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Abstract. We show how the solutions to a 2 X 2 linear system involving Schrodinger
operators blow up as the parameter u tends to some critical value which is the principal
eigenvalue of the system; here the potential is continuous positive with superquadratic
growth and the square matrix of the system is with constant coefficients and may have a
double eigenvalue.
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$§1. Introduction

We study here the behavior of the solutions to a 2 X 2 system (considered in its variational
formulation):

() LU := (=A + g(x))U = AU + uU + F(x) in RY,

U(x)lxl—nx: -0

where ¢ is a continuous positive potential tending to +co at infinity with superquadratic
growth; U is a column vector with components #; and u, and A is a 2 X 2 square matrix
with constant coefficients. F is a column vector with components f; and f;.

Such systems have been intensively studied mainly for u = 0 and for A with 2 distinct eigen-
values; here we consider also the case of a double eigenvalue. In both cases, we show the
blow up of solutions as u tends to some critical value v which is the principal eigenvalue
of System (S). This extends to systems involving Schrédinger operators defined on RY ear-
lier results valid for systems involving the classical Laplacian defined on smooth bounded
domains with Dirichlet boundary conditions.

This paper is organized as follows: In Section 2 we recall known results for one equation. In
Section 3 we consider first the case where A has two different eigenvalues and then we study
the case of a double eigenvalue.

§2. The equation

We shortly recall the case of one equation

(E) Lu:=(-A+qg(x)u = ou+ f(x) eR",
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lim wu(x) = 0.
|x|=+c0

o is a real parameter.

Hypotheses

(H,) g is a positive continuous potential tending to +oo at infinity.

(Hy) fe L*(RY), f > 0and f > 0 on some subset with positive Lebesgue measure.

It is well knwon that if (H,) is satisfied, L possesses an infinity of eigenvalues tending to +oco:
O<Ai <A <.,

Notation: (A,¢) Denote by A the smallest eigenvalue of L; it is positive and simple and
denote by ¢ the associated eigenfunction, positive and with L*-norm ||¢|| = 1.

It is classical ([9], [11]) that if £ > 0 and o < A the positivity is improved, or in other words,
the maximum principle (MP) is satisfied:

(MP) f20,#0 = u>0.

Lately, for potentials growing fast enough (faster than the harmonic oscillator), another no-
tion has been introduced ([2], [3], [5], [6]) which improves the maximum (or antimaximum
principle): the "groundstate positivity" (GSP) (resp. " negativity" (GSN)) which means that
there exists k > 0 such that

u > k¢ (GSP) (resp. u < —k¢ (GSN))
We also say shortly "fundamenal positivity" or" negativity", or also "¢-positivity" or "nega-
tivity".
The first steps in this direction use a radial potential. Here we consider a small perturbation
of a radial one as in [5].

The potential ¢ We define first a class # of radial potentials:
P :={Q € C(R+,(0,))/ IRy > 0,0" > Oa.e.on[Ry, ), f Q2 <o) ()
Ro

The last inequality holds if Q is growing sufficiently fast (> r?). Now we give results of GSP
or GSN for a potential g which is a small perturbation of Q; we assume:

(Hj) g satisfies (H,) and there exists two functions Q; and Q, in %, and two positive con-
stants Ry and Cy such that

O1(Ix)) < g(x) < O2(Ix]) < CoQi(Ix]), Vx € RY, (2
f (Qa2(s) = Q1(5) f Cexpl(~ f Q0" + 0x(0) P Ndi)drds < oo. 3)
Ry Ro r
Denoting by ®@; (resp. ®;) the groundstate of L; := —A + Q) (resp. L, = —A + O»),

Corollary 3.3 in [5] says that all these groundstates are "comparable" that is there exists
constants 0 < k; < k; < oo such that kj¢p < @, @, < kyb.
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Theorem 1. (GSP) ([5]) If (Hy) and (Hy) are satisfied, then, for o < A, there is a unique
solution u to (E) which is positive, and there exists a constant ¢ > 0, such that

u> ce. “

Moreover, if also f < C¢ with some constant C > 0, then

us ———0. ®)

Remark 1. This holds also if we only assume f € L? and f! := [ f¢ >0

The space X : It is convenient for several results to introduce the space of "groundstate
bounded functions":

X:={he L>(RY): h/¢p € L°RM)}, (6)

equipped with the norm ||4||x = ess supg.(|hl/¢@).

