WORKING PAPERS

April 2017

"Blow up of the solutions to a linear elliptic system involving schrödinger operators"

Bénédicte Alziary and Jacqueline Fleckinger

Blow up of the solutions to a LINEAR ELLIPTIC SYSTEM INVOLVING SCHRÖDINGER OPERATORS

Bénédicte Alziary and Jacqueline Fleckinger

Abstract

We show how the solutions to a 2×2 linear system involving Schrödinger operators blow up as the parameter μ tends to some critical value which is the principal eigenvalue of the system; here the potential is continuous positive with superquadratic growth and the square matrix of the system is with constant coefficients and may have a double eigenvalue.

Keywords: Maximum Principle, Antimaximum Principle, Elliptic Equation and Systems, Cooperative and Non-cooperative Systems, Principle Eigenvalue.
AMS classification: 35P, 35J10.

§1. Introduction

We study here the behavior of the solutions to a 2×2 system (considered in its variational formulation):

$$
\begin{gather*}
L U:=(-\Delta+q(x)) U=A U+\mu U+F(x) \text { in } \mathbb{R}^{N}, \tag{S}\\
U(x)_{|x| \rightarrow \infty} \rightarrow 0
\end{gather*}
$$

where q is a continuous positive potential tending to $+\infty$ at infinity with superquadratic growth; U is a column vector with components u_{1} and u_{2} and A is a 2×2 square matrix with constant coefficients. F is a column vector with components f_{1} and f_{2}.
Such systems have been intensively studied mainly for $\mu=0$ and for A with 2 distinct eigenvalues; here we consider also the case of a double eigenvalue. In both cases, we show the blow up of solutions as μ tends to some critical value v which is the principal eigenvalue of System (S). This extends to systems involving Schrödinger operators defined on \mathbb{R}^{N} earlier results valid for systems involving the classical Laplacian defined on smooth bounded domains with Dirichlet boundary conditions.
This paper is organized as follows: In Section 2 we recall known results for one equation. In Section 3 we consider first the case where A has two different eigenvalues and then we study the case of a double eigenvalue.

§2. The equation

We shortly recall the case of one equation

$$
\begin{equation*}
L u:=(-\Delta+q(x)) u=\sigma u+f(x) \in \mathbb{R}^{N}, \tag{E}
\end{equation*}
$$

$$
\lim _{|x|=+\infty} u(x)=0 .
$$

σ is a real parameter.

Hypotheses

$\left(H_{q}\right) q$ is a positive continuous potential tending to $+\infty$ at infinity.
$\left(H_{f}\right) \quad f \in L^{2}\left(\mathbb{R}^{N}\right), f \geq 0$ and $f>0$ on some subset with positive Lebesgue measure.
It is well knwon that if $\left(H_{q}\right)$ is satisfied, L possesses an infinity of eigenvalues tending to $+\infty$: $0<\lambda_{1}<\lambda_{2} \leq \ldots$.

Notation: (Λ, ϕ) Denote by Λ the smallest eigenvalue of L; it is positive and simple and denote by ϕ the associated eigenfunction, positive and with L^{2}-norm $\|\phi\|=1$.

It is classical ([9], [11]) that if $f>0$ and $\sigma<\Lambda$ the positivity is improved, or in other words, the maximum principle (MP) is satisfied:

$$
\begin{equation*}
f \geq 0, \not \equiv 0 \Rightarrow u>0 \tag{MP}
\end{equation*}
$$

Lately, for potentials growing fast enough (faster than the harmonic oscillator), another notion has been introduced ([2], [3], [5], [6]) which improves the maximum (or antimaximum principle): the "groundstate positivity" (GSP) (resp. " negativity" (GSN)) which means that there exists $k>0$ such that

$$
u>k \phi(\mathrm{GSP})(\text { resp. } u<-k \phi(\mathrm{GSN}))
$$

We also say shortly "fundamenal positivity" or" negativity", or also " ϕ-positivity" or "negativity".
The first steps in this direction use a radial potential. Here we consider a small perturbation of a radial one as in [5].

