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Abstract

We design an experiment that closely emulates and tests the standard model of complete

competitive markets, without imposing parametric restrictions on preferences. Consistent with

theory, aggregated elicited supply and demand curves cross at the expected dividend when

there is no aggregate risk, and at a lower price when there is aggregate risk. In contradiction

with theory, individual participants frequently make choices that violate first order stochastic

dominance. We propose a random choice model which reconciles the above mentioned findings

and is also consistent with additional features of the data, such as, e.g., large mistakes being

less frequent than smaller ones.
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1 Introduction

Since the seminal works of Debreu (1959) and Arrow (1964), the general equilibrium theory of

asset pricing and risk sharing in perfect and complete markets has offered an elegant framework

and sharp implications: agents should share risk perfectly, which, in turn, implies that only

aggregate risk should be priced (Borch, 1962). Unfortunately, these implications are rejected

by field data. Is it because human cognition and preferences do not conform to the standard

rational choice paradigm? Or is it because, in practice, markets are imperfect and incomplete?

These two potential explanations have very different implications for further research. The

former calls for new models of human decision—making, whereas the latter emphasizes the need

to model market imperfections. While it is diffi cult to disentangle these two explanations with

field data, in the lab it is possible to do so. In a controlled experimental setting one can make

sure the market is perfect and complete. Any deviation from the implications of rational choice

and competitive equilibrium can then be attributed to human cognition.

To study this issue, we conduct an experimental analysis of the simplest possible setting in

which the basic tenets of the theory can be tested. The state of the world ω can take only two

values (u and d) and there are two non-redundant assets (a stock and a bond), so the market is

complete. At the beginning of each of 8 trading rounds, participants start with heterogeneous

endowments (stocks, bonds and other state—contingent income). Individual demand and supply

functions (specifying how many shares the participant wants to buy or sell at different prices)

are elicited. Participants are asked to choose the quantity they want to buy or sell at all
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prices on a grid. For half the rounds of the experiment, the market price is randomly drawn

and thus participants have no opportunity to manipulate the price.1 During the other rounds,

in contrast, participants are informed that the price is set to minimize the difference between

aggregate supply and aggregate demand. Empirically, we observe similar behaviour within these

two different price—setting mechanisms. This suggests that our experimental design is able to

generate a situation in which agents behave competitively, as in the standard competitive

equilibrium model.2

The simplicity of our experimental setting enables us to pin down precisely the implications

of rational choice for individual behaviour and market outcomes for a large class of preferences.3

• At the individual level, our experimental design enables us to test the hypothesis that par-
1This is in the same spirit as Becker, DeGroot, Marschak (1964). They i) ask a seller to quote a reservation

price, ii) randomly draw a buying price, and iii) let the seller trade 1 unit at the buying price if the latter is

above the reservation selling price. While in that mechanism trades are only for one unit, our random price

mechanism can be seen as an extension of the Becker, DeGroot, Marschak (1964) to general supply or demand

curves.
2Our market environment is similar to the call market in Smith, Williams, Bratton, and Vannoni (1982),

McCabe, Rassenti and Smith (1993) or Plott and Pogolreslskyi (2015). The main differences are that i) they

let participants submit limit orders, while we elicit demand functions, and ii) our design enables us to test if

participants are competitive. Bohm, Linden and Sonnegard (1997) compare the performance of a market mech-

anism with that of a Becker, DeGroot, Marschak (1964) mechanism in eliciting the private value of participants

for one unit of a commodity.
3That class includes risk averse, risk loving or risk neutral expected utility, as well as rank dependent expected

utility.
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ticipants are rational. We show that some actions are first order stochastically dominated.

Rational choice, therefore, implies they should not be observed in the lab.

• At the market level, our experimental design enables us to test the hypothesis that par-

ticipants are risk averse and share risk effi ciently. We consider two treatments. In the

first treatment there is no aggregate risk. So participants can perfectly hedge their risky

endowments and the price of the stock should be equal to the expected dividend. In

the second treatment there is aggregate risk. So, with risk-averse agents, the stock price

should be lower than the expected dividend.4

We ran the experiment with 141 students in Toulouse University. There were 8 cohorts.

Each participated in 8 replications of the experimental market. Participants’compensation was

a linear function of their gains in two randomly drawn replications (with an average of 85.84

euros per participant).

Aggregate outcomes, in our experimental market, are consistent with the implications of

rational choice. When there is no aggregate risk, market clearing prices are close to expected

dividends, and average trading volume is close to that requested by perfect risk-sharing. With

aggregate risk, there is a risk premium, consistent with a relative risk aversion coeffi cient close

4The two treatments alternate from one round to the next. While market participants know their own

endowment, they have no information about the endowments of the others or the alternance between the two

treatments. This is in line with competitive Walrasian equilibrium, where agents only need to contingent

decisions on the price, and do not engage in strategic interactions with one another.
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to .5 for the representative agent.

Observed individual behaviour, however, markedly differs from that predicted by rational

choice. Around 30% of observed actions are first order stochastically dominated. The frequency

of dominated actions, however, declines with experience, from approximately 34% in the first

replication to 24% in the last replication. Probit regressions, in which the dependent variable

is the indicator that the action is dominated, confirm that there is significant learning. They

also show that, when an agent opted for a dominated action in a given round, he/she is likely

to continue to do so at the next round, except if the action led to a loss-making trade. The

latter suggests that agents learn from costly mistakes.

To reconcile aggregate and individual findings, we propose a model of bounded rationality.

In line with random choice models (Luce, 1959, McKelvey and Palfrey, 1995, 1998), we posit

that participants play randomly but put more weight on actions delivering larger value. We

show that the distribution of individual actions predicted by this model is consistent with that

observed in the lab: As mentioned above, first order stochastically dominated actions are less

frequent than undominated ones, which is in line with the predictions of the random choice

model. Furthermore, in our simple experimental setting we are able to identify “large” and

“small”mistakes, such that, while both are dominated by rational actions, large mistakes are

second order stochastically dominated by small mistakes. In line with the predictions of the

random choice model for risk averse agents, we find that large mistakes are less frequent than

small ones. We also show (analytically) that the actions generated by the random choice model

aggregate to supply and demand curves which, like those we observe in the lab, generate market
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pricing and average trading consistent with rational choice.

Our work is directly in line with the insightful analyses of Bossaerts and Plott (2004) and

Bossaerts, Plott and Zame (2007).5 Like them we study the consequences of risk aversion in

complete experimental markets and find prices involve risk—premia. Differences between the

present paper and theirs include the following:

• The trading protocol we consider is different fromBossaerts and Plott (2004) and Bossaerts,

Plott and Zame (2007). They consider a continuous double—auction, in which traders can

dynamically post and hit quotes. This is similar to the workings of electronic limit order

books in financial markets during the day, and this is also in line with the seminal ex-

perimental studies of Smith, Suchanek and Williams (1988) and Plott and Sunder (1982,

1988). In contrast, we consider a competitive market environment in which participants

submit supply and demand functions which are aggregated and crossed to determine the

equilibrium price.

• While Bossaerts and Plott (2004) and Bossaerts, Plott and Zame (2007) consider a three—

state model, we consider a two—state model. The advantage of a three—state complete

market is that there are two risky assets, so that portfolios of risky assets can be analyzed.

This enables Bossaerts and Plott (2004) and Bossaerts, Plott and Zame (2007) to test

the hypothesis that agents hold the market portfolio. The problem with that design,

5While our theoretical framework is static, Bossaerts, Meloso and Zame (2013) and Crockett and Duffy

(2013) offer interesting analyses of equilibrium market dynamics.