Hypothesis (H }.) We consider now functions f which are such that

(H)): feXand f':= [f¢>0.

For a potential satisfying (H}) and a function f € X, there is also a result of "groundstate
negativity" (GSN) for (E); it is an extension of the antimaximum principle, introduced by
Clément and Peletier in 1978 ([8]) for the Laplacian when the parameter o crosses A.

Theorem 2. (GSN) ([5] ) Assume (H,) and (H}) are satisfied; then there exists 6(f) > 0
and a positive constant ¢’ > 0 such that for all o € (A, A + 6),

u<-—ce. @)

Theorem 3. Assume (H,) and (H}) are satisfied. Then there exists 6 > 0, independant of o,
such that for A — 6 < o < A there exists positive constants k' and K’, depending on f and 6
such that

’ ’

A_O_¢<u<A_O_¢. ®)

If A <0 < A+ 6, there exists positive constants k> and K, depending on f and 6 such that

0<

LL) 23

<u<
A—0'¢ " A—o

<0, ©)

This result extends earlier one in [10] and a close result is Theorem 2.03 in [7]. It shows in
particular that u € X and |u| — oo as |v — u| — 0.
Proof: Decompose « and f on ¢ and its orthogonal:

u=u'¢+ut; f=rflo+ - (10)
We derive from (E): Lu = ou + f that
Lut = ou* + f* (11)

Lu'¢p = Au'¢p = ou'¢ + fo. (12)
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We notice that, since g is smooth, so is u. Also, since f € X, f*, u and u* are also in X
and hence are bounded. Choose o < A and assume (H }). We derive from Equation (11) (by
[4]Thm 3.2) that : ||u*||x < K;. Therefore |u*| is bounded by some cste.¢p > 0.

From Equation (12) we derive

1

ul = (AJ: = — zooas(A—o) — 0. (13)

Take 6 small enough and o € (A — 6, A). Since u = u'¢ + u*, then

’ 99

¢ <u<

0
S Ao Ao

®.
(on

For o > A. we do exactly the same, except that the signs are changed for u! in (13).

§3. A 2 x 2 Linear system
Consider now a linear system with constant coefficients.
() LU = AU + uU + F(x) in RV,

As above, L := —A + g where the potential g satisfies (H,), and where u is a real parameter.
L can be detailed as 2 equations:

Lu; = auy +buy +puu; + fi(x) . _n
() { Lu, = cup +du + uuy + fz(x) inR",.
u1(x), ua(X)x—e0 — 0.
Assume
(Hy) A:(if Z) with b > 0and D := (a — d)* + 4bc > 0.

Note that b > 0 does not play any role since we can always change the order of the equations.
The eigenvalues of A are

a+d+ D a+d- VD
1= 2hg=—FF.
2 2
As far as we know, all the previous studies suppose that the largest eigenvalue &) is simple
(i.e. D = (a — d)> + 4bc > 0). Here we also study, in the second subsection, the case of a
double eigenvalue & = &;, that is D = 0; this implies necessarily bc < 0 and necessarily the
matrix is not cooperative.



Blow up of the solutions to a linear elliptic system involving Schrodinger operators 5

3.1.Case &) > &

This is the classical case where & is simple. Set & > &,. The eigenvectors are

b
Xk=(§k_a ),

As above, denote by (A, ¢), ¢ > 0, the principal eigenpair of the operator L = (—A + g(x)).
It is easy to see that
L(Xkp) — AXk¢ = (A = &) Xid, k= 1,2

Set X := X;. Hence
v=A-& (14)

is the principal eigenvalue of (S') with associated eigenvector X¢. Note that the components
of X¢ do not change sign, but, in the case of a non cooperative matrix they are not necessarily
both positive. We prove:

Theorem 4. Assume (Hp), b > 0 and D > 0. Assume also that fi and f; are in X and

(a-&)fl +bf) >o0. (15)

Then, there exists 6 > 0, independant of u, such that if v — 8 < u < v, there exists a positive
constant y depending only on F and Matrix A such that
For cooperative systems

¢>0 2 uur > ——¢ >0, (16)
V-
For non-cooperative systems

d>a = u,m> —2—¢>0, (17)
v—u

a>d = u,-u > ——¢>0. (18)
v—

If v < u < v+, the sign are reversed.

