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1 Introduction

Applications of classical demand theory tend to treat each commodity either as a “good” or

as a “bad.” This implies that we can, if necessary, redefine the commodities so as to treat

all of them as goods:1 thus leisure time is the flip side of hours worked, and clean air or

water is the flip side of pollution. Technically, this allows us to focus on preferences that are

monotone in each commodity.2

However, even in this sense, the monotonicity of preferences is not always guaranteed. For

instance, if a consumer or a firm cannot freely dispose of a stock of unwanted commodities,

they will typically have to bear inventory costs for holding this stock; for instance, they may

need to acquire a new storage facility. In the presence of such costs or, more generally, when

the individual’s objective function is an indirect utility function derived under technological

constraints, there are situations where, beyond a certain point, more of a commodity actually

decreases the individual’s utility or profit. As a result, we cannot unambiguously classify

such a commodity as a good or a bad, as this ultimately depends on how much of it the

individual is endowed with.

A prominent example of nonmonotonity arises in financial economics, when we consider

investors’ preferences over portfolios of assets. While larger holdings of cash or risk-free

assets are always desirable from an investor’s viewpoint, this is not so for risky securities

whenever he is risk-averse: indeed, moderate holdings of a risky security are desirable for

hedging or speculative purposes, but too large a risk exposure is not. Another natural

example of nonmonotone preferences arises in the modeling of groups such as households,

families, firms, unions, clubs, or, more generally, in situations where individuals are expected

to make private contributions to collective goods or activities. In this type of environments,

it is standard to assume that each individual benefits on the whole from making moderate

contributions, but eventually experiences overwhelming costs whenever his contributions

exceed a threshold.

In these contexts, the classical construction of a complete space of smooth strictly convex

preference relations (Mas-Colell (1985, Chapter 2)) has to be amended. We propose such a

canonical model of preferences in which nonmonotonicity is allowed for certain commodities,

but there is one commodity that is always desirable. Monetary transfers to the consumer

1See, for instance, Varian (1992, Chapter 7) or Mas-Colell, Whinston, and Green (1995, Chapter 3).
2To be fair, much of classical demand theory can be developed by relying on the weaker local-nonsatiation

assumption, but monotonicity appears to be the rule in applications. The implications of nonmonotone
preferences for the existence and efficiency of competitive equilibria have been examined in Polemarchakis
and Siconolfi (1993), among others. In their approach, however, they take consumers’ preferences as given
and do not develop a framework for genericity analysis.
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yield a straightforward example of such a commodity, and we will stick to this interpretation

in most of the paper; this is in particular relevant for principal-agent models where transfers

are allowed. But other examples of such a commodity are easy to find: think of leisure

time in a household, or the practice of a shared activity in a club. Our first contribution

is thus to extend the classical construction to this class of environments, giving rise to a

topologically complete space of smooth strictly convex nonmonotone preference relations.

This construction enables new genericity analyses: we may, for instance, use it to check

the robustness of results obtained in portfolio-choice theory under the usual CARA-normal

specification, without assuming that the investor’s primitive preferences over state-contingent

consumption have an expected-utility representation.3

An important property of this space of preferences is that it is contractible, that is,

it can be continuously deformed into a single preference relation. Key to this result is

a compensation principle that states that an individual can be compensated for holding

any stock of commodities through appropriate transfers of the last, uniformly desirable

commodity. In line with Chichilnisky and Heal (1983), contractibility can intuitively be

interpreted as a “topological unanimity” condition; in particular, profiles of such preferences

can be continuously deformed into unanimous profiles. This suggests that our space of

preferences admits nice aggregation properties. We show that this is indeed the case: there

exists a collective choice rule over profiles of such preferences that is continuous, anonymous,

and respects unanimity. Although this finding is in line with the results of the literature on

topological social choice initiated by Chichilnisky (1980), it is not a direct consequence of

known results; instead, it is a consequence of the particular contraction we construct on the

space of preferences.

The paper is organized as follows. Section 2 describes a space of basic preferences.

Section 3 introduces our compensation principle and a space of normalized preferences.

Section 4 provides the construction of our complete space of preferences. Section 5 draws

the implications of our analysis for collective choice.

2 Basic Preferences

In this section, we introduce a space P of basic preferences. There are ` + 1 commodities,

the last of which represents transfers to the consumer. We denote by q a vector of the first

3Notice in that respect that, when the state space is infinite, conducting a genericity analysis in the
finite-dimensional space of portfolio choices is mathematically much simpler than doing so in the infinite-
dimensional space of state-contingent consumption choices.
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` commodities, by t a scalar amount of transfers, and by 0` the null vector in R`. We shall

consider regular preference relations � over an open subset V of R`+1. We require that V

contain the no-trade point (0`, 0), which corresponds to the consumer’s endowment point,

that it be convex with a nonempty interior, and that it be comprehensive with respect to

transfers, in the sense that, if (q, t) ∈ V and t′ > t, then (q, t′) ∈ V ; thus V is unbounded

from above in the direction of transfers. We let Q ≡ projR`V and, for each q ∈ Q, we let

t(q) ≡ inf {t ∈ R : (q, t) ∈ V }; notice that, as V is convex, t(q′) = −∞ for all q′ ∈ Q if

t(q) = −∞ for some q ∈ Q. Figure 1 below illustrates these assumptions.

-

q

6
t

V

Figure 1.a An admissible domain V .

-

q

6
t

V

Figure 1.b A nonadmissible domain V .

We impose the following axioms on �:

A1 � is closed relative to V × V .

A2 � is strictly monotone in transfers: if (q, t) ∈ V and t′ > t, then (q, t′) � (q, t).

A3 � is convex: if (q, t) � (q′, t′) and λ ∈ [0, 1], then λ(q, t) + (1− λ)(q′, t′) � (q′, t′).

A4 � has closed upper contour sets relative to R`+1.

A5 � has a boundary in V × V that is a C2 manifold.

A1 and A3 are standard. A2 requires that preferences be strictly monotone in transfers. This

generalizes the standard axiom that requires that preferences be strictly monotone in all the

commodities; if we were to impose this stronger requirement, we would obtain the class of
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preferences studied in Mas-Colell (1985, Chapter 2). A4 describes the boundary behavior of

preferences. Although its role is mainly technical, A4 also has an economic interpretation;

for instance, in case V =
∏`

l=1(q−l , q
+
l )× (q−`+1,∞), for some (possibly infinite) negative and

positive numbers q−l and q+
l , A4 expresses an indispensability property: subsistence ceases

to be possible if the consumption or sale of commodity l = 1, . . . , ` attain some thresholds

q+
l and |q−l |, and there is a maximum debt limit |q−`+1| at which the consumer must declare

bankruptcy.4 Finally, A5 requires that preferences be sufficiently regular.

