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Abstract

There are growing calls to restrict advertising of junk foods. Whether such a move will improve diet

quality will depend on how advertising shifts consumer demands and how firms respond. We study an

important and typical junk food market – the potato chips market. We exploit consumer level exposure

to adverts to estimate demand, allowing advertising to potentially shift the weight consumers place on

product healthiness, tilt demand curves, have dynamic effects and spillover effects across brands. We

simulate the impact of a ban and show that the potential health benefits are partially offset by firms

lowering prices and by consumer switching to other junk foods.
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1 Introduction

Governments around the world are grappling with how to tackle the obesity epidemic. Central to this are

attempts to reduce consumption of junk foods – foods high in calories, salt, sugar and fat and low in fiber,

proteins and vitamins. Junk food markets, such as those for confectionery, soda and potato chips, share

a number of common features; they tend to be dominated by a small number of firms that sell multiple

brands and that heavily advertise their products. A number of organisations have called for restrictions to

advertising of junk foods as a means to reduce consumption. The effects of such an intervention are complex

and will depend on whether advertising predominantly acts to expand the market size, or steal rival market

share, what products consumers who substitute out of the market switch to instead and how the firms in

the market adapt their behaviour in response to a ban.

Our contribution in this paper is to study the impacts of banning advertising in the UK market for potato

chips – a typical junk food market and an important source of junk food calories. We show that the effects

of advertising on product level demands are various and heterogeneous across consumers. Advertising of one

brand may steal market share from some rival brands, while boosting demand of others; advertising also acts

to tilt demand curves and change consumer willingness to pay for a more healthy product. We simulate the

effects of banning advertising on market equilibria, taking account of the consumer demand response and

the strategic pricing response of firms in the market. We show that banning advertising, holding prices fixed,

leads to a reduction in the quantity of potato chips sold of around 15%. However, one effect of advertising

on demand is to lower consumer sensitivity to price, reducing the slope of market demands. Therefore, the

ban acts to make the market more competitive and firms respond to the ban by, on average, lowering their

prices. Lower prices lead to an offsetting increase in demand, meaning, in equilibrium, that the advertising

ban lowers the quantity of potato chips sold by around 10%.

Similar to advertising regulations in markets such as tobacco and alcohol, the aim of restricting junk

food advertising is to lower consumption.1 The World Health Organization (WHO (2010)) published the

recommendation that the “overall policy objective [of an advertising ban] should be to reduce both the

exposure of children to, and the power of, marketing of foods high in saturated fats, trans-fatty acids, free

sugars, or salt.” The medical literature has called for restrictions on advertising; for example, in a well cited

paper, Gortmaker et al. (2011) state that “marketing of food and beverages is associated with increasing

obesity rates”, citing work by Goris et al. (2010), and say that advertising is especially effective amongst

children, citing National Academies (2006) and Cairns et al. (2009).2

1In other markets, such as pharmaceuticals and some professional services, the aim is more focused on consumer protection
and information provision.

2In the UK, regulations ban the advertising of foods high in fat, salt or sugar during children’s program-
ming (see http://www.bbc.co.uk/news/health-17041347) and there have been recent calls to extend this ban (see
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Understanding the impact of an advertising ban relies not only on estimating the equilibrium reduction

in potato chip consumption, but also in understanding how the ban affects consumer choice within the

market (do consumers switch to healthier varieties?) and to what other products consumers who switch

outside the market switch towards. We measure nutritional quality using the nutritional profiling score,

(Arambepola et al. (2008)), which is the official measure of the nutritional quality of products used by the

UK Government to classify which products should be subject to regulation and other policy restrictions. We

allow advertising to shift the weight a consumer places on the nutritional characteristics of a product and

show that advertising acts to lower willingness to pay for more healthy products. Therefore, the advertising

ban induces some switching from relatively unhealthy towards relatively healthy potato chips – a pattern

that is reinforced by the equilibrium pricing response of firms. We also include in our model two outside

options – non-potato chips junk foods and healthier non junk foods. This allows us to capture whether

consumers respond to the ban simply by switching to alternative (and often less healthy) junk foods. We

show that following the ban consumers are more likely to switch to another junk food market than to a

non-junk food, which (in addition to the pricing response of firms) acts to partially offset any health gains

from the policy.

Identifying the causal impact of advertising on demand is challenging (see, for example, the recent

discussion in Lewis and Rao (2015)). Our strategy for identifying the effect of advertising on demand is to

exploit variation in consumers’ exposure to TV brand advertising. We exploit information on the precise time

and station of potato chip advertising and link this to information on the TV viewing behaviour of individual

consumers, for whom we also have panel data on purchases. This allows us to control for demographic-time

specific shocks to brand demand and exploit differential exposure across consumers, within demographic

groups, to TV advertising that is driven by (idiosyncratic) variation in viewing behaviour to pin down the

effects of advertising on demands.

While it is typically not controversial to impose that cross-price elasticities in differentiated product

markets are positive, it is important to not impose sign restrictions on cross-advertising elasticities. Brand

advertising may be predatory, in which case its effect is to steal market share of rival products, or it might

be cooperative, so that an increase in the advertising of one product increases demand for other products

(Friedman (1983)). By including both own brand and competitor advertising in consumer payoff functions,

our demand specification allows for the possibility of advertising that is either predatory, cooperative or

some combination of both.

Our work relates to a strand of the literature that models advertising spillovers in the pharmaceutical

market (see, for instance, Bernt et al. (1997), Ching (2010) and Ching and Ishihara (2012)). Most relevant is

http://www.guardian.co.uk/society/2012/sep/04/obesity-tv-junk-food-ads). In the US the Disney Channel has plans to ban
junk food advertising (http://www.bbc.co.uk/news/world-us-canada-18336478).
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Shapiro (2015), which studies whether TV advertising of specific antidepressant products increases demand

only for that product, or for all products with similar molecular structures, or for all products in the market.

He uses a multi-level demand and exploits variation in consumers’ advertising exposure across TV boundaries

to show that in the antidepressant market advertising has a strong market expansion effect. Conversely,

Anderson et al. (2012) show that comparative advertising of pharmaceuticals has strong business stealing

effects and reduces aggregate demand. Also related to our work is Liu et al. (2015), which studies whether

there is evidence of advertising spillovers in the market for statin drugs or the market for yoghurt, finding

that TV advertising induces market expansion in the latter market but not the former. A number of other

papers find evidence of spillovers from advertising in the markets for alcohol and tobacco. For example,

Rojas and Peterson (2008) find that advertising increases aggregate demand for beer; while other papers

show that regulating or banning advertising has led to more concentration (for example Eckard (1991), for

cigarettes and Sass and Saurman (1995), for beer; Motta (2007) surveys numerous other studies) and in the

case of partial ban in the cigarette industry, more advertising (Qi (2013)).

There is a large literature on the mechanism through which advertising affects consumer choice; Bag-

well (2007) provides a comprehensive survey. Much of this literature distinguishes between the persuasive,

characteristic and informative advertising traditions. The early literature on advertising focused on its per-

suasive nature (Marshall (1921), Braithwaite (1928), Robinson (1933), Kaldor (1950) and Dixit and Norman

(1978)), where the purpose of advertising is to change consumer tastes. More recently, the behavioural eco-

nomics and neuroeconomics literatures have explored the mechanisms by which advertising affects consumer

decision making. Gabaix and Laibson (2006) consider models in which firms might try to shroud negative

attributes of their products, while McClure et al. (2004) and Bernheim and Rangel (2004, 2005) consider

the ways that advertising might affect the mental processes that consumers use when taking decisions (for

example, causing a shift from the use of deliberative systems to the affective systems that respond more to

emotional cues). An alternative view of advertising is that it enters utility directly (see Becker and Murphy

(1993) and Stigler and Becker (1977)). Consumers may like or dislike advertising, and advertising might

act as a complement to other goods or characteristics that enter the utility function. Another branch of

the literature focuses on the role that advertising plays in providing information to consumers (as distinct

from being persuasive). For instance, advertising might inform consumers about the quality or characteris-

tics of a product (Stigler (1961) and Nelson (1995)), product price (for instance, see Milyo and Waldfogel

(1999) who study the alcohol market), or about the existence and availability of products (see, inter alia,

Sovinsky-Goeree (2008) on personal computers and Ackerberg (2001) and Ackerberg (2003) in the yoghurt

market). Although, as Anderson and Renault (2006) point out, firms may actually have an incentive to limit

the informative content of adverts even when consumers are imperfectly informed (see also Spiegler (2006)).
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Rao and Wang (2015) show that in a market in which consumers are not perfectly informed and informative

advertising plays a role, false advertising claims can have a positive effect on demand.