7



however, is that participants must trade several risky assets. Such a market is diffi cult to

organize and cognitively challenging for participants. Our design is simpler since we only

have two assets: the risk—free bond and the risky stock. Thus agents need to trade in

only one market, where the risky asset is exchanged for the risk—free bond. Moreover, as

mentioned above, the simplicity of our setting enables us to obtain precise implications

for a large class of preferences.

• While Bossaerts and Plott (2004) and Bossaerts, Plott and Zame (2007) consider markets

in which there is always aggregate risk, we also consider a treatment in which there is no

aggregate risk, while individual endowments are risky. This enables us to test a very basic

implication of theory that does not arise in Bossaerts and Plott (2004) and Bossaerts,

Plott and Zame (2007): In complete markets without aggregate risk, i) agents should

bear no risk and ii) this should give rise to risk-neutral pricing.

Our finding that aggregate behaviour is well behaved, while individual behaviour is noisy,

echoes that of Bossaerts, Plott and Zame (2007). Their CAPM+ε model assumes that an

individual trader’s demand function is the sum of a mean-variance optimal demand and a noise

term. Our random choice model allows for a large class of preferences (expected utility with

any curvature, rank dependent expected utility). Moroever, in our simple experimental design,

our random choice model imposes structure on the distribution of individual actions, which we

confront to the experimental data.

The present paper is also related to the experimental literature studying the consequences
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of risk—aversion for economic and financial decisions. Holt and Laury (2002) observe lottery

choices consistent with risk-aversion. Experimental findings are also suggestive of risk aversion

for private value auctions (Goeree, Holt and Palfrey, 2002), asymmetric matching penny games

(Goeree, Holt and Palfrey, 2003), and one—shot matrix games (Goeree and Holt, 2004).6 In

Bossaerts and Plott (2004) market pricing is consistent with risk aversion, since assets with

large betas have greater expected returns than assets with low beta. Our experimental finding

that with no aggregate risk prices are equal to expected dividend, while with aggregate risk

prices are below aggregate dividend, offers additional evidence consistent with risk aversion.

Section 2 presents our experimental design. Section 3 presents testable implications of ratio-

nal choice in our complete market experimental setting. Section 4 confronts these implications

with experimental evidence. Section 5 presents a random choice model and shows it rationalises

experimental findings. Section 6 concludes.

2 Experimental Design

The purpose of our experimental design is to closely emulate and test the standard model of

complete competitive markets, without imposing parametric restrictions on preferences.

6The majority of participants in Holt and Laury (2002) have estimated relative risk—aversion between .15

and .97. Estimates of the same order of magnitude have been found by Goeree et al (2002, 2003) and Goeree

and Holt (2004).
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Assets: There are two equally likely states of nature, ω = u, d, and two non-redundant

assets, a bond and a stock. Hence markets are complete. One unit of the bond pays 1 in each

state of nature. One share of the stock pays 120 in state u and 0 in state d. To implement

complete markets in our two-state experimental setting, it is enough to consider one market,

in which the stock is traded against the bond; that is, we take the bond as the numï¿1
2
raire.7

We denote by S the price of the stock relative to the bond.

Although considering only two assets precludes analyzing portfolios of risky assets, it side-

steps the diffi culties associated with simultaneous trading in several experimental markets that

have been emphasized by Bossaerts and Plott (2004) or Bossaerts, Plott, and Zame (2007).

Moreover, having only one market in which the stock can be traded against the bond simpli-

fies the cognitive task faced by participants. If, by contrast, we had considered two markets in

which the stock and the bond could be traded against a perishable unit of account, participants

would have faced a more diffi cult task: they would have had to factor their trades on the two

markets into their budgets constraints, and to compare prices on the two markets.

Endowments: Participants’ endowments come from their initial holdings of bond and

stock, and from state-contingent additional income. We will consider two treatments. In

Treatment 1, there is no aggregate risk: the sum of individual endowments is constant across

states of nature. In Treatment 2, there is aggregate risk: the sum of individual endowments

7The mapping between the complete-market environment and our experimental setting is explicited in the

online appendix.
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is larger in state u than in state d. We chose this design because, as explained in the next

subsection, it enables us to test sharp predictions of the theory.

For simplicity, participants can receive only three types of endowments:

1. Type 1 participants initially receive 5 shares of the stock and no bond. Their additional

income is 0 in state u and 360 in state d. Thus their endowments are 600 in state u and

360 in state d.

2. Type 2 participants initially receive no stock and 310 bonds. Their additional income is

0 in state u and 240 in state d. Thus their endowments are 310 in state u and 550 in

state d.8

3. Type 3 participants initially receive no stock and 310 bonds. They have no additional

income. Thus their endowment is 310 in both states u and d.

In Treatment 1, if the number of participants is even, there are only Type 1 and Type

2 participants, in equal numbers; whereas if the number of participants is odd, there is one

additional Type 3 participant. This treatment corresponds to a situation with no aggregate

risk.

In Treatment 2, if the number of participants is even, there are Type 1 and Type 3 partici-

pants, in equal numbers; whereas if the number of participants is odd, there is one additional

Type 3 participant. This treatment corresponds to a situation with aggregate risk.

8The endowments for Type 1 and Type 2 participants have been chosen so that both are fully hedged if they

trade 2 shares, as discussed in the next section.
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Participants do not know that there are two treatments. At each replication of the exper-

iment, they are only informed about their own endowments and the distribution of the divi-

dend. This is in line with the standard competitive equilibrium model, in which agents only

rely on prices and rational expectations about the distribution of future values, as emphasized

in Bossaerts and Plott (2004.)

Supply, demand and prices: Historically, experimental economics relied on the contin-

uous double auction to study market equilibrium in the lab. As noted by Bossaerts (2008):

“The very quest for an institution capable of generating the (Walrasian) com-

petitive equilibrium ended up defining experimental economics... What established

economics as an experimental science was proof that the continuous auction did the

job (Smith 1962, Plott and Smith 1978).”

Yet, Bossaerts (2008) also notes:

“The continuous double auction ... defies formal analysis in game theoretic

terms.”

To avoid this pitfall, we design our experimental market to closely emulate the standard

competitive equilibrium model in which each participant states how much he/she wants to sell

or buy at each price, and the price is set to clear the market.

As explained below, if all agents are competitive and risk averse, in equilibrium, Type 1

agents never buy the stock, while Type 2 and Type 3 agents never sell it. To simplify the task
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of participants in the experiment, we therefore restrict Type 1 participants to supply, and Type

2 and 3 participants to demand nonnegative quantities of the stock. A further simplification is

that participants are restricted to trade quantities no greater than 4.9

Participants are asked which quantity they want to sell or buy at each point of a price grid

ranging from 52 to 62 with unit increments. Whereas the price grid is discrete, at each price

S, we allow participants to supply or demand any quantity of the stock in the interval [0, 4].

Thus participants can fine-tune their supply or demand, which enables them to equate marginal

utility and price when they select trades in [0, 4].

Once supply and demand curves have been elicited, it would seem natural to simply aggre-

gate and cross them to determine the market clearing price. Two diffi culties arise, however.

The first diffi culty is that discreteness of the price grid could prevent market clearing. The

second diffi culty is that participants could behave strategically and try to manipulate the price.