Example Assume that a risk-averse investor with constant absolute risk-aversion α can

invest in ` risky assets with payoffs that are jointly normally distributed with mean vector

a and covariance matrix Γ, as well as in a risk-free asset with payoff 1. Then his preferences

over portfolios of risky and risk-free assets (q, t) ∈ V ≡ R`+1 are represented by

u(q, t) = q>a− α

2
q>Γ q + t

and satisfy A1–A5. Notice the nonmonotonity in q, reflecting that the investor does not

want to hold an excessively risky asset position.

Our first task is to characterize the space P of preferences � that satisfy A1–A5. The

following notation will be useful. Let U(q,t) and L(q,t) be the upper and lower contour sets of

(q, t) for �, and let I(q,t) ≡ U(q,t) ∩ L(q,t) be the indifference set of (q, t) for �. Observe by

A2 that U(q,t) is comprehensive with respect to transfers, just as V . Also denote by cl and ∂

the closure and boundary operators relative to V or V × V , depending on the context. We

start with two technical lemmas.

Lemma 1 If � satisfies A1–A2, then, for each (q, t) ∈ V, U(q,t) has a nonempty interior

relative to R`+1 and I(q,t) = ∂U(q,t).

Proof. To prove the first claim, observe that, as � is closed relative to V × V by A1,

V \ L(q,t) is open relative to V , and thus relative to R`+1 as V is an open subset of R`+1.

Hence, because V \ L(q,t) is nonempty by A2, U(q,t) ⊃ V \ L(q,t) has a nonempty interior

relative to R`+1. To prove the second claim, observe that, by A1 again, U(q,t) and L(q,t) are

closed relative to V . Therefore, we have

∂U(q,t) ≡ cl(U(q,t)) ∩ cl(V \ U(q,t)) = U(q,t) ∩ cl(V \ U(q,t)) ⊂ U(q,t) ∩ L(q,t) = I(q,t).

4It should be noted that A4 does not follow from A1 if V is a proper subset of R`+1, for then � can
be closed in the open set V × V in the relative topology, though its upper contour sets are adherent to the
boundary of V in R`+1 and are thus not closed relative to R`+1.
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The reverse inclusion is satisfied if I(q,t) ⊂ cl(V \ U(q,t)), which is obviously true because,

for each (q′, t′) ∈ I(q,t), (q′, t′ − ε) ∈ V for any small enough ε > 0 by openness of V , and

(q′, t′) � (q′, t′ − ε) for any such ε by A2. The result follows. �

Lemma 2 If � satisfies A1–A4, then, for each (q, t) ∈ V, I(q,t) is connected.

Proof. By Lemma 1, I(q,t) = ∂U(q,t), so that we can focus on the topological properties of

U(q,t). By A3–A4, U(q,t) is a closed convex subset of R`+1; moreover, U(q,t) has a nonempty

interior by Lemma 1. Hence two cases may arise (Klee (1953, III.1.6)).

Case 1 Either the asymptotic cone AU(q,t) ≡ {x ∈ R`+1 : (q′, t′) + λx ∈ U(q,t) for all

(q′, t′, λ) ∈ U(q,t) × R+} of U(q,t) is not a linear subspace. Then U(q,t) is homeomorphic with

R` × [0, 1) and ∂U(q,t) with R`. In particular, ∂U(q,t) is connected.

Case 2 Or the asymptotic cone AU(q,t) of U(q,t) is an `+1−k-dimensional linear subspace,

for some integer k ≤ ` + 1. Because U(q,t) is comprehensive with respect to transfers, we

must have k ≤ ` and (0`, 1) ∈ AU(q,t). As AU(q,t) is a linear subspace, it follows that

(0`,−1) ∈ AU(q,t). This implies that (q, t′) � (q, t) for all t′ < t such that (q, t′) ∈ V , which

is ruled out by A2. This case is thus impossible. The result follows. �

Let U be the space of quasiconcave C2 functions u : V → R such that ∂u/∂t > 0 over

V and u−1([υ,∞)) is closed in R`+1 for all υ ∈ R. Lemmas 1–2 then imply the following

representation result.

Proposition 1 � satisfies A1–A5 if and only if it admits a utility function u ∈ U.

Proof. (Direct part) Suppose that � is representable by u. Then � trivially satisfies A1–A3.

Next, as u−1([υ,∞)) is closed in R`+1 for all υ ∈ R, � satisfies A4. Finally, because u clearly

has no critical point, that is, ∂u 6= 0 over V , it follows as in Mas-Colell (1985, Proposition

2.3.5) that � satisfies A5.

(Indirect part) By A2, � is locally nonsatiated, and by A5, ∂� is a C2 manifold in V ×V .

Hence � is of class C2 (Mas-Colell (1985, Definition 2.3.4)). Moreover, by Lemmas 1–2, �
has connected indifference sets I(q,t). Hence it admits a C2 utility function u over V with no

critical point (Mas-Colell (1985, Proposition 2.3.9)). That u is quasiconcave follows from A3.

To show that ∂u/∂t > 0 over V , observe first from A2 that ∂u/∂t ≥ 0 over V . Now, suppose,

by way of contradiction, that (∂u/∂t)(q, t) = 0 for some (q, t) ∈ V . Then (∂u/∂q)(q, t) 6= 0`

as u has no critical point. Thus the hyperplane through (q, t) orthogonal to ∂u(q, t) that
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supports the convex set U(q,t) is vertical. It follows that the strict upper contour set of (q, t)

for �, U(q,t) \ L(q,t), strictly lies on one side or the other of this hyperplane. This does not

include the half line {(q, t′) ∈ V : t′ > t}, which contradicts A2. Hence ∂u/∂t > 0 over V ,

as claimed. Finally, that u−1([υ,∞)) is closed in R`+1 for all υ ∈ R is a direct consequence

of A4. Hence the result. �

Proposition 1 states that any preference relation in P can be represented by some function

in U and, conversely, that any function in U represents a preference relation in P. For each

u ∈ U, let P (u) ⊂ V ×V be the preference relation represented by u. In line with Mas-Colell

(1985, Chapter 2, Section 4), a topology over P can be constructed as follows. Note that U

is a subspace of C2(V ), the Polish space of real-valued C2 functions over V endowed with

the topology of uniform convergence over compact subsets of V of functions and of their

derivatives up to the order 2 (Mas-Colell (1985, Chapter 1, K.1.2)). Then we endow P with

the identification topology from P ; that is, we let O be open in P if P−1(O) is open in U.