For our purpose, evaluating the impact of banning advertising on demand for differentiated products,

the important thing is to specify a demand model that accommodates the various ways that advertising

can alter the shape of demand, both at the consumer and market level and for individual products and

the product category as a whole. Our flexible demand model captures the major ways in which advertising

might affect demand. It does not, however, encompass all forms of informative advertising (for example, if

the main impact of advertising was to inform consumers about the existence of a product so that without

advertising the consumer would be unaware of the product’s existence). While we can learn about the impact

of an advertising ban on market equilibria and consumer health while remaining agnostic about how exactly

advertising affects consumer utility, to make statements about the impact on consumer welfare we need to

take a view. We derive expressions for consumer welfare under the two most plausible views of potato chip

advertising – that it is a product characteristic and that it is persuasive.

The advertising choice of a firm affects both current and future payoffs of all firms in the market, so

that when firms choose their advertising strategies they play a dynamic game. Solving such a game entails

specifying precisely the details of firms’ dynamic problem and of the equilibrium concept that prevails in

the market (as in, for instance, Dubé et al. (2005)). We shows that we can identify marginal costs of all

products without estimating the full dynamic game; we require only price optimality conditions which are

static, along with observed values of the relevant advertising state variables. We are interested in the effects

of an advertising ban on market equilibrium, so to implement our counterfactual we only have to solve the

new price first order conditions. As a consequence we can remain agnostic about many of the details of

the dynamic game played by firms and therefore our results are robust to these details. We are able to

implement our counterfactual in a realistic market setting in which multi-product firms compete in price

and advertising, and in which firms’ strategies in prices and advertising are multidimensional and continuous

with a very large set of state variables.

The rest of the paper is structured as follows. In Section 2 we outline our model of consumer demand:

we describe the flexible way in which we include advertising, how and why we include rich preference

heterogeneity and we discuss identification. Section 3 discusses firm competition in the market and outlines

how we identify the unobserved marginal cost parameters of the model and how we simulate a counterfactual

advertising ban. Section 4 describes our application to the UK potato chips market. We begin with describing

our disaggregate advertising and consumer purchase data – a unique feature of which is that we observe

purchase decisions for consumption outside the home as well as in the home. We then present our empirical

estimates and highlight the importance of allowing advertising to flexibly affect consumer level demand. We
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describe market equilibria with advertising and in the counterfacual with a ban on advertising potato chips,

emphasising the effect the ban has on what nutrients consumers purchase, and we discuss how to approach

the measurement of consumer welfare. We also consider a number of potential concerns about our empirical

application and show our main conclusions are robust to a set of modeling modifications. A final section

summarizes and concludes.

2 Consumer demand

We specify and estimate a random utility discrete choice model in the vein of Berry et al. (1995), Nevo (2001)

and Berry et al. (2004). We allow a consumer specific measure of exposure to current and past advertising to

effect the shape of demand in a flexible way; capturing the possibility that advertising might be cooperative

or predatory and it might shift the weight consumers place on different product characteristics in their payoff

function. This may occur either because advertising itself is a characteristic that consumers inherently value,

or it could be that advertising either changes the information consumers have, or persuades consumers to

place more or less weight on other characteristics. This flexibility in consumer level demand translates into

flexible market demand. We first present the demand model, then discuss the reasons that both a flexible

functional form and rich consumer heterogeneity are important to understand the impacts that advertising

has on demand and hence to our counterfactual of banning advertising, and then we discuss the challenges

to identification.

2.1 Consumer choice model

Consumers, indexed by i, choose between products (in our empirical application, potato chip products),

indexed by j = 1, ..., J , and two possible outside goods with j = 0 denoting a junk food ‘unhealthy outside

option’ and j = 0 indexing a non-junk food ‘healthy outside option’. Each product belongs to one brand.

Brands are indexed b = 1, ..., B; we denote the brand product j belongs to as b(j). B < J ; products belonging

to the same brand differ in terms of their pack size.

The consumer purchases the product that provides her with the highest payoff, trading off characteristics

that increase her valuation of the product with those that decrease her valuation. A product’s characteristics

include its price, nutrient characteristics, pack size, brand and unobserved characteristics. The nutrient

characteristics might capture both tastiness, if consumers like the taste of salt and saturated fat, and the

health consequences of consuming the product, which might reduce the payoff of selecting the product for
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some consumers. We allow for a product characteristic that is unobserved by the econometrician, which

captures the consumer’s baseline valuation of the product’s brand and other unobserved characteristics.3

Advertising in the market is for brands, several products might share a brand, which we denote b(j).

Consumer i’s exposure to the advertising of brand b(j) at time t is denoted aib(j)t; this is a function of the

consumer’s exposure to current and past advertising. The set of advertising state variables of all B brands

for consumer i at time t is denoted by the vector ait = (ai1t, ..., aiBt). ait will depend on the past and current

decisions that firms in the market make over which TV stations, the date and time of day to advertise their

brands, and on the TV viewing behaviour of consumers. We discuss the precise nature of these variables in

more detail in Sections 2.4 and 4.1.

Let v̄ijt = v̄i(pjt, ait,xj , ξib(j), τ
d
b(j)t, εijt) denote the consumer’s payoff from selecting product j. pjt is

product price and xj = (zj , z
2
j , nb(j))

′ are other observed product characteristics, zj denotes pack size and

nb(j) is a measure of the nutrient content of brand b(j). ξib(j) is an unobserved brand effect that might

vary across individuals, τdb(j)t is an unobserved brand effect that potentially varies across time and observed

demographics d,4 and εijt is an i.i.d. shock to the payoff.

One of our main aims in specifying the form of the payoff function is to allow changes in prices and

advertising to affect demand in a flexible way. We incorporate both observable and unobservable hetero-

geneity in consumer preferences; the i subscript on the payoff function indicates that we allow coefficients to

vary with observed and unobserved consumer characteristics (through random coefficients); the d subscript

on the brand-time effects indicates that we will allow them to vary with observed consumer characteristics.

In differentiated product markets it is typically reasonable to impose that goods are substitutes (lowering

the price of one good increases demand for a second). However, there is no reason a priori to impose that

cross advertising effects are of a particular sign; advertising of one brand might increase or decrease demand

for another brand. We specify the payoff function to allow for both positive and negative cross advertising

effects and for the possibility that advertising expands or contracts the size of the market.

We assume that consumer i’s payoff from selecting product j is given by:

v̄ijt =vijt + εijt

=α1ipjt + ψ1ixj +

[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
+ ξib(j) + τdb(j)t + εijt

(2.1)

3In our framework dynamics in demand arise only due to the long lasting effect of exposure to advertising. In Appendix
A.1 we show reduced form evidence that once we account for consumer specific heterogeneity there is little evidence of state
dependence in the sense of a relationship between current and recent past purchases.

4In the empirical application we investigate the appropriate level of time and brand aggregation for this variable, trading off
parsimony with the need to control for shocks to demand; we include month-demographic level controls for the major brands.
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Our main focus is on the terms in the square brackets, which capture the impact of advertising on the

payoff function. Own advertising enters directly in levels; the coefficient λi captures the extent to which

differential time series exposure to own advertising affects the valuation or weight the consumer places on

the unobserved brand effect. Own advertising also potentially interacts with price and the brand nutrient

characteristic. The coefficient α2i allows the marginal effect of price on the payoff function to shift with

own advertising (as in Erdem et al. (2008)). The coefficient ψ2i allows the marginal effect of the nutrient

characteristic on the payoff function to also shift with own advertising.

Importantly, we allow competitor advertising to enter the payoff function. The coefficient ρi captures the

extent to which time variation in competitor advertising affects the valuation or weight the consumer places

on the unobserved brand effect. We show in the next section that all of these effects are potentially important

for understanding the effects of banning advertising, and in particular including competitor advertising in

the payoff function is crucial both for allowing for the possibility of advertising that is cooperative, and for

the possibility that advertising is so strongly predatory that it leads the market size to shrink.

We assume that the payoff from selecting the unhealthy outside option takes the form:

v̄i0t =vi0t + εi0t

=ξi0j + ψ1ix0 + τd0t + εi0t,

where x0 denotes the nutrient characteristics of the unhealthy outside option and where we allow the mean

utility to vary over time. As in all discrete choice models only differences in payoff between options matter;

we normalise the mean utility from the healthy outside option to be zero in all time periods, v̄i0t = εi0t.

Consumer i will choose product j at time t if:

v̄ijt > v̄ij′t ∀ j′ 6= j.

Assuming εijt is i.i.d. and drawn from a type I extreme value distribution, and denoting by τdt = (τd0t, τ
d
1t, ...., τ

d
Bt)

the vector of time effects affecting demand, the probability that consumer i buys product j at time t is:

sij(ait,pt, τ
d
t ) =

exp (vijt)

1 + exp(vi0t) +
J∑

j′=1

exp (vij′t)

. (2.2)

2.2 The effects of advertising on consumer level demands

We are careful to incorporate enough flexibility in the model to allow for the possibility that advertising is

predatory (stealing market share from competitors) or cooperative (increasing market share of competitors);
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that advertising leads to market expansion or contraction; and that advertising may tilt the demand curve

or change the marginal rate of substitution between product characteristics (Johnson and Myatt (2006)).