To address these issues, we consider the two following pricing mechanisms:

1. In the call mechanism, the price is set to minimize the gap between supply and demand.10

This is in line with the call market mechanism in Smith, Williams, Bratton, and Vannoni

(1982), McCabe, Rassenti and Smith (1993) or Plott and Pogolreslskyi (2015). The main

difference is that in these papers participants submit schedules of limit orders, while in

9These restrictions, in particular, forbid short sales, which would anyhow not arise in equilibrium with risk

averse agents.
10In the very few instances in which several prices minimized the gap between supply and demand, we drew

one of them randomly.
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ours they submit demand functions. While limit order schedules give rise to monotonic

demand curves, the demand curves we elicit can be non—monotonic.11 As mentioned

above, because we consider a discrete pricing grid, at the price minimizing the gap between

supply and demand, there is typically rationing. To make sure this consideration does

not affect the choices of the participants, we supply or demand the quantity of stock

needed to clear the market. Thus participants’orders are fully executed. In practice

the additional supply or demand injected in the market by the experimenter averaged to

6.52% of the minimum between supply and demand during the call sessions. This way to

handle potential mismatch between supply and demand ensures that participants behave

as predicted by the competitive model.12

2. In the random mechanism, the price is drawn from the price grid, each price being equally

likely. As in the call mechanism, participants’orders are fully executed. This random

mechanism is in line with the Becker, Degroot and Marshack (1964) mechanism. While

in Becker, Degroot and Marshack (1964) each participant trades one or zero unit, in our

mechanism, participants can trade any amount between 0 and 4.

At the beginning of each replication of the experiment, all participants are told which

mechanism (random or call) will be used to set the price. Strategic considerations could affect

11In the the standard competitive equilibrium model too, demand curves may be non monotonic, due to the

tradeoff between substitution and wealth effects.
12If instead we had used a rationing scheme, it could have affected behaviour. For example, participants

anticipating prorata rationing may be tempted to inflate their demand.
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participants’behaviour when they know their orders will be processed in the call mechanism,

but not when they know the random mechanism will be used to set the price. Therefore,

comparing the two enables us to test whether strategic considerations significantly affected

participants’behaviour. If they do not, then the call mechanism provides a good approximation

of a competitive market.

3 Testable Implications of Rational Choice

In this section we outline the testable implications arising in our simple experimental setting.

3.1 Individual Behaviour

Denote by W i(u, S) and W i(d, S) the final wealth of agent i, for a given price S, in states u

and d respectively. For each price, W i(u, S) and W i(d, S) are pinned down by the quantity

chosen by the agent at that price. Because the two states are equally likely, the expectation of

the final wealth of i is

µi(S) =
W i(u, S) +W i(d, S)

2
,

while its standard deviation is

σi(S) =
|W i(u, S)−W i(d, S)|

2
.

When W i(u, S) > W i(d, S),

W i(u, S) = µi(S) + σi(S), W i(d, S) = µi(S)− σi(S).
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When W i(u, S) < W i(d, S),

W i(u, S) = µi(S)− σi(S), W i(d, S) = µi(S) + σi(S).

Putting the two cases together, because the two states are equiprobable, the lottery faced by

agent i is equivalent to the lottery (µi(S) + σi(S), 1
2
;µi(S)− σi(S), 1

2
) (irrespective of whether

W i(u, S) > W i(d, S) or W i(u, S) < W i(d, S)). Hence, in our simple empirical design, if

µ′i(S) > µi(S), then (µ′i(S) + σi(S), 1
2
;µ′i(S) − σi(S), 1

2
) first-order stochastically dominates

(µi(S) + σi(S), 1
2
;µi(S)− σi(S), 1

2
), as illustrated in Figure 1.

The class of preferences for which agents exhibit preference for first order stochastic dom-

inant shifts is very large. It includes, for instance, expected utility with the only requirement

that utility increase in wealth, Frechet-differentiable utility with increasing local utility func-

tions (see Machina, 1982), or rank—dependent expected utility (Quiggin, 1982). We hereafter

refer to agents with preferences in this class as FOSD agents. As explained below, our sym-

metric two state setup generates clear predictions for FOSD agents.

Our experimental design also enables us to test the implications of risk aversion. An agent

is risk averse if she prefers any lottery than a mean—preserving spread of that lottery. Symmet-

rically, an agent is risk loving if she prefers a mean preserving spread of any lottery than that

lottery. Following Segal and Spivak (1990), we will say that an agent exhibits second-order risk

aversion whenever the risk premium she requires for a small bet is proportional to the square

of the size of that bet. Intuitively, this means the agent is almost risk neutral for small bets.

By contrast, an agent exhibits first-order risk aversion whenever the risk premium is propor-
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tional to the size of the bet. In that case the agent may be willing to pay a premium to buy

insurance against a small risk. We spell out below the consequences of first- and second-order

risk aversion in our setting.

Type 1 If a Type 1 participant sells Q shares of the stock at price S, her final wealth in

states u and d is

W i(u, S) = 600 + (S − 120)×Q, (1)

W i(d, S) = 360 + S ×Q. (2)

(1) and (2) imply that the mean and standard deviation of i’s final wealth are µi(S) =

(S− 60)×Q+ 480 and σi(S) = 60× |Q− 2|, respectively. Therefore, two possible trades 2 + x

and 2− x lead to equally volatile final wealth, for all x ∈ (0, 2]. However, if the price is strictly

lower than the expected dividend, i.e., S < 60, selling 2 + x shares leads to a lower expected

final wealth than selling 2 − x shares, while for S > 60, the converse holds. Hence, trading

2 + x shares is first order stochastically dominated by trading 2− x shares when S < 60, while

the converse holds when S > 60.13

13The cdfs for the lotteries generated by selling 2+x shares and 2−x are identical to those represented in Figure

1, withW i(u, S)|2+x = µi−σi,W i(d, S)|2−x = µ′i−σi,W i(d, S)|2+x = µi+σi andW
i(u, S)|2−x = µ′i+σi. Note

that W i(u, S)|2−x ≥W i(d, S)|2−x, while W i(u, S)|2+x ≤W i(d, S)|2+x. Yet, the first step in the cdf is the same

for both lotteries (going from 0 to .5). This property of the cdf’s, which delivers the first-order dominance result,

obtains because the two states are equiprobable. For arbitary probabilities, first order stochastic dominance

does not always obtain, as illustrated in the figure in the online appendix. Hence equiprobability is instrumental

in yielding sharp testable implications.
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Moreover, if an agent is risk—loving or risk neutral, it is optimal for her to supply 4 shares

at any price S > 60 (and 0 shares at any price S < 60). To see that selling 4 shares is preferred

to selling 4− x shares for all x ∈ (0, 4] when S > 60, compare the lottery generated by selling

4 − x to that generated by selling 4 shares. The latter is equal to the former, plus a positive

constant (x(S − 60)), plus a mean preserving spread ((−60x, 1
2
; 60x, 1

2
)). Indeed:

W i(u, S)|Q=4−W i(u, S)|Q=4−x = [600 + (S − 120)× 4]−[600 + (S − 120)× (4− x)] = x(S−60)−60x

and

W i(d, S)|Q=4 −W i(d, S)|Q=4−x = [360 + S × 4]− [360 + S × (4− x)] = x(S − 60) + 60x.

What if S = 60? Type 1 participants are perfectly hedged if they sell 2 shares. Any other

trade generates a mean preserving spread around that safe outcome. Hence, when S = 60,

a risk-averse Type 1 participant finds it optimal to sell exactly two shares. Symmetrically, a

risk loving participant prefers to take as much risk as possible at that price, which can done,

equivalently, by selling 0 or 4 shares. Risk neutral agents are indifferent between any quantity

in [0, 4]. The remarks above yield the following implication.

