11)

It is easy to check that the profits of a separated organization are positive.
The profits from an integrated organization are greater than the profits from a

separated organization if13,14

p2

1 − p
≥ λ

D∗(0) − D∗(b)
1 − λD∗(0)

. (12)

13It is easy to check that there exist parameter values that lead to each one of these choices. For
instance ifλ = 1.5 andp = 0.25, then the difference between the two sides of (12) is a concave
function ofb, which is positive on(−0. 684, 0. 684) and negative outside this interval.

14In the extended version of the model of Remark 1, equation (12) reads

p0p2

p1 + p2
≥ λ

D∗( bA+bB

2 ) − D∗(bA)+D∗(bB)
2

1 − λD∗( bA+bB

2 )
.
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The choice between these two organizational forms trade off the synergy gain with
the loss in precision of communications due to the worsening of the code used.

The following proposition describes the comparative statics of the choice be-
tween an integrated and a separated organization.15

Proposition 5. An integrated form becomes relatively more profitable compared
to the segregated form when a) the diagnosis cost λ decreases, b) the synergy
parameters p increases, or c) the heterogeneity of the two client distributions b
decreases: let (λ∗, p∗, b∗) and (λ, p, b) be two sets of parameters such that λ ≤ λ∗,
p ≥ p∗, b ≤ b∗, with at least one of the inequalities strict, then the difference of
profits between the integrated and the segregated form is larger under (λ, p, b).

Proof. From (10) and (11), the difference in profits between the integrated and
the separated organizational forms is (twice)

(1 − p + p2) (1 − λD∗ (0)) − (1 − p) (1 − λD∗(b)) .

Its derivative with respect toλ

−(1 − p + p2)D∗ (0) + (1 − p)D∗(b)

is negative becauseD∗ (0) ≥ D∗(b).
The derivative with respect top is

2p (1 − λD∗ (0)) + λ (D∗ (0) − D∗(b)) > 0.

Finally, the derivative with respect tob is

(1 − p)λ
d

db
D∗(b) < 0,

because of (9).

Separate codes are preferable when synergies are relatively low, when the un-
derlying probability distributions confronting the different units are sufficiently
different, and when diagnosis costs are high so that there is a high premium on
communicating precisely. Conversely, increases in synergies, in the equality of
the distributions or decreases in diagnosis costs result in more code commonality.

15In the extended version of the model presented in Remark 1, an increase of either one of
p0 or p2 is sufficient to make the integrated form relatively more profitable that the segregated
form. The comparative statics with respect to thebis assume that their mean stays constant, but
that they become more dissimilar. Formally, the comparative statics read as follows: “If there
are two sets of parameters such thatλ ≥ λ∗, p0 ≥ p∗0, p2 ≥ p∗2, (bA + bB) /2 = (b∗A + b∗B) /2,
|bA − bB | ≤ |b∗A − b∗B |, with at least one of the inequalities strict, then the difference of profits
between the integrated and the segregated form is larger under(λ, p0, p1, p2, bA, bB).”

The proof involves the same type of differentiation of (more complicated) functions as the proof
of Proposition 5.
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3.3 Hierarchy

We now consider a hierarchical organization where the two services use different
codes but exploit the synergy by employing a fifth agent who provides translation.
When inter-service communication is needed, the translator steps in. For instance,
if salesmanA has two customers, he communicates to the translator the type of
the “extra” customer in the code used in serviceA. The translator will search for
x, and then he will transmit the information to engineerB in the code used in
serviceB.

Hiring a translator requires incurring a fixed costµ, but since the translator is
specialized in language, we assume that his diagnosis cost is lower than that of
the engineers. In particular, we assume here that this cost is zero. The qualitative
results of the analysis are valid if it is strictly positive, as long as it is lower than
the engineers’.

The following proposition describes the variation of the optimal organization
as a function ofλ. The constraint onp ensures that the integrated organization is
optimal for someλ.16

Proposition 6. For any b, if p is high enough, there exists an interval (µ∗∗, µ∗)
such for µ ∈ (µ∗∗, µ∗), there exist 1 ≤ λmin < λmax ≤ 1/D∗(0) such that the
unique optimal organization is

integrated if λ < λmin

hierarchical if λ ∈ (λmin, λmax)
separated if λ > λmax

Proof. See appendix A.

Figure 3 shows how the optimal organizational form varies as a function of the
synergy parameterp and the diagnosis cost parameterλ. Let us first consider the
choice between translation (i.e., hierarchy) and separation. Translation incurs a
fixed costµ and increased diagnosis costs, but makes inter-service communication
possible and thus allows the services to profit from the existing synergies. If the
diagnosis costλ is low, the extra cost due to translation is low and the net benefit
is likely to be high. Thus, translation is more likely to be preferred to separation
whenλ is low.

Translation allows the two services to keep efficient service-specific codes –
thus translation is likely to be preferred to integration when well adjusted codes
are more important, that is whenλ is large. Thus, as stated by the proposition,
if the fixed costµ of hiring a translator is low enough, forλ large enough the
hierarchical structure is preferred to integration.

16Proposition 6 holds without change for the extended version of the model, except for the fact
that it begins with “For anybA andbB , if p0p2 is high enough. . . ”.
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Figure 3: The choice between separation and integration with or without a hierar-
chy as a function ofp andλ, whenb = 0.4 andµ = 0.06.