Let Jb(j) denote the set of products belonging to brand b(j). The marginal impact of a change in the

brand advertising state variable of one product (j 6= (0, 0)) on the individual level choice probabilities is

given by:

∂sijt
∂aib(j)t

=
∑

l∈Jb(j)

sijt

[
λ̃ijt − ρi(1− si0t)− (λ̃ilt − ρi)silt

]
∂sij′t
∂aib(j)t

=
∑

l∈Jb(j)

sij′t

[
ρisi0t − (λ̃ilt − ρi)silt

]
for j′ 6= (0, 0) and b(j) 6= b(j′)

∂si0t
∂aib(j)t

=
∑

l∈Jb(j)

−si0t
[
ρi(1− si0t) + (λ̃ilt − ρi)silt

]
,

where λ̃ijt = λi + α2ipjt + ψ2inb(j) and si0t = si0t + si0t. The interaction of the advertising state variable

with price and the nutrient characteristic, and the possibility that competitor advertising directly enters the

payoff function are important in allowing for advertising to flexibly impact demands.

If we did not allow for advertising of one product to directly enter the payoff of other products (imposing

ρi = 0), then we require λ̃ijt > 0 for advertising to have a positive own effect (so ∂sijt/∂aib(j)t > 0).

In this case advertising would necessarily be predatory, stealing market share from competitor products

(∂sij′t/∂aib(j)t < 0) and it would necessarily lead to market expansion (∂si0t/∂aib(j)t < 0). By including

competitor advertising in the payoff function we allow for the possibility that, regardless of the sign of own

demand advertising effects, advertising may be predatory or cooperative and it may lead to market expansion

or contraction (i.e we do not constrain the signs of ∂sij′t/∂aib(j)t or ∂si0t/∂aib(j)t).

Allowing advertising to interact with the consumer’s responsiveness to price and the nutrient character-

istic allows advertising to have a direct effect on consumer level price elasticities and willingness to pay for

the nutrient characteristic. The consumer level price elasticities are, for any j 6= (0, 0):

∂ ln sijt
∂ ln pjt

=
(
α1i + α2iaib(j)t

)
(1− sijt)pjt

∂ ln sij′t
∂ ln pjt

= −
(
α1i + α2iaib(j)t

)
sijtpjt for j′ 6= j.

This allows advertising to impact consumer level price elasticities in a flexible way, through its impact on

choice probabilities and through its impact on the marginal effect on the payoff function of price, captured

by α2i.

The empirical measure of the nutrient characteristic is such that an increase corresponds to a less healthy

brand (see Section 4.2.3). Therefore the willingness to pay for a marginally more healthy brand (equal to

9



the marginal rate of substitution between price and the characteristic) is given by

WTPijt(aib(j)t) =
∂v̄ijt/∂nb(j)

∂v̄ijt/∂pjt
=
ψn1i + ψ2iaib(j)t

α1i + α2iaib(j)t
, (2.3)

where ψn1i denotes the element in ψ1i that is the coefficient on nb(j).
5 The interaction of advertising with

price and the nutrient characteristic allows the willingness to pay to vary in a flexible way with advertising.

We expect the consumer to positively value more money (α1i+α2iaib(j)t < 0), so that if the consumer prefers

a more nutritious product (ψ1i+ψ2iaib(j)t < 0), the willingness to pay for a decrease in nb(j) will be positive.

Whether the willingness to pay for a decreases in nb(j) will increase or decrease with advertising will depend

on the relative signs and magnitudes of the coefficients of the interactions between advertising with price

and the nutrient characteristic;

∂

∂aib(j)t
WTPijt(aib(j)t) = − α2iψ

n
1i − α1iψ2i

(α1i + α2iaib(j)t)2
,

can be positive or negative for different consumers depending on the sign of α2iψ
n
1i − α1iψ2i.

Direct interpretation of the advertising coefficients is difficult. For example, it may be that λi < 0, but

nonetheless advertising has a positive own demand effect, either because advertising also affects the payoff

for other brands negatively (ρi < 0), or because advertising lowers the consumer’s price sensitivity for the

advertised good (α2i > 0) or shifts the weight the consumer places on the nutrient characteristic of the

advertised good. However, it is straightforward to describe the implications of the estimated coefficients by,

for example, shutting off advertising of one brand and determining the overall effect it has on demands for

that and other brands; we do this in Section 4.3.1.

2.3 Consumer level heterogeneity

In the payoff function (equation 2.1) we write all the preference parameters with consumer subscripts,

indicating that we allow for heterogeneity in all preference parameters. Here we discuss the exact form of

this heterogeneity and why it is important for understanding the effects of banning advertising.

We model the coefficients on price, own advertising, competitor advertising, the nutrient characteristic

and the major brand effects as random coefficients. This allows preferences over these characteristics to

vary across individual consumers. We model the distribution of the random coefficients, conditional on

demographic groups, and we allow all other preference parameters to vary across demographic groups.

5We model ψn
1i as a random coefficient – see Section 2.3. The means (conditional on demographic group) of the ψn

1i are
absorbed into the brand effects. We recover them using an auxiliary regression of brand effects on product characteristics.
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Specifically, let d = {1, ..., D} index demographic groups. Table 4.4 shows the groups, which are based

on income, education, household composition and which separate consumers into those that are observed

purchasing food at home and those purchasing food on-the-go. For the non-random coefficients we can

replace the i subscript with a d subscript: the non-random coefficients on observed attributes are therefore

(ψz1d, ψ
z2

1d, φd, α2d, ψ2d)
′ and the non-random coefficients on unobserved effects are ξdb and (τd0t, τ

d
1t, ..., τ

d
Bt)
′.

In addition to price, own and competitor advertising and the nutrient characteristic, we include a random

coefficient on the unobserved brand effects for Walkers products on food at home purchase occasions; denote

this by ξiW . Denote the set of consumers in group d by Dd. We assume random coefficients follow the

distribution

(− lnα1i, ψ
n
1i, λi, ρi, ξiW )

′
∣∣∣∣i ∈ Dd ∼ N (µ̄d,Σd) .

We model the distribution of minus the log of the price coefficient, thereby assuming the price coefficient

is log-normally distributed and all demands slope downwards. We assume that the conditional covariance

matrix is diagonal and the variance components associated with the different food at home Walkers brands are

the same.6 We estimate the parameters of the random coefficient distributions conditional on demographic

group, so we estimate separate µ̄d vectors and Σd matrices for all D demographic groups.

We allow for preference heterogeneity across the observable demographic groups because it seems likely

that junk food purchase decisions will vary along these dimensions. For instance, households with children

might be more likely to purchase junk foods and be more responsive to advertising, while low income house-

holds are likely to be more price sensitive. Similarly, consumers making purchases on-the-go for immediate

consumption might place different weight on some product characteristics than consumers making decisions

for future consumption. This observable preference heterogeneity turns out to be empirically important –

for instance, the advertising ban leads to quite different price responses on products for home consumption

than products for on-the-go consumption.

A number of papers have shown that including random coefficients in discrete choice demand models

is crucial to capture realistic substitution patterns (see, for instance, Train (2003) and references therein).

We are interested in the optimal pricing response of firms following an advertising ban, so there is a clear

rationale for including random coefficients on price, own and competitor advertising. We are also particularly

interested in the consequence of the ban on the nutritional content of the products consumers purchase. We

therefore include a random coefficient on the nutritional characteristic of products, which allows for flexible

substitution across this dimension, importantly capturing differential substitution from the set of inside

options towards the unhealthy and healthy outside options.

6The common random coefficient on the set of Walkers products captures the possibility that consumers are more willing
to substitute between these products than to alternative brands.
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2.4 Identification

We face three principal challenges to identification; identifying the causal impact of advertising and prices on

demand and identifying the distribution of consumer preference heterogeneity. We discuss the assumptions

we require and what variation in the data we exploit for each of these in turn.

We identify the effect of advertising on demand from variation in the timing and channels that adverts of

different brands were aired and variation in individual consumers’ TV viewing behaviour. Together these lead

to considerable variation in the timing and intensity of individuals’ exposures to the advertising of different

brands. We control for aggregate shocks to brand demand through including brand-time-demographic group

effects. The variation in advertising we use to estimate the model is the differential time series variation in

exposure of individual consumers to advertising of a specific brand, relative to the mean consumer within

the relevant demographic group. Allowing the time effects to vary across demographic groups is important,

since in the UK TV market advertisers purchase expected “impacts” by time and demographic group –

indicating advertising is targeted at specific demographic groups (Crawford et al. (2012)). In addition to

this rich individual variation we exploit the institutional set up of the UK TV market, which has a number

of features that are useful for our identification strategy.

