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Abstract

We consider auction environments where bidders must incur a cost to learn their
valuations. The seller chooses a mechanism which indicates for each period, as
a function of the bids in previous periods, which new potential buyers should be
asked to bid; it must also induce buyers both to acquire and to reveal truthfully
their valuations. We prove a very general “full extraction of the surplus” result: the
seller can obtain the same profit as if he had full control over the buyers’ acquisi-
tion of information and could have observed directly their valuations once they are
informed. We also present appealing implementations of the optimal mechanism
in special cases.



1 Introduction

A basic assumption in nearly all of the auction literature is that the potential buy-
ers have private information about their willingness to pay and that they use this
information strategically. In reality, however, buyers may need to incur a cost to
discover how much they value the object that is up for sale. For instance, when gov-
ernments sells spectrum, telecommunication companies must expend resources to
find out how much they value this spectrum, especially if they are going to use
it for new services for which the underlying technologies are not yet fully devel-
oped. Likewise, potential buyers of the assets of a bankrupt firm must evaluate the
potential synergies with their existing assets.

In this paper we study the design of optimal selling mechanisms when poten-
tial buyers do not know their valuation for the good for sale at the outset but can
learn this valuation at a cost. If the seller could perfectly control the acquisition
of information by the buyers, and could furthermore learn the buyers’ valuations
at the same time they do, the problem would reduce to an Operations Research
(OR) search problem. The solution to this OR problem (the first-best search pro-
cedure) specifies for each period, contingent on the valuations that have already
been learned, the set of buyers who should acquire information, as well as a rule
for stopping the search. Special cases of this problem have been treated in the op-
timal search literature (e.g., Weitzman (1979) in the case of sequential search and
Vishwanath (1992) in the case of parallel search).

The seller’s problem differs from the OR search problem in that the buyers
may wish to avoid the cost of information acquisition and bid without knowing
their actual valuations; moreover, once they are informed, the buyers may wish to
misreport their valuations to the seller. Our main result is a “full extraction of the
surplus” result, that holds irrespective of whether the buyers’ types are independent
or not. We show that the seller can construct a selling mechanism that induces
buyers to acquire and reveal information about their valuations such that the seller
does just as well as if he fully controlled the buyers’ acquisition of information and
directly learned their valuations at the same time as they do. The economic problem
then reduces to the OR search problem mentioned above. Because the buyers and
the seller are equally uninformed at the outset, it is not surprising that the seller can
fully extract the buyers’ rent by requiring them, before they acquire information,
to commit to pay a fixed fee equal to their expected rent from participation (the
fee can be paid either up front or at the time the buyer actually makes a bid). It
is less obvious however that the first-best search procedure can be implemented,
since buyers may not have the proper incentive to acquire information and reveal
it truthfully. Adding to the complexity is the fact that little is known about the
specific formula of first-best search procedures especially since the sequence at
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which search is conducted may be stochastic (i.e., history-dependent).
We show that a generalization of the basic ideas of the Groves mechanism,

whereby the seller promises each buyer a payment equal to the aggregate dis-
counted expected surplus of the other buyers following his actions, completely
overcomes the buyers’ incentive problems. There are a number of complications
in our dynamic setup. First, buyers do not know their values in advance: they must
be induced to acquire information before announcing their values. Second, truth
telling is not a dominant strategy. Third, buyers who enter the mechanism in later
periods already have some information about the values of the buyers who entered
the mechanism in earlier periods. In particular, this may create a situation whereby
a buyer knows that some buyer ahead of him in the sequence has misreported his
values and the mechanism is off-the-equilibrium-path. We therefore need extra as-
sumptions to ensure that this is never the case (see Theorem 1 and Remark 3 on
page 16).

Before proving our general results, we study some special cases where there
exist optimal mechanisms with appealing properties. For instance, if the first-best
search procedure is strictly sequential (only one buyer acquires information at a
time), then the seller can implement it with a sequence of second price auctions
with buyer- and period-specific reserve prices (Proposition 1). If in addition buyers
havei.i.d. values and the same search costs, then the first-best search procedure can
be implemented with a sequence of take-it-or-leave-it offers, followed by a second-
price auction that is held if all buyers but the last have rejected their respective
offers (Proposition 2).

There is already a sizeable literature that studies auctions with endogenous
entry and information acquisition.1 This literature however considers one-shot
auctions to which it appends a preliminary stage in which potential bidders can
simultaneously and independently decide whether or not to enter and/or acquire in-
formation at a cost. Our paper differs from this literature in that it characterizes the
optimal selling mechanism when the number of buyers who enter the mechanism
and the timing at which they enter is an integral part of the mechanism design.
In particular, optimal mechanisms will in general be multistage in the sense that
buyers will enter the mechanism sequentially and will participate in a sequence
of auctions rather than in a one-shot auction.2 As far as we know, only Burguet

1See, for instance, Chakraborty and Kosmopoulou (2001), Engelbrecht-Wiggans (1993), Levin
and Smith (1994), Matthews(1984), McAfee and McMillan (1987), Persico (2000), Stegeman
(1996), Tan (1992), Ye (2001), and Klemperer (1999) for a survey.

2This is one of the dimensions in which our paper differs from Bergemann and Pesendorfer (2001)
and Bergemann and V¨alimäki (2002). Bergemann and Pesendorfer (2001) consider a (one shot) opti-
mal auction problem in which the seller can choose the accuracy by which bidders (costlessly) learn
their valuations prior to the auction. Bergemann and V¨alimäki (2002) consider a (one shot) general
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(1996) has studied optimal mechanisms in a setting similar to ours, but in the spe-
cial case where the agents’ valuations (sellers’ costs in his procurement model) are
i.i.d. and where search must be sequential: only one agent can enter the auction
at any period. We consider much more general settings.3 McAfee and McMillan
(1988) and Cr´emer, Spiegel, and Zheng (2003) consider related models but with
interim rather than ex ante participation constraints.

The paper is organized as follows. After introducing some notation and proving
some preliminary results in Section 2, we discuss in Section 3 optimal mechanisms
in special cases where they have nice interpretable properties. We develop our most
general results in Sections 4 and 5: In Section 4, we present a mechanism that
implements the first-best search procedure and show that the mechanism induces
truth telling. In Section 5 we show that this mechanism provides buyers with proper
incentives to acquire information. We conclude in Section 6.

2 The model and preliminary analysis

We begin the section by introducing our assumptions concerning the seller and the
buyers. We then introduce the notions ofsearch procedureandmechanism: in a
search procedure, the seller directly learns the buyers’ valuations at the same time
as they do, whereas in a mechanism the seller must induce the buyers to reveal their
valuations once they privately learn this information. Our main results proved in
subsequent sections will show that the seller can do as well with a mechanism as
with a search procedure. We then present some preliminary results.

2.1 Utilities and information acquisition

The seller is selling a single good, for which, for simplicity, he has zero value.
There is a finite setI of potential buyers, or brieflybuyers. The time horizon con-
sists of discrete periods. Ex ante, a buyeri’s utility from consuming the good,
which we will call his value, is uncertain. This value,vi for buyer i, is drawn
from a measurable setVi, with a strictly positive density on that set, but its exact
realization is unknown to the buyer or to the seller until the buyer acquires informa-
tion. For our most general results, thevis need not be independent from each other.
When a buyer acquires information he perfectly learns his value.4 It is common

mechanism design problem in which agents can acquire costly information of varying qualities be-
fore participating in the mechanism. In both cases though, the acquisition of information is done
simultaneously by all agents before they participate.

3We discuss the differences between Burguet’s framework and ours further in Section 3.3.
4Adding more notation, our model and results can be extended to situations where a buyer cannot

acquire information until a certain time and information acquisition may take several periods.
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knowledge that the cost that buyeri bears when acquiring information isci ≥ 0.
Buyers cannot consume the good without acquiring information. This implies

that in an optimal search procedure, there is no point in bypassing the information
acquisition steps before selling the good to a buyer. Moreover, we assume that the
seller can control the buyers’ access to information and can prevent buyers from
acquiring information prematurely before he asks them to do so. For the moment
we will also assume that the acquisition of information iscontractible: each buyer
must acquire information when the seller asks him to do so and only then. In
Section 5 however we show that the mechanism that we construct in Section 4 also
provides buyers with proper incentives to acquire information. A buyer is said to
beuninformedbefore he acquires information, andinformedafterwards.