3.4 Implications and Evidence

3.4.1 Code Variety and Communication under Bounded Rationality: A Tragedy
in the Desert

On April 14, 1994, two US Airforce F-15 fighters shot down two US Army Black-
hawk helicopters over the Iraq no-flight zone, killing everyone inside. As docu-
mented in the excellent book-length account of the circumstances of the tragedy
by Scott Snook (2000), the tragedy took place in broad daylight and involved
highly experienced and qualified crews on both sides, who, furthermore, were
monitored by a US Airforce AWACS (airborne warning and control system) fly-
ing above them.17 In thorough subsequent investigations, no individual was found
guilty; the tragedy was the result of grave organizational dysfunctions. This ac-
cident makes concrete some of the abstractions described above, common code,
communication costs. It illustrates the role and consequences of code commonal-
ity in large organizations, and thus the role played by codes in limiting organiza-
tional scope.

The cultures of the different services of the US armed forces, understood in the

17The few paragraphs that follow cannot make justice to the insightful and complex causal
chain that Snook establishes, and to the subtle discussion of the notion of causality in social sci-
ences. The reader is encouraged to read this fascinating book.
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broad sense of shared specific human capital (see Crémer, 1993), differ strongly.
Whenever all services must come together in a military operation, a common plan,
establishing the common set of rules and common code, is established. Opera-
tions Plan 91-7 described the rules governing Operation Provide Comfort (named
this way since the no-fly zones were established to protect the Kurds in the North
of Iraq and Shiites in the South). While this plan was quite detailed, it did not
succeed in completely shaping the actual practice of the service’s interactions. In
particular, communication was hindered by a wide range of misunderstandings
resulting from the incompatibility between the ‘code’ that governed Army opera-
tions with the code used by the Airforce. We illustrate this pattern with three key
instances. First, the word ‘aircraft’ in the order forbidding the entry by aircraft
into the No-Flight zone before the enemy radars were ‘sanitized’ by F-15s was
understood by the Air Force to include helicopters, but by Army pilots to exclude
helicopters (Snook, 2000:163). As a consequence, the Air Force pilots did not
expect any American helicopter to be present in the no-fly zone, while the Army
pilots did not think they were breaching the order. Furthermore, the AWACS crew
thought is was responsible for planes, but not helicopters (2000: 163). Second,
the two key acronyms concerning the no-fly zones, AOR (Area of Responsibil-
ity) and TAOR (Tactical Area of Responsibility) were understood differently by
Army and Air Force: ‘To the Army, AOR meant the area outside northern Iraq;
to the Air-Force, it meant just the opposite.’(Snook, p. 2000:157) These differ-
ent codes translated into crucially different interpretations concerning both the
‘where’ could aircraft be and the ‘when’ they could be there, and contributed to
the misperception of the two Blackhawks as enemy helicopters by the fighter pi-
lots. Third, the Air Force and the Army helicopters interpreted differently, for
a long period of time up to the accident, the rules governing the electronic ex-
changes used to identify other aircraft as friendly or foe (the so-called IFF system,
for ‘Identify Friend or Foe’). As a result, the Army helicopters answered the
Airforce pilots electronic query with the wrong code, and were identified as ene-
mies (Snook, p. 2000:157). The Air Force pilots saw US helicopters where (they
thought) they should not be, when they were not expected to be, using a wrong
frequency of IFF, and shot them down as enemies.

Even this skeletal description of the accidents make two points clear. First,
codes matter; absence of common codes greatly affects communication. Second,
it is costly to impose a common code among a wide range of different services,
given the limits on individual rationality. Taken together, these statements imply
that code commonality places a bound on organizational scope.
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3.4.2 Information Costs and Code Commonality: Evidence

In the past two decades, rapid advances in information and communication tech-
nology have caused a dramatic drop in the costs of information processing costs
which, in the context of our model, can be interpreted as a reduction of the diag-
nosis cost parameterλ. Indeed, retrieving information has become cheaper. This
is true for information contained in in-house databases and of the generally avail-
able information which can often be found on the World Wide Web. It is also the
case that obtaining information from other individuals has become cheaper, both
because of new means of communications, e-mail or SMS, and because older
methods, such as telephone calls, have become less expensive. Making sense of a
given message received from a third party, at least when this requires extra infor-
mation, has therefore become less expensive.

Our theory predicts that these changes should imply an increase in ‘integra-
tion’ in the form of links across and within firms, through the use of hierarchies
and common codes; moreover, within already integrated units, decreases in diag-
nosis costs reduce the ‘translation’ role of hierarchy, by facilitating ‘horizontal’
communication – the substitution of codes for hierarchies. In the rest of this sec-
tion, we discuss some informal empirical evidence that supports the theory.

First, the reduction in information costs is correlated with increasing code
commonality. Historically, the information generated by each business unit within
a firm and by each function within each business unit has been coded and processed
separately, according to the needs of that business unit or function; the different
pieces of information were often defined in different ways and could not be easily
aggregated.18 As information costs have dropped, companies have sought ways
to integrate this disperse information. In particular, this integration was obtained,
between and within firms, through tools such as Enterprise Resource Planning
(ERP) systems19 and, earlier, Electronic Data Exchanges (EDI),20. This programs
allow for the exchange of electronic data by standardizing the format of the data
exchanged. Through these systems, firms have substituted flexible ways to code

18For example the database company Oracle had 70 incompatible databases for its human-
resources department. This made it impossible to answer simple queries, such as how many
employees were working at any time at the company. “If anyone wanted to find out the exact
number of Oracle employees, it would take weeks of searching— and by the time the answer was
found, it would already be out of date.” (“Timely Technology,”The Economist, January 31, 2002.)

19See for instance the products offered by SAPhttp://sap.com or Baan
http://www.baan.com.