Implication 1 • If a Type 1 participant is an FOSD agent, she does not sell more than 2

shares at S < 60, nor sell less than 2 shares at S > 60. If she is risk—loving or risk—neutral,

she sells 0 shares at S < 60, and 4 shares at S > 60.

• If a Type 1 participant is risk averse (resp. risk—loving), she supplies 2 shares (resp. 0 or

4 shares) at S = 60. If she is risk-neutral she is indifferent between all trades at S = 60.
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To illustrate this implication, Figure 2, Panel A, depicts the choices of Type 1 agents in the

price—quantity plane. The relevant prices are between 52 and 62, the relevant quantities are

between 0 and 4, and there are four quadrants determined by the horizontal line Q = 2 and

the vertical line S = 60. If follows from Implication 1 that the North-West and South-East

quadrants are dominated for an FOSD—agent. Moreover, a risk-averse Type 1 agent’s supply

function goes through the point (60, 2).

Type 2 If a Type 2 participant buys Q shares of the stock at price S, her final wealth in

states u and d is

W i(u, S) = 310 + (120− S)×Q, (3)

W i(d, S) = 550− S ×Q. (4)

Following similar steps as for Type 1, we obtain the following implication.

Implication 2 • If a Type 2 participant is an FOSD—agent, she does not buy less than 2

shares at S < 60, or more than 2 shares at S > 60. If this participant is risk—loving, she

buys 4 shares at S < 60, and 0 shares at S > 60.

• If a Type 2 participant is risk averse (resp. risk—loving), she buys 2 shares (resp. 0 or 4

shares) at S = 60.

This implication is illustrated in Panel B of Figure 2, which is the mirror image of Panel A.

19



Type 3 In contrast with Type 1 and Type 2 participants, Type 3 participants start with

a riskless initial endowment. Thus, trading increases their risk—exposure. More precisely, if

a Type 3 participant buys Q shares of the stock at price S, her final wealth is W i(u, S) =

310 + (120− S)×Q, and W i(d, S) = 310− S ×Q, in states u and d respectively. This can be

rewritten as

W i(u, S) = 310 + (60− S)×Q+ 60×Q, (5)

W i(d, S) = 310 + (60− S)×Q− 60×Q. (6)

(5) and (6) show that, relative to the safe endowment of Type 3, trading Q adds a constant

((60 − S) × Q) plus a mean preserving spread ((−60Q, 1
2
; 60Q, 1

2
)). Therefore, we obtain the

following implication, illustrated in Figure 2, Panel C.

Implication 3 When S > 60, a risk averse Type 3 agent strictly prefers not to buy any share.

When S < 60, a risk loving Type 3 agent strictly prefers to buy 4 shares

The restrictions imposed by theory for Type 3 are weaker than for Type 1 and Type 2,

since there are no robust theoretical predictions for risk averse participants when S ≤ 60, or

risk loving participants when S ≥ 60.

3.2 Equilibrium Outcomes

Treatment 1 In Treatment 1, there are N Type 1 participants, N Type 2 participants, and

possibly one Type 3 participant. By Implications 1, 2 and 3, if all participants are risk averse,
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at S = 60 Type 1 should sell two shares, Type 2 buy shares two and Type 3 trade 0 share.

Thus, if all participants are risk averse, S = 60 is an equilibrium, with trading volume 2N .

Is it the only equilibrium? At price S > 60, by Implication 1, supply is at least 2N . Thus, by

Implications 2 and 3, S > 60 can be an equilibrium only if at that price all Type 2 participants

buy 2 shares. Now, if Type 2 participants exhibit finite second-order risk aversion, for any ε

small enough, buying 2 shares is dominated by trading 2−ε shares (see Segal and Spivak, 1990).

Indeed, relative to the safe lottery obtained when buying two shares, trading 2− ε shares adds

a small gamble, with positive expected profit, a gamble that finitely second-order risk averse

participants will accept. Consequently, there cannot exist an equilibrium with price strictly

above 60 (and symmetric arguments rule out an equilibrium with price strictly below 60). The

above remarks yield our fourth implication.

Implication 4 In Treatment 1, if all participants are finitely risk-averse, there exists an equi-

librium such that S = 60, Type 1 participants sell 2 shares, Type 2 participants buy 2 shares,

and Type 3 participants do not trade. If participants are finitely second-order risk averse, the

equilibrium is unique.

The intuition is the following. In Treatment 1, aggregate wealth is constant across states.

Thus, in equilibrium risk averse agents perfectly hedge their risk exposure and the price does

not reflect any risk—premium, it is simply equal to the expected dividend.14 With expected

14While the equilibrium analysis underlying Implication 4 is conducted in a perfect market, with continuous

prices, it also applies in our experimental setting with a discrete price grid, because the equilibrium price S = 60
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utility maximization, this is an instance of the mutuality principle (Borch, 1962). In our simple

experimental design, it obtains as soon as agents exhibit second-order risk aversion.

Treatment 2 In Treatment 2, there are only Type 1 and Type 3 participants. By Implication

1, if they exhibit FOSD preference, Type 1 agents sell at least 2 shares at any price above 60.

By Implication 3, if Type 3 participants are risk averse they don’t buy any share at any price

above 60. If participants are FOSD and risk averse, their preferences are monotone and convex

in state—contingent consumption, hence there exists an equilibrium. This yields the following

implication.

Implication 5 In Treatment 2, if participants are FOSD and risk averse, there exists an equi-

librium and the equilibrium price is lower than or equal to 60.

As FOSD risk averse Type 1 participants sell less than 2 shares at any price lower than 60,

equations (1) and (2) imply that their equilibrium consumption is larger in state u than in state

d. Moreover, FOSD risk averse Type 3 participants prefer to trade non negative quantities at

any price lower than 60. Hence equations (5) and (6) imply that their equilibrium consumption

is larger in state u than in state d. Thus, individual equilibrium consumptions comove with

aggregate endowment. This extends, in our simple context, the mutuality principle (Borch,

1962) slightly beyond the expected utility case.

The gap between the expected dividend of the stock (60) and its equilibrium price (S) is the

risk premium requested by risk averse agents to bear aggregate risk. Uniqueness of equilibrium

belongs to the pricing grid.
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is not guaranteed in general, but if participants are risk averse expected utility maximizers

with relative risk aversion −wvi′′(w)/vi′(w) ≤ 1, ∀w and i, then substitution effects dominate

income effects and the equilibrium is unique.15

4 Is the Evidence Consistent with Rational Choice and

Competitive Behaviour?

We ran the experiment with 141 participants. All of them were students enrolled in the first

year of Toulouse University’s master in finance.16 There were 8 cohorts. All participated in

8 replications of the experiment, lasting, overall, one hour and a half (but for one of the

cohorts an operational problem prevented us from collecting the data for the last replication).

Treatment 1 (corresponding to no aggregate risk) and Treatment 2 (corresponding to aggregate

risk alternated during the 8 replications. Also, for half the cohorts, the first four replications

involved random prices, while the last four replications involved a call auction. For the other

cohorts, the first four replications involved a call auction, while the last four replications involved

random prices. The details of the experimental sessions are documented in the table in the

15The condition ensures that the aggregate excess demand function for state-contingent wealth satisfies the

gross substitute property, see Varian (1985) or Mas-Colell, Whinston, and Green (1995, Example 17.F.2 and

Proposition 17.F.3, pp. 612—613).
16These students come from different backgrounds. The majority studied management, and had very little

exposure to micro-economic or finance theory. Some studied economics, and had greater exposure to microeco-

nomics, but not to finance theory. Others come from engineering or maths.
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online appendix.