Specifically we use data on all potato chip adverts (around 150,000) that aired on TV over a two year

period. These data include details on what brand was advertised, the time the advert aired and what

channel it was shown on. We combine this with information on the TV shows, channels and times of day

that individual consumers report watching TV to construct an individual specific, time varying measure of

exposure to the advertising of each brand. This provides us with a large amount of variation in exposure

to advertising across consumers, brands and time. We describe these data and this variation in detail in

Section 4.1.

The UK institutional set up means that there is variation in advertising regulations across UK TV

channels. There are four large public service broadcasters – the BBC, ITV1, Channel 4 (C4) and Channel

5 (C5) – which face some requirements over the programs that they air. The BBC is funded by an annual

television license fee and is not allowed to air adverts. ITV1, C4 and C5 do not receive license fee income

and can air adverts, but have some requirements regarding the programs they air. These public broadcasters

have relatively large audience shares – BBC1 has viewing figures of around 20%, ITV around 16%, BBC2 and

C4 around 7% and C5 around 5%. These channels compete for consumers by offering programs designed for

broad audience appeal (see Crawford et al. (2012) for a detailed discussion of the UK advertising market).

There are also a large number of other smaller channels. These are mostly commercial channels that do

not face any specific restrictions to their programming.7 Access to these additional channels varies across

7The exception is five other BBC channels which have very low viewing figures (BBC3, BBC4, BBC News, BBC Parliament).
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consumers depending on what TV subscription they have. Specifically, households can view TV in four

ways: free to air, freeview, satellite or cable. All households with a TV have to pay the license fee that

funds the BBC. Free to air does not require any additional payment, but gives access to only the public

service broadcasters. Freeview requires purchasing a box to decode the digital signal, but does not require

any additional payment, and gives access to a small number of additional channels. Satellite and cable

both require subscriptions (of the order of £15-£50 per month depending on what channels the household

subscribes to) and provide access to a much broader range of mainly commercial channels. Any household

subscribing to satellite or cable will have access to all of the free to air and freeview channels.

Both the variation in access to channels and the channels consumers choose to watch (as well as when

they choose to watch) lead to rich variation in advertising exposures across consumers. To illustrate the

type of variation we rely on consider an example. Soap operas are amongst the shows with the highest

viewing figures in the UK, as in other countries. Consider household viewing behaviour with regard to three

popular soap operas. Coronation Street (aired on ITV1) and Eastenders (aired on BBC1) compete for first

place in the TV ratings with average audience shares of around 30%. Hollyoaks (aired on C4) gets lower

viewing figures and is targeted at, and very popular with, teenagers and young adults. Potato chips are

heavily advertised during Coronation Street and Hollyoaks, while the BBC does not air adverts. There is

considerable variation in the viewing behaviour of households in our sample across these shows. Around

40% do not watch any of them, around 10% just watch Eastenders, with the remaining 50% watching some

combination of the shows (12% watch only Coronation Street, 22% watch both Eastenders and Coronation

Street). The exposure of individuals to the adverts aired during these shows will vary due to these long run

average viewing preferences in ways that are unlikely to be related to their idiosyncratic demand shocks for

specific potato chips products. To show that we do get some bite from the within household time series

variation in the timing of household exposure to adverts we correlate the probability of purchasing a specific

brand in a linear probability model with the household’s exposure to adverts for that brand, conditional on

household, brand and time effects. The coefficient is positive and statistically significant.

A potential threat to identification would be if the individual advertising exposure was related to unob-

served aspects of purchase decisions captured in εijt. We allow for time-varying effects that vary across brand

and demographic group. These will absorb aggregate shocks to brand demands. Therefore endogeneity of

the advertising variable will arise if firms are able to target specific consumers with advertising based on

knowledge of their idiosyncratic demand shocks. While firms target demographic groups with TV advertis-

ing, they do not (yet) target individual consumers in this market, and therefore, conditional on the time

varying demographic specific shocks we control for, we think advertising exposure is unlikely to be correlated

with idiosyncratic demand shocks for specific potato chips products.
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One additional specific issue for us, because the counterfactual we study is banning advertising, is whether

we are able to identifying the shape of demand at zero advertising. We observe some brands that never

advertise and there are some periods of time when the advertising of some brands is zero, meaning that we

can identify the demand shape at zero and we are not doing out of sample predictions in the counterfactual.

In addition, the TV viewing behaviour of some consumers means that they are not exposed to adverts for

some periods of time (see Section 4.1).

Turning to how we identify the effect of price on demand, we exploit differences in the nonlinear within

brand price schedules across brands over time (an identification strategy suggested by Bajari and Benkard

(2005)). The large retail chains in the UK food market operate close to national pricing, meaning that there

is very little geographical variation in prices.8 The most common concern regarding the endogeneity of price

is that it is correlated with an unobserved product characteristic or a market specific demand shock, of which

advertising is the most commonly cited source. To control for other possible unobservable characteristics we

include brand-time effects in the model, so our key identifying assumption is that there are no unobserved

taste shocks for specific pack sizes that are differential across brands (and are correlated with price). We

describe the variation in prices that we use for identification in Section 4.2.2.

While we believe that the combination of rich data and institutional features of the UK advertising and

grocery markets allow us to isolate exogenous variation in advertising and prices, there might nonetheless

remain concerns about endogeneity of advertising and price effects. As robustness we therefore also estimate

the model including control functions for advertising and for prices.

In the case of advertising, correlation with the εijt demand shocks could arise if firms choose to advertise

on specific channels and times that they expect specific groups of consumers to have temporary demand

shocks. As we control for brand-time-demographic effects, to cause a problem this kind of targeting would

have to happen within demographic groups. This would require the firm both to have viewer information

beyond the demographic information collected and published (and on which advertising pricing is based) by

the advertising industry and it would require the firm to be able to predict idiosyncratic demand shocks.

This seems unlikely. Nevertheless, to allow for such a possibility we construct a control function for the flow

component of the advertising variable based on advertising prices. We observe the price paid for each advert.

We construct, for each consumer, an average advertising price per second for the stations and times they

watch TV, and use this as an instrument. Prices are correlated with advertising flows and the identifying

assumption is that advertising prices are independent of consumers’ idiosyncratic demand shocks for potato

chips.

8In the UK most supermarkets implement a national pricing policy following the Competition Commission’s investigation
into supermarket behaviour (Competition Commission (2000)).
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In the case of price, correlation with the εijt demand shocks could arise if there were systematic and

forecasted shocks to demand for different pack sizes that vary by brand. To allow for this possibility we

construct a control function for price using lagged prices. The control function controls for any contempora-

neous differential demand shocks to pack sizes across brands. In Section 4.6 we show that including control

functions induces no qualitative changes in our main results.

A third identification issue is how we identify the distribution of unobserved heterogeneity (which we

model as random coefficients). We use data that are at the micro level and that are longitudinal so that

we observe each individual making repeated choices. Micro data has been shown to be particularly useful

in identifying and estimating substitution patterns (see Berry and Haile (2010), Berry et al. (2004)). We

specify the distribution of random coefficients conditional on demographic group, assuming a parametric

form, and we estimate the parameters that characterize the distribution. There is cross-sectional variation

in choice situations (e.g. two consumers will face different advertising states and, if they are observed in

different markets, different price vectors). There is also within consumer variation in choice situations across

time. This variation allows us to include rich interactions between observable and unobservable preference

heterogeneity. Studies using market level data typically involve allowing only the mean of some random

coefficients to shift with one or two demographic variables. Because we observe many consumers from

different demographic groups making repeated choices, we are able to model the distribution of random

coefficients conditional on each of the demographic groups.

Formally, Berry and Haile (2010) and Fox and Gandhi (2016) establish conditions for nonparametric

identification of random coefficients in random utility discrete choice models by placing restrictions on the

covariate supports. Fox et al. (2012) show that the identification conditions are weaker in the case where

εijt shocks are distributed type I extreme value, and that even with cross sectional data the model is always

identified if utilities are a function of linear indices with continuously distributed covariates.

3 Supply model and counterfactual advertising ban equilibrium

3.1 Market demand

Market level demand is obtained by aggregating consumer level demands. Denote the set of random coef-

ficients by πi. To aggregate individual choice probabilities into market shares we assume that, conditional

on demographic groups (indexed d), random coefficients are i.i.d. across consumers. We integrate over the

distribution of unobserved preferences and demographics to obtain the market share of product j in market

t (i.e. at time t):

sj(at,pt, τt) =

∫
sij(ait,pt, τ

d
t )f(π|d)f(d)dπdd, (3.1)

15



where at collects the vectors of all consumer specific brands’ advertising state variables, ait, across all

consumers.