Note that P is not one-to-one; however, we can show as in Mas-Colell (1985, Chapter 2,

Proposition 2.4.2) that P is open, which implies that a sequence (�n)n∈N converges to � in

P if and only if there exists a sequence of representations (un)n∈N for the preferences (�n)n∈N

that converges in U to a representation u of �.

3 Normalized Preferences

In this section, we introduce a subspace Pv of P, the elements of which admit convenient

normalized representations. To this end, we add a further restriction on preferences in the

form of the following axiom:

A6 For all (q, t) ∈ V and q′ ∈ Q, there exists t′ such that (q′, t′) ∈ V and (q′, t′) � (q, t).

A6 expresses a compensation principle: using appropriate transfers, the consumer can be

compensated for holding any feasible amount of the first ` commodities. The following

lemma shows that exact compensation is then possible up to any utility level.

Lemma 3 If � satisfies A1–A4 and A6, then, for all (q, t) ∈ V and q′ ∈ Q, there exists t′

such that (q′, t′) ∈ V and (q′, t′) ∼ (q, t).

Proof. Suppose, by way of contradiction, that the result does not hold for some (q, t) ∈ V
and q′ ∈ Q. Then, by A1–A2 and A6, (q′, t′) ∈ U(q,t) for all t′ such that (q′, t′) ∈ V . We

distinguish two cases. First, if t(q′) ∈ R, we have (q′, t′) ∈ U(q,t) for all t′ > t(q′) but
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(q′, t(q′)) 6∈ V as V is open, and thus (q′, t(q′)) 6∈ U(q,t), which contradicts A4. Second, if

t(q′) = −∞, we have (q′, t′) ∈ U(q,t) for all t′ ∈ R; that is, U(q,t) contains a vertical line. Then(
1 +

1

t′

)
(q, t)− 1

t′
(q′, t′) ∈ U(q,t)

for all t′ < −1 by A3. Letting t′ go to −∞, we get by A1 that (q, t − 1) ∈ U(q,t), which

contradicts A2. The result follows. �

The geometrical interpretation is that any vertical line that intersects V must intersect

all the indifference sets of �, see Figure 2 below. That is, the indifference sets of � do not

admit vertical asymptotes, except perhaps at the boundary of V . This property plays a role

analogous, in our setup with possibly nonmonotone preferences, to the standard property

that the indifference sets of strictly monotone preferences defined over the interior of the

positive orthant must intersect any ray in the latter that emanates from the origin.

-

q

6
t

Figure 2.a A6 is satisfied.

-

q

6
t

Figure 2.b A6 is violated.

Our task in this section is to characterize the space Pv of preferences � that satisfy

A1–A6. Given Lemma 3, it will be convenient to work with a space of normalized utility

functions, defined as Uv ≡ {u ∈ U : rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q and u(0`, t) =

t for all t such that (0`, t) ∈ V }. It should be noted that the normalization along the vertical

axis satisfied by the utility functions in Uv differs from the standard radial one (Wold and

Juréen (1953), Kannai (1970)), reflecting that preferences are monotone in transfers, but not

necessarily in the other commodities. We have the following characterization result.
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Proposition 2 Uv is homeomorphic with Pv under the natural map P .

Proof. As a preliminary remark, let us observe that, for each u ∈ Uv, P (u) satisfies A1–A5

by Proposition 1; moreover, the property that rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q

implies that P (u) satisfies the property stated in Lemma 3, and thus, a fortiori, A6. Thus

P (u) ∈ Pv for all u ∈ Uv. We must prove that the mapping P|Uv : Uv → Pv : u 7→ P (u) is

one-to-one, onto, continuous, and open.

(One-to-one) Let u and u′ in Uv such that P (u) = P (u′). Then u = ξ ◦ u′, where

ξ : u′(V ) → R is C2, increasing, and regular, that is, ∂ξ > 0 over u′(V ) (Mas-Colell (1985,

Proposition 2.3.11)). This implies that, for each υ ∈ u′(V ), ξ(υ) = ξ(u′(0`, υ)) = u(0`, υ) =

υ, so that u = u′.

(Onto) Let � ∈ Pv. From Proposition 1, there exists some u ∈ U such that � =

P (u). As rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q, we can implicitly define u′ : V → R
by u(q, t) = u(0`, u

′(q, t)). We clearly have P (u′) = �. We now check that u′ ∈ Uv.

That u′ is quasiconcave follows from the fact that {(q, t) ∈ V : u′(q, t) ≥ υ} = {(q, t) ∈
V : u(q, t) ≥ u(0`, υ)} for all υ such that (0`, υ) ∈ V . This observation also implies that

(u′)−1([υ,∞)) is closed in R`+1 for any such υ. That u′ is C2 follows from the implicit

function theorem along with the fact that ∂u/∂t > 0 over V . We then have (∂u/∂t)(q, t) =

(∂u/∂t)(0`, u
′(q, t))(∂u′/∂t)(q, t), which in turn implies that ∂u′/∂t > 0 over V . We also

obtain that rangeu′(q, ·) = u−1(0`, rangeu(q, ·)) = u−1(0`, rangeu(0`, ·)) = rangeu′(0`, ·) for

all q ∈ Q, as desired. Last, by construction, u(0`, t) = u(0, u′(0`, t)) for all t such that

(0`, t) ∈ V , so that, by A2, u′(0`, t) = t for any such t. Thus u′ ∈ Uv, as claimed.

(Continuous) This follows from the definition of the topology of P.

(Open) Mimic the proof of Mas-Colell (1985, Proposition 2.4.2)). Hence the result. �

4 Differentiably Strictly Convex Preferences

We are now ready to complete the construction of the complete and contractible space of

preferences announced in the introduction. Preferences in Pv are not necessarily strictly

convex. We add this restriction as a further axiom:

A7 � is strictly convex: if (q, t) � (q′, t′), (q, t) 6= (q′, t′), and λ ∈ (0, 1), then λ(q, t) + (1−
λ)(q′, t′) � (q′, t′).