For each group, two of the eight rounds were randomly drawn at the end of the experiment,

one from sessions with random pricing and the other from sessions with a call auction. As

announced at the start of the experiment, participants received the sum of their final wealths

in these two rounds, divided by ten. The average individual payment was € 85.84, the minimum

was € 5 and the maximum € 120. We ran an anonymous survey among the participants, asking

them their monthly budget (including all expenses: housing, food, leisure, etc.). The average

was € 646. Thus, the amount participants could make in the lab, and its variability, were

significant relative to their budget in the field.17 Overall, 68 participants were assigned the role

of Type 1 sellers, 68 participants were switching from Type 2 to Type 3 buyers depending on

the treatment, and 5 participants were assigned the role of Type 3 buyers.

4.1 Aggregate Outcomes

In this section we study aggregate supply and demand and market pricing. First, we report

the evidence on whether supply and demand reflect strategic behaviour. In half the replica-

tions of the experiment, the price at which participants traded was randomly drawn. For the

other replications the price was set to minimize the gap between supply and demand. To test

17Bossaerts and Plott (2004) compare participants’behaviour in asset market in the US and in Bulgaria. The

experimental design was the same in the two countries, but monetary incentives were much stronger in Bulgaria.

Bossaerts and Plott (2004) find qualitatively similar results. In both countries there is a risk premium. The

main difference is that the risk premium is larger in Bulgaria.
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the null hypothesis of competitive behaviour, we ran Wilcoxon rank—sum tests comparing the

distribution of quantities offered or demanded at each price in the two mechanisms.18 As il-

lustrated in Figure 3, the p—value was above 10% in all cases but 4 (out of 44). This does not

suggest rejection of the null hypothesis of competitive behaviour. Accordingly, when analyzing

aggregate outcomes we hereafter pool the observations from the two pricing mechanisms (ex-

cept in Figure 5, panel C and D, below, which documents further the similarity in participants’

behaviour between call and random price treatments.)

Figure 4 plots the average across cohorts of the price minimizing the distance between

aggregate supply and aggregate demand.19 For each of the two treatments (Treatment 1 without

aggregate risk, and Treatment 2 with aggregate risk), each of the eight cohorts played four

replications. The solid line in Figure 4 plots the price (averaged across 8 cohorts) for the first,

second, third and fourth Treatment 1 replications. The dashed line plots the average prices

18At each price level, we first computed for each individual the average quantity in four cases: random

mechanism/aggregate risk, random mechanism/no aggregate risk, call/aggregate risk and call/no aggregate

risk. So, since there are 8 replications, we computed an average quantity across 2 replications for each subject.

Then, for each of the 11 prices level, we ran separate Wilcoxon rank—sum tests to examine if the quantity traded

differs in the random mechanism and the call market. We ran these tests separately for buyers and sellers, and

for Treatment 1 and Treatment 2. So we computed 4 times 11 statistics. For each, the null hypothesis is that

the distribution across subjects of quantities for the random price mechanisms is equal to its counterpart for

the call mechanism.
19For the replications relying on a call market, but not for those with random pricing, this was the actual

price in the market.
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for Treatment 2. The figure shows that, during the first two replications, average prices are

similar in the two treatments (close to 58). During the last two replications, in Treatment 1,

the average market price increases and converges to the expected dividend (60) as predicted

by theory (see Implication 4 above). In contrast in Treatment 2, the average market price

decreases and converges close to 57. The difference between the expected dividend (60) and the

average price (57) in Treatment 2 can be interpreted in terms of risk premium, and is consistent

with the prediction from theory for risk averse participants (see Implication 5 above). With a

price of 57 and an expected final value of 60, the risk—premium is 5.26%. For a representative

investor endowed with the aggregate wealth and with power utility function, this corresponds

to a relative risk aversion coeffi cient a bit lower than .5, in line with evidence from other

experiments infering risk—aversion from participants’behaviour.20

To shed light on aggregate demand and supply in our experimental market, we aggregate all

the supply and demand curves from all Type 1 and Type 2 participants for Treatment 1, and

from all Type 1 and Type 3 participants for Treatment 2. It is legitimate to do so because, in

our competitive setting, individual demands and supplies are independent of the number and

characteristics of the other market participants.

Figure 5, Panel A, depicts aggregate demand and supply in Treatment 1 (divided by the

number of participants—replications, to facilitate interpretations). Demand is approximately

decreasing and supply approximately increasing. Quite strikingly, the price minimizing the

20See Holt and Laury (2002) for lottery choices, Goeree et al (2002) for private value auctions, Goeree et al

(2003) for asymmetric matching penny games, and Goeree and Holt (2004) for one—shot matrix games.
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gap between supply and demand is 60, which is the equilibrium price predicted by theory (see

Implication 4 above). At that price, trading volume per participant is very close to the two

shares predicted by theory for risk averse agents (see Implication 4 above).

Figure 5, Panel B, depicts aggregate demand and supply in Treatment 2. As predicted by

theory, supply is not very different from its counterpart in Panel A. In contrast, as predicted by

theory for risk averse agents, demand is lower than in Panel A. Correspondingly, the price min-

imizing the gap between supply and demand is lower than the expected dividend, as predicted

by theory for risk averse agents (see Implication 5 above).

The next two panels of Figure 5 depict aggregate supply and demand in the call and random

price mechanisms, in Treatment 1 and 2, respectively. They illustrate that aggregate supply

and demand are very similar in the call and the random price mechanisms.

4.2 Individual Outcomes

The evidence on aggregate outcomes suggests our experimental market conforms rather well

to the predictions of theory. We now turn to the analysis of individual outcomes, to study

whether well behaved aggregate outcomes stem from well behaved individual actions.

Inspecting individual supply and demand curves reveals significant heterogeneity in indi-

vidual behaviour. To illustrate this, Figure 6 plots the supply functions of four different Type

1 participants in Treatment 1. The behaviour depicted in Panel A is quite noisy, and involves

several dominated actions, in contradiction with Implication 1. In contrast, the behaviour de-
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picted in Panel B is very steady and conforms to the prediction of theory for an infinitely risk

averse expected utility maximizer. Two other examples are in Panel C, where the participant’s

behaviour conforms to the prediction of theory for finite risk aversion, and Panel D, where

the participant’s behaviour is optimal for a risk loving or risk neutral agent (both in line with

Implication 1). Which one of these examples is more representative of the data? We hereafter

quantify the extent to which individual actions conform to the predictions of rational choice.

Implications 1 and 2 offer sharp predictions for rational supply and demand: For example,

supplying more than two shares at S < 60, or less than two shares at S > 60 is a dominated

action for an FOSD Type 1 agent. Symmetrically, demanding less than two shares at S < 60,

or more than two shares at S > 60 is a dominated action for an FOSD Type 2 agent.

To test the predictions from theory, we compute the frequency of dominated and undom-

inated actions at prices other than 60 for Type 1 or 2 agents.21 As mentioned above, 68

participants, in our experimental market, were of Type 1 (i.e., they were sellers). Each par-

ticipated in 8 replications of the market. For each of these participants, and each replication,

we computed the proportion of dominated actions across the 10 possible prices.22 We then

computed, for each replication, the average across 68 participants of this proportion. The solid

line in Figure 7, Panel A, plots this average, while the dashed line are the 10% confidence inter-

val. Figure 7, Panel B, offers a similar plot for the 68 Type 2 (buyers) participants. For these

participants there are only 4 replications. During the 4 other replications these participants

21At price 60, or for Type 3 agents, there are no dominated actions.
22There are 11 possible prices, but at price 60 there is no dominated action.
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were of Type 3, for which we are not able to define dominated actions without making any

parametric restriction on preferences.

