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Abstract

Saltwater intrusion in coastal aquifers is one of the main causes of groundwater quality degra-

dation. These intrusions are often due to excessive withdrawals in sensible parts of coastal aquifers.

The scope of this paper is to identify speci�c problems set by optimal management of such a re-

source. To this end, we develop a simple spatial model describing a coastal aquifer under seawater

intrusion. We show that water mining creates a speci�c cost externality between population spread

over the aquifer. We then characterize the system of taxes that must be used to implement the

optimum in a decentralized economy.
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1 Introduction

According to the Food and Agriculture Organization
1
, six out of ten people live within sixty kilometers

of a coast and more than two thirds of the population of developing countries live in the vicinity of the

sea. For most of this urban population, groundwater is often the main source of freshwater. Ground-

water systems have also become during the last decades an important source of fresh water throughout

the world. They provide now about one-third of the world freshwater consumption according to Gle-

ick (1993). The increased pressure on groundwater has often resulted in an important fall in aquifer

levels.
2
In coastal aquifers where freshwater is connected to seawater, high withdrawals can endanger

the long-term use of the resource. Under natural equilibrium conditions the hydraulic gradient ensures

a water run-o� toward the sea protecting freshwater. But the gradient is often relatively small and

any excessive net withdrawal alters the hydrostatic balance. Then seawater enters more deeply into

the aquifer and replaces freshwater. This phenomenon, known as seawater intrusion, prohibits access

to the resource for the users in the coastal areas. This problem of seawater intrusion has widely been

recognized in groundwater utilization for many coastal aquifers in various parts of the world. Given the

geographical repartition of needs, it is now one of the main causes of groundwater quality degradation

and one of the major constraint a�ecting groundwater management, according to Bear et al. (1999).

Although seawater intrusion is a critical problem for many coastal aquifers, it is very surprising to

notice that only few economic literature has addressed this issue.
3
Moreover, most of the economic

literature has focused on the dynamic problems created by seawater intrusion, see Moreaux and Rey-

naud (2004) for a recent survey. For example, Tsur and Zemel (1995) simply consider saline intrusion

1See for instance the technical report F.A.0 (1997).
2Currently, about one-fourth of the groundwater withdrawn in the US is not replenished. At the current rate of

extraction, Saudi Arabic's nonrenewable fossil groundwater will be exhausted within twenty years.
3Sea water intrusion in coastal aquifers is on contrary a very active �eld of research in hydrogeology. Two international

conferences are organized every two years: the SWIM meeting (since 1968) and the SWICA-M3 conference (since 2001).

A brief look to the SALNET bibliography dedicated to seawater intrusion shows that 448 papers related to this topic

have been published in scienti�c journals. Considering only sea water intrusion along the Atlantic Coast of the United

States, the US Geological survey bibliography contains 549 references (book, article, technical report, map).
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as an irreversible event occurring when the groundwater table declines below some unknown threshold

level. In Koundouri (1997) the aquifer is modeled as a �bathtub� in which water quality goes progres-

sively worth due to seawater intrusion. The only work having explicitly integrated the spatial aspect

of seawater intrusion is Cummings (1971). However as the economical framework is not directly set

on a truly validated hydrological model, it makes the policy implications di�cult to derive.

In this paper, we develop a spatial model for managing coastal aquifers under seawater intrusion

conditions. Populations are spread over the aquifer according to a given discrete distribution. Dis-

tribution mass points correspond to cities that are going to compete for groundwater extraction. For

each city, both the rate of withdrawal and the pumping location are endogeneous decisions. The long-

run optimal water allocation between cities is then characterized and economic instruments aiming at

implementing this optimum are identi�ed. We especially focus on the type of externalities created by

water pumpings. First, water withdrawals create a pumping cost externality because the water table

decreases with total pumping. Second, water withdrawals create a transportation cost externality.

The higher are total withdrawals, the more landward the hydraulic interface is located and the higher

are the water supply costs of users located in the coastal area. It follows that users far away from

the coast create a negative externality on users located nearer. How is it possible to internalize this

externality? Is a single price for all users su�cient to implement an optimal allocation of water? Do

we need a spatially di�erenciated price system? This is the kind of question we try to answer in this

paper, assuming that the objective of the social planner is to maximize the net social surplus.

The paper is organized as follows. Section 2 describes the model. Some generic characteristics of

the problem are already visible while the coastal aquifer is exploited by a single city. In particular, the

optimal exploitation by a single user-group (section 3) allows to highlight some problems created by

the discontinuity of the water supply marginal cost. It is however obvious that the cost externalities

created by di�erent pumpings may only be analyzed in a model with at least two user-groups. Section
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4 presents a complete analysis of the two user-groups case. We conclude by summarizing our �ndings.

2 A spatial model of coastal aquifer under seawater intrusion

2.1 A two-dimensional sharp interface model

2.1.1 Aquifer structure

A coastal aquifer is recharged by fresh water entering at the landward boundary, at a distance X0

to the coast. R denotes the constant instantaneous recharge rate, i.e., the net water in�ow excluding

extraction. At the sea water boundary, there is an in�ux of sea water which migrates to the bottom

of the aquifer and displaces the fresh water upward because of greater density. We note H0 the depth

of the aquifer measured from the sea level. Figure 1 describes this standard two-dimensional model of

coastal aquifer under saline intrusion conditions.

[Figure 1, here]

Under natural equilibrium conditions, fresh water denser than salt water forms a lens that �oats

on salt water. This lens is moved by a permanent �ow discharging into the sea. Where fresh water

and sea water come into contact, mechanical dispersion causes mixing and a transition zone forms. As

a simpli�cation, we neglect this brackish zone and assume that the interface is sharp.
4
Let us denote

by x, the distance from an inland point on aquifer to the coast, by h(x) the height of the water table

measured from the sea level, by H(x) the depth below sea level to a point on the interface and by

L the maximal intrusion of sea water. Under natural equilibrium conditions, i.e. without any water

4The passage from the portion of the aquifer that is occupied by sea water to that occupied by fresh water takes the

form of a transition zone. Depending upon aquifer properties, this zone can small relative to the aquifer's thickness and

it can be approximated as a sharp interface.
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extraction, h(x), H(x) are given by :

h(x) =

8
>><
>>:

�
2
k

a2

1+a
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� 1

2
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h�
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kH2
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� 1

2
i
H0 �H0 if L < x

(1)

H(x) =

8>><
>>:

�
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1+a

Rx
� 1

2

if x � L

H0 if L < x

(2)

where k is the hydraulic conductivity of the aquifer (distance unit/time unit) and a is the density

di�erential ratio between salt water and fresh water to fresh water density.
5
The maximum length of

sea water intrusion at the bottom of the aquifer, L, is given by:

L = (1 + a)H2
0k=2R: (3)

The system (1)-(3) provides the fundamental relationship between the rate of fresh water recharge

and the length of the intruding sea water wedge at the static equilibrium. The interested reader may

consult Bear et al. (1999) for a more formal derivation of these equations. It is worth noticing that

this type of model has been recently used by hydrogeologists for analyzing real cases. For US, Bear

et al. (1999) report for instance that a sharp-interface model at the static equilibrium has been used

in the mid eighties for the Cape Code aquifer (Massachusetts) and for the Montauk peninsula aquifer

(Long Island, New York). More recently, the model of the Soquel-Aptos Basin aquifer (California) was

also designed along the same lines.