The potential q We define first a class \mathscr{P} of radial potentials:

$$
\begin{equation*}
\mathcal{P}:=\left\{Q \in C\left(\mathbb{R}_{+},(0, \infty)\right) / \exists R_{0}>0, Q^{\prime}>0 \text { a.e.on }\left[R_{0}, \infty\right), \int_{R_{0}}^{\infty} Q(r)^{-1 / 2}<\infty\right\} \tag{1}
\end{equation*}
$$

The last inequality holds if Q is growing sufficiently fast ($>r^{2}$). Now we give results of GSP or GSN for a potential q which is a small perturbation of Q; we assume:
$\left(H_{q}^{\prime}\right) \quad q$ satisfies $\left(H_{q}\right)$ and there exists two functions Q_{1} and Q_{2} in \mathcal{P}, and two positive constants R_{0} and C_{0} such that

$$
\begin{gather*}
Q_{1}(|x|) \leq q(x) \leq Q_{2}(|x|) \leq C_{0} Q_{1}(|x|), \forall x \in \mathbb{R}^{N}, \tag{2}\\
\int_{R_{0}}^{\infty}\left(Q_{2}(s)-Q_{1}(s)\right) \int_{R_{0}}^{s} \exp \left(-\int_{r}^{s}\left[Q_{1}(t)^{1 / 2}+Q_{2}(t)^{1 / 2}\right] d t\right) d r d s<\infty . \tag{3}
\end{gather*}
$$

Denoting by $\Phi_{1}\left(\right.$ resp. Φ_{2}) the groundstate of $L_{1}:=-\Delta+Q_{1}\left(\right.$ resp. $\left.L_{2}=-\Delta+Q_{2}\right)$, Corollary 3.3 in [5] says that all these groundstates are "comparable" that is there exists constants $0<k_{1} \leq k_{2} \leq \infty$ such that $k_{1} \phi \leq \Phi_{1}, \Phi_{2} \leq k_{2} \phi$.

Theorem 1. (GSP) ([5]) If $\left(H_{q}^{\prime}\right)$ and $\left(H_{f}\right)$ are satisfied, then, for $\sigma<\Lambda$, there is a unique solution u to (E) which is positive, and there exists a constant $c>0$, such that

$$
\begin{equation*}
u>c \phi . \tag{4}
\end{equation*}
$$

Moreover, if also $f \leq C \phi$ with some constant $C>0$, then

$$
\begin{equation*}
u \leq \frac{C}{\Lambda-\sigma} \phi \tag{5}
\end{equation*}
$$

Remark 1. This holds also if we only assume $f \in L^{2}$ and $f^{1}:=\int f \phi>0$
The space \mathcal{X} : It is convenient for several results to introduce the space of "groundstate bounded functions":

$$
\begin{equation*}
\mathcal{X}:=\left\{h \in L^{2}\left(\mathbb{R}^{N}\right): h / \phi \in L^{\infty}\left(\mathbb{R}^{N}\right)\right\} \tag{6}
\end{equation*}
$$

equipped with the norm $\|h\|_{X}=e s s \sup _{\mathbb{R}^{n}}(|h| / \phi)$.
Hypothesis $\left(H_{f}^{\prime}\right)$ We consider now functions f which are such that
$\left(H_{f}^{\prime}\right): \quad f \in \mathcal{X}$ and $f^{1}:=\int f \phi>0$.
For a potential satisfying $\left(H_{q}^{\prime}\right)$ and a function $f \in \mathcal{X}$, there is also a result of "groundstate negativity" (GSN) for (E); it is an extension of the antimaximum principle, introduced by Clément and Peletier in 1978 ([8]) for the Laplacian when the parameter σ crosses Λ.
Theorem 2. $(G S N)$ ([5]) Assume $\left(H_{q}^{\prime}\right)$ and $\left(H_{f}^{\prime}\right)$ are satisfied; then there exists $\delta(f)>0$ and a positive constant $c^{\prime}>0$ such that for all $\sigma \in(\Lambda, \Lambda+\delta)$,

$$
\begin{equation*}
u \leq-c^{\prime} \phi \tag{7}
\end{equation*}
$$

Theorem 3. Assume $\left(H_{q}^{\prime}\right)$ and $\left(H_{f}^{\prime}\right)$ are satisfied. Then there exists $\delta>0$, independant of σ, such that for $\Lambda-\delta<\sigma<\Lambda$ there exists positive constants k^{\prime} and K^{\prime}, depending on f and δ such that

$$
\begin{equation*}
0<\frac{k^{\prime}}{\Lambda-\sigma} \phi<u<\frac{K^{\prime}}{\Lambda-\sigma} \phi \tag{8}
\end{equation*}
$$