Finally, to obtain a topologically complete space of preferences, we require preferences to be
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nonlinear, even in a local sense. To do so, observe that because a utility function u ∈ Uv

representing a preference �∈ Pv has no critical point, the Gaussian curvature c(q,t) of the

indifference set I(q,t) at (q, t) is well defined and given by

c(q,t) ≡
1

‖∂u(q, t)‖3

∣∣∣∣ −∂2u(q, t) ∂u(q, t)
−∂u>(q, t) 0

∣∣∣∣,
see, for instance, Debreu (1972). The last restriction we impose on preferences is that this

curvature nowhere vanishes:

A8 Any point of V is regular for �, that is, c 6= 0 over V .

Preferences that satisfy A7–A8 are said to be differentiably strictly convex (Mas-Colell (1985,

Definition 2.6.1)).

We can now define our fundamental space of preferences as the space Pv,dsc of preferences

over V that satisfy A1–A8. According to Proposition 2, Pv,dsc can be seen as a subspace of

Uv and, hence, of C2(V ). Our main result is that Pv,dsc is topologically complete, as desired,

and that it is contractible.

Theorem 1 Pv,dsc is a contractible Polish space.

Proof. (Polish) Letting Uv,dsc ≡ P−1(Pv,dsc), we get by Proposition 2 that Uv,dsc and Pv,dsc

are homeomorphic under the natural map P , so we can indifferently work with preferences

in Pv,dsc or their normalized representations in Uv,dsc. We first prove that Uv,dsc is a Polish

space. Let (tn)n∈N be a sequence in R decreasing to t(0`), and let (Kn)n∈N be an increasing

sequence of compact convex sets such that
⋃
n∈NKn = V . Then Uv,dsc is the intersection of

the following countable families of open sets:{
u ∈ C2(V ) :

∂u

∂t
(q, t) > 0 for all (q, t) ∈ Kn

}
,

{
u ∈ C2(V ) : there exists ε > 0 such that u(q, t) < u(0`, tn)

if (q, t) ∈ Kn and inf
(q′,t′)∈R`+1\V

‖(q′, t′)− (q, t)‖ ≤ ε

}
,

{
u ∈ C2(V ) :

∣∣∣∣ min
(0`,t)∈Kn

u(0`, t)− min
(q,t)∈Kn

u(q, t)

∣∣∣∣ ∨ ∣∣∣∣ max
(0`,t)∈Kn

u(0`, t)− max
(q,t)∈Kn

u(q, t)

∣∣∣∣ < 1

n

}
,

{
u ∈ C2(V ) : max

(0`,t)∈Kn
|u(0`, t)− t| <

1

n

}
,
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{
u ∈ C2(V ) : there exists ξ : u(V )→ R such that ∂ξ > 0 over u(V )

and ∂2(ξ ◦ u) is negative definite over Kn

}
.

The first family deals with the monotonicity of preferences with respect to transfers (A2), the

second family with the boundary behavior of preferences (A4), the third and fourth families

with the normalization (A6), and the fifth family with the differential strict convexity of

preferences (A7–A8), bearing in mind that differentiably strictly convex preferences can be

represented over any compact convex subset K of V by a C2 utility function u with no critical

point such that ∂2u is negative definite over K (Mas-Colell (1985, Proposition 2.6.4)). Hence

Uv,dsc is a Gδ in the Polish space C2(V ) and thus, by Alexandrov’s lemma (Mas-Colell (1985,

Chapter 1, A.3.4)), a Polish space itself in the relative topology.

(Contractible) To prove that Uv,dsc is contractible, we show that the identity function

over Uv,dsc is homotopic to a constant function; that is, there exists a continuous function

hu : Uv,dsc × [0, 1] → Uv,dsc such that, for some u ∈ Uv,dsc, we have, for each u ∈ Uv,dsc,

hu(u, 0) = u and hu(u, 1) = u. Thus pick an arbitrary u ∈ Uv,dsc and, to each (u, ξ) ∈
Uv,dsc × [0, 1], associate a utility function uξ as follows. First, let u0 ≡ u and u1 ≡ u. Then,

for all ξ ∈ (0, 1) and (q, t) ∈ V , consider the equation in µ:

u(q, µ) = u

(
q,
t− ξµ
1− ξ

)
. (1)

We claim that (1) has a unique solution in the admissible range for µ,

t(q) < µ < t(q) +
1

ξ
[t− t(q)],

with −∞+∞/ξ =∞ by convention. Indeed, the left-hand side of (1) is strictly increasing

in µ, whereas the right-hand side of (1) is strictly decreasing in µ. Moreover, as both u and

u belong to Uv,dsc, we have inf rangeu(q, ·) = inf rangeu(q, ·) = t(0`). Therefore,

lim
µ↓t(q)

u(q, µ) = t(0`) < lim
µ↓t(q)

u

(
q,
t− ξµ
1− ξ

)
,

whereas

lim
µ↑t(q)+ 1

ξ
[t−t(q)]

u(q, µ) > t(0`) = lim
µ↑t(q)+ 1

ξ
[t−t(q)]

u

(
q,
t− ξµ
1− ξ

)
,

so that there exists a unique solution µξ(q, t) to (1), as claimed. We can then let uξ(q, t) ≡
u(q, µξ(q, t)). Geometrically, what this transformation does is that, to each t′ such that

(0`, t
′) ∈ V , it assigns an indifference set u−1

ξ ({t′}) that is the vertical convex combination of
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the indifference sets u−1({t′}) and u−1({t′}) with weights ξ and 1− ξ, respectively, bearing

in mind that, by normalization, u(0`, t
′) = u(0`, t

′) = t′. Figure 3 below illustrates this

transformation.

-

q

6
t

t′

u−1({t′})

u−1
ξ ({t′})

u−1({t′})

(q, µξ(q, t))
•

(
q,

t−µξ(q,t))
1−ξ

)
•

• (q, t)

Figure 3 The homotopy hu.

To complete the proof, we show that the mapping (u, ξ) 7→ uξ yields the desired homotopy.

The proof consists of two steps.

Step 1 We first verify that uξ ∈ Uv,dsc for all ξ ∈ [0, 1]. This is obvious for ξ = 0, 1. Now

fix some ξ ∈ (0, 1). We must prove that rangeuξ(q, ·) = rangeuξ(0`, ·) for all q ∈ Q and

that uξ(0`, t) = t for all t such that (0`, t) ∈ V , that uξ is C2, with ∂uξ/∂t > 0 over V , and

strictly quasiconcave, that u−1
ξ ([υ,∞)) is closed in V for all υ ∈ R, and that the curvature

of the indifference sets of uξ nowhere vanishes.