Remark 2. 1t is noticeable that for all these cases, |u], [up| = +o0 as |[v —u| — 0.

These results extend Theorem 4.2 in [2].
Proof: Asin [1], we use J the associated Jordan matrix (which in this case is diagonal) and
P the change of basis matrix which are such that

A=PrJP".

Here

_ b b -1 _ 1 a-& b
P_(é’l—a fz—a)’ i _b(fl—fz)(fl_“ _b). >

(& O
J—(O é32).
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Denoting U = P~'U and F = P~'F, we derive from System (S) (after multiplication by P~!
to the left):

LU =JU+uU +F.
Since J is diagonal we have two independant equations:

Lity = (& + Wit + fr, k=1or2. (20)

The projection on ¢ and on its orthogonal for k = 1 and 2 gives
= @) ¢+, fi= o' o+ fit

hence

L)' ¢ = M) ¢ = &y ¢+ w@)' ¢ + (', @n

Lt = &ty + it + fi-. (22)
If both f; are in X, fi/¢ are bounded and hence both f,j /¢ are bounded. Therefore, by (22)
both ii; /¢ are also bounded since the smallest eigenvalue for L acting on ¢ is A, #< A).
We derive from (21) that
_ ("
()' = :
YT A-G-u

Consider again Equation (21) for k = 2; obviously, (ii;)" stays bounded as u — v = A — & <
(#)A — & and therefore ii, /¢ stays bounded.

Fork=1, (@) =2 - coasp—v=A-é&, where (7)) = gz (@- &) +bf) > 0;
this is the condition (15) which appears in Theorem 4. Then, we simply apply Theorem 3 to
(20) for k = 1 and deduce that there existes 6 > 0, such that, for [A — & —u| = v —u| < 6,

there exists a positive constant C > 0 such that

C C
u<v =i 2—¢>0 u>v = iy < —¢ <0.
V—u V—u

If |u — v| small enough

~ 1 : .-
(@) = ifu<v; i -

v—Uu v—u

ifu>v

where K is a positive constant depending only on F and A.
Now, it follows from U = PU, that

up = b(ity + iip), up = (&1 — @ity + (&2 — aity.

Asv —pu — 0, since iip/¢ stays bounded, u; behaves as b(ii;)'¢ > 0 ; u, behaves as (&, —
a)(iiy)' ¢.
Therefore 3 cases appear according to matrix A:
If A is cooperative (b > 0,c¢ > 0), then & < a < &) so that (¢, —a) > 0 and u, > 0.
If A is non-cooperative withb > 0,c < 0,d > a,thena < & <& = (é1—a) >0, up > 0.
If A is non-cooperative with b > 0,c < 0,a > d,thené, <& <a = (£1—a) <0, uy <O0.
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Remark 3. Indeed, we always assume that b > 0, hence u; > 0 for v — u > 0 small enough.
Behavior of the solution near the eigenvalue v/ := A - &;.

Obviously, v' := A — &; is also an eigenvalue of the system with associated eigenvector X,¢.
Theorem 5. Assume (H;), b>0,D>0andVv < . Assume also that f| and f> are in X
and (¢, —a) fl1 -b le > 0 is satified. Then, for 0 <v' — u small enough, there exists a positive
constant vy’ depending only on F and Matrix A such that

For cooperative systems, (¢ > 0), then

’

Uy, —Us > Y ¢ > 0,
Vi —u
For non-cooperative systems (¢ < 0), then
,y/
d>a = uj,uy > - ¢ >0. (23)
ViU
,yl
a>d = u,—u > ¢ > 0. 24)
V—H

If 0 < u —Vv' small enough, the sign are reversed.