3.2 Supply

If firms are forward looking, they will account for the fact that advertising decisions taken in one period

affect demand contemporaneously and in the future. In addition, these decisions will affect current and future

demand of other firms in the market. Therefore, when setting their price and advertising budgets, firms will

play a dynamic oligopoly game. In any equilibria to this game profit maximising firms will form dynamic

strategies that may be very complex. The applied literature has typically dealt with such complicated

dynamic games by considering Markov Perfect Equilibrium and by focusing on relatively stylized settings

(see, for instance, Maskin and Tirole (1988) and Ericson and Pakes (1995)). In Appendix A we outline how

such modeling can be applied to our market setting in which multi-product firms make dynamic advertising

decisions.

For our purposes though, it is not necessary to specify fully the dynamic oligopoly game. We can use

the fact that, in our demand model, product prices are an argument of current demand and profits, but not

future demand and profits. In addition, only advertising expenditures and not product prices influence the

evolution of the advertising state variables. Therefore, conditional on the state variables, equilibrium prices

are chosen by firms to maximize current static profits. Given that we observe the advertising states (which

are simply functions of current and past advertising), we can use the static price conditions to identify firms’

marginal costs.

In particular, let firms in the market be indexed by f = 1, ..., F denote the set of products offered by firm

f , Jf and the set of brands offered by firm f , Bf . Conditional on the advertising state variables at firm f ,

at time t, chooses the prices of its products to maximize flow variable profits:

∑
j∈Jf

(pjt − cjt) sj (at,pt, τt)Mt −
∑

b∈Bf

ebt, (3.2)

where Mt denotes the total potential size of the market, cjt is the marginal cost of product j at time t

and
∑
b∈Bf

ebt is the total advertising expenditure by firm f during period t. The set of price first order

conditions for firm f are then:

sj (at,pt, τt) +
∑
j′∈Jf

(pj′t − cj′t)
∂sj′ (at,pt, τt)

∂pjt
= 0space∀j ∈ Jf . (3.3)

With knowledge of the shape of demand, and observations on the advertising states and prices, we can use

the set of price first order conditions (3.3) for all firms to identify marginal costs, provided the system of
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equations is invertible, which will be the case if goods are “connected substitutes” as in Berry and Haile

(2014). The first order conditions, equation (3.3), assume that firms set prices according to a per period

Nash-Bertrand game. In Section 4.6 we test this assumption against the alternative that firms set prices

collusively and find the evidence supports the Nash-Bertrand assumption.

A second set of conditions characterising the optimal choice of advertising flows as a function of past

state variables may exist. However, we do not need to appeal to these conditions to identify marginal costs;

the price first order conditions are sufficient for this purpose.

Following the introduction of an advertising ban, equilibria will satisfy the per period Nash-Bertrand

conditions of profit maximization, whatever the beliefs of firms about whether the regulatory change is

permanent or not. We assume that technical conditions on the demand shape are satisfied to guarantee

uniqueness of a Nash equilibrium. In the absence of advertising, the new price equilibrium p0
t must be such

that, for all j and f ,

sj
(
0,p0

t , τt
)

+
∑
j′∈Jf

(
p0
j′t − cj′t

) ∂sj′ (0,p0
t , τt

)
∂pjt

= 0, (3.4)

where

sj(0,p
0
t , τt) =

∫
sij(0,p

0
t , τ

d
t )f(π|d)f(d)dπdd. (3.5)

is the market level demand for product j when advertising exposures are all zero and at prices p0
t . Additional

second order conditions must also be satisfied and we check these for any candidate equilibrium prices.

To evaluate the impact of an advertising ban we solve for the counterfactual pricing equilibrium, defined

by the equations (3.4) and (3.5), in each market and compare the quantities, prices and profits relative to

the equilibrium prior to the ban (the outcome of which we observe).

The price equilibrium under an advertising ban will be different from the observed one because of the

change in the demand shape. In particular, advertising state variables affect the price first order conditions

in two ways. They affect the demanded quantities through the way sj (at,pt, τt) depends on at and they

affect the price derivatives of market shares through the way
∂sj′ (at,pt,τt)

∂pjt
depends on at. In Section 2.2 we

highlighted that our demand model allows advertising to have flexible effects on consumer demand levels

and slopes. The inclusion of rich consumer heterogeneity in the model translates into an even more flexible

relationship between advertising and the shape of market demand.

4 Application to potato chips market

We apply our model to the UK market for potato chips. This market shares several important characteristics

with other junk food markets. It is dominated by a small number of multi-product firms that have large
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advertising budgets and that sell several well establish brands. Advertising is dominated by TV campaigns.

Consumers purchase both for future consumption (as part of the main household grocery shop) and for

immediate consumption while on-the-go. Therefore, as well as telling us the likely impact of an advertising

ban in the potato chips market, we believe our results are more generally informative about the likely impact

of restricting advertising in junk food markets more broadly.

Potato chips are an important source of junk food calories. In the US the potato chips market was worth

$9 billion in 2013, and 86% of people consumed some potato chips. The UK potato chips market had an

annual revenue of more than £1.2 billion in 2010 with 84% of consumers buying some potato chips.9

We estimate the model using two main data sources. The Kantar Worldpanel contains transaction level

data on the grocery purchases of a panel of households and individuals, along with details of their media

viewing behaviour. We use detailed advertising data collected by AC Nielsen.

4.1 Advertising exposure

4.1.1 Advertising data

We use advertising data collected by AC Nielsen. The data contain aggregate advertising expenditure across

all platforms (cinema, internet, billboards, press, radio and TV) and detailed disaggregate information for

TV advertising. In the potato chip market, in common with other junk food markets, TV advertising is

by far the most important form of advertising. Over 2009-2010 the annual expenditure on TV advertising

on the products that we consider was £19.1m, while annual expenditure on advertising in magazines and

newspapers was £2.3m, on outdoor billboards £1.9m, in cinema £0.6m, on radio £0.5m and on the internet

£0.2m. Given the dominance of TV advertising, and the rich TV advertising data we have access to, we

focus on its effect on demand. The common effects of non-TV advertising will be absorbed in the brand-time

effects that we include in the model.

We use information on the 144,898 TV advertisements for potato chip brands that were aired over the

period February 2009 to October 2010. For each advert we have information on the time the advert was

aired, the brand that was advertised, the TV station, the duration of the advert, the cost of the advert and

the TV shows that immediately preceded and followed the advert. For example, one observation in these

data is that Walkers Regular crisps were advertised nationally on 15 April 2009 at 9:11:24 on ITV1 for 30

seconds, during the show GMTV (Good Morning TV).

Figure 4.1 shows the total number of adverts screened each week by the two largest brands (Walkers

Regular and Pringles), split by whether they were aired on a channel that was free to air or on freeview and

9For the size of the US market see http://www.marketresearch.com/MarketLine-v3883/Potato-Chips-United-
States-7823721/ ; the size of the UK market see http://www.marketingmagazine.co.uk/article/1125674/sector-
insight-crisps-salty-snacks ; and for the number of people who consume potato chips in each country see
http://us.kantar.com/business/health/potato-chip-consumption-in-the-us-and-globally-2012/.
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channels that were available only via cable or satellite subscription (see discussion in Section 2.4); there is

similar variation across other brands. The time path of advertising varies across brands, and all brands have

some periods of zero advertising expenditure. These non-smooth strategies are rationalised in the model of

Dubé et al. (2005) when the effectiveness of advertising can vary over time. This variation in the timing

of adverts, coupled with variation in TV viewing behaviour (described below), will generate considerable

household level variation in exposure to brand level advertising.

Figure 4.1: Number of TV adverts aired by the two largest brands per week across all channels

Notes: free to air/freeview (cable/satellite) refer to stations that do not (that do) have a monthly subscription charge.

Table 4.1 describes the average advertising per week by brand, showing the average number of adverts,

average expenditure and the average total seconds of advertising aired over the week. Pringles airs the most

adverts on average per week, though Walker’s adverts are on average more expensive. Some brands rarely

advertise, meaning that for these brands the stock of advertising is close to zero at most points in time.

Table 4.1: Average TV advertising per week by brand across all TV channels

Brand Number of weeks Mean number Standard deviation Mean expenditure Mean length
with zero adverts of adverts of number of (£) per week (seconds)

(out of 90) per week adverts per week per week

Walkers Regular 46 322 406 77270 8928
Walkers Sensation 78 63 223 12554 1665
Walkers Doritos 65 161 379 24373 3671
Walkers Other 61 257 439 47185 7722
Pringles 31 359 333 56795 10256
KP 70 162 374 28024 4873
GW 87 9 62 837 89
Asda 88 8 78 1216 83
Other 53 286 409 54220 6992

Notes: Average across weeks in February 2009 to October 2010 for all TV channels, including zeros.
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4.1.2 Media viewing

We combine the information on when adverts were aired with information on households’ TV viewing

behaviour in order to get a household level measure of exposure to each advert. We use data from the

Kantar media survey, an annual survey asking Kantar Worldpanel participants about their TV subscriptions

and TV viewing behaviour.