When pumping occurs, only a part of the fresh water recharge is discharged to the sea. This

determines a new hydrostatic equilibrium between fresh water and salt water. As water extraction

rate increases, the interface moves landward and upward. Salt water moves to the bottom of the

aquifer and displaces the fresh water landward and the water table decreases. The fresh water lens

goes thinner. As salt water intrusion progresses, pumping wells close to the coast become saline and

5This hydrological model requires the following assumptions to hold: homogeneity (the physical structure of the

system is the same in the whole aquifer), perfect hydraulic conductivity (any action that a�ects a part of aquifer has an

impact on the whole aquifer), closeness (the system considered is closed), hydrostatic approximation for sea water (sea

water is static), quasi-hydrostatic approximation for fresh water (the fresh water �ow is horizontal).
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have to be abandoned.
6
Let us denote by Y , Y < R, the total water extraction rate so that the net

recharge of fresh water is R� Y . The aquifer structure with pumping is given by substituting R� Y

for R in equations (1)-(3).
7
We denote by h(x; Y ), H(x; Y ) and L(Y ) the aquifer characteristics when

water pumping rate is equal to Y . This long-term equilibrium model di�ers from previous dynamic

works like Cummings (1971) or Green and Sunding (2000) in a crucial way. In these papers seawater

intrusion is viewed as a type of pollution that degrades the quality of the resource by increasing salinity.

By pumping groundwater, the hydraulic head is reduced and seawater intrudes the aquifer. One of the

key points of these papers is that the e�ect of pumping on seawater intrusion depends on the location

of pumping, the idea being that pumping groundwater closer to the coast causes more intrusion than

pumping further inland. Here, any pumping has the same e�ect on seawater intrusion whatever is its

location on the aquifer. This is a direct consequence of the perfect hydraulic conductivity assumption

of the hydrological model which holds as we only consider the long-term static equilibrium and we do

not analyze transitory regimes of the system.

2.1.2 Pumping constraints induced by sea water intrusion

By increasing water withdrawals, salt water moves upward. Well discharge near the coast becomes

saline to a degree governed by location of the wells, discharge rates and hydrologic conditions. Such a

kind of discharge can obviously not be considered as a long-run extraction plan. Thus wells located in

6Drinking water standards established by the E.P.A require drinking water to contain no more than 0.5 g/L of TSS, a

common measure of salinity. Sea water contains approximately 30 g/L of TSS. According to the F.A.O standard, a two

to three percent mixing with sea water renders fresh water inadequate for human consumption and for irrigation. A four

percent mixing is enough to destroy at least partially a fresh water resource. This problem could be solved by desalting

water, as it is done along the coast of some arid countries (Israel, Kuwait, Saudi Arabia among others). However, the

desalting processes remains often too costly to be used extensively. Salinity can also be detrimental to agriculture by

reducing yields and killing crops with low tolerance to salt. In some cases, conditions may necessitate a change to crops

that are more salt tolerant. For cooling purposes, salt water and brackish water are neither attractive. Saltwater may

cause damages to the installations by corrosion and it produces brine as a by-product which is costly to dispose of or to

transport.
7We know however that water table depends also on geographical withdrawals repartition. If there is a �nite number

of pumping points exploiting aquifer, the hydraulic head is distorded around each of these points: this phenomenom is

known as upconing. Under some conditions, saltwater moves upward in response to pumping and the well discharge

becomes saline to a degree governed by location of the wells, discharge rates and local hydrologic conditions. See Reilly

and Goodman (1985) and Reilly and Goodman (1988) for a fairly complete description of the upconing problem.
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coastal areas have to be excluded from the water supply system because they cannot ensure potable

water. Therefore, the greater total water extraction, the more the frontier of feasible wells moves

landward. In order to take into account this spatial constraint while keeping the model tractable, we

assume that water pumping must occur at some critical distance of water table and at some critical

distance of the interface. At any point x of the aquifer, pumping depth must be between h(x) � dh,

dh > 0 and �H(x) + dH , dH > 0. In other words, pumping water at a location x is feasible only if the

thickness of the freshwater lens is greater than dh + dH . The major assumption is that the security

distances, dh and dH , do not depend upon wells locations and discharges. These security distances

de�ne �rst a minimal distance to the coast beyond which any pumping well must be located. This

distance is a function of total water extraction Y and is denoted by �x(Y ). By de�nition, �x(Y ) is

solution of h(x; Y )� dh = �H(x; Y ) + dH , that is:

�x(Y ) =
k(dh + dH)2

2(R � Y )(1 + a)
: (4)

It can easily be shown that �x(Y ) is increasing and convex. Moreover, for a given withdrawal rate, the

minimal distance to the coast increases with the security distances dh and dH . The minimal distance

function is de�ned on [0; �Y 0], with �Y 0 < R corresponding to the maximum feasible pumping rate

available at the landward bound of the aquifer, solution of �x(Y ) = X0
. We denote by x the minimal

distance to the coast where fresh water is available when there is no pumping elsewhere. The security

constraints can also be de�ned as �Y (x), the maximal feasible pumping rate �Y as a function of the

location x. In case of a single well extracting water from the aquifer at a distance x to the coast, �Y (x)

gives the maximal pumping rate satisfying the security constraints at this point:

�Y (x) =

8>><
>>:

0 if x � x

R� 1
x

k(dh+dH)2

2(1+a)
if x > x:

(5)

For x smaller than x, no water is available and the maximal pumping rate at x is zero. For x greater

than x, �Y is the inverse function �x�1. Let us �nally notice one interesting property of the function
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�Y (x). We have 8x 2 [x;X0]:

h[x; �Y (x)] =
a

1 + a
(dh + dH) � h and H[x; �Y (x)] =

1

1 + a
(dh + dH) � �H: (6)

The water table elevation and the interface position corresponding to the maximum feasible pumping

rate do not depend on the location of the pumping point. This physical property clearly results from

the fact that the security distances, dh and dH , do not depend upon wells locations and discharges.