(Normalization) By construction, we have rangeuξ(q, ·) = rangeu(q, ·) = rangeu(q, ·) =

(t(0`),∞) for all q ∈ Q, and, moreover, (0`, t) ∈ u−1
ξ ({t}) for all t > t(0`). Hence uξ is

normalized, as desired.

(Regularity) By (1), for each (q, t) ∈ V , µξ(q, t) is the unique solution to f(q, t, µ) = 0,

where f(q, t, µ) ≡ u(q, µ) − u(q, (t − ξµ)/(1 − ξ)). That µξ is C2 follows from the implicit

function theorem along with the fact that ∂f/∂µ > 0 as ∂u/∂t > 0 and ∂u/∂t > 0 over V .

That uξ is C2 then follows from the identity uξ(q, t) ≡ u(q, µξ(q, t)).

11



(Monotonicity in transfers) Differentiating the identity f(q, t, µξ(q, t)) = 0 and using the

fact that ∂u/∂t > 0 and ∂u/∂t > 0 over V yields, for each (q, t) ∈ V ,

∂µξ
∂t

(q, t) =

∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))

> 0.

That ∂uξ/∂t > 0 over V then follows from from A2 and the identity uξ(q, t) ≡ u(q, µξ(q, t)).

(Strict quasiconcavity) By construction, for each t′ such that (0`, t
′) ∈ V , the indifference

sets u−1({t′}), u−1({t′}), and u−1
ξ ({t′}) can be parameterized as t = τ(q, t′), t = τ(q, t′),

and t = τξ(q, t
′) = ξτ(q, t′) + (1 − ξ)τ(q, t′), respectively. Because u and u are strictly

quasiconcave, the mappings q 7→ τ(q, t′) and q 7→ τ(q, t′) are strictly convex, and so is the

mapping q 7→ τξ(q, t
′) by convex combination. That uξ is strictly quasiconcave then follows

from this observation along with the monotonicity of uξ in transfers.

(Boundary behavior) Fix some υ ∈ rangeuξ = rangeu = rangeu and let ((qn, tn))n∈N

be a sequence in u−1
ξ ([υ,∞)) that converges to (q, t) ∈ R`+1. We must prove that (q, t) ∈

u−1
ξ ([υ,∞)). Because uξ is continuous over V , we only need to check that (q, t) does not

belong to the boundary of V in R`+1. Recall first that, by construction, (qn, tn) is for each

n ∈ N a convex combination with weights ξ and 1 − ξ of (qn, µξ(qn, tn)) ∈ u−1([υ,∞)) and

(qn, [tn − ξµξ(qn, tn)]/(1 − ξ)) ∈ u−1([υ,∞)). We show that an implication of this is that

the sequences ((qn, µξ(qn, tn)))n∈N and ((qn, [tn − ξµξ(qn, tn)]/(1 − ξ)))n∈N remain bounded.

Indeed, if they are not, then, as the sequence ((qn, tn))n∈N is bounded, we can extract two

divergent subsequences (µξ(qnk , tnk))k∈N and ([tnk−ξµξ(qnk , tnk)]/(1−ξ))k∈N of transfers with

opposite signs; suppose with no loss of generality that limk→∞ µξ(qnk , tnk) = −∞. Now, fix

some (q′, t′) such that u(q′, t′) = υ. Then, because u is quasiconcave,[
1 +

1

µξ(qnk , tnk)

]
(q′, t′)− 1

µξ(qnk , tnk)
(qnk , µξ(qnk , tnk)) ∈ u−1([υ,∞))

for all k such that µξ(qnk , tnk) < −1. Letting k go to ∞, we get by continuity of u that

u(q′, t′ − 1) ≥ υ = u(q′, t′), which contradicts the fact that u(q′, ·) is strictly increasing.

Thus both ((qn, µξ(qn, tn)))n∈N and ((qn, [tn − ξµξ(qn, tn)]/(1 − ξ)))n∈N remain bounded, as

claimed. Extracting subsequences if necessary, let us denote by (q, tu) and (q, tu) their

respective limits; suppose with no loss of generality that tu ≤ t ≤ tu. As u−1([υ,∞))

is closed and comprehensive, and as (qn, µξ(qn, tn)) ∈ u−1([υ,∞)) for all n ∈ N, we have

(q, tu) ∈ u−1([υ,∞)) and, hence, (q, t) ∈ u−1([υ,∞)). That (q, t) cannot belong to the

common boundary of R`+1 \ V and V in R`+1 then follows from the fact that the disjoint
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closed sets u−1([υ,∞)) and R`+1 \ V can be separated by open sets in R`+1.

(Curvature) Given the parametrization t = τξ(q, t
′) = ξτ(q, t′) + (1 − ξ)τ(q, t′) of the

t′-indifference set u−1
ξ ({t′}) of uξ, the Hessian ∂2τξ(q, t

′) = ξ∂2τ(q, t′) + (1 − ξ)∂2τ(q, t′) is

positive definite, because so must be the Hessians ∂2τ(q, t′) and ∂2τ(q, t′) for the curvatures

of the t′-indifference sets u−1({t′}) of u and u−1({t′}) of u to nowhere vanish (Mas-Colell

(1985, Chapter 1, H.3)).

Step 2 There remains to check that the mapping hu : Uv,dsc× [0, 1]→ Uv,dsc : (u, ξ) 7→ uξ

is continuous. Let ((un, ξn))n∈N be a sequence in Uv,dsc× [0, 1] converging to (u, ξ). To avoid

trivial cases, let us assume that for each n ∈ N, there exists m ≥ n such that ξm 6= 0, 1.

We must prove that the sequences (hu(un, ξn))n∈N, (∂hu(un, ξn))n∈N, and (∂2hu(un, ξn))n∈N

converge to hu(u, ξ), ∂hu(u, ξ), and ∂2hu(u, ξ), respectively, uniformly over any compact

subset K of V . The proof consists of three substeps.