If $\Lambda<\sigma<\Lambda+\delta$, there exists positive constants k " and K ", depending on f and δ such that

$$
\begin{equation*}
\frac{k^{\prime \prime}}{\Lambda-\sigma} \phi<u<\frac{K^{\prime \prime}}{\Lambda-\sigma} \phi<0 \tag{9}
\end{equation*}
$$

This result extends earlier one in [10] and a close result is Theorem 2.03 in [7]. It shows in particular that $u \in \mathcal{X}$ and $|u| \rightarrow \infty$ as $|v-\mu| \rightarrow 0$.
Proof: Decompose u and f on ϕ and its orthogonal:

$$
\begin{equation*}
u=u^{1} \phi+u^{\perp} ; f=f^{1} \phi+f^{\perp} \tag{10}
\end{equation*}
$$

We derive from $(E): L u=\sigma u+f$ that

$$
\begin{gather*}
L u^{\perp}=\sigma u^{\perp}+f^{\perp} \tag{11}\\
L u^{1} \phi=\Lambda u^{1} \phi=\sigma u^{1} \phi+f^{1} \phi . \tag{12}
\end{gather*}
$$

We notice that, since q is smooth, so is u. Also, since $f \in \mathcal{X}, f^{\perp}, u$ and u^{\perp} are also in X and hence are bounded. Choose $\sigma<\Lambda$ and assume (H_{f}^{\prime}). We derive from Equation (11) (by [4]Thm 3.2) that : $\left\|u^{\perp}\right\|_{x}<K_{1}$. Therefore $\left|u^{\perp}\right|$ is bounded by some cste. $\phi>0$.
From Equation (12) we derive

$$
\begin{equation*}
u^{1}=\frac{f^{1}}{(\Lambda-\sigma)} \rightarrow \pm \infty \operatorname{as}(\Lambda-\sigma) \rightarrow 0 \tag{13}
\end{equation*}
$$

Take δ small enough and $\sigma \in(\Lambda-\delta, \Lambda)$. Since $u=u^{1} \phi+u^{\perp}$, then

$$
0<\frac{K^{\prime}}{\Lambda-\sigma} \phi<u<\frac{K^{\prime \prime}}{\Lambda-\sigma} \phi
$$

For $\sigma>\Lambda$. we do exactly the same, except that the signs are changed for u^{1} in (13).

§3. A 2×2 Linear system

Consider now a linear system with constant coefficients.

$$
\begin{equation*}
L U=A U+\mu U+F(x) \text { in } \mathbb{R}^{N} \tag{S}
\end{equation*}
$$

As above, $L:=-\Delta+q$ where the potential q satisfies $\left(H_{q}^{\prime}\right)$, and where μ is a real parameter. L can be detailed as 2 equations:

$$
\begin{align*}
&\left\{\begin{aligned}
L u_{1}= & a u_{1}+b u_{2}+\mu u_{1}+f_{1}(x) \\
L u_{2}= & c u_{1}+d u_{2}+\mu u_{2}+f_{2}(x)
\end{aligned} \quad \text { in } \mathbb{R}^{N}, .\right. \tag{S}\\
& u_{1}(x), u_{2}(x)_{|x| \rightarrow \infty} \rightarrow 0 .
\end{align*}
$$

Assume
$\left(H_{A}\right) \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $b>0$ and $D:=(a-d)^{2}+4 b c \geq 0$.
Note that $b>0$ does not play any role since we can always change the order of the equations. The eigenvalues of A are

$$
\xi_{1}=\frac{a+d+\sqrt{D}}{2} \geq \xi_{2}=\frac{a+d-\sqrt{D}}{2} .
$$

As far as we know, all the previous studies suppose that the largest eigenvalue ξ_{1} is simple (i.e. $D=(a-d)^{2}+4 b c>0$). Here we also study, in the second subsection, the case of a double eigenvalue $\xi_{1}=\xi_{2}$, that is $D=0$; this implies necessarily $b c<0$ and necessarily the matrix is not cooperative.