If there are other pumping wells located upward with an aggregate pumping rate Y , Y < �Y (x),

then the maximal pumping rate at x is given by:

maxf �Y (x)� Y; 0g: (7)

This spatial constraint is similar to that faced by users located along a canal which presents losses,

problem studied by Chakravorty, Hochman, and Zilberman (1995). The quantity of resource available

at a point of the canal is equal to the �ow available upward less the network losses between these two

points. Brozovic, Sunding, and Zilberman (2001) propose a similar analysis in the case of groundwater.

2.2 Economic modeling

The coastal aquifer is exploited by I cities indexed by i, i = 1; :::; I. x0i denotes the distance from city

i to the coast. As a convention, cities are indexed by increasing distance to the coast: x01 < ::: < x0i <

::: < x0I . We suppose that city i is made of ni identical representative individuals having the same

activities, the same tastes and the same incomes. Thus optimal consumption per capita is identical

for all users living in the same city. We denote by yi the instantaneous water consumption per capita

of the city i, by Yi = niyi the total consumption of city i and by Y =
P

i Yi the total water extraction

of all cities exploiting the coastal aquifer.
8

The individual utility function only depends on water

consumption and is assumed to be the same for all representative consumers. The utility function

8As a simpli�cation, we do not distinguish between net and gross withdrawals. We assume that water pumping if

de�nitively lost for the groundwater system.
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is denoted by U(:). We make the following standard assumptions: U is supposed twice continuously

di�erentiable, strictly increasing and concave and water is considered as an essential good so that the

Inada condition holds:

dU

dy
> 0;

d2U

dy2
< 0; and lim

y!0

dU

dy
= +1: (8)

Finally, Vi denotes the aggregate utility function for city i: Vi(Yi) = niU(Yi=ni). By construction, Vi

is strictly increasing and concave.

Total water supplying costs are constituted by pumping costs and surface conveyance costs. We

denote �, � > 0, the unit cost of pumping per unit of discharge and elevation. De�ning pumping

costs requires to characterize the ground level. We assume that ground elevation, measured from the

sea level, is characterized by a function g(x) > 0 for x 2 [0;X0]. Di�erent ground pro�les may be

considered. Here, we assume :

dg

dx
> 0 and

d

dx

�
g(x)� h(x)

�
> 0 8x: (9)

The �rst assumption means that the ground elevation increases with the distance to the coast. The

second assumption means that, for any given level of water withdrawals, the depth at which fresh

water is accessible increases with the distance to the coast. This corresponds to the fact that access

to groundwater is usually easier in coastal areas where fresh water is discharged into the sea than in

more inland areas.
9
An immediate implication of the second above inequality (9) is that:

d

dx

�
g(x) � h(x; Y )

�
> 0 8x; Y: (10)

The total cost of pumping Yi from the location xi when total pumping elsewhere is Y�i is: � �
�
g(xi)�

h(xi; Yi + Y�i)
�
� Yi. The surface water conveyance cost from the pumping point to city i location is

proportional to the distance and the discharge. We note �; � > 0 the unit conveyance cost per unit

of distance and discharge. Thus the conveyance cost of city i pumping Yi from a well located in xi is:

9Some other assumptions for the ground pro�le may also be considered as realistic. In particular, the ground elevation

may in some cases not increase monotonically with the distance to the coast. We let this case for future research.
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�� j xi � x0i j �Yi. The total water supplying cost of city i pumping Yi at xi, denoted TCi(Yi; Y�i; xi),

is �nally:

TCi(Yi; Y�i; xi) = � �
�
g(xi)� h(xi; Yi + Y�i)

�
� Yi + �� j xi � x0i j �Yi: (11)

The social planner must determine the location of the pumping wells
10

and the water discharges

such as the welfare is maximized and the extraction constraints are satis�ed. Thus, maximizing the

social welfare results in the following program P:

max
fxi;Yigi=1;:::;I

IX
i=1

Vi(Yi)� TCi(Yi; Y�i; xi)

s/t �Y (xi)�

IX
i=1

Yi � 0 i = 1; : : : ; I

xi � 0 i = 1; : : : ; I

X0 � xi � 0 i = 1; : : : ; I

Yi � 0 i = 1; : : : ; I

As we shall see in the next sections, the objective function of the program P is not di�erentiable

which makes direct use of �rst-order condition problematic. In order to gain some intuition on speci�c

di�culties to overcome, the model is �rst solved in a single city case.

3 Optimal aquifer use by a single city

3.1 Water supply costs

We assume now that the coastal aquifer is exploited by a single city located at distance x0 to the coast.

The highest feasible pumping rate from x0, by de�nition �Y (x0), is more simply denoted by Y 0
. The

population size of this city is n. Let us �rst characterize the optimal location of the well conditionally

to the volume of water pumped. Two cases are possible. First, for Y � Y 0
the resource is available at

10We implicitly assume that each city can be water supplied from only one pumping point. This would be the optimum

in case of very high �xed costs associated to the construction of pumping wells.
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x0. The less costly way to obtain Y is to pump at x0: the city does not bear any surface transportation

cost and the pumping cost is minimized because it increases with the distance to the coast.
11

Second,

for Y > Y 0
water is available upstream at �x(Y ) > x0. Since transportation and pumping costs increase

with the distance to the coast, the less costly way to obtain Y is to locate pumping at �x(Y ). In that

case, according to equation (6), the water table elevation is h. Thus, the total cost, TC(Y ), is:

TC =

8
>><
>>:

� �
�
g(x0)� h(x0; Y )

�
� Y if Y � Y 0

� �
�
g(�x(Y ))� h

�
� Y + � �

�
�x(Y )� x0

�
� Y if Y 0 < Y:

(12)

The total cost function is continuous everywhere but non di�erentiable at Y 0
. The main reason is the

following. For Y � Y 0
, the pumping well is located at x0 and conveyance costs are null. For Y > Y 0

,

the pumping well has to be located at �x(Y ) > x0. The city must pay now a strictly positive conveyance

cost. Let's us assume that the city is pumping at x0 at a rate Y 0
corresponding to the maximal feasible

rate at this location. A marginal increase of the pumping rate will require to move landward marginally

the well location. The whole resource will have now to be conveyed from the pumping well to the city.

It follows that, due to surface transportation, the marginal cost jumps upward at Y 0
. The associated

discontinuity of the marginal cost is equal to � � Y 0 � �x0(Y 0). As a consequence, the higher is Y 0
(i.e.

x0 is far away from the coast) and/or the unit conveyance cost �, the bigger is the marginal cost

discontinuity. One important consequence of the cost non di�erentiability is that the optimal pumping

cannot be derived directly from the �rst order conditions. Let MC(Y ) denotes the marginal supply

cost:

MC =

8>><
>>:

�
�
g(x0)� h(x0; Y )

�
� � @h

@Y
(x0; Y )Y if Y � Y 0

�
�
g(�x(Y ))� h

�
+ ��x0(Y )g0(�x(Y ))Y + �

�
�x(Y )� x0

�
+ �Y �x0(Y ) if Y 0 < Y:

(13)

For Y � Y 0
, the marginal cost of water supply corresponds to the sole marginal cost of pumping. As

the water table elevation decreases with pumping, the marginal cost increases on this interval. For

11In some cases the city may �nd more pro�table to locate the pumping well downstream where the water elevation

cost is lower. We assume that the unit transportation cost, �, is high enough to prevent such a situation to occur.