20We refer to EDI systems broadly, to include other related approaches such as CPFR ( “Col-
laborative Planning, Forecasting and Replenishment”) which involves deeper and more extensive
electronic information sharing and has been installed, for example, by Nabisco and used with
Webmans’ Food markets (“Enterprise System,” Financial Times, February 22, 1999); or web-
based integrated value chains, such as the one introduced by Safeway in the UK (“You’ll Never
Walk Alone,” The Economist, June 24, 1999).
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their data for more rigid but unified central databases.21

Second, the reduction in information costs induces greater decentralization.
Brynjolfsson and Hitt (2000) were the first to find evidence of this complemen-
tarity between IT and decentralization. Bresnahan, Brynjolfsson and Hitt (2002)
find, using firm-level data, that greater use of information technology is associ-
ated with broader job responsibilities for line workers, and more decentralized
decision-making. Caroli and Van Reenen (2001) also find, on entirely different
data, evidence that the degree of decentralization of authority is complementary
with the use of IT. Rajan and Wulf (2003), in a panel study of the hierarchical
structure of firms, find that the span of control of the CEO is increasing over
time, in particular, through the disappearance of the role of the COO. With more
employees under his direct authority, the CEO can exert less control: decision
making is more decentralized

Thus, the evidence does suggest that the drop in information costs led to (1)
increasing commonality of codes in organizations and (2) increasing decentraliza-
tion at the expense of hierarchy. This is not sufficient to show that these changes
are causally linked in the same way as our model describes, that is, that the in-
troduction of a common code allows for the substitution of the ‘translation’ role
of hierarchy by direct horizontal communication between business units that oth-
erwise would be ‘speaking a different language.’ Case study evidence, however,
supports our theory.

Robert J. Herbold22, Chief Operating Officer of Microsoft at the time, explains
that in 1994 Microsoft had a completely decentralized set of information systems
(Herbold (2000)). Each business unit used a different mapping of data to category:
in the terminology of this paper, they all used different, specific, codes. The man-
agers of the different units had chosen their own techniques of financial reporting,
adapted to their own circumstances. In Herbold’s words:

“Some would develop financial information systems tailored to
their particular needs. Others would analyze their financial perfor-
mance in a way meant to reflect the environment of their country of
operation. There was nothing seditious about this.”

Similarly, there was no way to have a coherent overall image of human resources
throughout the firm, with eighteen HR-related databases.

21In the words of a ‘noted American e-commerce expert’ cited by The Economist, ERP systems
have replaced “fragmented unit silos with more integrated, but nonetheless restrictive enterprise
silos”(“Timely Technology,”The Economist, January 31st, 2002).

22We rely heavily on Herbold personal account, in hisHarvard Business Review article. All
the quotes below are from his account.
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“When asked about head counts, managers answers usually were,
to put it charitably, poetic.”

The tailoring of the information to the specific needs of the different business units
compromised communications between them, as different measures needed to be
reconciled.

Taking advantage of the drop in information costs, Microsoft introduced ‘com-
mon codes’ in these two areas; now, according to Herbold, all managers could eas-
ily make sense of the information produced by any business unit. Paradoxically,
and as our model predicts, this centralizing move provided “benefits usually asso-
ciated with decentralization” as managers had easy access to relevant information
and could use it directly.

Even though the adoption of a common code appears to have been beneficial
to Microsoft, the German Country Manager refused initially to go along with the
common code, least his unit lost the unique fit of its own code to the German
problems. In the words of that country manager:

“We put years into the development of our own information sys-
tems because those systems uniquely capture the nuances of the Ger-
man Business. Those nuances are important.”23

Even if adoption of a common code is in the interest of the company it may not
be in the interest of all the agents who are involved. Within a firm, the “center”
can presumably impose a common code on the different business units. In some
cases, agents must decide independently whether to move to a common code.
In the next section, we study conflicts of interest in the choice of organizational
codes. They are particularly important when separate firms, necessarily involving
separate decision makers, are involved.24

4 Strategic Code Adoption

So far, we have assumed that all agents share the goal of maximizing social sur-
plus. In this section, we study the adoption of codes in the presence of conflicts
of interest.

23Obviously, these complaints only show that the center thought the codes were inefficiently
different while the country managers thought that the codes were just appropriately adapted to their
different environments. On the other hand, the center presumably cares both about coordination
between countries and the profits within each country, whereas the country managers care mostly
about local conditions. There is therefore at least some presumption that the center’s objective
function is better aligned with the interests of the firm as a whole.

24This is not to say such concerns are non-existent within firms. Herbold points out that a pre-
vious similar effort in Procter and Gamble failed when the CEO refused to overrule a recalcitrant
division manager who wanted to preserve the previous, non-integrated, systems.
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With complete contracts, agents with diverging objectives could agree to select
the surplus-maximizing code and, if necessary, make appropriate side payments.
However, it is reasonable to assume that code adoption is non-contractible, as
firms cannot sign contracts that commit them to adopting a particular code, for
several reasons. Outsiders cannot verify the actual code used in internal commu-
nications unless they are given, at prohibitive cost, full access to the firm: even if
a particular organization formally adopts a code that its members may not actually
use it. As a matter of fact, a common organizational dysfunction is for agents to
create shortcuts, codes that are suitable for their own, private, communications,
different from the official codes, with the result that miscommunications along
the chain of command are common.

In this section, we first examine sequential code adoption: two firms must in
turn choose a code, and we study the incentives for the firm that chooses first.
Knowing that its decision affects the decision of the other firm, what code will it
choose? We then analyze the consequences of free-riding for code adoption. We
start from a situation in which firms have different codes but can adopt a common
code, at some (fixed) cost. The presence of externalities may inhibit the adoption
of an efficient common code.