The payoffs of the seller and every buyer are of the quasi-linear form standard
in mechanism design, which implies that they are risk neutral. In any periodt, the
discount factor for the payoff available in the next period isδt ∈ (0, 1], identical for
everyone. In order to simplify notation, we will assume, contrary to the convention
in the search literature, that when a buyer acquires information in a given period,
he can consume the good in that same period.

2.2 Search procedures

A search procedure provides instructions on which buyers should acquire infor-
mation in which period and who gets the good, based on the values of those who
have already acquired information.5 To avoid triviality, we assume that the optimal
search is such that at least one buyer acquires information in period1 and until the
procedure stops, at least one buyer acquires information in every period.6 Given
this assumption, a search procedure takes the following form. In period1, a setI1
of buyers acquire information. Letv1 be the information profile at the end of pe-
riod 1 which specifies the values of buyers inI1 and assigns the value∅ for buyers
who are not inIt. For instance, ifI1 = {1, 2, 3} andv1 = 2, v2 = 0, andv3 = 6,
thenv1 = (2, 0, 6, ∅, . . . , ∅). Contingent onv1, the search either ends and the
buyer with the highest known value gets the good, or the search continues to pe-
riod 2. For anyt ≥ 2, let vt−1 be the information profile at the end of periodt− 1.
Givenvt−1, a setIt(vt−1) of previously uninformed buyers acquire information
in periodt andvt is obtained fromvt−1 by replacing the∅ corresponding to the

5It is helpful to think about a search procedure as the analog of “allocation” in a traditional
mechanism design framework in which agents know their values at the outset. Like an allocation, a
search procedure is a function of realized values. (Whether these values are thruthfully revealed or
not is an issue that will be dealt with later when we define our mechanism).

6As long as the mechanism does not stop, it is never suboptimal for at least one buyer to get
information and, ifδt < 1 for all t, then this is strictly optimal.

4



buyers inIt(vt−1) by their true values. For instance, in the context of our previous
example, ifI2(v1) = {4, 6}, v4 = 7 andv6 = 3, thenv2 = (2, 0, 6, 7, ∅, 3, . . . , ∅).
Contingent onvt, the search either ends or continues to periodt+ 1. If the search
procedure ends, the seller gives the good to one of the buyers. A formal definition
of search procedures appears in Appendix D.

A search procedure is said to befirst-bestor equivalentlyoptimal if it maxi-
mizes the expected present discounted value of the social surplus among all search
procedures provided that all buyers are obedient and honest. Given our assump-
tions, it is trivial to show that there exists an optimal search procedure such that
the good is given to the informed buyer with the highest value (for a proof, see Ap-
pendix D). Since a buyer needs to acquire information anyway before consuming,
the seller has no reason to give the good to an uninformed buyer: asking the buyer
to acquire information before giving him the good can only benefit the seller by
allowing him to make a more efficient decision.

2.3 Mechanisms

When the information acquired by the buyers is private, the seller chooses a mech-
anism intended to elicit this information from the buyers. In this paper we restrict
attention to eitherauction mechanismsor to revelation mechanisms. Both types
of mechanisms are designed to implement the first-best search procedure and ex-
tract the full surplus from each buyer.7 That is, they are designed to generate the
first-best procedure on equilibrium path. Therefore, in both types of mechanisms
buyers are asked to acquire information in the same sequence as in the first-best
search procedure. Until Section 5 we assume that information acquisition is con-
tractible and hence do not need to worry about the buyers’ incentives to acquire
information when they are asked to do so. In Section 5 we will prove that the
mechanism that we construct in Section 4 for the general case also provides buyers
with proper incentives to acquire information. In auction mechanisms, informed
buyers are asked to submit bids above reserve prices that are chosen by the seller.
Given these bids, the mechanism either stops and the good is allocated to the high-
est bidder or it continues and additional buyers are asked to acquire information.
In revelation mechanisms, informed buyers are asked to publicly announce their
values as soon as they become informed and each announcement is associated with
a probability of receiving the good and a transfer. To both types of mechanisms we
addadmission feesthat each buyer commits to at the beginning of period1, before

7We do not prove that the types of mechanisms that we consider are the only ones that implement
the first-best: there could be other types of mechanisms that will also do that.
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any buyer has acquired information, to pay the seller.8

2.4 Extracting the buyers’ surplus: the efficiency principle

The seller can charge each buyeri an admission fee,Ti, equal to the expected
payoff that buyeriwill obtain from participating in the mechanism. The admission
fee,Ti, can be increased up to the point where the individual rationality constraint
of buyer i is just binding. Since buyers have no private information ex ante, the
admission fees fully extract the expected surplus from each buyer. We refer to this
fact as theefficiency principle.

Lemma 1 (The efficiency principle) For any mechanism, there exists a mecha-
nism that yields the same outcome and gives each buyer zero ex ante surplus.

Lemma 1 implies that we only need to find a mechanism that implements the
optimal search procedure. If such a mechanism exists, the seller will be able to ex-
tract all the surplus and obtain a payoff equal to the entire social surplus generated
by the optimal search. Put differently, since the seller can use the admission fees
as a way to extract surplus from the buyers, the role of the mechanism is to ensure
a first-best search. Such a search maximizes the social surplus which the seller can
fully capture.

It should be emphasized that the buyers do not have to actually pay the ad-
mission fees up front. The seller only needs to require each buyer to commit ex
ante, to pay, when the buyer is invited to acquire information, a fee that is equal
in expectation to the buyer’s surplus from participation. For instance, suppose that
the discount factor is constant over time so thatδt = δ for all t and letqi be the
probability that buyeri is invited to acquire information. Then, instead of paying
Ti up front, buyeri can commit ex ante to payTi

δt−1qi
in period t if he is invited

to acquire information in that period. Such a payment scheme yields the same ex-
pected payoff to the seller and each of the buyers as in the case where all buyers
pay admission fees up front. Fundamentally, Lemma 1 is only a consequence of
the fact that we require the participation constraints to hold ex ante.9

8The timing of the payment is not important: what is important is that each buyer commits to
make the payment before any buyer has acquired information. We elaborate on this point in the next
section.

9In Crémer, Spiegel, and Zheng (2003), we study the consequences of interim participation con-
straints: once they acquire information, the buyers can refuse to participate in the mechanism. (For
the consistency of the model, we need to interpretci differently than in the present paper. This rein-
terpretation would apply, for instance, if the cost was borne by the seller, but this is a sufficient, not
a necessary, condition.)
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3 Sequential search with independent values

In this section and the next, we assume that buyers’ values are independently (but
not necessarily identically) distributed: the distribution of buyeri’s value,Fi, is
smooth (to rule out ties) and independent acrossi, with supportVi = [0, v̄] for all
i.

In this section only, we make two further assumptions. First, the discount factor
is constant over time so thatδt = δ for all t. Second, the optimal search proce-
dure is sequential in the sense that only one buyer can acquire information in each
period. Vishwanath (1992) shows that this must be the case if the discount factor
is close enough to1, or if the cost of information acquisition is sufficiently high.
Institutional or physical constraints could also forbid two buyers from acquiring
information at the same time.

The first-best sequential search procedure in the independent values case has
characterized by Weitzman (1979). We will first show that this procedure can be
implemented by a mechanism with an attractive economic interpretation and will
then specialize the problem to the case where the buyers’ values are identically
distributed.