Typically, the condition insuring that no city will pump water downstream writes � > � d
dx

�
g(x)� h(x; Y )

�
.
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Y > Y 0
, the marginal cost of water supply is the sum of the marginal pumping cost and the marginal

transportation cost. Since the rate of pumping is in that case the maximal feasible rate, the water

table is at its minimum h, see equation (6). The pumping cost increase is only due to the increase

of the ground elevation, g0(x) > 0. Moreover, water must be transported from the location of the

pumping point to the city location. The two last terms of the second equation (13) correspond to the

e�ect of an increase of water withdrawal on the surface transportation cost. We can �nally explicitly

characterize the marginal cost discontinuity at Y 0
:

lim
Y!Y 0+

MC(Y )� lim
Y!Y 0�

MC(Y ) = �Y 0�x0(Y 0) + �Y 0
�
�x0(Y 0)g0(x0) +

@h

@Y
(x0; Y )

�
(14)

The �rst term of the discontinuity is due to the surface transportation of water. The second term

corresponds to the fact that for Y � Y 0
, the pumping is located in x0. The pumping cost increase

is only due to a fall of the water table. For Y > Y 0
an increase of water withdrawals also results in

moving landward the pumping location. As ground elevation increases with the distance to the coast,

it follows that the depth at which freshwater can be found increases. This results in an increase of

the pumping cost. Notice �nally that when Y > Y 0
, the marginal cost is an increasing and convex

function of extracted water.

3.2 Optimal withdrawals

The aggregate marginal utility function, V 0(:), decreases with Y . Moreover, this function is increasing

and convex with the population size, n. Hence, three cases must be distinguished as illustrated in

Figure 2.

[Figure 2, here]

Small population case. First, if the population size is small enough, intersection between

the marginal utility and the marginal social water supply cost occurs for Y smaller than Y 0
. This is
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the case corresponding to curve (1) on Figure 2, the intersecting point being Y (1)
. Pumping will be

located at x0 and because the maximal available �ow at this point is greater than Y (1)
, the resource is

abundant. Optimal discharge is characterized by U 0
�
Y=n

�
= � �

�
g(x0)� h(x0; Y )

�
�� � @h

@Y
(x0; Y ) � Y .

The optimum can simply be decentralized to a private or public �rm by, �rst pricing water to users at

its marginal cost, second obliging the �rm to satisfy the whole demand at this price. Notice that the

delegated �rm realizes strictly positive pro�ts because of increasing marginal costs. These pro�ts may

be extracted by imposing the �rm to pay a �xed concession fee. This �small population case� holds if

the population size is smaller than n(1) = Y 0=U
0�1(MC(Y 0-)).

Intermediate population case. In case of an intermediate population size, the marginal utility

(curve (2) on Figure 2) does not cross the marginal water supply cost. Total pumping is restricted to

be Y 0
. Water is scarce and a scarcity rent �,

� = U 0
�
Y 0=n

�
� � �

�
g(x0)� h

�
� � �

@h

@Y
(x0; Y 0) � Y 0; (15)

must be imputed to the resource. It is possible to decentralize the optimum to a private or public �rm

by imposing on the delegated �rm a unit tax corresponding to the scarcity rent. The marginal price

of water will be equal to the marginal cost evaluated at y = Y 0=n plus the unit royalty equal to the

scarcity rent. The frontier of the �intermediate population case� in the population space is such as the

population size is greater than n(1) and smaller than n(2) where n(2) = Y 0=U
0�1
�
� �
�
g(x0)� h

�
+ � �

�x0(Y 0) � g0(x0) � Y 0 + � � Y 0 � �x0(Y 0)
�
.

Large population case. Finally, in case of a high population size (i.e. greater than n(2)), the

social marginal utility crosses the marginal water supply cost at Y (3)
with Y (3) > Y 0

. This is the case

illustrated by curve (3) on Figure 2. Pumping is located upward x0, x > x0. The water service may

be optimally delegated to a private �rm pricing water at its marginal cost and satisfying at this price

the whole demand. Therefore, the price faced by a representative user is: U 0
�
Y (3)=n

�
. Because of

increasing marginal costs, the �rm will realize a strictly positive pro�t. This pro�t may be extracted
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by the social planner through a lump-sum fee.

4 Optimal aquifer use by two cities

The two cities case will permit to appreciate how marginal cost discontinuities may combine and put

in light the nature of externalities created by one city on the other one. As a convention, city 1 is

called downstream whereas upstream denotes city 2.

4.1 Social costs

Let Y 0
1 and Y 0

2 respectively denote the maximum pumping rate from x01 and x02 without pumping

elsewhere: Y 0
1 = �Y (x01) and Y 0

2 = �Y (x02). For any pair (Y1; Y2), the security constraints require

pumpings to occur at a distance from the coast at least equal to �x(Y ), Y = Y1+ Y2. For Y � Y 0
1 then

�x(Y ) is downstream the location of city 2. The cost minimization results in pumping to be respectively

located at x01 and x
0
2. For Y 2

�
Y 0
1 ; Y

0
2

�
then �x(Y ) is upstream x01 and downstream x02. Transportation

and pumping cost minimization requires the pumping well of the downstream city to be located at

�x(Y ) whereas the upstream city keeps on pumping at x02. Finally, for Y > Y 0
2 costs minimization

requires that both cities pump at some point �x(Y ) located upstream the upstream city. Thus, the

social total water supply cost function, TCs(Y1; Y2), is:

TCs =

8>>>>>><
>>>>>>:

P
i=1;2 �

�
g(x0i )� h(x0i ; Y )

�
Yi if Y � Y 0

1

�
�
g(�x(Y ))� h

�
Y1 + �

�
g(x02)� h(x02; Y )

�
Y2 + �

�
�x(Y )� x01

�
Y1 if Y 0

1 < Y � Y 0
2

P
i=1;2 �

�
g(�x(Y ))� h

�
Yi + �

�
�x(Y )� x0i

�
Yi if Y 0

2 < Y:

(16)

From these equations, it can be seen that two types of externalities must be taken into account in

order to determine the optimal allocation of water. First, an increase of the pumping rate of any city

will result in a decrease of the water table. This induces an increase of pumping costs. This type of

reciprocal pumping cost externality has been studied by many authors. See for example Swallow (2000)
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for a recent work integrating variable costs. Second, pumpings create another type of cost externality.