4.1 First-Mover Bias

As in section 3, there are two services,A andB with the distribution functions
F (x; b) andF (x;−b). However, these two services are now two separate firms:
salesmanA and engineerA belong to firmA while salesmanB and engineerB
belong to firmB. When salesmani has one customer, he communicates only with
his engineer. When he has two customers, he will offer the second to engineerj,
who accepts if he has not received a customer from her salesman — the profit
thus generated is allocated in proportionσ to the salesman’s firm and1− σ to the
engineer’s firm.25

Timing is sequential. First, firmA adopts a code. After observing this code,
firm B chooses its own, which can be either the same or different. Once the codes
have been chosen, customers arrive and the services behave as in the previous
section.

Becauseλ > 1, with separate codes, customers can only be served by the firm
they first approach, and each firm has profits

πS
i (p, b) = (1 − p)(1 − λD∗(b)),

as in section 3.
25This is equivalent to assuming that the salesman (the engineer) makes a take-it-or-leave-it

offer with probabilityσ (1 − σ).
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With the same code, firms can “trade” customers. Suppose firms adopt a com-
mon code with somex ∈ (0, 1). The expected diagnosis costs for engineerA
when he receives a client from salesmanA is s(x) (see equation 7); when he
receives a client from salesmanB it is

s̃ (x) = xF (x;−b) + (1 − x) (1 − F (x;−b))

= (1 − x) F (x; b) + x (1 − F (x; b)) = 1 − s(x)

It is also easy to see that the expected diagnosis costs for engineerB who receives
a client from salesmanA or salesmanB are also respectivelys (x) ands̃ (x). The
profit of firm A is




1 − λs (x) with probability1 − 2p + p(1 − p)
(1 − λs (x)) + σ (1 − λs (x)) with probabilityp2,
(1 − σ) (1 − λs̃ (x)) with probabilityp2,
0 with probabilityp(1 − p).

The first line corresponds to all these cases where firmA serves one of its own
customers and does not trade with the other firm: this happens when it has exactly
one customer, or when it has two customers and the other firm has at least one.
The second line corresponds to the case where firmA has two clients, one that
it services and one that is serviced by the other firm who has no customer. The
third line corresponds to the case where firmA serves a client from the other firm,
while the fourth line corresponds to the case where it serves no clients.

Similarly, the profit of firmB is



1 − λs̃ (x) with probability1 − 2p + p(1 − p)
(1 − λs̃ (x)) + σ (1 − λs̃ (x)) with probabilityp2,
(1 − σ) (1 − λs (x)) with probabilityp2,
0 with probabilityp(1 − p).

From the expressions above we can compute the expected profits of the firms
under a common code withx:

πC
A(p, b, σ | x) = 1 − p + p2 − λ

((
1 − p + σp2

)
s (x) + (1 − σ) p2s̃ (x)

)
;

πC
B(p, b, σ | x) = 1 − p + p2 − λ

((
1 − p + σp2

)
s̃ (x) + (1 − σ) p2s (x)

)
.

From the viewpoint of firmA, the best common code that will be accepted byB
is the solution of

max
x

πC
A(p, b, σ | x) (13)

subject toπC
B(p, b, σ | x) ≥ πS(p, b). (14)
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The term inx in πC
A is equal to a negative number multiplied by

(1 − p − σp2)s(x) + (1 − σ)p2(1 − s(x))

= (1 − σ)p2 + [1 − p + (1 − 2σ)p2]s(x). (15)

Becausep ≤ 1/2,

1 − p + (1 − 2σ)p2 ≥ 1 − p − p2 ≥ 0,

therefore the coefficient ofs(x) in (15) is positive. The reasoning of footnote 11
can be applied to show that the profit of the first mover is single peaked inx.

Similarly, πC
B is single peaked, and therefore the set ofxs that satisfy the con-

straint in problem 14 is an interval. FirmA will choose in this interval thex which
is the closest to its favorite code.

This proves the following proposition.26

Proposition 7. If there exists a joint code such that adopting this joint code is
Pareto-superior to using separate codes (in the sense that the profits of both firms
are greater), in equilibrium a joint code is adopted. However, this code is biased
to the benefit of the first-mover: it will be the code closest to its preferred codes
among all Pareto-superior codes.

Despite contractual incompleteness, firms do adopt a common code if and only
if it is efficient to do so. However, when a common code is adopted, it is skewed
towards the needs of the first mover.

The firm that chooses first takes only into account its expected profit. This
includes the cost of its internal communications and part of the cost of inter-firm
communication; but it does not take into account the cost of internal commu-
nication for the other firm. The first mover minimizes its communication cost
by selecting a code that fits the distribution of characteristics of its customers,
whereas the efficient code fits the “average” distribution of characteristics of the
customers of both firms. The ‘selfishness’ of the first-mover is limited only by the

26The same result holds true in the extended version of the model defined in Remark 1. We
have to distinguish between the functionssA and sB , and the functions̃sA and s̃B . We have
s̃i = 1 − si.

The term inx in the profit of firmi is equal to a negative number multiplied by

(p1 + p2)si(x) + p0p2(1 − σ)s̃i(x) − σp2p0(s̃j(x))
= (1 − p)(p0p2) + ((p1 + p2) − p0p2(1 − σ))si(x) + σp2p0sj(x).

Becausep0p2(1 − σ) < p2, the coefficient ofsi(x) is positive and this function is the sum of two
functions which satisfies the conditions described in footnote 11. It therefore also satisfies these
conditions. This proves the single peakedness of the profit functions, and the result.
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participation constraint of the follower: given that a common code is efficient, the
first mover must make sure that the follower has sufficient incentive to adopt the
common code.