Inspecting Panel A, one can see that, for sellers, the average proportion of dominated actions

starts around 35% at the first replication, and declines to 25% at the last replication. It is always

significantly lower than 50%. Hence we reject the pure noise hypothesis that participants simply

choose randomly any quantity between 0 and 4. The proportion of dominated actions is also

always significantly larger than 0. Hence we reject the fully rational choice hypothesis. Similarly,

Panel B shows that, for buyers, the frequency of dominated actions starts from slightly less than

35% at the first replication and then steadily declines to less than 25% at the last replication.

Again, both pure noise and fully rational choice are rejected. Thus, participants are not fully

rational, but learn to play more rationally as they become more experienced.

Further statistical evidence is offered in Table 1. The table displays estimates for probit

regressions in which the dependent variable is the indicator that an action is first-order sto-

chastically dominated. Our data include a total of 12,287 observations: one per participant,

per period and per price. We focus on Type 1 and Type 2 participants and on prices different

from 60, because these are the cases in which we can identify first order stochastically domi-

nated actions. This leaves us with 8,110 observations. We further drop 520 observations that

correspond to the 8 participants who never played any dominated action. We thus end up with

7,590 observations.

We control for individual and price fixed effects. The main regressor of interest is a proxy for

the participant’s experience, equal to the number of periods during which he/she has already
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participated. In all the specifications, this variable is significantly negative, suggesting that

experience reduces the propensity to choose dominated actions. Another regressor of interest

is the indicator that the replication involved random pricing. Its estimated coeffi cient is not

significantly different from zero, consistent with the hypothesis that participants behave in the

same way in the random pricing and the market clearing environments. To further analyse

learning in our experiment, the third specification (in column 3) involves three additional

indicator variables: i) the indicator that the price has previously been selected as transaction

price, ii) the indicator that the agent has already played a dominated action at that price and

iii) the indicator that this dominated action led to a loss-making trade. The indicator that the

price has been previously selected as transaction price is not significant. This suggests that

participants do not consider more carefully prices at which they have previously transacted.

The indicator that the agent has already played a dominated action at that price is significantly

positive. This suggests there is an element of inertia in participants’actions: they tend to repeat

previous choices. However, the indicator that the agent has previously chosen a dominated

action at that price and correspondingly incurred a loss is significantly negative. This suggests

participants learn from their mistakes when the latter are costly.

5 Reconciling the Evidence with Quasi-rational Choice

The above reported findings are puzzling. On the one hand, aggregate outcomes are very much

in line with the implications of rational choice. On the other hand, a large fraction of individual
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actions are inconsistent with rational choice. The latter suggests bounded rationality, the former

that individual boundedly rational choices add up to “rational”aggregate outcomes. Thus, to

reconcile the different aspects of our experimental findings, we offer a bounded rationality

model of individual choice in line with quantal response models (McKelvey and Palfrey, 1995

and 1998), we derive its empirical implications and we confront them to the data.

5.1 Bounded Rationality and Random Actions

As in Luce (1959) we assume that, instead of selecting the deterministic optimal action, players

choose randomly among actions, putting larger probability on actions generating higher value.23

At a given price (S), each possible quantity qi ∈ [0, 4], offered or demanded at that price,

delivers a given rational value function for agent i: Vi(qi, S). We assume that the probability

that agent i opts for quantity qi at price S is increasing in Vi(qi, S). More precisely, for each

agent i we assume there exists an increasing function φi such that the density of qi is

fi(qi;S) =
φi(Vi(qi, S))∫ 4

0
φi(Vi(q, S))dq

. (7)

Because φi is increasing, Vi(q, S) > Vi(q̂, S) is equivalent to fi(q;S) > fi(q̂;S), for all (q, q̂) ∈

[0, 4]2. That is, actions giving a larger rational value function are more likely to be chosen. A

special case is φi(Vi(qi, S)) = exp(λiVi(qi, S)) in which the parameter λi measures the respon-

23In our competitive setting, agents only need to condition on the price, and don’t need to form expectations

about the actions of the others. Hence, our framework is simpler than that of quantal response equilibrium, in

which “players choose among strategies... based on their relative utility... and assume other players do so as

well.”(McKelvey and Palfrey, 1995).
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siveness of the agent to differences in valuation, as in McKelvey and Palfrey (1995) and Luce

(1959).

5.2 Implications of First Order Stochastic Dominance

5.2.1 At price S = 60

Consider the choice of the amount qi sold by Type 1 agent i at price S = 60. As stated in

Implication 1, if i is risk averse, he finds it optimal to choose qi = 2. Otherwise stated,

Vi(2, S = 60) ≥ Vi(q, S = 60),∀q ∈ [0, 4].

By (7), this implies

fi(2, S = 60) ≥ fi(q, S = 60),∀q ∈ [0, 4].

That is, for a risk averse agent, fi reaches its maximum at 2, which is the mode of the distrib-

ution of qi.

Now consider two possible choices: qi = 2−x and qi = 2+x, where x ∈ (0, 2]. When S = 60,

they give rise to the same lottery. Hence, Vi(2−x, S = 60) = Vi(2 +x, S = 60),∀x ∈ (0, 2], and

correspondingly fi(2 − x, S = 60) = fi(2 + x, S = 60), ∀x ∈ (0, 2]. Hence, for a given function

φi, at price S = 60, if agents are risk averse the distribution of qi is symmetric around its mean,

equal to 2:

Eφi(qi) =

∫ 4

0

qfi(q;S)dq =

∫ 4

0

q
φi(Vi(q, S))∫ 4

0
φi(Vi(q, S))dq

dq = 2, (8)

where the expectation is parametrised by the function φi of agent i. Now suppose the φi of the

participants are independent draws from the same distribution. Then we have that the qi are
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i.i.d random variables, such that, at price S = 60, by the law of large numbers

∑N
i=1 qi
N

→ 2,

with probability 1 as N goes to infinity. Thus, as stated in the next implication (whose proof is

in appendix), aggregate market outcomes should go to rational competitive equilibrium when

the number of participants goes to infinity.

Implication 6 When participants behave according to (7), if they are risk averse, as the

number of participants goes to infinity, the aggregate outcome in Treatment 1 goes to that

arising with rational choice: The equilibrium price goes to the expected dividend, 60, and the

average per—agent trade goes to the full hedge trade, 2.

Implication 6 rationalizes the empirical findings presented in the previous section. When

participants behave according to (7), individual behaviour is noisy and involves dominated

actions. Yet, as the number of participants grows large, the aggregate outcome goes to the

rational choice equilibrium outcome. In particular, in Treatment 1, in which there is no aggre-

gate risk, the price minimizing the wedge between supply and demand is on average equal to

the expected dividend and the average transaction at that price is 2.

5.2.2 At price S 6= 60

Now turn to participants’choices at other prices than 60. Consider the supply of a risk averse

Type 1 agent at price S < 60. As shown in the analysis leading to Implication 1, for prices
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below 60, selling less than 2 first order stochastically dominates selling more than 2, hence

Vi(2 − x, S) > Vi(2 + x, S), ∀ x ∈ (0, 2]. By (7), this implies fi(2 − x, S) > fi(2 + x, S). That

is, agent i plays dominated actions less often than non-dominated ones, which implies

Fi(2 + x̄, S)− Fi(2 + x, S) < Fi(2− x, S)− Fi(2− x̄, S),∀S < 60,∀0 ≤ x ≤ x̄ ≤ 2,

where Fi(q, S) denotes the cdf of quantity q at price S, when i behaves according to (7).