When one city increases its pumping rate, the last feasible pumping point may move landward. This

results in an increase of the surface transportation cost. It follows that pumpings may create both a

pumping cost externality and a transportation cost externality. Notice that for Y 0
1 < Y � Y 0

2 , the

transportation cost externality in only created by the upstream city on the downstream one whereas

for Y 0
2 < Y this externality is reciprocal. As in the one city case, it can easily be shown that the total

cost function is continuous, increasing and convex. However, the social marginal water supply cost

functions, MCs
1 = @TCs=@Y1 for the downstream city and MCs

2 = @TCs=@Y2 for the upstream city,

are discontinuous at (Y1; Y2) such as either Y1 + Y2 = Y 0
1 , or Y1 + Y2 = Y 0

2 . These functions are:

MCs
1 =

8>>>>>>>>>><
>>>>>>>>>>:

�
�
g(x01)� h(x01; Y )

�
� �

P
i=1;2

@h
@Y

(x0i ; Y )Yi if Y � Y 0
1

�
h�
g(�x(Y ))� h

�
+ �x0(Y )g0(�x(Y ))Y1

i
+ �

h�
�x(Y )� x01

�
+ Y1�x

0(Y )
i

�� @h
@Y

(x02; Y )Y2 if Y 0
1 < Y � Y 0

2

�
�
g(�x(Y ))� h

�
+ �

�
�x(Y )� x01

�
+ (Y1 + Y2)�x

0(Y )
�
�g0(�x(Y )) + �

�
if Y 0

2 < Y

(17)

MCs
2 =

8>>>>>><
>>>>>>:

�
�
g(x02)� h(x02; Y )

�
� �

P
i=1;2

@h
@Y

(x0i ; Y )Yi if Y � Y 0
1

�
h�
g(x02)� h(x02; Y )

�
� @h

@Y
(x02; Y )Y2

i
+ Y1�x

0(Y )
h
� + �g0(�x(Y ))

i
if Y 0

1 < Y � Y 0
2

�
�
g(�x(Y ))� h

�
+ �

�
�x(Y )� x02

�
+ (Y1 + Y2)�x

0(Y )
�
�g0(�x(Y )) + �

�
if Y 0

2 < Y:

(18)

Marginal costs are piecewise increasing and convex. They present a double discontinuity. First at

Y1 + Y2 = Y 0
1 , MCs

i , i = 1; 2 as a function of Yi jumps upward:

lim
Y!Y 0+

1

MCs
i � lim

Y!Y 0�

1

MCs
i = �Y1�x

0(Y 0
1 ) + �Y1

h
g0(x01)�x

0(Y 0
1 ) +

@h

@Y
(x01; Y

0
1 )
i

(19)

The interpretation of this discontinuity is similar to the discussion following equation (14). Let us start

from an initial situation where total discharge is Y 0
1 which implies that pumping occurs at x01 for city 1

and at x02 for city 2. If global pumping increases marginally, pumping location of the downstream city

has to move marginally landward whereas the upstream city keeps on pumping at x02. This has two
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cost e�ects. First there is a transportation cost e�ect: all the resource extracted for the downstream

city has to be transported from the pumping point to the city. The associated cost discontinuity is

�Y1�x
0(Y 0

1 ). Second, there is a pumping cost e�ect: since the pumping location is upstream x01 then the

ground level has now an e�ect on costs �Y1(g
0(x01)�x

0(Y 0
1 )). Moreover, since the pumping rate is the

maximum feasible rate, the water table elevation is h whereas it used to decrease with Y for Y < Y 0
1 .

The marginal cost discontinuity gap is �Y1
@h
@Y

(x01; Y
0
1 ).

Let us now consider the case where Y1 + Y2 = Y 0
2 . Now, MCi as a function of Yi also presents a

discontinuity:

lim
Y!Y

0+

2

MCs
i � lim

Y!Y
0�

2

MCs
i = �Y2�x

0(Y 0
2 ) + �Y2

h
g0(x02)�x

0(Y 0
2 ) +

@h

@Y
(x02; Y

0
2 )
i

(20)

The interpretation of this social marginal cost discontinuity is similar to equation (19) replacing city

1 by city 2.

4.2 Optimal withdrawals

Each city is de�ned by its population size ni and its distance to the coast x0i . The following analysis

characterizes the optimal aquifer use as a function of (n1; n2) for given locations (x01; x
0
2).

4.2.1 Very small population sizes case

Let y
(1)
i , with i = 1; 2, denotes the optimal consumption level per capita solution to:

U 0(yi) = �
�
g(x0i )� h(x0i ; Y )

�
� �

X
i=1;2

@h

@Y
(x0i ; Y )Yi: (21)

Let Y
(1)
i = niy

(1)
i denotes the aggregate water consumption of cities i and Y (1)

the associated total

pumping, Y (1) = Y
(1)
1 + Y

(1)
2 . For su�ciently small population sizes, a quantity y

(1)
i can be allocated

to each consumer of city i. Water pumpings occur at x01 and x
0
2 and there are no transportation costs.

Population sizes belong to this case while n1y
(1)
1 + n2y

(1)
2 � Y 0

1 . This de�nes zone 1 in the (n1; n2)

space, see Figure 3. This frontier is studied in details in Appendix A.
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[Figure 3, here]

As the marginal social cost di�ers for the two cities due to di�erent pumping costs, the water price

faced by the consumers is di�erent. In fact, because of higher pumping costs, g(x02) � h(x02; Y
(1)) >

g(x01)� h(x01; Y
(1)), we have y

(1)
2 < y

(1)
1 .

It is �nally interesting to notice that even in that very small population sizes case, water pumpings

of cities create some externalities. Let MC
p
i denotes the private marginal cost of city i. We have:

MCs
i �MC

p
i = ��

@h

@Y
(x0j ; Y

(1))Y
(1)
j > 0 i; j = 1; 2 i 6= j: (22)

A private management of each city is not optimal because it does not take into account the fact that

withdrawal group decrease the water table and so increase pumping cost of the other city. It follows

that the delegation of the service to a private �rm will require a system of di�erentiated unit taxes
12
,

�
(1)
i = �� @h

@Y
(x0j ; Y

(1))Y
(1)
j i; j = 1; 2 i 6= j: Notice that the unit tax of a city increases with the

population size of the city, the cost externality being higher in that case.

4.2.2 Small population sizes case

Let us now consider population sizes outside zone 1. The �rst problem is to determine if it is e�cient

to increase global pumping. A discharge rate increase will move the downstream city pumping point

landwards. Hence the downstream city will have to bear conveyance costs. Intuition suggests that it is

not optimal to increase total withdrawals while (n1; n2) remains near the locus of the zone 1 frontier.