Households are asked “How often do you watch ...?” for 206 different TV shows, and can choose to

answer Never, Hardly Ever, Sometimes or Regularly. At least one advert for potato chips is shown before,

during or after 112 of these shows (many of the shows with no potato chip advertising are on BBC channels,

which are prohibited from showing adverts). From this information we define the variable:

wis =

 1 i reports they “regularly” or “sometimes” watch show s

0 otherwise
(4.1)

Households are also asked “How often do you watch ...?” 65 different TV channels and when they usually

watch TV. In particular, for weekdays, Saturday and Sunday and for 9 different time periods10 households

are asked questions like “Do you watch live TV on Saturdays at breakfast time (6.00-9.30am)?” In each case

the household can answer Never, Hardly Ever, Sometimes or Regularly. We use this information, along with

information on where the household lives (some TV channels are regional), to construct the variable:

wikc =



1 i says they “regularly” or “sometimes” watch on the day and time slot k

and “regularly” or “sometimes” watch channel c

and they live in the region in which c is aired (or the channel is national)

0 otherwise

(4.2)

4.1.3 Household level advertising exposure

We combine the data on household viewing behaviour with the detailed data on individual adverts to

create a household specific measure of exposure to advertising. Variation in TV viewing behaviour creates

considerable variation in the timing and extent of exposure an individual household has to adverts of a

specific brand. As argued in Section 2.4, this leads to cross household variation in advertising exposure that

is plausibly unrelated to idiosyncratic shocks to potato chip products, conditional on all the controls in our

demand model.

10Breakfast time 6.00am-9.30am, Morning 9.30am-12.00 noon, Lunchtime 12.00 noon-2.00pm, Early afternoon 2.00pm-
4.00pm, Late afternoon 4.00pm-6.00pm, Early evening 6.00pm-8.00pm, Mid evening 8.00pm-10.30pm, Late evening 10.30-
1.00am and Night time 1.00am-6.00am.
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Denote by Tbskct the duration of time that an advert for brand b is shown during show s on day and

time slot k on channel c during week t. From the viewing data we construct an indicator variable of whether

household i was likely to be watching channel c on day and time slot k during show s, wiskc. If show s is

among the 206 specific shows households were asked for viewing information we set wiskc = wis, otherwise

we set wiskc = wikc. From this we define the household’s total exposure to advertising of brand b during

week t as:

aibt =
∑
s,c,k

wiskcTbskct. (4.3)

In Section 2.4 we discussed the type of variation in the data that we rely on by providing an example

of household viewing behaviour with respect to three popular soap operas. Figure 4.2 shows the number of

adverts aired during Coronation Street and during Hollyoaks by the two most advertised brands – Walkers

Regular and Pringles. The third soap opera, Eastenders is aired on BBC and therefore has no adverts shown

during it. The figure illustrates that both brands are advertised during the two shows, but the level and

timing of adverts varies. This generates differential time series variation across households in their exposure

to the adverts of each brand. We control for brand-time-demographic shocks to demands, and we exploit

this differential across household advertising variation in estimation.
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Figure 4.2: Advertisements aired by two largest brands

Note: The two top figures show the number of adverts aired on ITV during Coronation Street, including those aired
directly before or directly after; the two bottom figures show those aired on Channel 4 during Hollyoaks; the two left
hand figures show the number of Walkers Regular adverts aired; the two right hand figures show the number of Pringles
adverts aired.

For this sort of variation to be correlated with the idiosyncratic demand shocks, εijt, one would have

to believe these demand shocks exhibit a complicated cyclical correlation with soap watching behaviour,

so it is sometime best to advertise to Coronation Street viewers, sometimes best to advertise to Hollyoaks

viewers or sometime best to advertise to both. Moreover, the pattern would have to be differential across

Walkers Regular and Pringles (given the different patterns of advertising) and it must be forecastable by

advertisers. We believe it is much more likely that this kind of variation in advertising is driven by firm

strategies (e.g. the type of pulsing strategies described in Dubé et al. (2005)) or by the discretion channels

have to choose exactly when adverts air – typically advertisers purchase a number of impressions within a

given demographic group and time period (e.g. month) with precise scheduling decisions left to stations (see

Crawford et al. (2012)).

To make the model empirically tractable we assume that the dynamic effect of advertising on demand is

such that the state variables of advertising exposure are equal to a discounted sum of current (up until the

22



day we observe the purchase being made) and past advertising exposure, as in Erdem et al. (2008),

aibt ≡ A (aibt, aibt−1, .., aib0) =
∑t−t0

n=0
δnaibt−n.

aibt can be interpreted as a household specific stock of advertising goodwill that decays over time at rate δ

per week, but that can be increased by exposure to more advertising. This means that the dimension of the

state space for advertising exposure remains finite, as aibt = A (aibt−1, aijt) = δaibt−1 + aibt. In estimation

we set δ = 0.9 implying that an advertising impression two weeks ago has 90% of the effect of one seen one

week ago.11 We use data on purchases starting in June 2009 and have data on advertising flows starting

from February 2009, meaning that the effects of initial conditions are minimal.

To illustrate the differential variation in exposure of households to advertising, in Figure 4.3, we take

three example households from our data and plot their exposure to advertising of Walkers Regular. The left

hand panel shows the flow measure of exposure and the right hand side shows the stock measure. Household

2 is more exposed than the other two households to Walkers Regular advertising from February to August

2009 and after May 2010. Household 1 has greater exposure from August 2009 to May 2010. At almost all

points in time, household 3 has the lowest exposure to advertising. These differences, driven by variation

in the TV shows and stations these the households watch and the days and times they tend to watch TV,

leads to rich differential variation in stocks of advertising exposure.

Figure 4.3: Advertising flow and stocks for Walkers Regular brand for three example households

Note: The left hand side plots exposure to Walkers Regular adverts per week, aibt from equation (4.3), for three
example households; the right hand side plots the stock of exposure to Walkers Regular adverts, aibt.

We allow for diminishing returns to advertising; it seems natural that the incremental effect of an addi-

tional impression is less for consumers that have already seen a large number of adverts. We follow Dubé

et al. (2005) and Shapiro (2015) by including a concave transformation of the advertising state variable; as

11We experiment with stocks computed using different decay parameters and find qualitatively similar results for δ not close
to 0 and not too close to 1. δ = 0 and δ = 1 are rejected by the data.
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Dubé et al. (2005) point out, under certain circumstances this allows firms’ advertising problem to have a

well-behaved optimum. We therefore transform the own advertising variable, aibt, and the sum of competitor

advertising variable,
∑
l 6=b ailt, using the inverse hyperbolic sine function, ã = ln(a+

√
a2 + 1).

4.2 Purchase data

The purchase data are from the Kantar Worldpanel for the period June 2009 to October 2010. Our data are

unusual in that we have information on households’ purchases for food at home and individuals’ purchases

for food on-the-go. For each household we observe all food purchases made and brought into the home (we

refer to these as “food at home” purchases). We also have information from a sample of individuals drawn

from these households that record all food purchases made for consumption “on-the-go” (we refer to these

as “food on-the-go” purchases) during the same period. Food at home purchases are by definition made for

future consumption (the product has to be taken back home to be recorded), while food on-the-go purchases

are made for immediate consumption. Individuals participating in the on-the-go panel include both adults

and children aged 13 or older.

We use information on 266,328 transactions over the period June 2009 to October 2010; this includes

147,530 food at home purchase occasions and 118,798 food on-the-go purchase occasions, made by 2,496

households and 2,112 individuals. We define a purchase occasion as a week.

For the food at home segment this is any week in which the household records buying groceries. We say

that a household selected the outside option when it does not record purchasing any potato chips for home

consumption. Potato chips are purchased on 41% of food at home purchase occasions.

For the food on-the-go segment a purchase occasion is any week in which the individual records purchasing

any food on-the-go; when an individual bought food on-the-go, but did not purchase any potato chips, we

say they selected one of the outside options. Potato chips are purchased on 27% of food on-the-go purchase

occasions.

We define two outside options. One is the unhealthy outside option that corresponds to purchasing junk

food (but not potato chips), which includes chocolate, confectionery, cakes, pastries and ice cream. The other

is a healthy outside option that corresponds to purchasing food other than junk foods. For the food at home

segment this includes all other non-junk foods purchased in the supermarket; for the food on-the-go segment

this includes healthy snacks such as fruit, yoghurt and nuts. Our definition of the outside options means

that we assume that changes in pricing or advertising in the potato chips market may change consumers’

propensity to buy potato chips, but not their propensity to go shopping.