Step 2.1 For each n ∈ N such that ξn ∈ (0, 1), and for each (q, t) ∈ K, define µn,ξn(q, t) as

the unique solution to

u(q, µ) = un

(
q,
t− ξnµ
1− ξn

)
. (2)

We first claim that the sequences (µn,ξn(q, t))n∈N and ([t − ξnµn,ξn(q, t)]/(1 − ξn))n∈N are

bounded, uniformly in (q, t) ∈ K. By way of contradiction, let us assume, for instance,

that there exists a divergent sequence (µnk,ξnk (qk, tk))k∈N with (qk, tk) ∈ K for all k ∈ N;

suppose with no loss of generality that the sequence ((qk, tk))k∈N converges to some (q, t) ∈ K
and that limk→∞ µnk,ξnk (qk, tk) = −∞. (The other cases can be handled in a similar way.)

Then, as the sequence (qk)k∈N converges to q, we have t(q) = −∞ and, hence, t(0`) = −∞,

which in turn implies that rangeu(q, ·) = rangeu(0`, ·) = R by normalization. Now, for each

(t′, ε) ∈ R × R++, we have µnk,ξnk (qk, tk) ≤ t′ and u(qk, µnk,ξnk (qk, tk)) ≤ u(q, t′) + ε for k

large enough. Because t′ can take any value in R and rangeu(q, ·) = R, we obtain

lim
k→∞

u(qk, µnk,ξnk (qk, tk)) = −∞. (3)

On the other hand, as the sequence (tk)k∈N converges, limk→∞ µnk,ξnk (qk, tk) = −∞ implies

that µnk,ξnk (qk, tk) ≤ tk and, hence, [tk− ξnkµnk,ξnk (qk, tk)]/(1− ξnk) ≥ tk for k large enough.

Thus we obtain

lim inf
k→∞

unk

(
qk,

tk − ξnkµnk,ξnk (qk, tk)

1− ξnk

)
≥ lim

k→∞
unk(qk, tk) = u(q, t), (4)

where the equality follows from the fact that the sequence (un)n∈N converges uniformly to

u over K and that the sequence ((qk, tk))k∈N converges to (q, t) in K. But then, in light
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of (3)–(4), (2) cannot hold for (n, q, t, µ) = (nk, qk, tk, µnk,ξnk (qk, tk)) for k large enough, a

contradiction. The claim follows.

Step 2.2 We now establish that the sequence (µn,ξn)n∈N converges uniformly to µξ over K

when the sequence (ξn)n∈N converges to ξ ∈ (0, 1), so that ξn 6= 0, 1 for n ∈ N large enough.

For any such n, and for each (q, t) ∈ K, we have, by (2),

u(q, µn,ξn(q, t))− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
= ∆1,n(q, t) + ∆2,n(q, t), (5)

where

∆1,n(q, t) ≡ un

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
− u
(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
,

and

∆2,n(q, t) ≡ u

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
.

According to Step 2.1, there exists some compact subset K ′ of V such that

max
(q,t)∈K

|∆1,n(q, t)| ≤ ‖un − u‖K′

and

max
(q,t)∈K

|∆2,n(q, t)| ≤
∥∥∥∥∂u∂t

∥∥∥∥
K′

sup
(q,t)∈K

|(ξn − ξ)[t− µn,ξn(q, t)]|
(1− ξ)(1− ξn)

.

Taking limits yields, by (5),

lim
n→∞

u(q, µn,ξn(q, t))− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
= 0

= u(q, µξ(q, t)t)− u
(
q,
t− ξµξ(q, t)

1− ξ

)
,

uniformly in (q, t) ∈ K. According to Step 2.1, this implies that

lim
n→∞

[
min

(q′,t′)∈K′

∂u

∂t
(q′, t′) +

ξ

1− ξ
min

(q′,t′)∈K′

∂u

∂t
(q′, t′)

]
|µn,ξn(q, t)− µξ(q, t)|= 0,

uniformly in (q, t) ∈ K, from which the claim follows as both ∂u/∂t and ∂u/∂t are positive

and bounded away from 0 over any compact subset of V .

Step 2.3 We can now establish the desired convergence results, first for the functions

(hu(un, ξn))n∈N, and then for their first- and second-order derivatives (∂hu(un, ξn))n∈N and

(∂2hu(un, ξn))n∈N.
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(Functions) Suppose first that the sequence (ξn)n∈N converges to ξ ∈ (0, 1). For all (q, t) ∈
K and n ∈ N, we have hu(un, ξn)(q, t) = u(q, µn,ξn(q, t)) and hu(u, ξ)(q, t) = u(q, µξ(q, t)).

Hence, by Step 2.1,

‖hu(un, ξn)− hu(u, ξ)‖K ≤
∥∥∥∥∂u∂t

∥∥∥∥
K′
‖µn,ξn − µξ‖K ,

which converges to 0 according to Step 2.2. Suppose next that the sequence (ξn)n∈N converges

to 0. We can focus on the terms of the sequence (hu(un, ξn))n∈N such that ξn 6= 0, for the

other terms are equal to hu(un, 0) = un, and the sequence (un)n∈N converges uniformly over

K to u = hu(u, 0). Then (5) holds for ξ = 0, and reasoning as in Step 2.2 yields that

‖hu(un, ξn)− u‖K = ‖hu(un, ξn)− hu(u, 0)‖K

converges to 0. Suppose finally that the sequence (ξn)n∈N converges to 1. We can focus on

the terms of the sequence (hu(un, ξn))n∈N such that ξn 6= 1, for the other terms are equal to

hu(un, 1) = u. Then, letting νn,ξn(q, t) ≡ [t− ξnµn,ξn(q, t)]/(1− ξn) for all (q, t) ∈ K, we have

hu(un, ξn) = u(q, [t − (1 − ξn)νn,ξn(q, t)]/ξn). Bearing in mind that, as established in Step

2.1, the sequence (νn,ξn(q, t))n∈N is bounded, uniformly in (q, t) ∈ K, we obtain that

‖hu(un, ξn)− u‖K = ‖hu(un, ξn)− hu(u, 1)‖K

converges to 0. Therefore, in any case, the sequence (hu(un, ξn))n∈N converges to hu(u, ξ)

uniformly over K, as desired.

(Derivatives) We focus on the first-order derivatives (∂hu(un, ξn))n∈N. (The proof for the

second-order derivatives (∂2hu(un, ξn))n∈N is similar and is, therefore, omitted.) Suppose

first that the sequence (ξn)n∈N converges to ξ ∈ (0, 1), so that ξn 6= 0, 1 for n ∈ N large

enough. For any such n, and for each (q, t) ∈ K, we have, by the implicit function theorem,



...
∂µn,ξn
∂ql

(q, t)

...
∂µn,ξn
∂t

(q, t)

 =



...