3.1 The optimal search procedure

We begin by reviewing briefly Weitzman’s characterization of the optimal search
procedure. To this end, suppose that before the seller faces buyeri, he already has
the opportunity to sell the good to someone else at a pricek. The seller’s expected
discounted payoff if he asks buyeri to acquire information is

Si(k) = δ

[∫ k

0
kdFi(vi) +

∫ v

k
vidFi(vi) − ci

]
. (1)

This expression reflects the fact that if buyeri’s value,vi, falls short ofk, then the
good is sold at pricek but if vi exceedsk then the good is sold at pricevi. The
seller benefits from asking buyeri to acquire information in periodt if and only if
this improves his expected payoff, i.e.,Si(k) > k. Therefore, the equation

Si(ki) = ki, (2)

implicitly defineski as thecutoff such that the seller will ask buyeri to become
informed only ifki ≥ k. It is worth noting thatki depends only on the distribution
of vi and on the costci but is independent of the distributions of other buyers’
values and their costs of acquiring information. To avoid triviality we assume that
ki ≥ 0 for all i ∈ I.
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The optimal search procedure takes the following simple form. In any pe-
riod t = 1, 2, ..., n, if the highest value among all informed buyers is greater than
or equal to the cutoffs of all uninformed buyers, the procedure stops and the good
is sold to the informed buyer with the highest value. Otherwise, the procedure con-
tinues and the seller asks the buyer with the highest cutoff among all uninformed
buyers to acquire information in periodt + 1. If all buyers become informed, the
good is sold to the buyer with the highest value.

3.2 An optimal mechanism

By the efficiency principle, it is sufficient to show that Weitzman’s optimal search
procedure can be implemented. TheWeitzman auctionsmechanism which we
present below does this. In Section 3.2.1, we present a general description of the
mechanism; in Section 3.2.2, we define precisely the reserve prices that must be
used in the auctions that are held at each stage of the mechanism; in Section 3.2.3
we formally state the main result of this section, Proposition 1.

3.2.1 The mechanism

The seller begins by labelling the buyers in a descending order of cutoffs, so that
k1 ≥ . . . ≥ kN , and charges the buyers the appropriate admission fees that extract
all their expected surplus from participating in the mechanism.

In period1, buyer1 is instructed to acquire information about his value. The
seller then makes buyer1 a take-it-or-leave offer at a pricep11, which we will define
below; if the offer is accepted, the mechanism stops. Otherwise, the mechanism
continues to period2.10

If the mechanism reaches periodt = 2, . . . , N −1, then buyert is instructed to
acquire information. Once buyert becomes informed, buyers1 to t participate in
a second-price auction with period- and buyer-specific reserve prices: the reserve
price assigned to buyeri in periodt is pti. The mechanism stops if at least one buyer
submits aneligible bid, i.e., bids a price above his reserve price. If only buyeri
submits an eligible bid, he obtains the good and payspti. If several buyers submit
eligible bids, then the highest bidder obtains the good and pays the maximum of
his reserve price and the highest losing eligible bid. If no buyer submits an eligible
bid, the mechanism continues to periodt+ 1.11

10The take-it-or-leave-it offer in period1 can be interpreted as a second-price auction with a single
buyer and a reserve pricep1

1.
11If two or more buyers submit the same high bid, the good is allocated to one of them with equal

probability. Note that when the buyers’ values are drawn from continous distributions that have no
mass points, ties are zero probability events on the equilibrium path.
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If the mechanism reaches the final periodN , then, after the last buyer, buyerN ,
becomes informed, the seller holds a second price auction without reserve prices
that includes allN buyers.

If a buyer chooses to submit an eligible bid in any period, then the mechanism
stops for sure (either buyeri or another buyer who submits a higher eligible bid
wins). Hence, the situation is similar to a (one-shot) second price auction and it is
therefore a dominant strategy for bidderi to bid his true value. However, unlike
usual one-shot second price auctions, here only a subset of the potential buyers
is informed in any periodt < N and can bid. Therefore, informed buyers may
be tempted to end the mechanism “too early” in order to avoid having to compete
against a larger number of informed buyers in later periods. The period- and buyer-
specific reserve prices must be low enough to counteract this incentive. On the
other hand, if the reserve prices are too high, informed buyers will refrain from
submitting eligible bids in the hope that the mechanism will proceed, in which case
they may have a another chance to win the good for a lower price. Consequently,
the period- and buyer-specific reserve prices must ensure that all informed buyers
will submit eligible bids in periodt if and only of their respective values are equal
to or above the cutoffkt+1. This ensures that the mechanism will implement the
outcome of the first-best search procedure whereby search stops at periodt if and
only if the highest known value in that period exceeds the cutoffkt+1. In the next
subsection (which the reader can skip without any loss of continuity) we derive the
appropriate reserve prices.

3.2.2 Computing the reserve prices

We construct reserve prices such that ifvi = kt+1 for some buyeri ≤ t, then
this buyer is indifferent between biddingvi in periodt or waiting for periodt+ 1
to bid. We show in Appendix A that, because the bidders’ payoffs are monotone
increasing in their values, buyeri will bid in period t if and only if vi ≥ kt+1.

Formally, for any periodt and any buyeri ≤ t, let vt−i be the maximum of the
values of all buyers who are informed in periodt excluding buyeri. On the equi-
librium path, buyeri knows in periodt > 1 that the values of thet− 1 buyers who
became informed in periods1 throught−1 must be less thankt, otherwise at least
one of these other buyers would have submitted an eligible bid in periodt− 1 and
the mechanism would not have reached periodt. Therefore, fromi’s viewpoint,
the cumulative distribution ofvt−i conditional onvt−i being less thankt is

Ht
−i(v

t
−i) =


F t
−i(v

t
−i)

F t−1
−i (kt)

, if i �= t,

F t
−t(v

t
−t)

F t−1(kt)
, if i = t,
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where

F t(vt) =
∏

1≤j≤t
Fj(vj), and F t−i(v

t
−i) =

∏
1≤j≤t
j �=i

Fj(vj).

This expression reflects the fact that each buyeri �= t facest− 2 informed buyers
whose values are known to be belowkt and one informed buyer, buyert, whose
value could take any value in the interval[0, v] (buyert did not participate earlier
so nothing is known about his value), while buyert facest−1 buyers whose values
are known to be belowkt.

Let us begin by computingpN−1
i , the reserve price for buyeri in periodN −1.

Since in equilibrium all other informed buyers submit eligible bids in periodN −1
if and only if their values exceedkN , buyeriwith vi = kN can win in periodN−1
only if all other informed buyers do not submit eligible bids. In other words, buyer
i with vi = kN can win in periodN −1 only if vN−1

−i < kN (the values of all other
informed bidders are below his own). Since buyeri is the sole bidder whenever he
wins, he ends up paying his reserve pricepN−1

i . Hence, his expected payoff is(
kN − pN−1

i

)
FN−1
−i (kN ).

On the other hand, if buyeri waits for periodN , he wins the auction held in period
N only if the values of all other bidders, including bidderN , are lower than his own
value. On the equilibrium path, all informed buyers other thani submit eligible
bids in periodN −1 if and only of their values exceed the cutoffkN , implying that
the mechanism proceeds to periodN with probabilityFN−1

−i (kN ). Hence, buyer
i’s discounted expected payoff from waiting for periodN is

δFN−1
−i (kN )

∫ kN

0

(
kN − vN−i

)
dHN

−i(v
N
−i).

Therefore the reserve pricepN−1
i must satisfy(

kN − pN−1
i

)
FN−1
−i (kN ) = δFN−1

−i (kN )
∫ kN

0

(
kN − vN−i

)
dHN

−i(v
N
−i),

which, by definition ofHN
−i(·), is equivalent to(

kN − pN−1
i

)
FN−1
−i (kN ) = δ

∫ kN

0

(
kN − vN−i

)
dFN−i(v

N
−i). (3)

For t ≤ N − 2, we obtain(
kt+1 − pti

)
F t−i(kt+1) = δ

(
kt+1 − pt+1

i

)
F t+1
−i (kt+2) (4)

+δ
∫ kt+1

kt+2

(
kt+1 − vt+1

−i
)
dF t+1

−i (vt+1
−i ).
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The left-hand side is similar to that of (3); it is derived from the expected payoff of
buyeri if he submits an eligible bid in periodt. The right-hand side has a different
form, because of the presence of the reserve price in periodt + 1: buyer i will
paypt+1

i if vt+1
−i < kt+2, hence the first term on the right-hand side of (4); he will

pay vt+1
−i if vt+1

−i > kt+2, hence the second term which resembles the right-hand
side of (3). Here again, the reserve prices in any periodt < N − 1 are chosen
to counteract the informed buyers’ temptation to end the mechanism “too early”
and thereby avoid competition from a larger number of informed buyers in later
periods.