The optimal solution consists, in this case, in restricting total pumping to be Y 0
1 and in equalizing

the marginal net utilities between consumers. Let y
(2)
i , i = 1; 2 denotes the optimal consumption level

12We consider here the decentralization of water services to private or public �rms via a system of unit fees because

it corresponds to the current French water sector regulation framework situation. In France, administration is centred

in six river basin committees and six river basin �nancial agencies (AFBs). The AFBs which award grants and loans,

develop long-term plans, collect and analyze water data, conduct studies and �nance research, also set two fees to be

paid by water users: one for water withdrawals and the other for pollution. The fees aim at providing incentives for

users and also form a fund to encourage better water use through grants or soft loans. The ultimate objective of this

system of taxes is to provide feasible and and e�ective solutions to the major concerns about public water management:

water scarcity, pollution and conjunctive use of ground and surface water. Thus, the system of spatially di�erentiated

taxes depicted in this paper may �t the French water regulation framework.
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per capita in this population size zone. Then the optimal consumptions y
(2)
1 and y

(2)
2 are such that

Y 0
1 = n1y

(2)
1 + n2y

(2)
2 and:

U 0(y
(2)
2 )� U 0(y

(2)
1 ) = �

�
g(x02)� h(x02; Y

0
1 )
�
� �

�
g(x01)� h(x01; Y

0
1 )
�
: (23)

Since the marginal social cost is higher in the upstream city because of a higher pumping cost, we have

y
(2)
1 > y

(2)
2 . A scarcity rent �(2), equal to U 0(y

(2)
i ) �MCs

i (n1y
(2)
1 ; n2y

(2)
2 ) > 0, is now associated to

the resource. This scarcity rent is directly related to the social marginal cost discontinuity when total

pumping is Y 0
1 . This solution prevails while the scarcity rent is smaller than the marginal social cost

discontinuity gap, i.e. while:

�(2) � Y
(2)
1 �x0(Y 0

1 )
h
� + �g0(x01)

i
+ �

@h

@Y
(x01; Y

0
1 )Y

(2)
1 ; (24)

where Y
(2)
i is the optimal consumption of city i. This inequality de�nes zone 2 in the the (n1; n2) space,

see Figure 3. As an equality, inequality (24) de�nes the North-East frontier of zone 2 (see Figure 3

and Appendix A for more details on the shape of this frontier).

Let us �nally investigate the delegation problem of the water utilities. In this population size space,

we still have:

MCs
i �MC

p
i = ��

@h

@Y
(x0j ; Y

0
1 )Y

(2)
j > 0 i; j = 1; 2 i 6= j; (25)

so the unit tax correcting the pumping cost externalities, �
(2)
i , is still equal to �� @h

@Y
(x0j ; Y

0
1 )Y

(2)
j i; j =

1; 2 i 6= j: Delegated �rm i must be charged a unit tax equal to �(2)+�
(2)
i . This tax takes into account

the scarcity of the resource and makes the �rm internalize the cost externalities created by withdrawals

on the other city consumers. If �rms are asked, �rst to price water at their marginal cost including the

unit taxes and, second to satisfy the whole demand at this price, then water discharges and pumping

locations will be optimal.
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4.2.3 Intermediate population sizes case

Next, suppose that (n1; n2) is outside zones 1 and 2 but is not far from the North-East frontier of zone

2. In such a case, the downstream city exploits the coastal aquifer from a point located upstream x01

but downstream x02. The upstream city keeps on exploiting the aquifer from x02. Let us note y
(3)
1 and

y
(3)
2 the optimal consumption per capita for city 1 and 2 in this case. These consumptions equalize the

marginal utility and the marginal social cost:

U 0(y1) = MCs
1(n1y1; n2y2) and U 0(y2) = MCs

2(n1y1; n2y2) (26)

with n1y1 + n2y2 2]Y
0
1 ; Y

0
2 ]. The North-East frontier of this area is de�ned by:

�x
�
n1y

(3)
1 + n2y

(3)
2

�
� x02; (27)

where y
(3)
1 and y

(3)
2 solutions of (26) depend upon n1 and n2. We show in Appendix A that the shape

of the frontier is the one described on Figure 3.

Concerning the delegation of the water service in this population size case, we have:

MCs
1 �MC

p
1 = ��

@h

@Y
(x02; Y

(3))Y
(3)
2 (28)

MCs
2 �MC

p
2 = �Y

(3)
1 �x0(Y (3)) + �Y

(3)
1 �x0(Y (3))g0(�x(Y (3))) (29)

For the downstream city, the marginal social cost is higher than the marginal private cost because the

water pumping reduces the water table in x02 and so, increases the pumping costs of the upstream city.

When pumping of the upstream city increases, the cost of the downstream city increases because of

two e�ects: the pumping location moves landwards so both the transportation and the pumping cost

increase. How possible is it to decentralize the aquifer management in zone 3? It is possible to delegate

water services to a private or public �rms by �rst, pricing water at its marginal social cost (private cost

plus a unit tax �
(3)
i = MCs

i �MC
p
i ) and second, obliging �rms to satisfy the whole demand. Because

of increasing marginal costs, �rms will realize positive pro�ts that may be extracted by a lump-sum

fee.
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4.2.4 Large population sizes case

Let us now consider population sizes (n1; n2) outside zones 1 to 3 but not too far from the zone

3 frontier. The problem is now to determine whether it is more e�cient to maintain total water

discharge at a level Y 0
2 or to increase pumping. Notice that this discussion is similar to the small

population sizes case, replacing city 1 by city 2. When total withdrawals are Y 0
2 pumpings occur at x02

and the water table is at this point h. So the pumping cost is the same for both cities and the marginal

cost only di�ers because of transportation. The optimal allocation of water consists, in this case, in

restricting pumping at Y 0
2 and in equalizing the marginal net utilities between consumers. Let y

(4)
i ,

i = 1; 2 denotes the optimal consumption level per capita in this population size zone. The optimal

consumptions y
(4)
1 and y

(4)
2 are such that n1y

(4)
1 + n2y

(4)
2 = Y 0

2 and:

U 0(y
(4)
1 )� U 0(y

(4)
2 ) = �(x02 � x01): (30)

Because U 0
decreases with y, the optimal water consumption per capita is smaller in the downstream

city than in the upstream city, y
(4)
1 < y

(4)
2 . A scarcity rent �(4), equal to U 0(y

(4)
i )�MCs

i (n1y
(4)
1 ; n2y

(4)
2 ) >

0, is now associated to the resource. This scarcity rent is directly related to the social marginal cost

discontinuity when total pumping is Y 0
2 . This solution prevails while the scarcity rent is smaller than

the marginal social cost discontinuity gap, i.e. while:

�(4) � Y
(4)
2 �x0(Y 0

2 )
h
� + �g0(x02)

i
+ �

@h

@Y
(x02; Y

0
2 )Y

(4)
2 : (31)

As an equality, this condition de�nes the North-East frontier of zone 4 which is the part of population

sizes space (n1; n2) such that the optimal consumptions are the one depicted above (see Figure 3 and

Appendix A for more details on the shape of this frontier).