From other data we know that 14% of potato chips are bought on-the-go, with the remaining share

purchased for food at home (Living Cost and Food Survey).
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4.2.1 Product definition

Purchase data is at the UPC or barcode level, containing information on purchases of over 1800 unique

potato chip UPCs. We aggregate these UPCs into 37 products over which we estimate demand. We define

a potato chip product as a brand-pack size combination (the products are listed in Table 4.2); in terms of

product definition the main form of aggregation is across different flavours. In the UK potato chip market,

price and advertising does not vary across flavours and variation in nutrients across flavour within brand is

minimal (and far out weighed by variation across brands). For instance, the brand Pringles has 78 separate

UPCs. Of these, four UPCs (original flavour, salt and vinegar, sour cream and onion, and barbecue) account

for over 55% of Pringles’ transactions. For the brand Pringles we define two products – Pringles 150-300g

and Pringles 300g+ based on the consumer’s total purchase of the brand on a purchase occasion. In some

cases – for example, Walkers Other – we also aggregate over a set of minor brands (with market shares less

that 4%).12

Potato chips for consumption at home are almost entirely purchased in large supermarkets as part of

the households main weekly shopping,13 whereas those for consumption on-the-go are mostly purchased in

small convenience stores.14 The set of products available in large supermarkets (for food at home) differs

from the set of products available in convenience stores (for food on-the-go). Some brands are not available

in convenience stores (for example, generic supermarket brands), and purchases made at large supermarkets

are almost entirely large or multi-pack sizes, while food on-the-go purchases are almost always purchases of

single packs. We restrict the choice sets in each segment to reflect this. This means that the choice sets

for food at home and on-the-go occasions do not overlap; most brands are present in both segments, but

not in the same pack size. Table 4.2 shows the set of products available and the market shares in each

market segment. The table makes clear that Walkers is, by some distance, the largest firm in the market –

its products account for 46% of all potato chips sold in the food at home segment and 55% of that sold in

the food on-the-go segment.

While the products on offer for food at home and food on-the-go purchase occasions are disjoint, there

may nonetheless be linkages in demand between the segments. We assume that when the main shopper

is taking a purchase decision in the supermarket for future consumption, they do not consider possible

future on-the-go purchases that might be made by members of the household. However, we do consider the

possibility that food on-the-go purchase decisions are influenced by recently made food at home purchases.

12The aggregation over flavours means that if Pringles and Walkers sold salt and vinegar flavour and KP did not we would
potentially miss out on the closer substitution possibilities between Pringles and Walkers for consumers who have a strong taste
for salt and vinegar. However, in the UK the dominant flavours are salted (or regular), salt and vinegar and cheese and onion;
almost all potato chip products come in these flavours and other flavours tend to have small market shares.

1391% of these purchases are from large supermarket chains.
14We use the term small convenience stores to refer to small branches of national chain stores such as Tesco Metro and

Sainsbury’s Express, plus independent corner stores and news agents; these account for 53% of sales, with the rest coming from
shops in the workplace or college, vending machines and other retailers.
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When modelling the on-the-go demand of individuals, we include a dummy variable in the payoff function

of the inside options indicating whether the main shopper of the household the individual belongs to made a

food at home potato chip purchase in the previous week.15 This allows for the possibility that a recent food

at home purchase lowers (or increases) the probability an individual purchases potato chips while on-the-go.

We test the impact that recent food at home purchase have on the market demand curve for food on-the-go

products and find that it is essentially zero (the impact on market demands is economically very small and

not statistically significantly different from zero).

4.2.2 Prices

Our data contain prices for each transaction, a transaction is the purchase of an individual UPC (or barcode).

These transaction level prices are well measured in our data. As explained in Section 4.2.1, we aggregate

UPCs into 37 products. In estimation we use the price of each product measured in pounds sterling (£s),

the average of these prices across weeks are shown in Table 4.2. We measure these product prices as the

mean across transactions for the UPCs that comprise the product in that week; these transaction prices can

vary within a week due to within week price changes and some differences in pricing across stores.

As outlined in Section 2.4, we follow an identification strategy suggested by Bajari and Benkard (2005);

we include brand-time effects in the model and identify the effect of price on demand by exploiting differential

time series variation in product level prices within brand across different pack sizes (i.e. non-linear pricing).

In the left hand panel of Figure 4.4 we show an example of this sort of price variation in the underlying

transaction prices. For KP Hula Hoops Originals we show the price per 25g of the most common pack sizes,

34g, 7x25g and 12x25g, in the retailer Tesco on three separate dates. The figure shows that nonlinear pricing

exists – the price schedule slopes downwards – and the shape of the schedule changes over time. This sort

of price variation is common in the market. In the right hand panel of Figure 4.4 we summarise the time

series variation in nonlinear pricing across the four major potato chip brands, Walkers Regular, Walkers

Doritos, Pringles and KP. The time series are generated by regressing product price on brand-week and pack

size-week effects, and plotting the residual for the largest size product of each brand. The figure makes clear

that there is differential time series variation across brands.

15See Appendix B for precise details.
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Figure 4.4: Price variation

Note: The left hand side figure plots price per 25g for the most popular pack sizes (or UPCs) belonging to “KP Hula
Hoops”. The right hand side plots residual prices variation of the four main brands after removing brand-week and
size-week effects.

We assume that, conditional on the controls in the demand model, this variation in prices is exogenous.

A problem would arise if in a particular week households had demand shocks for a specific pack size of a

brand, but not for other packs of the same brand, and this was forecasted by firms in the market.16 Possible

drivers of this differential movement in prices within brand are cost variations that are not proportional to

pack size, differential pass-through of cost shocks and differences in how brand advertising affects demands

for different pack sizes (in Section 4.3 we show advertising has a much stronger impact on demand for large

packs). It is unlikely that within brand, pack size specific, demand shocks, unrelated to advertising but

anticipated by firms are the main driver of the form of price variation we exploit. In Section 4.6 we show

robustness to this assumption by including a control function for price.

16We allow all preference parameters to vary by whether the purchase occasion is for the food at home or food on-the-go, so
these shocks would only cause a problem if they happened within either segment.
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Table 4.2: Quantity share and mean price

Food at home Food on-the-go
Firm Brand Size Quantity Share Price (£) Quantity Share Price (£)

Walkers 45.91% 55.34%
Regular 34.5g 28.14% 0.45

50g 7.45% 0.63
150-300g 1.77% 1.24
300g+ 24.22% 2.77

Sensations 40g 2.01% 0.59
150-300g 0.43% 1.25
300g+ 1.80% 2.52

Doritos 40g 4.68% 0.45
150-300g 1.28% 1.19
300g+ 3.21% 2.45

Other <30g 4.68% 0.45
30g+ 8.38% 0.61
<150g 0.68% 1.24
150-300g 3.74% 1.76
300g+ 8.78% 3.17

Pringles Pringles 6.90%
150-300g 1.32% 1.09
300g+ 5.58% 2.60

KP KP 19.62% 22.70%
50g 22.70% 0.52
<150g 0.21% 0.85
150-300g 4.81% 1.18
300g+ 14.60% 2.38

Tayto Golden Wonder 1.54% 4.23%
<40g 3.12% 0.38
40-100g 1.11% 0.72
<150g 0.10% 1.29
150-300g 0.24% 1.39
300g+ 1.20% 2.71

Asda Asda 3.37%
<150g 0.09% 0.95
150-300g 0.90% 0.95
300g+ 2.38% 2.29

Tesco Tesco 6.51%
<150g 0.19% 0.82
150-300g 1.78% 0.91
300g+ 4.54% 2.07

Other Other 16.15% 17.73%
<40g 12.15% 0.49
40-100g 5.58% 0.66
<150g 0.93% 1.05
150-300g 3.86% 1.31
300g+ 11.36% 2.56

Notes: Quantity share refers to the quantity share of potato chips in the segment accounted for by that product. Price
refer to the mean price across markets.

4.2.3 Nutrient characteristic

The motivation for restricting advertising in junk food markets is to improve health outcomes. Therefore we

are particularly interested in the nutrient characteristics of the products. Table 4.3 shows the main nutrients

in potato chips. We control for the nutrient characteristics using an index that combines the individual

nutrients into a single score and that is used by UK government agencies. It is based on the nutrient profile
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model developed by Rayner et al. (2005) (see also Rayner et al. (2009) and Arambepola et al. (2008)) and

is used by the UK Food Standard Agency, and by the UK advertising regulator Ofcom to categorize food

products for regulatory purposes. For potato chips the relevant nutrients are the amount of energy, saturated

fat, sodium and fiber that a product contains per 100g. Products get points based on the amount of each

nutrient they contain; 1 point is given for each 335kJ per 100g, for each 1g of saturated fat per 100g, and

for each 90mg of sodium per 100g (or, equivalently, 0.225g of salt per 100g). Each gram of fiber per 100g

reduces the score by 1 point. The UK Food Standard Agency uses a threshold of 4 points or more to define

“less healthy” products, and Ofcom has indicated this is the relevant threshold for advertising restrictions

(Ofcom (2007)).