4.2 Excessive code variety

With sequential adoption, a common code is adopted whenever it is efficient, how-
ever the code is biased in favor of the first mover. On the other hand, if changing
codes induce switching costs, a common code could not be adopted, even if it
could increase aggregate profits.

We will suppose that we start from a situation where firms have, for some
reason, each chosen their optimal separate codes, and assume that switching to
a different code induces a costc. The firms become aware of each other, and it
would be more efficient, in the sense of increasing aggregate profits, for one firm
to switch to the code of the other. Because switching codes is non-contractible,
and because it brings positive externalities to the other firm, there exist circum-
stances in which this switching does not take place.

To choose the case the most favorable to switching, we assume that the two
firms are symmetric. LetπS be the profit of any of the firms if it conserves its
optimal code (S stands for ‘separate’), andπJ be the profit of each firm if they
use the optimal common code (J stands for ‘joint’). Changing to the common
code increases aggregate profits if2πJ − 2c > 2πS; if this inequality holds, both
firms (asπJ − c > πS) will have incentives to change code and there exists an
equilibrium in which they do.

Let us now turn to the case where aggregate profits would increase if one of the
firm adopted the code of the other, but not when they both switched to the optimal
joint code. We callπA

A be the profits of firmA andπA
B the profits of firmB after

firm B has adopted the code of firmA;27 this is the case when

2πS > 2πJ − 2c (16)

and

2πS < πA
A + πA

B − c. (17)

As Proposition 8 states, these two inequalities are compatible with

πA
B − c < πS; (18)

under some circumstances: in equilibrium no firm would change code, even though
aggregate profits would be increased if they did.

27Because of the symmetry of the model, the analysis would be the same if firmA adopted the
code of firmB.
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Proposition 8. In the symmetric version of our model, in the presence of switching
costs, for λ small enough there exists an interval [c∗, c∗∗] such that for any c in this
interval, at equilibrium the two firms will keep separate codes when aggregate
profits would be increased if one firm switched to the code of the other.

Proof. Equations (16) and (17) are equivalent to

πJ − πS < c < πA
A + πA

B − 2πS.

If firm B adopts the code of firmA, firm A extracts the same profits from its
clients that it serves than under separate codes, and furthermore extracts some
profits from trading clients with firmB; thereforeπA

A > πS and

πA
A + πA

B − 2πS > πA
B − πS.

Equations (16), (17) and (18) are therefore equivalent to

max{πJ − πS, πA
B − πS} < c < πA

A + πA
B − 2πS,

or, because28 πA
B < πJ ,

πJ − πS < c < πA
A + πA

B − 2πS. (19)

The aggregate profits under the optimal joint code are greater than under any other
joint code only because of lower diagnostic costs. Hence, whenλ becomes small,
the difference betweenπA

A + πA
B − 2πS and2 × (πJ − πS) goes to zero, which

implies that the right hand side of (19) becomes strictly greater than the left hand
side; lettingc∗ be equal to the left hand side andc∗∗ to the right and side, we have
proved the result.

4.3 Evidence on Strategic Code Adoption:
The design of the B-2 Bomber

The adoption of a common code for the design of the B-2 bomber by four inde-
pendent firms provides some evidence of the ‘strategic’ aspects of the adoption
process discussed in the previous two subsections. It also provides further ev-
idence on the relationship between technology, code adoption and decentraliza-
tion.

28We haveπA
A + πA

B < 2πJ , andπA
A > πA

B , as when firmB adopts the code of firmA, firm A
uses its optimal code for a greater proportion of the clients its serves than firmB.
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The development of the B-2 bomber began in 1981.29 Advances in infor-
mation technology made it possible for Northrop, Boeing, Vaught (a division of
LTV) and General Electric, the four companies in charge of the design, to create
a centralized database to facilitate the design of the bomber. A key element of the
construction of that database was the ‘B-2 Product Definition System’, essentially
a common code, a “technical ‘grammar’ by which engineers and others conveyed
information to each other.”30 In this case, the adoption of a common code was
largely contractible, as it was embedded in software, although its use was still
individually, and not jointly, determined. As a result, the strategic considerations
analyzed above still played a role in the complicated process of adoption of a
common code.

First, Boeing and Vaught were unenthusiastic about the adoption of a com-
mon code; as a Boeing engineer explained: ‘we were developing our own system
CATIA [...] We knew we wouldn’t be using CATIA if we had to be compatible
with this huge, monolithic database’ (Argyres, 1999:166). In order to overcome
this resistance, the Air Force accepted to subsidize the training costs incurred by
Boeing and Vaught (Argyres, 1999: 166), presumably because a centralized code
was efficient. Both the contractibility and the presence of a central player with
ability to coerce the parties avoided the ‘excessive code variety’ of Proposition 8.
Second, in the spirit of Proposition 7 , the optimal code was biased towards the
needs of one of the parties, Northrop, whose system was adopted by all the parties
(Argyres, 1999: 167).

The development of the B-2 was the ‘first major aerospace program to rely on
a single engineering database to coordinate the activities of the major subcontrac-
tors on a large-scale design and development project’ (Argyres, 1999:163). The
use of this database had two consequences. First, designers from different com-
panies could participate jointly in the design. In previous projects, the difficulty
of cross-company communication had meant all designers, with the exception of
those of the motors (which are a relatively stand-alone component requiring little
coordination) had belonged to the same firm.31 Thus, the existence of a common
code allowed integration of several teams were before there was none possible,
an effect illuminated by section 3.2. Moreover, this integration reduced the hi-

29The account that follows draws heavily on a detailed cased study by Ar-
gyres (1999). For background information on the B-2 and links to other
sources of information, see the site of the Federation of American Scientists:
http://www.fas.org/nuke/guide/usa/bomber/b-2.htm.