3.1. Case $\xi_{1}>\xi_{2}$

This is the classical case where ξ_{1} is simple. Set $\xi_{1}>\xi_{2}$. The eigenvectors are

$$
X_{k}=\binom{b}{\xi_{k}-a}
$$

As above, denote by $(\Lambda, \phi), \quad \phi>0$, the principal eigenpair of the operator $L=(-\Delta+q(x))$. It is easy to see that

$$
L\left(X_{k} \phi\right)-A X k \phi=\left(\Lambda-\xi_{k}\right) X_{k} \phi, k=1,2
$$

Set $X:=X_{1}$. Hence

$$
\begin{equation*}
v=\Lambda-\xi_{1} \tag{14}
\end{equation*}
$$

is the principal eigenvalue of (S) with associated eigenvector $X \phi$. Note that the components of $X \phi$ do not change sign, but, in the case of a non cooperative matrix they are not necessarily both positive. We prove:

Theorem 4. Assume $\left(H_{q}^{\prime}\right), b>0$ and $D>0$. Assume also that f_{1} and f_{2} are in \mathcal{X} and

$$
\begin{equation*}
\left(a-\xi_{2}\right) f_{1}^{1}+b f_{2}^{1}>0 \tag{15}
\end{equation*}
$$

Then, there exists $\delta>0$, independant of μ, such that if $v-\delta<\mu<v$, there exists a positive constant γ depending only on F and Matrix A such that

For cooperative systems

$$
\begin{equation*}
c>0 \Rightarrow u_{1}, u_{2} \geq \frac{\gamma}{v-\mu} \phi>0 \tag{16}
\end{equation*}
$$

For non-cooperative systems

$$
\begin{gather*}
d>a \Rightarrow u_{1}, u_{2} \geq \frac{\gamma}{v-\mu} \phi>0, \tag{17}\\
a>d \Rightarrow u_{1},-u_{2} \geq \frac{\gamma}{v-\mu} \phi>0 . \tag{18}
\end{gather*}
$$

If $v<\mu<v+\delta$, the sign are reversed.
Remark 2. It is noticeable that for all these cases, $\left|u_{1}\right|,\left|u_{2}\right| \rightarrow+\infty$ as $|v-\mu| \rightarrow 0$.
These results extend Theorem 4.2 in [2].
Proof: As in [1], we use J the associated Jordan matrix (which in this case is diagonal) and P the change of basis matrix which are such that

$$
A=P J P^{-1} .
$$

Here

$$
\begin{gather*}
P=\left(\begin{array}{cc}
b & b \\
\xi_{1}-a & \xi_{2}-a
\end{array}\right), \quad P^{-1}=\frac{1}{b\left(\xi_{1}-\xi_{2}\right)}\left(\begin{array}{cc}
a-\xi_{2} & b \\
\xi_{1}-a & -b
\end{array}\right) . \tag{19}\\
J=\left(\begin{array}{cc}
\xi_{1} & 0 \\
0 & \xi_{2}
\end{array}\right) .
\end{gather*}
$$

Denoting $\tilde{U}=P^{-1} U$ and $\tilde{F}=P^{-1} F$, we derive from $\operatorname{System}(S)$ (after multiplication by P^{-1} to the left):

$$
L \tilde{U}=J \tilde{U}+\mu \tilde{U}+\tilde{F} .
$$

Since J is diagonal we have two independant equations:

$$
\begin{equation*}
L \tilde{u}_{k}=\left(\xi_{k}+\mu\right) \tilde{u}_{k}+\tilde{f}_{k}, k=1 \text { or } 2 . \tag{20}
\end{equation*}
$$

The projection on ϕ and on its orthogonal for $k=1$ and 2 gives

$$
\tilde{u}_{k}=\left(\tilde{u}_{k}\right)^{1} \phi+\tilde{u}_{k}^{\perp}, \quad \tilde{f}_{k}=\left(\tilde{f}_{k}\right)^{1} \phi+\tilde{f}_{k}^{\perp} ;
$$

hence

$$
\begin{gather*}
L\left(\tilde{u}_{k}\right)^{1} \phi=\Lambda\left(\tilde{u}_{k}\right)^{1} \phi=\xi_{k}\left(\tilde{u}_{k}\right)^{1} \phi+\mu\left(\tilde{u}_{k}\right)^{1} \phi+\left(\tilde{f}_{k}\right)^{1} \phi, \tag{21}\\
L \tilde{u}_{k}^{\perp}=\xi_{k} \tilde{u}_{k}^{\perp}+\mu \tilde{u}_{k}^{\perp}+\tilde{f}_{k}^{\perp} . \tag{22}
\end{gather*}
$$