(1− ξn)
[
∂un
∂ql

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
− ∂u

∂ql
(q, µn,ξn(q, t))

]
ξn

∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
+ (1− ξn)∂u

∂t
(q, µn,ξn(q, t))

...
∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
ξn

∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
+ (1− ξn)∂u

∂t
(q, µn,ξn(q, t))


.

Because, as established in Step 2.2, the sequence (µn,ξn)n∈N converges uniformly to µξ over

K, and the sequences (∂un/∂ql)n∈N and (∂un/∂t)n∈N converge uniformly to ∂u/∂ql and ∂u/∂t
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over compact subsets of V , this converges to

...

(1− ξ)
[
∂u
∂ql

(
q,

t−ξµξ(q,t)
1−ξ

)
− ∂u

∂ql
(q, µξ(q, t))

]
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))

...
∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))


=



...
∂µξ
∂ql

(q, t)

...
∂µξ
∂t

(q, t)

,

uniformly in (q, t) ∈ K. As a result,

∂hu(un, ξn)(q, t) =



...
∂u

∂ql
(q, µn,ξn(q, t)) +

∂u

∂t
(q, µn,ξn(q, t))

∂µn,ξn
∂ql

(q, t)

...
∂u

∂t
(q, µn,ξn(q, t))

∂µn,ξn
∂t

(q, t)


converges to

...
∂u

∂ql
(q, µξ(q, t)) +

∂u

∂t
(q, µξ(q, t))

∂µξ
∂ql

(q, t)

...
∂u

∂t
(q, µξ(q, t))

∂µξ
∂t

(q, t)

 = ∂hu(u, ξ)(q, t),

uniformly in (q, t) ∈ K. Suppose finally that the sequence (ξn)n∈N converges to 0. (The proof

for the case where the sequence (ξn)n∈N converges to 1 is similar and is, therefore, omitted.)

We can focus on the terms of the sequence (∂hu(un, ξn))n∈N such that ξn 6= 0, for the other

terms are equal to ∂hu(un, 0) = ∂un, and the sequence (∂un)n∈N converges uniformly over K

to ∂u = ∂hu(u, 0). For any such n, and for each (q, t) ∈ K, we have

∂hu(un, ξn)(q, t) = ∂u(q, µn,ξn(q, t)) = ∂un

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
,

Because, as established in Step 2.1, the sequence (µn,ξn(q, t))n∈N is bounded, uniformly in

(q, t) ∈ K, and the sequence (∂un)n∈N converges uniformly to ∂u over compact subsets of V ,

this converges to ∂u(q, t), uniformly in (q, t) ∈ K. Hence the result. �

Observe that the compensation principle expressed by A6 plays a key role in Step 2 of the

proof of Theorem 1 by ensuring that the vertical convex combination of any two indifference

curves for u and u going through the same point of the vertical axis is well defined, which
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in turn allows us to construct the desired contraction hu in a straightforward way. It follows

from the proof of Theorem 1 that the space Pdsc of preferences that satisfy A1–A5 and

A7–A8, but not necessarily A6, is topologically complete. However, it is an open question

whether it is contractible.

5 Collective Choice

We now draw the implications of our analysis for the aggregation of individual preference

relations in Pv,dsc. The social-choice framework we have in mind is as follows. Consider a

group of I individuals i = 1, . . . , I, which may be thought of as a household, a family, a firm,

a union, or a club. Each individual in the group has preferences about the consumption of

private and collective goods within the group. An individual may in particular care for the

consumption of private goods by other members of the group, as in Becker’s (1981) model

of altruism in the family or Chiappori’s (1988, 1992) collective model of household labor

supply. Individuals can also contribute to the supply of collective goods, such as household

chores or meeting participations. It is realistic to assume that their preferences with respect

to such contributions will be nonmonotone: a small contribution by an individual comes

at a negligible marginal cost, while generating a substantial marginal benefit to him, both

directly and perhaps indirectly through altruistic concerns; however, large contributions will

typically generate substantial costs that outweighs personal benefits.5 Finally, we assume

that, whereas individuals may differ as to the values they attribute to the consumption of

private and collective goods within the group, as well as to their respective contributions

to the supply of collective goods, there is one collectively consumed good which is always

desirable from each individual’s viewpoint. An example in the case of a household or a

family may be an index of the quantity and quality of time spent together on vacation; in

the case of a club, the practice of common-interest activities.

Formally, we will suppose that, as in the general model of Section 2, individuals have

preferences defined over ` commodities representing the amounts of private and collective

goods consumed within the group, as well as the privately borne contributions to the latter,

and a desirable `+1th collective good. Each individual i is endowed with a preference relation

�i ∈ Pv,dsc over the relevant consumption set V . The question we ask ourselves is how to

aggregate a profile of individual preferences relations in Pv,dsc into a collective preference

5Conversely, negative contributions to collective goods can, in the presence of altruistic concerns, come
at a cost in the form of guilt or shame; this can be formally captured by assuming that individual upper
contour sets are closed in the embedding space, as in A4.
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relation in Pv,dsc through a collective choice rule

ΦI : PI
v,dsc → Pv,dsc : (�1, . . . ,�I) 7→ ΦI(�1, . . . ,�I). (6)

To narrow down the set of admissible collective choice rules, we need to impose a number of

axioms on ΦI . Following Chichilnisky’s (1980) classical formulation of the topological social-

choice problem, we restrict ourselves to collective choice rules that satisfy the following

requirements:

Anonymity For any permutation σ of {1, . . . , I} and for any profile of individual preference

relations (�1, . . . ,�I) ∈ PI
v,dsc,

ΦI(�σ(1), . . . ,�σ(I)) = ΦI(�1, . . . ,�I).

Unanimity For any individual preference relation �∈ Pv,dsc,

ΦI(�, . . . ,�) =� .

Continuity ΦI is continuous.