3.2.3 The main result

Having derived the needed reserve prices we can now state the main result in this
section. The proof of Proposition 1 appears in Appendix A.

Proposition 1 In the sequential search model with independent values, the Weitz-
man auctions mechanism with reserve prices defined by (3) and (4) has a perfect
Bayesian equilibrium that extracts the full surplus. The reserve prices for any given
periodt < N are set below the cutoffkt+1 associated with searching for one more
period.

As argued above, the reserve prices ensure that all buyers will submit eligible
bids in periodt if and only if their respective values are equal to or above the cutoff
kt+1. Since in every periodt < N , some buyers are still uninformed and hence
cannot place bids, the reserve prices represent the future competitive pressure from
these potential buyers. This pressure eliminates the incentives of informed buyers
to bid “too early.”

It may be worthwhile to point out that Proposition 1 does not depend crucially
on the fact that only one buyer obtains information in every period. The result
can be extended to any search procedure in which the set of buyers who acquire
information in any period is independent of the past history of the procedure. For
instance, a procedure with this property would have buyers1 to 3, say, observe
their values in period1. If the procedure continue to a second period, then the
exact number and identity of the buyers who will be asked to acquire information
period2 will be independent ofv1, v2 andv3.12

12A preliminary version of this paper with the computations of the reserve prices for this case is
available from the authors.
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3.3 An optimal mechanism when buyers are ex ante identical

When buyers havei.i.d. values and identical search costs, Eq. (1) and (2) imply that
the cutoffs in the optimal search procedure are the same for all buyers. Therefore,
the optimal search procedure functions as follows: Eq. (2) determines a common
cutoff valuek̄. Buyers are then examined in turn. The optimal search procedure
stops as soon asvi ≥ k̄ for somei < N . If the procedure continues all the way to
the last period, the good is allocated to the buyer with the highest value.

When we translate this into a mechanism, we see that if a buyer does not submit
an eligible bid in the period in which he has acquired information, then he will not
bid again until the last period. Therefore in every periodt < N , the seller losses
nothing by allowing only buyert, who has just acquired information, to place an
eligible bid: the mechanism is effectively equivalent to a series of take-it-or-leave-
it offers, such that in periodi < N , buyeri who has just acquired information is
offered the good at pricepi. If all buyersi < N reject their respective offers, the
seller holds in periodN (after the last buyer acquires information) a second price
auction without reserve prices. The take-it-or-leave-it offers are chosen such that
buyeri < N will accepts the offer if and only ifvi ≥ k̄.

We state this formally in the following proposition. The formal proof is pro-
vided in Appendix B.

Proposition 2 Suppose that the buyers’ values are i.i.d. and the cost of acquiring
information is the same for all buyers. Then, there is a sequence of take-it-or-
leave-it offers followed by a second-price auction held in periodN such that the
associated mechanism extracts the full surplus. The prices at which the good is
offered are decreasing int.

The fact that the reserve prices are decreasing has a straightforward economic
explanation. For a given value, a late buyer with valuek̄ who refuses to buy the
good has a greater probability to have a second chance of acquiring it in the second
price auction held at the final round than does an early buyer with the same value.
Therefore, to induce this late buyer to accept the offer, we need to offer him a lower
price.

Burguet (1996) studies a model similar in many ways to ours. In his model, a
firm looks for a long-term supplier. Potential suppliers differ in their costs, which
Burguet assumes arei.i.d.. As in our model, suppliers do not know their costs
ex-ante; contrary to what happens in our model, they learn their respective costs
by supplying the product once. Similarly to this section, Burguet assumes that the
search for the lowest cost supplier is strictly sequential in the sense that there can be
only one supplier at any given period. He constructs two procurement mechanisms
that implement the first-best search procedure. There are two important differences
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between his setup and ours. First, the “good” in Burguet’s model is a long-term
contract; while the search is conducted, the tenure shortens and hence the value of
the “good” to the supplier decreases. Second, the cost of information acquisition
is the cost of producing for one period. In terms of our model, this is equivalent to
assuming that the costci of information acquisition is negatively correlated with the
valuevi of the good. This implies that the optimal search procedure does not satisfy
the constant reservation price property, and that it is not possible to implement the
first-best procedure through a sequence of take-it-or-leave-it offers.

4 Implementing the first-best in the general case

In general, neither sequential nor simultaneous search is optimal. In any period, it
may be optimal for several buyers to acquire information, and the set of buyers that
should become informed may depend on the information acquired so far. Hence
the first-best search is in general a stochastic procedure with parallel search.13 In
this section, we show that the first-best search procedure can be implemented with
a revelation mechanism.

The revelation mechanism must satisfy incentive compatibility and individual
rationality constraints: there must be an equilibrium of the mechanism in which
all buyers announce their true values, and their expected payoffs from participation
must all be nonnegative. This formulation assumes that the buyers observe previous
announcements before announcing their own values.

Assumption 1 Any profile(vi)i∈I , withvi ∈ Vi for all i ∈ I, occurs with a positive
prior probability (if types are discrete) or a positive density (if types are continu-
ous).

Assumption 1 holds trivially when the buyers’ values are independent. When
buyers’ values are correlated, this assumption ensures that there are no cases in
which a buyer may find himself in a situation where he knows for sure that some
of the buyers who have announced their values before him has lied. To illustrate,
suppose that ifv1 = 3 then it is impossible thatv2 = 7. Now if v2 = 7 and buyer
2 hears buyer1 reportingv1 = 3, then buyer2 knows that buyer1 has lied about
his value. This means that it would be impossible to ensure that buyer2 would
report his value truthfully given that buyer2 already knows that we are now off-
the-equilibrium path. In other words, we show in the next theorem that there exists
a Bayesian Nash equilibrium in which all buyers make truthful reports. We do so
by showing that given buyeri’s hypothesis that all buyers who already reported

13In Appendix D we prove that a first-best search procedure exists.
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their values were truthful and given his hypothesis that all future buyers will also
be truthful, buyeri will have an incentive to also be truthful. Assumption 1 rules
out the possibility of events that can contradict buyeri’s hypotheses. In Remark 3
below we will show that Assumption 1 can be replaced with a weaker assumption.

Theorem 1 Given Assumption 1, there exists an incentive feasible mechanism that
implements any first-best search procedure.

Proof: Consider a first-best search procedure and recall that whenever this pro-
cedure stops, the good is allocated to the informed buyer with the highest known
value. We build upon the first-best search procedure the following direct reve-
lation mechanism. If the mechanism reaches periodt, the seller asks the buy-
ers i ∈ It(v̂t−1) to acquire information, wherêvt−1 is the profile of values that
were announced in previous periods.14 Once buyers in the setIt(v̂t−1) become
informed, each of them is asked to independently announce his value and these
announcements are made public. Given his reportv̂i, buyer i is committed to a
payment scheme which we will specify shortly. The setIt is defined as in the first-
best search procedure for allt and the seller acts as if all informed buyers have
announced their true values, i.e., as ifv̂t−1 = vt−1. In equilibrium, all informed
buyers will indeed announce their true values.

Once the mechanism stops, the good is allocated to the informed buyer whose
announced value was highest. The winner then pays the search costs incurred by
all buyers who acquired information after he did while all the losing buyers pay a
similar amount minus the announced value of the winner. In addition, each buyer
pays an admission fee equal to his expected payoff from participation.

This mechanism implements the first-best search procedure if all informed buy-
ers announce their values truthfully. We use the recursion hypothesis that all buy-
ers have announced their true values in all previous periods, and prove that buyers
in It(v̂t−1) will do the same.