Symmetric arguments apply for Type 2. Our next implication follows from the Glivenko—

Cantelli Theorem.

Implication 7 When participants are FOSD and behave according to (7), as the number of

Type 1 participants goes to infinity, the empirical distribution of their actions is such that

Pr

(
#observations in [2 + x, 2 + x̄]

N
<
#observations in [2− x̄, 2− x]

N

)
(9)

converges to 1 for S < 60 and to 0 for S > 60. Similarly, for Type 2 agents (9) converges to 0

for S < 60 and to 1 for S > 60.

Implication 7 states that, in a large population of FOSD agents behaving according to

(7), the distribution of demand and supply is asymmetric around q = 2. This implies that

undominated actions (on one side of q = 2) should be more frequent than dominated actions

(on the other side of q = 2), as is the case in the data. To examine an intuitive subset of

additional restrictions imposed by Implication 7, it is helpful to define large and small risk-

exposures. As explained in Subsection 3.1, when Type 1 or Type 2 participants trade exactly

two shares, they are perfectly hedged, as their final wealth is the same in the two states. In
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contrast, whenever they trade 2 + x or 2− x, x ∈ (0, 2], they are exposed to risk. The larger x,

the more volatile their final wealth, i.e., the larger their risk-exposure. Thus, we define trades

with x ∈ (0, 1] as leading to small risk-exposure, and those with x ∈ (1, 2] as leading to large

risk-exposure. Of course, as explained in Subsection 3.1, a large risk-exposure (or a small one)

can correspond to a first-order stochastically (FOS) undominated trade (if, e.g., the agent sells

more than 2 shares at price S > 60) or a FOS-dominated trade (e.g., if the agent sells strictly

less than 2 shares at price S > 60).

Relying on this categorisation, Figure 8 offers more evidence on the extent to which the data

are in line with Implication 7. The left column of Figure 8 depicts histograms of the distribution

of quantities offered by Type 1 participants. The top row corresponds to quantities offered at

prices strictly lower than 60, while the middle row corresponds to quantities offered at prices

strictly higher than 60, and the bottom row corresponds to quantities offered at price 60.

The right column of Figure 8 offers similar information for quantities demanded by Type 2

participants.

For the left column and the top row of Figure 8, corresponding to sales at prices lower than

60, in line with Implication 7, the empirical distribution of actions is asymmetric around 2,

putting more weight on large FOS-undominated risk-exposures (q ∈ [0, 1)) than on large FOS-

dominated risk-exposures (q ∈ (3, 4]), and also more weight on small FOS-undominated risk-

exposures (q ∈ [1, 2)) than on small FOS-dominated risk-exposures (q ∈ (2, 3]). Symmetrically,

for the middle row of the left column, corresponding to sales at prices larger than 60, the

histogram is asymmetric around 2, again putting more weight on large FOS-undominated risk-
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exposures (q ∈ (3, 4]) than on large FOS-dominated risk-exposures q ∈ [0, 1), and also more

weight on small FOS-undominated risk-exposures (q ∈ (2, 3]) than on small FOS-dominated

risk exposures (q ∈ [1, 2)). Also, for the top row of the right column, corresponding to purchases

at prices lower than 60, in line with Implication 7, large FOS-undominated risk exposures (q ∈

(3, 4]) are more frequent than large FOS-dominated risk-exposures (q ∈ [0, 1)), and small FOS-

undominated risk-exposures (q ∈ (2, 3]) than small FOS-dominated risk-exposures (q ∈ [1, 2)).

For the middle row of the right column, while large FOS-undominated risk-exposures are more

frequent than large FOS-dominated risk-exposures, observed frequencies contradict Implication

7 for small risk-exposures.

Overall, the empirical distribution of actions seems rather in line with Implication 7. To offer

more statistical information on this point we ran non-parametric sign tests of the null hypothesis

that frequencies of FOS-dominated and undominated actions were the same, controlling for the

size of the corresponding risk-exposure. To do so as simply as possible, we pooled data across

prices above and below 60. Thus, for example, for Type-1 (sellers), we pooled FOS-undominated

sales at prices above 60 (with q ∈ (2, 4]) with FOS-undominated sales a prices below 60 (with

q ∈ [0, 2)). The resulting pooled frequencies are in Table 2. The p-value for the null hypothesis

that the frequency or large FOS-undominated risk-exposures is equal to that of large FOS-

dominated ones is 1.36% for sellers and 0.01% for buyers. For the null hypothesis that the

frequency or small FOS-undominated risk-exposures is equal to that of small FOS-dominated

ones the p-value is .45% for sellers and .13% for buyers. Thus, in all cases, the null hypothesis

is rejected, in line Implication 7.
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Figure 9, describes the evolution of the frequencies of small and large FOS-dominated ac-

tions, as participants become more experienced. The two full lines plot the frequencies of

FOS-dominated actions leading to large and small risk exposures respectively, while the dashed

lines depict 90% confidence intervals.24 In each category (large and small risk-exposures), the

frequencies of dominated actions decline as participants get more experienced.

5.3 Implications of Second Order Stochastic Dominance

5.3.1 Individual actions

While first order dominance enables one to rank the frequency of dominated and undomi-

nated actions, second order stochastic dominance enables one to rank the frequency of different

dominated actions, as stated in our next implication (whose proof is in appendix).

Implication 8 For Type 1, for S < 60, selling 2 + x̄ is second order stochastically dominated

by selling 2 + x, ∀0 ≤ x ≤ x̄ ≤ 2, while for S > 60, selling x is second order stochastically

dominated by selling x̄, ∀0 ≤ x ≤ x̄ ≤ 2. Similarly, for Type 2, for S > 60, buying 2 + x̄ is

second order stochastically dominated by buying 2 + x , ∀0 ≤ x ≤ x̄ ≤ 2, while for S < 60

buying x is second order stochastically dominated by buying x̄, ∀0 ≤ x ≤ x̄ ≤ 2,

Implication 8 predicts that the frequency of large FOS-dominated trades should be lower

than that of small FOS-dominated trades (intuitively, large mistakes should be less frequent

24The full lines plot average across participants of individual frequencies. The confidence intervals plotted by

the dashed lines reflect standard errors across participants.
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than relatively small ones). Inspection of Figure 8 and Table 2 shows that this is the case in

the data, both for Type 1 and Type 2 participants. To offer more statistical information on

this point, again, we ran sign-tests. The p-value for the null hypothesis that the frequency of

large dominated trades is equal to that of small dominated trades is 0.00% for Type 1 (sellers)

and 1.13% for Type 2 (buyers). So we reject the null hypothesis, as requested by Implication

8.

5.3.2 Aggregate Outcomes

While first and second order stochastic dominance, combined with (7), yields implications for

individual actions, as discussed above, it also yields implications for aggregate market outcomes,

as stated in our next implication (whose proof is in appendix).

Implication 9 If Participants are FOSD and SOSD, then the equilibrium price should be

lower than 60 in Treatment 2.

Implication 8 rationalizes the empirical findings presented in the previous section that, in

Treatment 2, the price minimizing the wedge between supply and demand is lower than 60.