If both f_{k} are in $\mathcal{X}, f_{k} / \phi$ are bounded and hence both $\tilde{f}_{k}^{\perp} / \phi$ are bounded. Therefore, by (22) both $\tilde{u}_{k}^{\perp} / \phi$ are also bounded since the smallest eigenvalue for L acting on ϕ^{\perp} is $\lambda_{2} \neq<\Lambda$).
We derive from (21) that

$$
\left(\tilde{u}_{k}\right)^{1}=\frac{\left(\tilde{f}_{k}\right)^{1}}{\Lambda-\xi_{k}-\mu} .
$$

Consider again Equation (21) for $k=2$; obviously, $\left(\tilde{u}_{2}\right)^{1}$ stays bounded as $\mu \rightarrow v=\Lambda-\xi_{1}<$ $(\neq) \Lambda-\xi_{2}$ and therefore \tilde{u}_{2} / ϕ stays bounded.
For $k=1,\left(\tilde{u}_{1}\right)^{1}=\frac{\left(\tilde{f}_{1}\right)^{1}}{v-\mu} \rightarrow \infty$ as $\mu \rightarrow v=\Lambda-\xi_{1}$, where $\left(\tilde{f}_{1}\right)^{1}=\frac{1}{\xi_{1}-\xi_{2}}\left(\left(a-\xi_{2}\right) f_{1}^{1}+b f_{2}^{1}\right)>0$; this is the condition (15) which appears in Theorem 4. Then, we simply apply Theorem 3 to (20) for $k=1$ and deduce that there existes $\delta>0$, such that, for $\left|\Lambda-\xi_{1}-\mu\right|=|v-\mu|<\delta$, there exists a positive constant $C>0$ such that

$$
\mu<v \Rightarrow \tilde{u}_{1} \geq \frac{C}{v-\mu} \phi>0 ; \mu>v \Rightarrow \tilde{u}_{1} \leq \frac{C}{v-\mu} \phi<0 .
$$

If $|\mu-\nu|$ small enough

$$
\left(\tilde{u}_{1}\right)^{1} \geq \frac{K}{v-\mu} \text { if } \mu<v ; \tilde{u}_{1}^{1} \leq-\frac{K}{v-\mu} \text { if } \mu>v
$$

where K is a positive constant depending only on F and A.
Now, it follows from $U=P \tilde{U}$, that

$$
u_{1}=b\left(\tilde{u}_{1}+\tilde{u}_{2}\right), u_{2}=\left(\xi_{1}-a\right) \tilde{u}_{1}+\left(\xi_{2}-a\right) \tilde{u}_{2} .
$$

As $v-\mu \rightarrow 0$, since \tilde{u}_{2} / ϕ stays bounded, u_{1} behaves as $b\left(\tilde{u}_{1}\right)^{1} \phi>0 ; u_{2}$ behaves as $\left(\xi_{1}-\right.$ a) $\left(\tilde{u}_{1}\right)^{1} \phi$.

Therefore 3 cases appear according to matrix A :
If A is cooperative $(b>0, c>0)$, then $\xi_{2}<a<\xi_{1}$ so that $\left(\xi_{1}-a\right)>0$ and $u_{2}>0$.
If A is non-cooperative with $b>0, c<0, d>a$, then $a<\xi_{2}<\xi_{1} \Rightarrow\left(\xi_{1}-a\right)>0, u_{2}>0$.
If A is non-cooperative with $b>0, c<0, a>d$, then $\xi_{2}<\xi_{1}<a \Rightarrow\left(\xi_{1}-a\right)<0, u_{2}<0$.

Remark 3. Indeed, we always assume that $b>0$, hence $u_{1}>0$ for $v-\mu>0$ small enough.
Behavior of the solution near the eigenvalue $v^{\prime}:=\Lambda-\xi_{2}$.
Obviously, $v^{\prime}:=\Lambda-\xi_{2}$ is also an eigenvalue of the system with associated eigenvector $X_{2} \phi$.
Theorem 5. Assume $\left(H_{q}^{\prime}\right), b>0, D>0$ and $v^{\prime}<\lambda_{2}$. Assume also that f_{1} and f_{2} are in \mathcal{X} and $\left(\xi_{1}-a\right) f_{1}^{1}-b f_{2}^{1}>0$ is satified. Then, for $0<v^{\prime}-\mu$ small enough, there exists a positive constant γ^{\prime} depending only on F and Matrix A such that
For cooperative systems, $(c>0)$, then