Anonymity requires that the collective preference relation remain unchanged whenever

individuals exchange their preference relations; this condition is stronger than Arrow’s (1951)

nondictatorship axiom. Unanimity requires that if all individuals have the same individual

preference relation, then the collective preference relation must coincide with the latter; this

condition is weaker than Arrow’s (1951) Pareto axiom. Continuity requires that, if two

profiles of individual preference relations are close enough to each other, then so must be

the corresponding collective preference relations; this replaces Arrow’s (1951) independence

axiom as the interprofile consistency condition.6

The key question is then whether there exists a collective choice rule ΦI over PI
v,dsc that

is continuous, anonymous, and respects unanimity. Because, according to Theorem 1, Pv,dsc

is contractible, it is tempting to invoke Chichilnisky and Heal (1983, Theorem 1) to infer

that there indeed exists such a collective choice rule. There are two obstacles to such a hasty

conclusion, however.

The first obstacle is that, following Debreu (1972), each individual i’s preferences in

Chichilnisky and Heal (1983) are represented by a locally integrable C1 normalized gradient

field vi over the choice set, which is typically modeled as the unit ball in an Euclidean space.

When the space of admissible preferences is convex, a natural candidate for an aggregation

6The surveys by Lauwers (2000, 2009) and Baigent (2011) offer useful discussions of these axioms.
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procedure is simply to take the average of the vector fields vi, i = 1, . . . , I; this construction

easily extends to the case where the space of admissible preferences is a retract of its convex

hull. However, these operations typically do not preserve the convexity of preferences, as

required by (6), and are thus not adapted to the present framework.

The second obstacle is that the space of admissible preferences in Chichilnisky and Heal’s

(1983) characterization result is assumed to have a particular topological structure; namely,

that it is a path-connected parafinite CW complex.7 Roughly speaking, this means that the

preference space is built in a countable number of stages, each stage being obtained from the

previous one by adding cells of a given finite dimension. Horwath (2001) extends this result

to a much broader class of admissible preferences, but it is not straightforward to determine

whether the space Pv,dsc belongs to that class.

The restrictions imposed by Chichilnisky and Heal (1983, Theorem 1) to the preference

space, therefore, prevent us from directly applying their characterization result. Fortunately,

the explicit construction of the contraction hu of Uv,dsc into any given u ∈ Uv,dsc provided in

Theorem 1 allows us to exhibit a collective choice rule that satisfies the desired properties.

As in the proof of Theorem 1, we can identify preferences in Pv,dsc with their representations

in Uv,dsc. The following result then holds.

Theorem 2 Define inductively a sequence of collective choice rules as follows: for each

u1 ∈ Uv,dsc, let

Φ1(u1) ≡ u1,

and for all I ≥ 2 and (u1, . . . , uI) ∈ UI
v,dsc, let

ΦI(u1, . . . , uI) ≡ hΦI−1(u1,...,uI−1)

(
uI ,

I − 1

I

)
.

Then, for each I ≥ 1, ΦI : UI
v,dsc → Uv,dsc satisfies Anonymity, Unanimity, and Continuity.

Proof. Proceeding along the lines of the proof of Theorem 1, a straightforward induction

shows that ΦI(u1, . . . , uI) ∈ Uv,dsc for all I and (u1, . . . , uI) ∈ UI
v,dsc. We now check each

axiom in turn.

(Anonymity) We prove that for each I, the transformation ΦI associates to each t′ such

that (0`, t
′) ∈ V and to each profile (u1, . . . , uI) ∈ UI

v,dsc an indifference set that is the vertical

convex combination of the indifference sets u−1
1 ({t′}), . . . , u−1

I ({t′}) with identical weights

7See Spanier (1966) for precise definitions of these terms.
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1/I, bearing in mind that, by normalization, ui(0`, t
′) = t′ for all i = 1, . . . , I. That ΦI is

anonymous then follows from the symmetry of this procedure. The proof is by induction.

First, note that the result trivially holds for Φ1. Let then I ≥ 2, and suppose that the

result holds for ΦI−1. Then, according to the construction of the homotopy hΦI−1(u1,...,uI−1)

provided in the proof of Theorem 1, ΦI associates to each t′ such that (0`, t
′) ∈ V and to each

profile (u1, . . . , uI) ∈ UI
v,dsc an indifference set that is the vertical convex combination of the

indifference sets (ΦI−1(u−1
1 ({t′}), . . . , uI−1))−1({t′}) and u−1

I ({t′}) with weights (I−1)/I and

1/I. The desired implication then follows from the induction hypothesis.

(Unanimity) The proof is again by induction. First, note that the result trivially holds

for Φ1. Let then I ≥ 2, and suppose that the result holds for ΦI−1. Then, for each u ∈ Uv,dsc,

we have ΦI(u, . . . , u) = hΦI−1(u,...,u)(u, (I − 1)/I) = hu(u, (I − 1)/I) = u by construction of

the homotopy hu, as desired.

(Continuity) The proof is yet again by induction. First, note that the result trivially

holds for Φ1. Let then I ≥ 2, and suppose that the result holds for ΦI−1. To complete the

induction step, we need to show that, for ξ ≡ (I − 1)/I, the mapping H : Uv,dsc ×Uv,dsc →
Uv,dsc : (u, u) 7→ hu(u, ξ) is continuous. The proof is similar to the contractibility argument

in Theorem 1 and is, therefore, omitted. Hence the result. �

Observe again that the compensation principle expressed by A6 plays a key role in the

proof of Theorem 2. By contrast, consider what happens when A6 is violated by each

individual preference relation in a profile, as illustrated in Figure 4 below.

-

q

6
t

Figure 4 Two individual preference relations that violate A6.
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The two individuals whose preferences are depicted in Figure 3 have opposite interests

in the q dimension, and transfers in the t dimension are not effective enough to compensate

either of them for holding large (in absolute value) undesired amounts of q. It is then unclear

how to aggregate their preferences into a collective preference relation that satisfies, in

particular, strict convexity.8 It is thus an open question whether the space Pdsc of preferences

that satisfy A1–A5 and A7–A8, but not necessarily A6, admits a collective choice rule that

is continuous, anonymous, and respects unanimity.

8Note in that respect that the additive rule for normalized gradient fields used by Chichilnisky (1980) and
Chichilnisky and Heal (1983) will not do. Suppose for instance that individual preferences are represented
by u1(q, t) = −q − 1/(t + 1) and u2(q, t) = q − 1/(t + 1) for (q, t) ∈ V ≡ R × (−1,∞), so that indifference
sets are convex hyperbolas. Then the addition of the normalized gradients of u1 and u2 is everywhere equal
to (0, 1), which does not correspond to strictly convex preferences: the candidate collective indifference sets
are flat, reflecting that, at each point of V , individuals 1 and 2 only agree along the t dimension.
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