To this end, consider any first-best search procedure, and letqi(s, v̂i | v̂t−1, vi)
denote the probability that buyeri who acquires information in periodt gets the
good in periods ≥ t if his announced value in periodt is v̂i, given that the profile
of values that were announced up to and including periodt − 1 isv̂t−1 and given
that his own true value isvi. In addition, letZ−it(v̂i | v̂t−1, vi) be the aggregate
discounted expected utility that all buyers buti derive from consuming the good
if buyer i’s announcement in periodt is v̂i, and letC−it(v̂i | v̂t−1, vi) be the
associated aggregate discounted cost that all buyers buti incur when they acquiring

14Whent = 1 there is no profile of previously observed values, sov0 = (∅, ∅, . . . , ∅).

14



information in periodt and all subsequent periods.15 Let us also define

δtt := 1, δs+1
t := δstδs, s = t, t+ 1, . . . , N.

Then, the discounted expected utility of buyeri when he announces in periodt
that his value iŝvi is

vi

∞∑
s=t

δstqi(s, v̂i | v̂t−1, vi) + Z−it(v̂i | v̂t−1, vi) −C−it(v̂i | v̂t−1, vi) − ci. (5)

This expression is equal to the expected surplus that the seller would get in the
first-best search procedure givenvt−1 by deciding to follow from periodt onward
the policy that he would have followed had buyeri’s value been̂vi instead ofvi.
By revealed preferences, this expression is maximized atv̂i = vi. That is, buyeŕı’s
optimal strategy is to announce his true value. Note that Assumption 1 is crucial
for the revealed preferences argument: if Assumption 1 fails, then it is possible that
vt−1 is incompatible withvi in which case buyeri realizes that at least one buyer
has already misreported his value before periodt, and he need not maximize his
expected value by making a truthful report. �

Several remarks about Theorem 1 are now in order.

Remark 1: The mechanism that we constructed in the proof of Theorem 1 is a
Groves-like mechanism. The idea is to structure the payment of each informed
buyer in such a way that the buyer’s problem coincides with the seller’s problem
in the first-best search problem. Each buyer then wishes to make a truthful report
in order to allow the seller to maximize the surplus. Note however from eq. (5)
that a buyer’s expected utility does depend on his belief about the values of future
buyers who are yet uninformed. Hence, truth telling is not a dominant strategy
equilibrium. While this mechanism is efficient, it obviously does a poor job in
extracting the buyers’ surplus ex post. In fact, each one of the buyers who do
not get the good receives a payment equal to the value of the buyer who does
get the good (minus the cost of search incurred by all other buyers who acquired
information either at the same time or after). However, given that the mechanism
implements the first-best search procedure, the efficiency principle ensures that the
seller obtains a payoff equal to the entire increase in social surplus generated by
the optimal search.

Remark 2: The proof of Theorem 1 does not depend on the assumption that buyers
learn their values as soon as they spend the costci. Hence, the result can be easily

15The probabilityqi(s, v̂i | v̂t−1, vi), as well as the expressionsZ−it(v̂i | v̂t−1, vi) andC−it(v̂i |
v̂t−1, vi) are well-defined. See Appendix D for details.
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generalized to the case where it takes more than one period for buyers to discover
their values or if this time would differ across different buyers.16

Remark 3: The role of Assumption 1 is to ensure that no bidder knows that the
game has gone off the equilibrium path. We could weaken this assumption by
making the following assumption instead:

Assumption 1’ If buyer i belongs to the setIt of buyers who are invited to enter
the mechanism at periodt and his realized value isvi, and if (I1, ..., It−1) is the
sequence of buyers who were invited to enter in previous periods, then there exists
a profilevt−1 of realized values of these earlier entrants such that(vt−1; vi) has a
positive probability (with discrete types) or positive density (with continuous types)
and the first-best search procedure givenvt−1 asks buyers inIt to enter in period
t.

Roughly speaking, Assumption 1’ ensures that a buyer cannot infer only on
the basis of his place in the sequence that some other buyer ahead of him in the
sequence must have lied. Given this assumption, consider the following modified
mechanism: the seller does not make the bidders’ announcements public, so when
a buyer is called upon to acquire information and announce his type he only knows
his place in the sequence but not the announcements of previous buyers. If the
seller hears a series of announcements that are obviously false (the vector of an-
nounced values is not feasible), he penalizes heavily all buyers who have already
made announcements. Otherwise, the payments are exactly as before. With this
modification, the expected discounted payoff of each buyeri is the expectation of
the expression in Eq. (5), conditional on the fact that the buyer is called in pe-
riod t. Given the modified expected payoffs, no buyer would have an incentive to
lie about his value if he believes that the others buyers are truthful. By lying, a
buyer could not induce other buyers to lie since the announcement are not made
public and since Assumption 1’ ensures that buyers cannot be sure that others must
have lied just on the basis of their place in the sequence. Furthermore, given As-
sumption 1’, a lying buyer faces a positive probability of inducing an infeasible
vector of announcements in which case he is heavily penalized.

Remark 4: As noted above, Assumption 1 always holds if buyers’ values are
stochastically independent. Hence, in the independent values case, it is always
possible to find a mechanism that implements the first-best search procedure. In
this mechanism, buyeri need not wait until the good is allocated to some buyer

16This is also true for Theorem 2.

16



before making (or receiving) payments. To see why, note that if the buyers’ values
are stochastically independent then

Z−it(v̂i | v̂t−1, vi) = Z−it(v̂i | v̂t−1), ∀i ∈ I,

and

C−it(v̂i | v̂t−1, vi) = C−it(v̂i | v̂t−1), ∀i ∈ I.

That is, the aggregate discounted expected utility that all buyers buti derive from
consuming the good and the associated aggregate discounted cost of information
acquisition that all buyers buti incur in periodt and onward, depend only on buyer
i’s announcement but not on buyeri’s true value. Hence, the seller can charge each
buyer the amountC−it(v̂i | v̂t−1, vi)−Z−it(v̂i | v̂t−1, vi) as soon as buyerimakes
his announcement. With this payment, buyeri’s expected payoff will be as in Eq.
(5) and buyeri will have an incentive to announce his true value.

Remark 5: In the independent values case, the probability that buyeri who ac-
quires information in periodt gets the good in periods ≥ t if his announced value
in periodt is v̂i, is

qi(s, v̂i | v̂t−1, vi) = qi(s, v̂i | v̂t−1), ∀i ∈ I.

That is, this probability depends only on buyeri announcement but not on his true
value. Since in equilibrium all buyers announce their true values, the discounted
probability that buyeri will get the good when the buyer learns in periodt that is
value isvi is therefore

Qit(vi | vt−1) =
∞∑
s=t

δstqi(s, vi | vt−1).

Since the mechanism implements the first-best search procedure,Qit(vi | vt−1)
is also the discounted probability that buyeri gets the good in the first-best search
procedure when he learns in periodt that his value isvi and given that the vector
of values of all buyers who have learned their values up to and including periodt
is vt−1.

It is possible to show the following proposition (see Appendix C for a proof):

Proposition 3 Qit(vi | vt−1) is (weakly) monotone increasing invi for any t =
1, 2, ... and any informed buyer i.
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This proposition has an important consequence for the type of mechanism that
can be implemented. The payment of buyeri can then take the form∫ v′i

vmin
i

∂Qit(z | vt−1)
∂z

zdz,

wherevmin
i is the minimumvi in Vi andv′i is his announcement.17 Indeed, when

his type isvi, buyeri chooses his announcementv′i so as to maximize

viQit(v′i | vt−1) −
∫ v′i

vmin
i

∂Qit(z | vt−1)
∂z

zdz

= viQit(vi | vt−1) −
∫ vi

vmin
i

∂Qit(z | vt−1)
∂z

zdz

+
∫ v′i

vi

(vi − z)
∂Qit(z | vt−1)

∂z
dz

WhenQit is monotone, truth-telling maximizes buyeri’s utility.