Last let us remark that for population sizes in this zone, we have:

MCs
1 �MC

p
1 = ��

@h

@Y
(x02; Y

0
2 )Y

(4)
2 (32)

MCs
2 �MC

p
2 = �Y

(4)
1 �x0(Y 0

2 ) + �Y
(4)
1 �x0(Y 0

2 )g
0(x02); (33)
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these di�erences being respectively denoted by �
(4)
1 and �

(4)
2 . In order to make the consumers of a city

internalize the cost externalities created by their withdrawals on the other consumers, the delegated

�rm i must be charged a the unit tax equal to �(4) + �
(4)
i .

4.2.5 Very large population sizes case

Finally we examine the case of very important population sizes that is populations that do not belong

to zones 1 to 4. In that case, pumping of both cities is located at �x(Y1+Y2) > x02. Let us note y
(5)
1 and

y
(5)
2 the optimal consumption per capita in city 1 and 2. These consumptions equalize the marginal

utility and the marginal social cost, that is:

U 0(y1) = MCs
1(n1y1; n2y2) and U 0(y2) = MCs

2(n1y1; n2y2) (34)

with n1y1 + n2y2 2]Y
0
2 ;

�Y 0]. Notice that the consumption per capita in the downstream city, y
(5)
1 , is

still smaller than consumption in the upstream city y
(5)
2 because of higher transportation costs. Water

must be sold at price U 0
�
y
(5)
1

�
in the downstream city and at price U 0

�
y
(5)
2

�
in the upstream one. Hence,

the price in the downstream city is higher than the price in the upward city.

In this population size zone, we have:

MCs
1 �MC

p
1 = �Y

(5)
2 �x0(Y (5)) + �Y

(5)
2 �x0(Y (5))g0(�x(Y (5))) (35)

MCs
2 �MC

p
2 = �Y

(5)
1 �x0(Y (5)) + �Y

(5)
1 �x0(Y (5))g0(�x(Y (5))): (36)

When pumping of one city increases, the cost of the other city increases because of two e�ects: the

pumping location moves landwards so both the transportation and the pumping cost increase. It is

possible to delegate water services to private or public �rms by �rst, pricing water at its marginal

social cost (private cost plus a unit tax �
(5)
i = MCs

i �MC
p
i ) and second, obliging the �rms to satisfy

the whole demand. Because of increasing marginal costs, �rms will realize positive pro�ts that may be

extracted by a lump-sum fee. It is interesting to notice that the unit fee to be asked to city i increases
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with the population size of city j, i; j = 1; 2 and i 6= j.

4.2.6 Summary and discussion

Let us �nally brie�y summarize in this paragraph the characteristics of the optimum in the �ve popu-

lation size cases and the characteristics of the unit fees to be asked to delegated �rms.

[Table 1, here]

Five population zones have been characterized. For population sizes belonging to zones 1 and 2,

there are no transportation costs. The consumption per capita is higher for city 1 consumers than

for city 2 consumers because of lower pumping costs. In zone 4 and 5, as the location of pumping is

the same for both cities, the cost of pumping is identical. The consumption per capita is in that case

lower for city 1 consumers because the cost of water surface transportation is higher. In the case of

intermediate population sizes, the cost of pumping is lower for city 1. However, those users must bear

a transportation cost whereas pumping of city 2 is located at x02. It follows that y1 may be either

greater or smaller than y2 in that case. A scarcity rent must be imputed to the aquifer for populations

belonging to zone 2 and 4. This rent is directly related to the marginal social cost discontinuities.

Finally, in the �ve population sizes zone, the royalties that must be charged to delegated �rms are

di�erent from one city to another. Generally, there is no simple relation between the tax rates charged

to cities and the generic parameters of the model. Yet, the tax system o�ers a particular characteristic

that may create di�culties under some circumstances. Taxes aim at correcting di�erences between

social and private marginal costs. So, the more the population size of a city is small with respect to the

total population, the more this di�erence is important. It follows that smaller cities will be charged

higher taxes. It is not sure that such a type of conclusion will be admitted without di�culties by users.

Experience shows that margin analysis are in general not understood and that their consequences are

accepted only with di�culty.
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Notice that the system of taxes to be implemented for restoring optimality aims at correcting

di�erences between social and private marginal costs. So, the important factor driving this tax system

is the repartition of populations over the aquifer. This result should be compared to the characteristics

of the tax schedule obtained by Cummings (1971) or by Green and Sunding (2000). In these dynamic

models, optimal pumping taxes decrease away from the coastline. This result holds because the e�ect of

pumping on seawater intrusion depends on the location of pumping, the idea being that, on the short-

run, pumping groundwater closer to the coast causes more intrusion that pumping further inland. It

immediatly follows that Pigouvian taxes are higher for users located near the coast where the marginal

damage created by pumping is higher. Here, as we consider the long-run static equilibrium, the damage

created by pumping one more unit of water is the same whatever is the location of the pumping. This

is the result of the perfect hydraulic conductivity assumption of the hydrological model: any action

that a�ects a part of aquifer has the same impact on the whole aquifer. Notice, that this assumption is

required for deriving an analytical solution for the interface position. It follows that the characteristics

of the tax schedule to be implemented in our model and depicted in Table 1, di�er crucially from those

of the previous works.

5 Conclusion

We have presented in this paper a spatial model for managing a coastal aquifer under sea water intrusion

conditions. Our analyze is directly set on a standard hydrological model of sea water intrusion in a

coastal aquifer. We have incorporated some relevant physical parameters in order to describe such a

water resource and we have considered explicitly two types of cost: a pumping cost depending on water

elevation and a surface transportation cost. We have characterized the optimal use of this groundwater

resource. In particular, we have determined the optimal location of pumping points and the e�cient

withdrawal rates. Finally, we have characterized the system of taxes that must be asked to delegated
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private or public water utilities in order to decentralize the optimum. We have limit our analysis to

the implementation of the optimum through a system of unit taxes as it corresponds to the current

regulatory framework of the French Water Agencies. Of course some other economical tools, such as

water markets, could also be considered. It would require to clearly specify the property rights of

upstream and downstrem users.