30“This grammar was established through a highly-developed and highly standardized data
formation and modeling procedures of the system, which laid down well-defined rules for com-
municating complex information inherent in the part design” (Argyres, 1999: 171). These rules
included tight definition of 14 part families and “agreed upon modeling rules for defining lines,
arcs, surfaces etc.” (Argyres 1999:169).

31Argyres, personal communication to the authors.
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erarchical coordination, since among the main consequences of the creation of a
relatively rigid, unifying codes was an increase in decentralized decision making:
“the technical grammar defined by the B-2 systems established a social convention
which limited the need for a single hierarchical authority.”(Argyres 1999: 173).
This is consistent with our description of the substitution of hierarchies by codes
in 3.3.

5 Related literature and conclusions

There are substantial and growing literatures on codes and on the consequences
for organizational forms of the limits imposed by bounded rationality on the com-
munication capabilities of agents. We begin this concluding section by reviewing
these literatures and explaining their relationships to this paper, and end by a dis-
cussion of some directions for future research.

First, an area outside of economics, information theory (Shannon, 1948) stud-
ies optimal codes. However, because the questions posed are very different, so
is the analysis. In particular, information theory is concerned with issues such as:
representing the messages with sequences of binary digits (bits) that are as short
as possible, what is the mean length of a message?; what is the capacity of differ-
ent types of channels? what is the error in decoding, and what does it depend on?;
can one design a code that allows as close to perfect communication as possible
even in a noisy channel? In general, the theory assumes that the sender must trans-
mit all of the information, and chooses the code that minimizes transmission cost.
In our setting, which is concerned with the organizational implications of agents’
bounded rationality, the transmission cost is given, but the sender is prevented
from transmitting all the information. The optimal code maximizes the value of
information transmitted. Moreover, we also study code adoptions by agents who
can independently consider their own individual costs and benefits in adopting a
code – this is obviously also out of the realm of information theory.

The idea that there is a trade-off between generality and specialization of
codes, explored for instance in sections 2 and 3 was already informally explored in
Arrow’s celebratedThe limits of organization (1974), where, after discussing the
endogenous development of codes within organizations, he identifies the trade-off
between general codes that allow for wide communication and specialized codes
tailored to the needs of particular organizations.

Other antecedents of our work include Crémer (1993), who presents a bounded
rationality analysis of corporate culture. He argues that ‘corporate culture is the
stock of knowledge shared by members of the corporation, but not by the general
population from which they are drawn’, and suggests that this knowledge stock is
formed by three pieces: a shared knowledge of facts, a common code, and a shared
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knowledge of rules of behavior. He then goes on to study, within a team theoretic
framework, the benefits of shared knowledge.32 In the same context, Prat (2002)
explores the connection between the optimal extent of information homogeneity
within a team and the kind of complementarities that exist among different team
members. However, neither of these two papers examine the design of codes or
their consequences for the design of organizations. Battigalli and Maggi (2002)
construct a sophisticated model of language, which they then use to develop a the-
ory of contract incompleteness. Their language is a code with the purpose of legal
verification which is built by combining primitive sentences and logical connec-
tives (AND, OR, NOT, etc...). A contract uses the available language to partition
the set of events and associate it to the parties’ obligations. Like Battigalli and
Maggi’s we take into explicit account the cost of using language to partition the
set of events. However, our focus on organizations is radically different from
their focus on contracts.33 Like us, Wernerfelt (2003) considers codes that mini-
mize communication costs within an organization, but with a different focus. In
his model, agents have common interests but decisions are decentralized, and he
studies the existence of symmetric or asymmetric equilibria with one or multiple
codes. His analysis does illuminate the existence of equilibria with different codes
when a common codes would be optimal, but does not extend to organizational
implications or to the strategic aspects of the choice of codes. Finally, Dewatripont
and Tirole (2003)’s study of communication emphasizes the strategic interactions
between the communication efforts made by different agents, not the language
they use.

Building on Marschak and Radner’s (1972)team theory a number of authors
have studied how the limits on communications imposed by affect organizational
structure. Cŕemer (1980) studies the optimal allocation of tasks into divisions,
whereas other authors have been more interested in developing a theory of hier-
archies. Radner (1993) and others (see Van Zandt, 1999 for a survey) stress the
limited computation capacity of agents. Closer to our work is Bolton and Dewa-
tripont (1994), who consider a more general communication cost structure; this
leads to a theory which builds on the trade-off between communication costs and
returns to specialization. In Garicano (2000), the bounded rationality of agents
prevents them from learning the solution to all the problems potentially faced by
the organization, but they can request help from other agents when they do not
know how to solve one of them. He shows that the firm will organize itself in a

32Chowdhry and Garmaise (2004) build on this work by studying organizational capital and
corporate culture in a dynamic model of learning in the firm and analyze the consequences of such
capital for financial magnitudes.

33Similarly in their focus on contracting and not in organization, Chatterji and Filipovich
(2004) describe a language as a partition of the set of possible histories of the game generated
by contracts and study the effect of language ambiguity on judicial interpretation.
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knowledge hierarchy, in which agents closer to the production floor deal with the
most common problems while higher rank agents deal with less frequent prob-
lems.

Thus, to the best of our knowledge, none of the previous literature studies the
relationship between the organizational code and the organizational choices of the
firm. Focusing on this relationship has allowed us to build a theory that tightly
links an important component of bounded rationality to the theory of hierarchies,
to the span of control of managers, to the strategic advantage that first movers
have in the design of projects. Furthermore, we have obtained some testable hy-
potheses from the model that seem in accordance with the evidence uncovered
by economists concerning decentralization and information technology; we have
shown that the causal mechanism we propose is consistent with the evidence in
some detailed case studies of decentralization and organization.