Remark 6: Unlike the independent values case, when the buyers’ values are not
independent, the discounted probability that buyeri would get the good in an opti-
mal search procedure need not be increasing with his value. To see that, consider a
model with two ex ante identical buyers,1 and2. Suppose that the discount factor
is 1 and the cost of acquiring information isc ∈ [1, 2]. The buyers’ values,v1 and
v2, can take 3 possible values:1, 3, and10 and their joint distribution is as follows:

v2
1 3 10

1 0.28 0.01 0.01
v1 3 0.01 0.18 0.16

10 0.01 0.16 0.18

For instance,Pr(v1 = 3, v2 = 10) = 0.16. In an optimal search procedure, at least
one buyer, say buyer1, should acquire information in period1, since his expected
value is

0.3 × 1 + 0.35 × 3 + 0.35 × 10 = 4.85,

while the cost of acquiring information is at most2. If it turns out thatv1 = 10,
then obviously the mechanism should stop and buyer1 should get the good. If it

17This implicitly assumes thatVi is an interval. Only technical details of no importance change if
it is not.
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turns out thatv1 = 1, then buyer2’s expected value, conditional onv1 = 1, is

0.28
0.3

× 1 +
0.01
0.3

× 3 +
0.01
0.3

× 10 ≈ 1.37.

Sincec ≥ 1, it is again optimal to stop the mechanism and give the good to buyer
1. But, if it turns out thatv1 = 3, then buyer2’s expected value, conditional on
v1 = 3, is

0.01
0.35

× 1 +
0.18
0.35

× 3 +
0.16
0.35

× 10 = 6.2.

Sincec ≤ 2, it is efficient to ask buyer2 to also acquire information rather than
give the good immediately to buyer1. The good is then allocated to the buyer
with the highest value (in case of a tie the good is given to one of the buyers at
random). Hence, in an optimal search procedure, buyer1 gets the good for sure if
v1 ∈ {1, 10}, but if v1 = 3, he gets it for sure only whenv2 = 1 and with some
probability whenv2 = 3, but does not get it at all whenv2 = 10.

5 The incentive to acquire information

Thus far we assumed that information acquisition by each buyer iscontractible.
That is, a court can verify whether a buyer has failed to acquire information when
being asked by the seller and can impose a large penalty on the buyer in this cases.
In this section we will show that this assumption is not needed: the mechanism
that we constructed in Section 4 provides buyers with proper incentives to acquire
information.18

In general, when information acquisition is not contractible, buyers might ben-
efit from staying uninformed until they actually win the good (in which case they
must, by assumption, acquire information before consuming the good). Being un-
informed means that the buyers may not get the good when they should or get it
when they should not. Nonetheless, buyers may benefit from staying uninformed
since then they can save the cost of information acquisition in all the cases in which
they fail to win the good.19 In the next theorem we show however that the mech-
anism that we constructed in Section 4 solves this incentive problem. Intuitively,

18We continue to assume however that the seller can prevent buyers from acquiring information
before they agree to participate in the mechanism. What we show then is that it is not necessary to
also assume that the seller can force buyers to acquire information once they agree to participate and
are instructed to learn their values. The problem that we consider in this section differs therefore from
that in the literature on precontractual information acquisition in mechanism design (see Cr´emer and
Khalil (1992), Crémer, Khalil and Rochet (1998a,b), and Lewis and Sappington (1997)) where an
agent may learn his type before accepting the principal’s contract.

19This consideration, which arises due to the fact that the seller faces multiple potential buyers, is
completely absent in the literature on precontractual information acquisition mentioned above which
considered single agent models.
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the transfers in this mechanism are designed such that the expected payoff of each
buyer coincides with the seller’s expected surplus. Since the seller has an incentive
to acquire information in the optimal search procedure, so will each of the buyers.

Theorem 2 The revelation mechanism characterized in Section 4 provides each
buyer with proper incentives to acquire information.

Proof: We prove that the “obedient” strategy, acquiring information and reporting
it truthfully, is a perfect Bayesian Nash equilibrium of the game generated by the
mechanism. In order to do so, we adapt the proof of Theorem 1 to the problem
of information acquisition. To this end, letF (v |̂vt−1) be the joint probability
distribution of the values of all buyers (informed and uninformed) conditional on
the information profile at the end of periodt− 1: F (v |̂vt−1) is the best estimate
of buyers’ values as of the end of periodt− 1.

Consider buyeri who is asked by the seller to acquire information in periodt.
Given the mechanism that was constructed in Theorem 1, the discounted expected
utility of buyer i if he does not acquire information in periodt and makes the report
v̂i is

Ui =
∫
V

[
(vi − ci)

∞∑
s=t

δstqi(s, v̂i | v̂t−1, vi)

+Z−it(v̂i | v̂t−1, vi) − C−it(v̂i | v̂t−1, vi)
]
dF (v |v̂t−1),

whereV := ×i∈IVi is the set of all possible profiles (states of nature), and the func-
tionsZ−it andC−it have been defined in the proof of Theorem 1. Indeed, when
buyeri gets the good, he needs to spend the costci before consuming it. Buyeri
gets the good in periods with probability

∫
V qi(s, v̂i | v̂t−1, vi)dF (v |v̂t−1). The

rest of the expression shows his expected transfers from the seller.
The report̂vi by buyeri generates a search procedure which is a feasible so-

lution of the search problem. The expected surplus associated with this solution
is exactly equal toUi. Because this solution is (at least weakly) dominated by the
optimal search procedure, and since the optimal search procedure generates a sur-
plus to the seller equals to the utility of buyeri if he follows the obedient strategy,
Ui is smaller than the utility of the buyer if he follows that strategy. Hence, the
obedient strategy is a perfect Bayesian Nash equilibrium of the game induced by
the mechanism. �

6 Conclusion

This paper has identified optimal selling mechanisms when buyers do not know
their values at the outset and must incur a cost in order to learn these values. Unlike
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most of the literature on auctions with endogenous entry which assumes that all
interested bidders acquire information simultaneously before the auction begins,
we made the decision on who will acquire information and at what stage an integral
part of the seller’s problem. We showed that it is possible to construct a mechanism
that leads to a full extraction of surplus: under this mechanism, the seller does as
well as if he could have fully controlled the buyers’ acquisition of information
and learned their values at the same time as they do. Furthermore, our proofs
are constructive, in the sense that they show how to build the optimal mechanism
once the optimal search procedure (that specifies who should acquire information
in which period and who gets the good, based on the information that has already
been acquired) has been identified. In some special cases in which the optimal
search procedure is known, we have identified explicitly an optimal mechanism.
In more general cases, the properties of the optimal search procedure may not yet
be known (the optimal search could be parallel and may depend on the history of
the search up to that point). However, we wish to stress that computing the optimal
search procedure is a problem for Operations Research specialists, not economists.
Our paper focuses on the incentive issues that arise due to the fact that buyers may
wish avoid the cost of information acquisition and remain uninformed about their
values, and may wish to misreport their private information once they do acquire
information. Our main result is that once the operations research problem is solved,
it is possible to implement the optimal search procedure with an incentive feasible
mechanism.

Our results could be generalized in a number of dimensions. For instance,
we have assumed that the cost of information acquisition had to be incurred be-
fore consumption can take place. This implies that there is no need to consider
the possibility of selling the good to an uninformed buyer. The theory would go
through basically unchanged if we allowed for sale to an uninformed buyer. We
have also assumed that the buyers’ participation constraints are ex ante: buyers
agree to participate before they become informed. If we replace this constraint by
interim participation constraints, then while it is still true that the mechanism that
was constructed in Theorem 1 will implement the first-best search procedure, this
mechanism will no longer enable the seller to extract the full surplus from each
buyer. In Crémer, Spiegel, and Zheng (2003), we characterized the seller’s optimal
mechanisms in that case20 and show that it is seller-optimal to find a winner of
the good via a search procedure that maximizes the expected value of the virtual
utility of the trade. Hence, the seller-optimal search procedure is usually socially
inefficient and will involve too few participants, too long search conditional on the
same set of participants, and inefficient sequence of entry.

20See the caveat at the end of footnote 9.
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Appendices

A Proof of Proposition 1

To prove the proposition, we begin with the following lemma:

Lemma A.1 The reserve prices defined by Eq. (3) and (4) satisfypti < kt+1 for all
i < N and all t = i, . . . ,N − 1.