6 Conclusion

This paper offers an experimental test of the theory of competitive equilibrium in complete

markets.
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Our first methodological contribution is to design an experimental market that emulates as

closely as possible the standard competitive equilibrium model: i) supply and demand curves

are elicited, aggregated and crossed to set market clearing prices and ii) the hypothesis that

participants are competitive can be tested. Our second methodological contribution is to rely

on the simplicity of the experimental setting to pin down precise testable implications on

individual behaviour, that hold for a very large class of preferences. Our third methodological

contribution is to apply random choice models (in line with Luce (1959) and McKelvey and

Palfrey (1995)) to our experimental market setting, and spell out their implications for the

distribution of individual actions as well as for aggregate outcomes.

Our main experimental findings are the following:

• At the aggregate level, the experimental complete market conforms to theory. The hy-

pothesis that participants are competitive cannot be rejected. Aggregate supply and

demand cross at the expected dividend when there is no aggregate risk, and at a lower

price when there is.

• Individual participants, however, frequently choose first order stochastically dominated

actions. Yet, dominated actions become less frequent as participants become more expe-

rienced, and participants seem to learn from their mistakes.

• Our random choice model reconciles the apparently contradictory findings obtained at

the aggregate and individual levels. It predicts that individual deviations will average

out, leading to well behaved aggregate supply and demand. The random choice model
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also imposes further restrictions on the distribution of individual actions, consistent with

experimental findings: Dominated actions are less frequent than undominated ones, and

large mistakes are less frequent than small ones.

Our experimental findings suggest that, when markets are perfect and complete, individual

irrationality does not preclude aggregate outcomes consistent with the predictions of compet-

itive equilibrium. Thus deviations from those predictions, observed in the field, could stem

from market imperfection and incompleteness, rather than from limited cognition. It will be

interesting, in further work, to extend our methodology to study imperfect markets in the lab.
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Appendix

Proof of Implication 6: By the law of large numbers, if Type 1 participants are risk averse,

at price S = 60 their average supply goes to 2 as the number of Type 1 participants, N1, goes to

infinity, i.e., with probability

lim
N1→∞

∑N1
i=1 q

1
i (60)

N1

= 2, (10)

where q1
i (60) denotes the supply of participant Type 1 participant i at price 60.

Symmetrically, the average demand from risk averse Type 2 participants also goes to 2, as the

number of Type 2 participants, N2, goes to infinity, i.e.,

lim
N2→∞

∑N2
i=1 q

2
i (60)

N2

= 2, (11)

where q2
i (60) denotes the demand of participant Type 2 participant i at price 60. Now, for S = 60

to be an equilibrium price, we need that
∑N1

i=1 q
1
i (60) =

∑N2
i=1 q

2
i (60). For finite N1 = N2 this is

equivalent to ∑N1
i=1 q

1
i (60)

N1

=

∑N2
i=1 q

2
i (60)

N2

,

which, by (10) and (11), holds in the limit, as the number of participants goes to infinity, if they are

all risk averse. QED

Proof of Implication 8: Consider Type 1 (the proof for Type 2 is symmetric), the lottery

corresponding to the sale of 2 + x has the following two equiprobable outcomes:

W (u, S)|Q=2+x = 600 + (S − 120)(2 + x) = 360 + 2S + (S − 60)x− 60x,
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and

W (d, S)|Q=2+x = 360 + S(2 + x) = 360 + 2S + (S − 60)x+ 60x.

The lottery corresponding to the sale of 2 + x̄ has the following two equiprobable outcomes:

W (u, S)|Q=2+x̄ = W (d|2 + x) + (S − 60)(x̄− x)− 60(x̄− x).

W (d, S)|Q=2+x̄ = W (d|2 + x) + (S − 60)(x̄− x) + 60(x̄− x)

By construction S− 60 < 0. Moreover, plus or minus 60(x̄− x) with equal probability is a mean

preserving spread. Hence ((W (u|2 + x̄), 1
2
;W (d|2 + x̄), 1

2
)) is second order stochastically dominated

by ((W (u|2 + x), 1
2
;W (d|2 + x), 1

2
)). Note that, here again, equiprobability is key for the proof. If

S = 60, then 2 + x̄ is a mean preserving spread of 2 + x, since

W (u, S = 60)|Q=2+x̄ = 600 + (60− 120)(2 + x̄) = 480− 60x̄,

and

W (d, S = 60)|Q=2+x̄ = 360 + 60(2 + x̄) = 480 + 60x̄,

while

W (u, S = 60)|Q=2+x = W (u, S = 60)|Q=2+x̄ − 60(x̄− x),

and

W (d, S = 60)|Q=2+x = W (d, S = 60)|Q=2+x̄ + 60(x̄− x).

QED
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Proof of Implication 9: In Treatment 2, for Type 1 agents, selling less than 2 at prices

S > 60 is first order stochastically dominated. Hence, if participants are FOSD agents and behave

according to (7), expected individual supply at S > 60 is larger than or equal to 2. Hence, by the law

of large numbers

lim
N1→∞

∑N1
i=1 Si(60)

N1

≥ 2,∀S > 60.

For Type 3 agents, buying 2 + x̄ is second order stochastically dominated by 2 + x, ∀0 ≤ x ≤ x̄ ≤ 2.

Hence, if participants are FOSD and SOSD agents and behave according to (7), expected individual

demand at S > 60 is strictly lower than 2. Hence, by the law of large numbers

lim
N2→∞

∑N2
i=1 Di(60)

N2

< 2,∀S > 60.

This implies the equilibrium price should be lower than 60. QED
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Table 1: Probit regressions

The dependent variable is an indicator that the action is FOS dominated. Regressions are

estimated over 7,590 actions, by the 128 participants, who chose at least once a dominated

action.

FOS dominated action

(1) (2) (3)

Number of Periods during which the subject participated -0.0563*** -0.0558*** -0.0673***

(-7.98) (-7.91) (-8.80)

Indicator that the replication involved Random Pricing 0.0455 0.0489

(1.43) (1.52)

Indicator that trading already took place at that price -0.0735

(-1.43)

Indicator that subject played dominated action at that price 0.703***

(8.64)

Indicator that dominated action led to loss-making trade -0.365***

(-3.61)

Constant -1.058*** -1.079*** -1.022***

(-5.51) (-5.60) (-5.26)

t statistics in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2: Empirical frequencies of FOS-undominated and dominated actions

For each of the 68 Type 1 participants, and 68 Type 2 participants, we computed the

frequency of dominated and undominated actions, leading to large risk exposure, small risk

exposure with trade size different from 2, or trade size equal to 2. We then computed the

average across the 136 participants of these frequencies.

Large Small q = 2 Small Large

undominated undominated dominated dominated

Type 1 (seller) 20% 29% 19% 21% 10%

Type 2 (buyer) 24% 26% 22% 14% 13%
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Figure 1: First order stochastic dominance among lotterries
If μi

’ > μi then lottery (μi
’,σi) (cdf depicted by dashed red line) 1st order

stochastically dominates lottery (μi,σi) (cdf depicted by full black line) 
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Figure 3: p‐values for Wilcoxon signed‐rank test of H0 that demand 
not significantly different  in call & random price
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Figure 4: Market clearing price in the 2 treatments 
(average across replications)
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Figure 5: Aggregate supply and demand
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Figure 7, Frequency of first order stochastically dominated actions
Average frequency cross participants (solid line)

90% confidence interval (dashed lines) 
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Figure 9: Frequency of FOS‐dominated actions leading to large and 
small risk exposure, throughout 4 Treatment 1 replications

Average frequency cross participants (solid line)
90% confidence interval (dashed lines)
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