Specifically, our analysis illuminates at least three sets of issues absent from
the literature. First, and at an immediately applied level, it provides an explicit
link between centralized communication and code commonality. In particular, we
have shown that codes and hierarchy are likely to be substitutes; that is, for a given
firm scope, increasing code commonality will reduce the reliance on hierarchies.
Second, more generally, we have provided a simple way to analyze and formalize
an elusive idea, the idea of a code, and shown how this formalization could be
used to study organization issues. Third, we have characterized some of the main
strategic issues that are likely to bias code adoption.

Also, understanding the loss in precision imposed by the need for common
codes offers a fresh, bounded-rationality based, perspective on organizational
boundaries. Modern theories of the firm scope have emphasized the role played
by different allocations of asset ownership in providing incentives to agents (e.g.
Hart and Moore 1986). Our theory suggest that, if allowing agents to efficiently
communicate with one another requires establishing a common code, then agents’
bounded rationality limits the scope of the firm.34 By including broader, more
diverse business inside a common code, communication within each service de-
teriorates. Thus, the organization should group related services or products and
segregate unrelated ones, since the latter cause larger decreases in the efficiency
of communication with smaller gains in synergies.35

34In fact, the original Coase (1937) paper on the firm’s boundaries emphasized the importance
of organization costs in setting a limit on firm size, and argued that a reason these organization
costs exist is the limiteds on the manager’s resources. Building on that insight, Oliver Williamson
(1967) starts a tradition, which we discuss in the conclusions, of modeling the source and effects
of managerial bounded rationality on firm scope. That literature, however, does not allow to
consider the possibility of transacting ‘outside’ the organization and limits its attention to inside
the hierarchy interactions.

35This logic provides one way to understand discussions in the business press of the need to

29



Our analysis suggests several interesting avenues for new research. First, our
model yields testable hypotheses, and the availability of large databases of busi-
ness texts and their ease of access may allow for a study of the commonality of
the language used across different services of different firms or across different
firms in an industry. Beyond testing the relation between integration of codes and
characteristics of the environment, such research would allow for a direct test our
hypothesis on the ‘centralized information, decentralized decision-making’– the
substitution of codes for hierarchies. In particular, one should observe more ‘de-
layering’ (less hierarchy) and more horizontal communication as codes become
more common.

Second, on a theoretical level, our analysis can be used to provide some struc-
ture to the concept of ‘hard’ and ‘soft’ information, which is increasingly used
in the contracting literature (see Aghion and Tirole, 1997; Stein, 2002). These
concepts can be given a precise meaning in our model. A word within a code is
hard information; it can easily be passed far down the chain of command or in
space. The exact meaning of the word, that is clarifying which of the possible
events within it are referred to, is soft information – that is, it is not very costly
to eventually figure out this meaning in one to one communication, as one can
continue talking until the other party understands, but is very costly to do so when
communication is long distance or along a chain of command.

Third, also on a theoretical level, it would be interesting to explore code adop-
tion in a dynamic setting. We conjecture that there exists a U-shaped relationship
between the persistence of the environment in which the organization operates
and the persistence of the code that the organization uses. Codes are stable over
time if the environment is either very immobile (a specialized code needs not be
modified) or it is highly unpredictable (a constant non-specialized code is the best
solution).

A final promising research avenue concerns the interaction between organiza-
tional codes and labor market dynamics. A worker who learns an organizational
code acquires organization-specific human capital. How portable is such capital
between organizations? In turn, how does portability affect equilibrium wages and
job turnover? Finally, how does the optimal code policy change once the organi-
zation realizes that the code it adopts affects the career prospects of its employees
and, therefore, its hiring success? Anecdotal evidence suggests that organizations
choose very different policies. Some, like Southwest Airlines, strive to imbue
their employees with a strong corporate culture that set them apart from the rest
of the industry. Other organizations (like university departments and research cen-
ters) have an incentive structure that puts a large premium on code portability (to
publish, one must communicate with the rest of the profession not just with di-

‘focus on the core business,’ outsource the ‘non-core’ assets, etc.
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rect colleagues). Still, others create a distinctive code even though they have high
employee turnover (like McKinsey), possibly because they are exploiting a recog-
nized first-mover advantage: their employees are highly valued on the market
exactly because they have acquired that particular code.
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Appendix A
Proof of Proposition 6.

We present the proof for the extended version of the model described in Re-
mark 1, because, although the two proofs are very similar, this might not be clear
when the reader is faced with the proof of the simple case.

In a hierarchy, engineerA will receive with probabilityp1 +p2 a client coming
from salesmanA and with probabilityp0p2 a client coming from salesmanB.
Therefore, the distribution of the characteristicsx of the customers that engineerA
serves isF (x; b′A) ,where

b′A =
p1 + p2

p1 + p2 + p0p2

bA +
p0p2

p1 + p2 + p0p2

bB.

The language which minimizes the diagnosis cost of engineerA is the same lan-
guage that would be used in the case of one service working in isolation facing
the distributionF (x; b′A), and the corresponding expected diagnosis cost per cus-
tomer isD∗(b′A). Because he serves a customer with probabilityp1 + p2 + p0p2,
the profits generated by engineerA are therefore

(p1 + p2 + p0p2) (1 − λD∗(b′A).