$$
u_{1},-u_{2} \geq \frac{\gamma^{\prime}}{v^{\prime}-\mu} \phi>0
$$

For non-cooperative systems ($c<0$), then

$$
\begin{align*}
& d>a \Rightarrow u_{1}, u_{2} \geq \frac{\gamma^{\prime}}{v^{\prime}-\mu} \phi>0 . \tag{23}\\
& a>d \Rightarrow u_{1},-u_{2} \geq \frac{\gamma^{\prime}}{v-\mu} \phi>0 \tag{24}
\end{align*}
$$

If $0<\mu-v^{\prime}$ small enough, the sign are reversed.
Proof The proof is exactly the same as for Theorem 4 except that we derive from (21) that $\left(\tilde{u}_{1}\right)^{1}$ stays bounded and $\left(\tilde{u}_{2}\right)^{1}=\frac{\left(\tilde{f}_{2}\right)^{1}}{v^{\prime}-\mu} \rightarrow \infty$ as $v^{\prime}-\mu \rightarrow 0$. This holds also since $\mu+\xi_{2}<$ $m u+\xi_{1}<\Lambda<\lambda_{2}$. Now u_{1} behaves as $b\left(\tilde{u}_{2}\right)$ and u_{2} as $\left(\xi_{2}-a\right)\left(\tilde{u}_{2}\right)$, and the result follows.

3.2. $\operatorname{Case} \xi_{1}=\xi_{2}$

Consider now the case where the coefficients of the matrix A satisfy $b>0$ and

$$
D:=(a-d)^{2}+4 b c=0 .
$$

Of course this implies $b c<0$ and since $b>0$, then $c<0$: only for non-cooperative systems a double root can appear. Now $\xi_{1}=\xi_{2}=\xi=\frac{a+d}{2}$. The proof of Theorem 4 is no more valid since $e . g$. in (19) there is a factor of the form $\frac{1}{\xi_{1}-\xi_{2}}$. Moreover Matrix J is triangular and the system in \tilde{U} is no more decoupled. We prove here
Theorem 6. Assume $\left(H_{q}^{\prime}\right)$ and $b>0, c<0$ with $(a-d)^{2}+4 b c=0$; assume also that f_{1}, f_{2} are in \mathcal{X} and :

$$
\begin{equation*}
\frac{(a-d)}{2} f_{1}^{1}+b f_{2}^{1}>0 \tag{25}
\end{equation*}
$$

If $v-\delta<\mu<v+\delta(v=\Lambda-\xi), \delta$ small enough, there exists a positive constant γ such that

$$
\begin{array}{ll}
\text { if } a>d & u_{1} \geq \frac{\gamma}{|v-\mu|} \phi, u_{2} \leq-\frac{\gamma}{|v-\mu|} \phi . \\
\text { if } d>a & u_{1} \geq \frac{\gamma}{|v-\mu|} \phi, \quad u_{2} \geq \frac{\gamma}{|v-\mu|} \phi .
\end{array}
$$

Remark 4. We notice that u_{1} is always positive whatever the sign of $d-a$ or of $v-\mu$. Also u_{2} keeps the same sign for μ going over v. Things work as having 2 eigenvalues ξ_{1} and ξ_{2} with $\xi_{1}-\xi_{2} \rightarrow 0$. The functions u_{1} and u_{2} change sign twice (as μ goes over v and v^{\prime}) and finally they keep the same sign.
Remark 5. Note that the condition $\frac{(a-d)}{2} f_{1}^{1}+b f_{2}^{1}>0$ in Theorem 6 is the same than in Theorem 4: $\left(\xi_{2}-a\right) f_{1}^{1}<b f_{2}^{1}$, since in Theorem 6, $\xi_{2}=\xi=\frac{a+d}{2}$.
Proof The eigenvector associated to eigenvalue ξ is

$$
X=\binom{b}{\frac{d-a}{2}}
$$

The vector $X \phi$ is thus an eigenvector for $L-A$,

$$
L(X \phi)-A X \phi=(\Lambda-\xi) X \phi=v X \phi
$$

We will need to use two different decompositions of the matrix A. For the decomposition 1 we choose

$$
P_{1}=\left(\begin{array}{cc}
b & \frac{2 b}{a-d} \\
\frac{d-a}{2} & 0
\end{array}\right), \quad P_{1}^{-1}=\frac{1}{b}\left(\begin{array}{cc}
0 & -\frac{2 b}{a-d} \\
\frac{a-d}{2} & b
\end{array}\right) .
$$