Proof: ConsiderpN−1
i first. The right-hand side of Eq. (3) is positive sincekN >

0. HencepN−1
i < kN . In general, ifpt+1

i < kt+2 (∀t = i + 1, . . . , N − 1), then
pt+1
i < kt+1 sincekt+2 ≤ kt+1; hence the right-hand side of Eq. (4) is positive,

implying thatpti < kt+1. The lemma therefore follows by induction. �

It now suffices to prove the following claim for allt = 1, . . . , N .

Claim A.1 The strategy profile defined below constitutes a perfect Bayesian equi-
librium in the continuation game of the Weitzman auctions starting from periodt:
In every periodt < N , every informed buyeri submits an eligible bid if and only if
vi ≥ kt+1 and, if he does submit an eligible bid, his bid is equal tovi; in the final
periodN , every buyer bids his true value.

In every periodt, Lemma A.1implies that a buyer’s minimum eligible bid is
below the cutoffkt+1. Thus, the strategy profile described above is well-defined.
Our task is to prove that the profile constitutes an equilibrium.

If the mechanism reaches the final periodN then we have a simple second-
price auction with private values. Hence it is a dominant strategy for each buyer to
submit a bid equal to his value. Thus, the claim is true for periodN . For future
reference, let us calculate a buyeri’s expected payoff at the beginning of periodN ,
given his valuevi:

BN
i (vi) =

∫ vi

0

(
vi − vN−i

)
dHN

−i(v
N
−i), (A.1)

whereHN
−i(v

N
−i) :=

FN
−i(v

N
−i)

FN−1
−i (kN )

is the cumulative distribution function ofvN−i con-

ditional on it being less thankN (otherwise at least one of the buyers would have

22



submitted an eligible bid before periodN in which case the mechanism would not
have reached periodN ).

For anyt = 1, . . . , N−1, assume that the claim is true for all periodst′ > t; we
shall complete the proof by demonstrating the claim for periodt. Hence consider
periodt, when the buyers1, . . . , t are already informed. If any of them submits an
eligible bid in this period, then the good is sold via a second-price auction and the
mechanism ends. Thus, if an informed buyer contemplates submitting an eligible
bid in periodt, his problem is essentially equivalent to a bidder’s problem in a
second-price auction with bidder-specific reserve prices; hence it is a dominant
strategy for this buyer to bid his true value .

The remaining question for a buyer in periodt is whether to submit an eligible
bid or not, given theequilibrium hypothesisthat other buyers are truthful. Pick any
such buyeri. If buyer i submits an eligible bid, then he bids his true valuevi, as
previously observed. Whenvi ≥ kt+1, buyeri wins if either no one else submits
an eligible bid (kt+1 > vt−i by the equilibrium hypothesis) or the highest eligible
bid from other buyers is below his bidvi (kt+1 ≤ vt−i < vi by the equilibrium
hypothesis). In the first case, buyeri payspti, and in the second case he paysvt−i.
Therefore, buyeri’s expected payoff if he submits an eligible bid in periodt is:

Bt
i (vi) =


∫ kt+1

0

[
vi − pti

]
dHt

−i(v
t
−i)

+
∫ vi

kt+1

[
vi − vt−i

]
dHt

−i(v
t
−i)

if vi ≥ kt+1,

∫ kt+1

0

[
vi − pti

]
dHt

−i(v
t
−i) if vi < kt+1.

(A.2)

Suppose that buyeri does not submit an eligible bid in periodt. We shall cal-
culate his expected payoffNt

i (vi) from this action. If someone else submits an
eligible bid in this period,i gets zero payoff; otherwise, the mechanism contin-
ues to periodt+1 and buyeri gets his optimal expected payoff in the continuation
game starting at periodt+1, given his equilibrium hypothesis. By the induction hy-
pothesis, the strategy profile defined in our claim constitutes an equilibrium in this
continuation game, which also fits his equilibrium hypothesis. Thus, conditional
on the event that the mechanism continues to periodt+ 1, buyeri’s expected pay-
off is equal to the one generated by the scenario that all buyers,including buyeri,
will abide to this equilibrium starting from periodt + 1. In this scenario, buyeri
will either submit an eligible bid in the first periodt′ among{t + 1, . . . , N} such
that his value is at leastkt′+1 or, if sucht′ does not exist, submit a bid in the final
period. Thus, whenvi ≥ kt+1, buyeri will submit a bid in periodt + 1 because
k1 ≥ . . . ≥ kN implies thatvi ≥ kt+2. By the equilibrium hypothesis, the proba-
bility of reaching periodt+ 1 from periodt isHt−i(kt+1); conditional on reaching
periodt+1, buyeri’s expected payoff isBt+1

i (vi), defined by Eqs. (A.1) and (A.2).
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Thus,

vi ≥ kt+1 =⇒ N t
i (vi) = δtH

t
−i(kt+1)Bt+1

i (vi) = δt
F t−i(kt+1)

F t−1
−i (kt)

Bt+1
i (vi).

In general, buyeri can choose to submit an eligible bid in periodt + 1 if he does
not do so in periodt; thus, for allvi,

N t
i (vi) ≥ δtH

t
−i(kt+1)Bt+1

i (vi) = δt
F t−i(kt+1)

F t−1
−i (kt)

Bt+1
i (vi).

Combining these two facts, we know that the difference in buyeri’s expected pay-
off between submitting an eligible bid in periodt and not submitting such a bid
is

Bt
i (vi) −N t

i (vi)


= B̃t

i (vi)−δtB̃
t+1
i (vi)

F t−1
−i (kt)

if vi ≥ kt+1,

≤ B̃t
i (vi)−δtB̃

t+1
i (vi)

F t−1
−i (kt)

if vi < kt+1,
(A.3)

whereB̃t
i(vi) := F t−1

−i (kt)Bt
i (vi). Note thatB̃t

i is continuous and differentiable at
kt+1.

We are now ready to verify that it is optimal for buyeri to follow the equilib-
rium strategy in periodt, i.e., submit an eligible bid if and only ifvi ≥ kt+1. It
suffices to show thatBti(vi) ≥ N t

i (vi) if and only if vi ≥ kt+1. By (A.3), we need
only to prove thatB̃t

i(vi) − δtB̃
t+1
i (vi) is nonnegative for allvi > kt+1, nonpos-

itive for all vi < kt+1, and is zero atvi = kt+1. The reserve pricespti, defined in
Eq. (3) and (4), are computed so that

B̃t
i(kt+1) = δtB̃

t+1
i (kt+1).

Thus, we need only to show thatB̃t
i(vi) − δtB̃

t+1
i (vi) is monotone nondecreasing

in vi. Hence we differentiate this function using Eqs. (A.1) and (A.2) (in case of
t = N − 1, let kN+1 := −∞):

d

dvi

(
B̃t
i(vi) − δtB̃

t+1
i (vi)

)
=


F t−i(vi) − δtF

t+1
−i (vi) if vi > kt+1,

F t−i(kt+1) − δtF
t+1
−i (vi) if kt+2 < vi < kt+1,

F t−i(kt+1) − δtF
t+1
−i (kt+2) if vi < kt+2.

(A.4)

Since the values are independently distributed across buyers,Ft+1
−i (vi) = F t−i(vi)×

Ft+1(vi). Thus, every branch of the right-hand side of Eq. (A.4) is positive. As
previously noted,̃Bt

i is continuous at the pointkt+1 for all t, henceB̃t
i − δtB̃t+1

i is
continuous at the boundary of the branches. It follows that this function is strictly
increasing, as desired. Therefore, the claim is true for all periodst = 1, . . . , N by
induction. This proves the proposition. �
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B Proof of Proposition 2

Proof: By the given hypotheses, Eqs. (1) and (2) imply thatk1 = · · · = kN . Let k
denote this common cutoff. Consequently, Eqs. (3) and (4) imply that, within each
period, all informed buyers face the same reserve price. Hence we can denote
pt := pti for all buyeri ≤ t. Since buyers’ values arei.i.d., Ft−i(v

t
−i) = F (v)t−1,

whereF denotes the common distribution of buyers’ values. With constant cutoff,
Eq. (4) implies that, in any periodt < N and for all buyeri ≤ t,∫ k

0

(
k − pt

)
dF (v)t−1 = δt

∫ k

0

(
k − pt+1

)
dF (v)t.