Proof The proof is exactly the same as for Theorem 4 except that we derive from (21) that
(it1)" stays bounded and (i)' = (Vf%)l — oo as v/ — u — 0. This holds also since p + & <

mu + & < A < A,. Now u; behaves as b(itp) and u, as (&, — a)(itp), and the result follows.

3.2.Caseé| =&

Consider now the case where the coeflicients of the matrix A satisfy b > 0 and
D :=(a—d)* +4bc = 0.

Of course this implies bc < 0 and since b > 0, then ¢ < 0: only for non-cooperative systems
a double root can appear. Now &) = & =& = % The proof of Theorem 4 is no more valid
1

since e.g. in (19) there is a factor of the form R Moreover Matrix J is triangular and the

system in U is no more decoupled. We prove here

Theorem 6. Assume (H(’I) and b > 0,¢ < 0 with (a — d)? + 4bc = 0; assume also that fi,
arein X and :

(a—d)
2
Ifv-0<u<v+6(v=A-§) 6 small enough, there exists a positive constant y such that

fl+bfl>o. (25)

ifa>d up = ¢, up < — @.
v —ul v — ul

ifd>a u >

¢9 up 2

> .
lv—pul v —ul
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Remark 4. We notice that u; is always positive whatever the sign of d —a or of v — u. Also u,
keeps the same sign for ¢ going over v. Things work as having 2 eigenvalues &; and &, with

&) — & — 0. The functions u; and u; change sign twice (as u goes over v and v') and finally
they keep the same sign.

Remark 5. Note that the condition (“%d) fl +bf) > 0 in Theorem 6 is the same than in

Theorem 4: (& — a)fl1 < ble, since in Theorem 6, & = & = %

Proof The eigenvector associated to eigenvalue ¢ is

b
2
The vector X¢ is thus an eigenvector for L — A,

L(X¢) — AX¢ = (A — )Xo = vXo.

We will need to use two different decompositions of the matrix A. For the decomposition 1

we choose
b2 -l =
(L)l )

So the associated triangular matrix J; is

Ji = P{'AP =(g é)

As above, setting U = P7'U and F = P{'F, we derive from System ()

LU =J,U+uU+F.

We do not have anymore a decoupled system but

{Lﬁl = E+wi + D+ (26)

Li, = + E+Win+ f

here fj = =% frand fo = SL f! + f) are in X and > > 0 by (25).

o If £ +pu < A (that is u < v), by Theorem 3 applied to the second equation, there exists
a constant K > 0, such that i, > %g{). Hence, for v — u small enough for any f; € X,
ity + fi > 0 and is in X; then again Theorem 3 applied to the first equation implies that there
exists a constant K’ > 0, such that it; > VKT/¢.

For a > d, we can conclude that there exists a constant y > 0,

~ u = bftl
U=PU-= d—a

U =

e If 4 > v we have reversed sign for it;. Hence, for u — v small enough for any f; € X,
it; + fi < 0 and is in X; then again Theorem 3 for the first equation implies that there exists a
constant K’ > 0, such that i1, > /%qﬁ.
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For d > a, we can conclude that there exists a constant y > 0,

For the remaining cases, we need to use an other decomposition of Matrix A. For the decom-

position 2 we choose
[ b 0 411 0
oL ) gl 3]

So the associated triangular matrix J; is

JZ=P;1AP2=(g ;)

As above, setting U = P;'U and F = P;'F, we derive from System (S) the same system

—-d
T )f1+f21

Ly = E+pm + W+h
Liiy + (E+win+f

. T
with the same function f, = (

@7

o Ifé+pu < A (thatis u < v), since % f11 + le > 0, we get (exactly as for decomposition
1) that there exists a constant K > 0, such that i, > %¢> and there exists a constant K’ > 0,
such that it; > £-¢.

For d > a, we can conclude that there exists a constant y > 0,

— hi Y
- up = by > ;= ¢
U=P2U= _ d-a~ V./.l Y
U = Tu] + U, > E

e If u > v we have reversed sign for ii,. Hence, there exists a constant K’ > 0, such that
~ K

uy > E(ﬁ

For a > d, we can conclude that there exists a constant y > 0,

Uopyp={ T 0 > 50
= 2 = N -
U = %u1+u2 <—l%/¢
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