So the associated triangular matrix J_{1} is

$$
J_{1}=P_{1}^{-1} A P_{1}=\left(\begin{array}{cc}
\xi & 1 \\
0 & \xi
\end{array}\right) .
$$

As above, setting $\tilde{U}=P_{1}^{-1} U$ and $\tilde{F}=P_{1}^{-1} F$, we derive from System (S)

$$
L \tilde{U}=J_{1} \tilde{U}+\mu \tilde{U}+\tilde{F}
$$

We do not have anymore a decoupled system but

$$
\begin{cases}L \tilde{u}_{1}=(\xi+\mu) \tilde{u}_{1} & +\tilde{u}_{2}+\tilde{f}_{1} \tag{26}\\ L \tilde{u}_{2}= & +(\xi+\mu) \tilde{u}_{2}+\tilde{f}_{2}\end{cases}
$$

here $\tilde{f}_{1}=\frac{-2}{a-d} f_{2}$ and $\tilde{f}_{2}=\frac{(a-d)}{2 b} f_{1}^{1}+f_{2}^{1}$ are in \mathcal{X} and $\tilde{f}_{2}>0$ by (25).

- If $\xi+\mu<\Lambda$ (that is $\mu<v$), by Theorem 3 applied to the second equation, there exists a constant $K>0$, such that $\tilde{u}_{2}>\frac{K}{v-\mu} \phi$. Hence, for $v-\mu$ small enough for any $\tilde{f}_{1} \in \mathcal{X}$, $\tilde{u}_{2}+\tilde{f}_{1}>0$ and is in X; then again Theorem 3 applied to the first equation implies that there exists a constant $K^{\prime}>0$, such that $\tilde{u}_{1}>\frac{K^{\prime}}{\nu-\mu} \phi$.
For $a>d$, we can conclude that there exists a constant $\gamma>0$,

$$
U=P_{1} \tilde{U}=\left\{\begin{array}{l}
u_{1}=b \tilde{u}_{1}+\frac{2 b}{a-d} \tilde{u}_{2}>\frac{\gamma}{v-\mu} \phi \\
u_{2}=\frac{d-a}{2} \tilde{u}_{1}<-\frac{\gamma}{v-\mu} \phi
\end{array}\right.
$$

- If $\mu>v$ we have reversed sign for \tilde{u}_{2}. Hence, for $\mu-v$ small enough for any $\tilde{f}_{1} \in \mathcal{X}$, $\tilde{u}_{2}+\tilde{f}_{1}<0$ and is in X; then again Theorem 3 for the first equation implies that there exists a constant $K^{\prime}>0$, such that $\tilde{u}_{1}>\frac{K^{\prime}}{\mu-\nu} \phi$.

For $d>a$, we can conclude that there exists a constant $\gamma>0$,

$$
U=P_{1} \tilde{U}=\left\{\begin{array}{l}
u_{1}=b \tilde{u}_{1}+\frac{2 b}{a-d} \tilde{u}_{2}>\frac{\gamma}{\mu-\nu} \phi \\
u_{2}=\frac{d-a}{2} \tilde{u}_{1}>\frac{\gamma}{\mu-\nu} \phi
\end{array}\right.
$$

For the remaining cases, we need to use an other decomposition of Matrix A. For the decomposition 2 we choose

$$
P_{2}=\left(\begin{array}{cc}
b & 0 \\
\frac{d-a}{2} & 1
\end{array}\right), \quad P_{2}^{-1}=\frac{1}{b}\left(\begin{array}{cc}
1 & 0 \\
\frac{a-d}{2} & b
\end{array}\right) .
$$

So the associated triangular matrix J_{2} is

$$
J_{2}=P_{2}^{-1} A P_{2}=\left(\begin{array}{cc}
\xi & 1 \\
0 & \xi
\end{array}\right) .
$$