This equation can be rewritten as

k − pt = δt
(
k − pt+1

)
F (k).

Since Eqs. (1) and (2) imply thatF (k) < 1, and sinceδt ≤ 1, it follows that
pt > pt+1. �

C Proof of Proposition 3

Proof: From the viewpoint of an observer who knowsvi andvt−1, the expected
aggregate surplus generated by the search procedure is

viQit(vi | vt−1) + Z−it(vi | vt−1) − Cit(vi | vt−1).

Now, assume that having observedvi andvt−1, the seller decides to follow the
policy that he would have followed had buyeri’s value beenv′i instead ofvi. Since
buyers’ values are independent, the aggregate expected utility that other buyers
derive from consuming the good as well as the expected future aggregate cost of
information acquisition becomeZ−it(v′i | vt−1) andCit(v′i | vt−1) respectively:
they depend only on the policy followed by the seller, but not on the actual value
of buyeri. The probability that buyeri would obtain the good in periods becomes
Qit(v′i | vt−1) (again since values are independent) and the expected aggregate
surplus is

viQit(v′i | vt−1) + Z−it(v′i | vt−1) − Cit(v′i | vt−1).

By revealed preference, the expected aggregate surplus must be greater if the
“right” policy is chosen:

viQit(vi | vt−1) + Z−it(vi | vt−1) − Cit(vi | vt−1)

≥ viQit(v′i | vt−1) + Z−it(v′i | vt−1) − Cit(v′i | vt−1).
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The same inequality must also hold if the roles ofvi andv′i are inverted:

v′iQit(v
′
i | vt−1) + Z−it(v′i | vt−1) − Cit(v′i | vt−1)

≥ v′iQit(vi | vt−1) + Z−it(vi | vt−1) − Cit(vi | vt−1).

Adding these two inequalities and simplifying we obtain

(vi − v′i)
(
Qit(vi | vt−1) −Qit(v′i | vt−1)

) ≥ 0.

Assuming, without loss of generality, thatvi > v′i, the result follows. �

D A formal definition of search procedures and a proof
that first-best search procedure exists

The proof of Theorem 1 uses constructs such as “the probability with which a
bidder wins the good in periods given his report in periodt and his true value.” In
this appendix we clarify the measurability requirement in the definition of search
procedure in order to ensure that these constructs are well-defined once a search
procedure is given.

Recall thatI is a finite set of potential buyers and let2I denote the set of all
subsets ofI. For everyi ∈ I, let Vi ⊂ R be the set of possible values ofi. Let
V := ×i∈IVi. An element ofV is written asv = (vi)i∈I , with vi ∈ Vi. For any
J ⊂ I and anyv ∈ V , let vJ := (vi)i∈J andv−J := (vi)i�∈J .

EndowV with a probability measure (generated by the Borel sets), and letF
denote the induced distribution function. DenoteF for this measure space. Since
I is finite, theF-measurability of functions fromV to 2I is well-defined.

Definition: A search procedure is a sequence(ψt)∞t=1 of functionsψt : V → 2I

such that eachψt is F-measurable and the following condition, stated recursively,
is satisfied:

1. ψ1 is constant onV . DenoteI1 := ψ1. Note thatI1 is F-measurable.

2. For anyt = 1, 2, . . ., if It : V → 2I is well-defined andF-measurable, then
for anyv, v′ ∈ V , if It(v) = It(v′) and vIt(v) = v′It(v′), thenψt+1(v) =
ψt+1(v′) ⊆ I \ It(v).
DenoteIt+1(v) := It(v) ∪ ψt+1(v) for all v ∈ V . Note thatIt+1 is F-
measurable because bothIt andψt+1 are so.
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The interpretation of the definition is as follows. Let the state of the nature be
given byv. ψ1(v) is the set of buyers who become informed in period1. Part 1 of
the definition implies thatψ1(v) is predetermined independently ofv, andI1(v)
denotes this set.ψ2(v) is the set of uninformed buyers who become informed in
period2. Part2 implies two requirements: (i)ψ2(v) should be a subset ofI\I1(v),
which is the set of potential buyers who have not been informed in period1, and
(ii) ψ2(v) can vary only with the realized valuesvI1(v) of those who have been
informed in period 1.I2(v) then denotes the set of buyers who are informed up to
the end of period2. The search ends at the end of periodt if and only ifψt(v) �= ∅
andψt′(v) = ∅ for all t′ > t.

The event “buyeri wins at the end of periodt conditional on the fact that he
gets informed in periods and his report iŝvi” (ignoring ties for simplicity) is the
set of(v̂i, v−i) such that

v−i ∈ ×j �=iVj ;
i ∈ ψs(v̂i, v−i);
v̂i ≥ max{vj : j ∈ It(v̂i, v−i) \ {i}};
∅ = ψt′(v̂i, v−i),∀t′ > t.

Note that this set isF-measurable. Note that the validity of “i ∈ ψs(v̂i, v−i)”
is independent of the value of̂vi (Part 2 of the definition). Denote this event by
A(i, s, v̂i, t).

The event “buyeri gets informed in periods and his type isvi andJ is the set
of those who got informed before periods andvJ is the vector of their realized
values” is the set of(vJ , vi, v−J∪{i}) such that

v−J∪{i} ∈ ×j �∈J∪{i}Vj ;
J = Is−1(vJ , vi, v−J∪{i});
i ∈ ψs(vJ , vi, v−J∪{i}).

Note that this set isF-measurable. Denote the event byB(i, s, J, vJ , vi).
Thus, the conditional probability ofA(i, s, v̂i, t) givenB(i, s, J, vJ , vi) is well-

defined. This conditional probability is theqi(· · · ) in Theorem 1.
Given any statev ∈ V , from the viewpoint of any periods = 1, 2, . . ., the ex

post discounted total search cost is

Cs(v) :=
∞∑
t=s

δt−s
∑

i∈ψt(v)

ci.

Note thatCs is aF-measurable function onV , and so isCs(v̂i, ·) for any report̂vi ∈
V . Hence the conditional expectation ofCs(v̂i, ·) given eventB(i, s, J, vJ , vi) is
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well-defined. This expectation value is theC(· · · ) in Theorem 1. The conditional
expectationZ(· · · ) in that proof is similarly well-defined.

We now prove the following result:

Lemma D.2 There exists a first-best search procedure.

Proof: We shall prove by induction on the number of buyers (which is assumed to
be finite). The single-buyer case is trivial. Pick anyn = 1, 2, . . . and assume that a
first-best search procedure always exists whenever there are at mostn buyers. We
need only to prove the existence of first-best search procedure for any case with
n + 1 buyers. Suppose that a nonempty subsetA ⊆ I of buyers have acquired
information andvA is the profile of their revealed values. Then the posterior dis-
tribution of the other buyers’ values conditional onvA is determined. Maximizing
the expected social surplus conditional on this event amounts to finding a first-best
search procedure for a search problem with less uninformed buyers. In this sub-
problem, the “seller’s value” is either the initial seller’s value or the highest value
amongvA, whichever is larger; andI \A becomes the set of buyers, whose values
are drawn from the posterior distribution. The induction hypothesis implies that
a first-best search procedure for this sub-problem exists. Hence letΠ(A,vA) de-
note the maximum social surplus of this sub-problem. Consequently, the expected
valueΠ(A) of Π(A,vA), with vA being the random variable drawn from the prior
distribution, is well-defined. The first-best search procedure in the original prob-
lem amounts to maximizingΠ(A) among all nonemptyA ⊆ I. Since there are
only finitely many suchA, the optimum solution exists. Thus, first-best search
procedure exists when the number of buyers isn+ 1, as desired. �
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