The preceding analysis has shown that the optimal management of a coastal aquifer under saline

intrusion conditions in a decentralized economy is possible using a tax system. Although city exploit

the same aquifer, a spatially di�erentiated tax schedule in generally required. For a sake of simplicity,

we have assumed that resource value is the same for all consumers. It follows that optimal consumption

per capita for a given cost is the same. In a more realistic model taking into account heterogeneity of

consumers, this result may no more hold because city with high access costs may have high valuation

for water. Nevertheless, the result of spatially di�erentiated taxes still remains: they result from

externalities created by cities the ones on the others.
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A Zoning of populations in the two cities case

A.1 Zone 1

The North-East frontier of zone 1, in the (n1; n2) space, is de�ned by the following system of equations:

U 0(y1) = �
�
g(x01)� h(x01; Y

0
1 )
�
� �

X
i=1;2

@h

@Y
(x0i ; Y

0
1 )Yi (A.1)

U 0(y2) = �
�
g(x02)� h(x02; Y

0
1 )
�
� �

X
i=1;2

@h

@Y
(x0i ; Y

0
1 )Yi (A.2)

Y 0
1 = n1y1 + n2y2: (A.3)

Di�erentiating totally (A.1)�(A.2) gives:

dy2

dn1
=
h y2�

U 00
2 (y2)� n2�

i
dn2

dn1
and

dy1

dn1
=
U 00
2 (y2)

U 00
1 (y1)

h y2�

U 00
2 (y2)� n2�

i
dn2

dn1
(A.4)

with � = �
2

q
2
k

a2

1+a
1

R�Y 0
1

(
p
x02 �

p
x01) > 0. Di�erentiating totally (A.3) and using (A.4), we get:

dn2

dn1
< 0, U 00

1 (y1)� n1� < 0; (A.5)

which is satis�ed. The North-East frontier of zone 1 n2(n1) is a decreasing function. Notice that when

n2 = 0, the maximal population size for city 1 (denoted by n
(1)
1 ) is n(1) de�ned in the one city case

with x0 = x01 . For n1 = 0, the maximal population size for city 2 is denoted by n
(1)
2 .

A.2 Zone 2

The North-East frontier of zone 2, in the (n1; n2) space, is de�ned by the following system of equations:

U 0(y1) = �
h�
g(x01)� h

�
+ �x0(Y 0

1 )g
0(x01)Y1

i
+ �Y1�x

0(Y 0
1 )� �

@h

@Y
(x02; Y

0
1 )Y2 (A.6)

U 0(y2) = �
h�
g(x02)� h(x02; Y

0
1 )
�
+ �x0(Y 0

1 )g
0(x01)Y1

i
+ �Y1�x

0(Y 0
1 )� �

@h

@Y
(x02; Y

0
1 )Y2 (A.7)

Y 0
1 = n1y1 + n2y2: (A.8)

By totally di�erentiating the system (A.6)�(A.8), we get:

dn2

dn1
= �

U 00
1 (y1)

U 00
2 (y2)

U 00
2 (y2) + n2

�
� @h
@Y

(x02; Y
0
1 ) + �x0(Y 0

1 )(g
0(x01) + �)

�

U 00
1 (y1) + n1

�
� @h
@Y

(x02; Y
0
1 ) + �x0(Y 0

1 )(g
0(x01) + �)

� (A.9)
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which can be positive or negative. Typically, the shape of North-East frontier of zone 2 is the one

described on Figure 3. Last, for n2 = 0, the maximal population size for city 1 (denoted by n
(2)
1 ) is

n(2) de�ned in the one city case with x0 = x01 . For n1 = 0, the maximal population size for city 2

(denoted by n
(2)
2 ) is still n

(1)
2 .

A.3 Zone 3

The North-East frontier of zone 3, in the (n1; n2) space, is de�ned by the following system of equations:

U 0(y1) = �
h�
g(x02)� h

�
+ �x0(Y )g0(x02)Y1

i
+ �

h�
x02 � x01

�
+ Y1�x

0(Y 0
2 )
i
� �

@h

@Y
(x02; Y

0
2 )Y2(A.10)

U 0(y2) = �
h�
g(x02)� h

�
�

@h

@Y 0
2

(x02; Y
0
2 )Y2

i
+ Y1�x

0(Y 0
2 )
h
� + �g0(x02)

i
(A.11)

Y 0
2 = n1y1 + n2y2: (A.12)

By di�erentiating totally the system (A.10)�(A.12), it is not possible to sign
dn2
dn1

so we get:

dn2

dn1

<

>
0: (A.13)

Typically, the shape of North-East frontier of zone 3 is the one described on Figure 3. Notice that for

n1 = 0, the maximal population size for city 2 (denoted by n
(3)
2 ) is n(1) de�ned in the one city case

with x0 = x02. For n2 = 0, the maximal population size for city 1 (denoted by n
(3)
1 ) is:

n
(3)
1 = Y 0

2 =U
0�1
h
�
�
g(x02)� h

�
+ ��x0(Y 0

2 )g
0(x02)Y

0
2 + �

�
x02 � x01

�
+ �Y 0

2 �x
0(Y 0

2 )
i
:

A.4 Zone 4

The North-East frontier of zone 4, in the (n1; n2) space, is de�ned by the following system of equations:

U 0(y1) = �
�
g(x02)� h

�
+ �

�
x02 � x01

�
+ Y 0

2 �x
0(Y 0

2 )
�
�g0(x02) + �

�
(A.14)

U 0(y2) = �
�
g(x02)� h

�
+ Y 0

2 �x
0(Y 0

2 )
�
�g0(x02) + �

�
(A.15)

Y 0
2 = n1y1 + n2y2: (A.16)
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Di�erentiating totally the system (A.14)�(A.16) gives:

dn2

dn1
= �

y1

y2
< 0: (A.17)

Notice that for n1 = 0, the maximal population size for city 2 (denoted by n
(4)
2 ) is n(2) de�ned in the

one city case with x0 = x02. For n2 = 0, the maximal population size for city 1 (denoted by n
(4)
1 ) is

still n
(3)
1 .
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Table 1: Summary of extraction policies.

Population Pumping Water Scarcity Unit

Class Location Pumping Rent Tax

1� Very small x1 = x01 y1 > y2 No �
(1)
1

x2 = x02 �
(1)
2

2� Small x1 = x01 y1 > y2 Yes, �(2) �(2) + �
(2)
1

x2 = x02 �(2) + �
(2)
2

3� Intermediate x1 2]x
0
1; x

0
2] y1

>
<
y2 No �

(3)
1

x2 = x02 �
(3)
2

4� Large x1 = x02 y1 < y2 Yes, �(4) �(4) + �
(4)
1

x2 = x02 �(4) + �
(4)
2

5- Very Large x1 2]x
0
2;X

0] y1 < y2 No �
(5)
1

x2 2]x
0
2;X

0] �
(1)
2
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Figure 1: Mathematical modeling of a coastal aquifer under saline conditions.

31



Figure 2: Optimal Exploitation by a single city.
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Figure 3: Population space in the two cities case.
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