As above, setting $\tilde{U}=P_{2}^{-1} U$ and $\tilde{F}=P_{2}^{-1} F$, we derive from System (S) the same system with the same function $\tilde{f_{2}}=\frac{(a-d)}{2 b} f_{1}+f_{2}$:

$$
\begin{cases}L \tilde{u}_{1}=(\xi+\mu) \tilde{u}_{1} & +\tilde{u}_{2}+\tilde{f}_{1} \tag{27}\\ L \tilde{u}_{2}=(\xi+\mu) \tilde{u}_{2}+\tilde{f}_{2}\end{cases}
$$

- If $\xi+\mu<\Lambda$ (that is $\mu<\nu$), since $\frac{(a-d)}{2 b} f_{1}^{1}+f_{2}^{1}>0$, we get (exactly as for decomposition

1) that there exists a constant $K>0$, such that $\tilde{u}_{2}>\frac{K}{v-\mu} \phi$ and there exists a constant $K^{\prime}>0$, such that $\tilde{u}_{1}>\frac{K^{\prime}}{\nu-\mu} \phi$.
For $d>a$, we can conclude that there exists a constant $\gamma>0$,

$$
U=P_{2} \tilde{U}=\left\{\begin{array}{l}
u_{1}=b \tilde{u}_{1}>\frac{\gamma}{v-\mu} \phi \\
u_{2}=\frac{d-a}{2} \tilde{u}_{1}+\tilde{u}_{2}>\frac{\gamma}{v-\mu} \phi
\end{array}\right.
$$

- If $\mu>v$ we have reversed sign for \tilde{u}_{2}. Hence, there exists a constant $K^{\prime}>0$, such that $\tilde{u}_{1}>\frac{K^{\prime}}{v-\mu} \phi$.
For $a>d$, we can conclude that there exists a constant $\gamma>0$,

$$
U=P_{2} \tilde{U}=\left\{\begin{array}{l}
u_{1}=b \tilde{u}_{1}>\frac{\gamma}{\mu-\nu} \phi \\
u_{2}=\frac{d-a}{2} \tilde{u}_{1}+\tilde{u}_{2}<-\frac{\gamma}{\mu-\nu} \phi
\end{array}\right.
$$

References

[1] Alziary, B., and Fleckinger, J. Sign of the solution to a non-cooperative system. RoMaKo 71.
[2] Alziary, B., Fleckinger, J., and Takac, P. Maximum and anti-maximum principles for some systems involving schrödinger operator. Operator Theory: Advances and applications 110 (1999), 13-21.
[3] Alziary, B., Fleckinger, J., and Takac, P. An extension of maximum and anti-maximum principles to a schrödinger equation in \mathbb{R}^{n}. Positivity 5, 4 (2001), 359-382.
[4] Alziary, B., Fleckinger, J., and Takac, P. Groundstate positivity, negativity, and compactness for schrödinger operator in \mathbb{R}^{n}. Jal Funct. Anal. 245 (2007), 213-248.
[5] Alziary, B., and Takac, P. Compactness for a schrödinger operator in the groundstate space over r^{n}. Electr. J Diff. Eq., Conf. 16 (2007), 35-58.
[6] Alziary, B., and Takac, P. Intrinsic ultracontractivity of a schrödinger semigroup in r^{n}. J. Funct. Anal. 256, 12 (2009), 4095 âĂŞ4127.
[7] Besbas, N. Principe d'antimaximum pour des équations et des systèmes de type Schrödinger dans \mathbb{R}^{N}. Thèse de doctorat de l'Université Toulouse I, 2004.
[8] Clément, P., and Peletier, L. An anti-maximum principle for second order elliptic operators. J. Diff. Equ. 34 (1979), 218-229.
[9] Edmunds, D.-E., and Evans, W.-D. Spectral Theory and Differential Operators. Classics in Applied Mathematics. Oxford Science Publ. Clarendon Press, 1987.
[10] Lécureux, M.-H. Comparison with groundstate for solutions of non cooperative systems for schrödinger operators in \mathbb{R}^{n}. RoMaKo 65 (2010), 51-69.
[11] Reed, M., and Simon, B. Methods of modern mathematical physics IV. Analysis of operators. Acad.Press, New York, 1978.

Bénédicte Alziary
Toulouse School of Economics
Institut de Mathématiques -CeReMath UT1
Université de Toulouse - Capitole
Jacqueline Fleckinger
Institut de Mathématiques -CeReMath UT1
Université de Toulouse - Capitole
alziary@ut-capitole.fr and Jfleckinger@gmail.com