A similar reasoning holds for engineerB and the profits from the hierarchical
firm are therefore

ΠT = 2(p1 + p2 + p0p2)(1 − λ
D∗(b′A) + D∗(b′B)

2
) − µ,

which must be compared to

ΠI = 2(p1 + p2 + p0p2)

(
1 − λD∗

(
bA + bB

2

))
, (10)

and

ΠS = 2(p1 + p2)

(
1 − λ

D∗(bA) + D∗(bB)

2

)
. (11)

Becauseb′A + b′B = (bA + bB)/2, the concavity ofD∗ implies

D∗
(

bA + bB

2

)
>

D∗(b′A) + D∗(b′B)

2
, (A.1)

and furthermore, becauseb′A andb′B both belong to(bA, bB)

D∗(b′A) + D∗(b′B)

2
>

D∗(bA) + D∗(bB)

2
. (A.2)
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Notice thatΠI = ΠS for

λ∗ =
p0p2

(p1 + p2 + p0p2)D∗ (
bA+bB

2

) − (p1 + p2)
D∗(bA)+D∗(bB)

2

.

We first show that under the hypotheses of the proposition,λ∗ belongs to[
1, 2/D∗ (

bA+bB

2

)]
. Notice first that, by concavity ofD∗, the denominator ofλ∗ is

smaller thanp0p2D
∗ ((bA + bB)/2), which establishes the upper bound.

To show thatλ∗ > 1, let Dmin = D∗(1) =
(
44 − 7

√
7
)
/54 be the minimum

value ofD∗. BecauseD∗(b) ≤ 1/2 for all b, if

p0p2 ≥ 1 − 2Dmin > 0.06

(thep0p2 large enough of the proposition), the denominator ofλ∗ is smaller than
or equal to

p1 + p2 + p0p2

2
− (p1 + p2)D

min = (p1 + p2)

(
1

2
− Dmin

)
+

p0p2

2

< p0p2

andλ∗ is greater than1.
We solve forµ the equationΠT = ΠI to obtain

µ∗ = 2λ(1 − p + p2)(1/2 − D∗(b′)).

Fixing µ = µ∗, the three functions ofλ, ΠT , ΠI andΠS are represented on
figure A.1; they are equal forλ = λ∗. The relative slopes of the functions are
consequences of the fact that

(p1 + p2 + p0p2)D
∗
(

bA + bB

2

)

> (p1 + p2 + p0p2)
D∗(b′A) + D∗(b′B)

2
(by (A.1))

> (p1 + p2)
D∗(bA) + D∗(bB)

2
. (by (A.2)).

A decrease inµ shifts the graph ofΠT upswards, and forµ smaller thanµ∗ but
large enough that there exists values ofλ such the three organizational forms can
be optimal (this determines theµ∗∗ of the proposition), the comparative statics of
the proposition hold.
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Figure A.1: This figure illustrates the proof in Appendix 6. The line
markedΠT (µ∗) is the graph ofΠT as a function ofλ whenµ = µ∗; the line
markedΠT (µ) shows the graph ofΠT with a smallerµ.
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Appendix B
Extension of propositions 1 and 2
to the ‘Natural Ordering’ case

Suppose that there is a continuum of events withX = [0, 1]. The frequency of
events is described by a continuous and differentiable, but possibly non-monotonic,
probability densityf on [0, 1]. Words are constrained to be intervals. Writing
t0 = 0 andtK = 1 a code is therefore a partition36 {[tk−1, tk]}k=1,K .

The best K-words code is solution of

min
t

K∑
k=1

(F (tk) − F (tk−1)) (tk − tk−1)

subject to
tk−1 ≤ tk for k = 1, . . . , K.

As in the text, the familiarity of a word,[tk, tk+1], is the probabilityF [tk+1] −
F [tk] that the word is used; its breadth,tk+1 − tk, is the ‘number of events’ in
the word. Finally, the average frequency’ of the events in the word is the average
density of these events,

φk =
F (tk+1) − F (tk)

tk+1 − tk
.

Then the following proposition contains the results equivalent to propositions
1 and 2 for the case where events are naturally ordered.

Proposition B.1 (Natural order). When words must contain contiguous events, the
following two properties hold in an optimal code:

1. For two contiguous words, the broader word is used less often .

2. For two contiguous words, the broader word describes events which have a
lower average frequency.

We begin by proving the following lemma.

Lemma B.1. In the optimal code tk−1 < tk for all k = 1, . . . , K.

36As the text is written,tk belongs to two words. To avoid this, words should be described
by semi-open intervals, at the cost of heavier notation. It should be obvious to the reader that the
results are not affected.
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Proof. Assume for instance that we hadt0 < t1 = t2 = t < t3. Increaset2 by a
smallx. The diagnosis cost increases byλ multiplied by

(F (t + x) − F (t))x + (F (t3) − F (t + x))(t3 − t − x).

The derivative of this expression with respect tox for x = 0 is equal to

−f(t)(t3 − t) − (F (t3) − F (t)) < 0,

which proves the result.

We can know prove the proposition.

Proof of proposition B.1. The first-order conditions are

F (tk) − F (tk−1) + f(tk) (tk − tk−1) = F (tk+1) − F (tk) + f(tk) (tk+1 − tk) ,

which imply

f(tk) =
[F (tk+1) − F (tk)] − [F (tk) − F (tk−1)]

(tk − tk−1) − (tk+1 − tk)
(B.1)

The numerator is the difference between the familiarities of contiguous words,
while the denominator is the opposite of the difference between their breadths.
Thus, optimality requires that the differences between breadth and familiarity of
contiguous words have opposite signs, as part 1 of the proposition states.

To prove the second statement, rewrite (B.1) as

f(tk) =
φk+1 (tk+1 − tk) − φk (tk − tk−1)

(tk − tk−1) − (tk+1 − tk)

Thusφk+1 − φk and(tk+1 − tk) − (tk − tk−1) must be of opposite sign: that is,
events in the broader word have a lower average frequency.
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