Table 4.3 also shows the nutrient profile score. There is considerable variation across brands; Walkers

Regular has the lowest score (10), and the brands Pringles and KP have the highest score (18). This is a

large difference. To give some context, if all other nutrients were the same then an 8g difference in saturated

fat (per 100g of product) would lead to a difference of 8 points in the nutrient profile score; in the UK the

guideline daily amount of saturated fat is 20g per day for woman and 30g per day for men. Note also that

potato chips lie far above the “less healthy” threshold of 4 and the possibility that reformulation could bring

them below the threshold is unlikely.

Table 4.3: Nutrient characteristics of brands

Nutrient Energy Saturated fat Salt Fiber
Brand profiling

score (kj per 100g) (g per 100g) (g per 100g) (g per 100g)

Walkers Regular 10 2164 2.56 1.48 4.04
Walkers Sensations 11 2021 2.16 1.78 4.25
Walkers Doritos 12 2095 2.86 1.65 3.02
Walkers Other 15 2017 2.50 2.04 3.14
Pringles 18 2160 8.35 1.55 2.74
KP 18 2157 5.87 2.10 2.70
Golden Wonder 16 2124 4.03 2.30 3.77
Asda 15 2125 4.13 1.88 3.31
Tesco 15 2141 4.63 1.92 3.57
Other 12 2083 3.84 1.75 4.06

Notes: See text for definition of the nutrient profiling score; a higher score indicates a less healthy product.

We allow for two outside goods. The unhealthy outside option includes purchases of chocolate, confec-

tionery, cakes, pastries and ice cream. The mean nutrient score of these foods is 20, which is above even the

most unhealthy potato chips brands. If a ban on advertising potato chips predominantly leads to switching

towards these alternative “junk foods” then it is possible the policy might reduce the nutritional quality

of foods purchased. The healthy outside option comprises all other (non-junk) foods – including fruit and
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vegetables, yoghurt and nuts – and has a mean nutrient score of 2, well below even the most healthy potato

chip product.

4.2.4 Household demographics

Table 4.4 provides details of the numbers of households we observe making food at home purchases, the

number of individuals making food on-the-go decisions and the number of purchase occasions. Households

and individuals can switch between demographic groups over time, for example if a child is born in a

household, or if a grown up child turns 18.

Table 4.4: Household types

Demographic group Number of Number of purchase occasions
households individuals food at home food on-the-go

Composition skill level income

No children high high 413 302 20747 14761
medium 270 223 11962 9669
low 245 225 11800 10147

low medium-high 193 152 9477 7200
low 289 234 14369 10488

Pensioners 242 134 13273 6683
Children high high 367 323 18976 15368

medium 276 244 12923 10766
low 147 126 6448 5315

low medium-high 282 256 13971 12060
low 277 257 13584 11976

Child purchase 95 4365

Total 2496 2112 147,530 118,798

Notes: Households with “children” are households with at least one person aged below 18, “Pensioners” refers to a
households with no more than two people, no-one aged below 18 and at least one person aged above 64; “No children”
refers to all other households. “Child purchase” refers to someone aged below 18 making a food on-the-go purchase.
Skill levels are defined using socioeconomic groups. “High” comprises people in managerial, supervisory or professional
roles, “low” refers to both skilled and unskilled manual workers and those who depend on the state for their income.
Income levels are defined by terciles of the within household type income per person distribution. The total number of
households and individuals is less than the sum of the number in each category because households may switch group
over time.

We allow all coefficients, including the distribution of the random coefficients, to vary across the demo-

graphic groups shown in Table 4.4. Households are distinguished along three characteristics: (i) household

composition, (ii) skill or education level of the head of household, based on socio-economic status, and (iii)

income per household member. For individuals observed making food on-the-go purchases we categorize

them based on their income, education and income of their household, with the exception of individuals

aged below 18 (which we group together as a separate category). As argued in Sections 2.3 and 2.4, allowing

preference variation across this dimension will allow for the possibility of important differences in demand

30



shape and, because we also allow variation in the brand-time effects across demographic groups, it will

control for time varying demographic specific shocks to brand demands.

4.3 Empirical estimates

We estimate the demand model using maximum simulated likelihood. We report the full set of estimated

coefficients, along with the market own and cross price elasticities and marginal cost estimates in Appendix

D. Here we focus on what the estimates imply for how advertising affects the shape of demand. We

show that advertising has rich effects on demands and that allowing for advertising to affect demand in a

flexible way in the choice model is therefore important. We describe how advertising impacts on consumers’

willingness to pay for the nutrient characteristic, price elasticities and patterns of cross brand and cross pack

size substitution.

4.3.1 The empirical effects of advertising on demand

One potential impact of advertising is to change consumers’ willingness to pay for a characteristic (see

equation (2.3)). We allow for this possibility by including interactions between both advertising and price

and advertising and the nutrient characteristic in the payoff function, and the coefficients on these are

statistically significant.

We compute the willingness to pay for a one point improvement (reduction) in the nutrient profiling

score. A one point reduction would be achieved, for instance, by a 1g reduction in saturated fat per 100g

of product. Table 4.5 shows how advertising affects the willingness to pay. We take as the base case a

consumer with zero exposure to advertising and show the difference between their willingness to pay and

that of a consumer at the 10th, 50th and 90th percentile of the advertising exposure distribution. We do

this separately for food at home and food on-the-go purchase occasions. 95% confidence intervals are given

in brackets.17

For both food at home and food on-the-go higher exposure to advertising lowers consumers’ willingness

to pay for a more healthy product. For food at home, a consumer at the 10th percentile of the exposure

distribution is willing to pay 4.7 pence (or 2.3% of the mean price) less than a consumer not exposed to

advertising; a household at the 90th percentile of the exposure distribution is willing to pay 9.2 pence (or

4.5% of the mean price) less. For food on-the-go a similar relationship exists but it is less strong; a consumer

at the 10th percentile of the advertising exposure distribution has willingness to pay for a marginally more

healthy product that is 0.4 pence (or 0.9% of the mean price) less than a consumer with zero advertising

17To calculate the confidence intervals we obtain the variance-covariance matrix for the parameter vector estimates using
standard asymptotic results. We then take 100 draws of the parameter vector from the joint normal asymptotic distribution of
the parameters and, for each draw, compute the statistic of interest, using the resulting distribution across draws to compute
Monte Carlo confidence intervals (which need not be symmetric around the statistical estimates).
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exposure, while a consumer at the 90th percentile has a lower willingness to pay of 0.6 pence (or 1.2% of the

mean price). Table 4.5 makes clear that one thing that advertising does is lower consumers’ willingness to

pay for an increase in the healthiness of potato chips and that allowing for interactions of advertising with

price and the nutrient characteristic in the demand model is empirically important.

Table 4.5: Effect of advertising on willingness to pay for an increase in healthiness (a 1 point reduction in
nutrient profiling score)

Position in advertising exposure distribution
Difference relative to zero exposure: 10th percentile Median 90th percentile

Food at home Willingness to pay in pence -4.7 -7.2 -9.2
[-6.8, -3.1] [-10.7, -4.4] [-14.0, -5.5]

% of mean price -2.3 -3.5 -4.5
[-3.3, -1.5] [-5.2, -2.1] [-6.8, -2.7]

Food on-the-go Willingness to pay in pence -0.4 -0.6 -0.6
[-1.0, -0.2] [-1.3, -0.3] [-1.5, -0.3]

% of mean price -0.9 -1.1 -1.2
[-2.0, -0.5] [-2.6, -0.5] [-2.9, -0.5]

Notes: Numbers shows how willingness to pay varies with advertising exposure. Numbers in rows 1 and 3 show the
difference in willingness to pay in pence for a one point reduction in the nutrient profiling score for a consumer at
the 10th, 50th and 90th percentile of the advertising exposure distribution relative to a consumer with zero advertising
exposure. Numbers in rows 2 and 4 show differences as a percentage of the mean price of potato chips on the purchase
occasion (i.e. food at home or food on-the-go occasion). We base numbers for the distribution of advertising exposure
on the brand Walkers Regular. 95% confidence intervals are given in square brackets.

The interaction between advertising and price in the payoff functions also allows for the possibility that

advertising shifts consumers’ price sensitivities. We find that for the food at home segment (which represents

86% of the market) advertising leads to a reduction in consumers’ sensitivity to price. In order to illustrate

the strength of this effect we do the following. For each of the food at home products that belong to the

three most highly advertised brands, we compute the own price elasticity of market demand at the observed

advertising levels in each month. We report the mean elasticities, averaging across months, in the top panel

of Table 4.6. For each brand we unilaterally set the flow of advertising of that brand to zero and recompute

the own price elasticities (i.e. what the own price elasticity for the Walkers Regular products would have

been if that brand was not advertised in that month). The bottom panel of Table 4.6 shows the resulting

mean percent change in own price elasticities (relative to observed advertising) for each product, with a

positive number showing that the absolute value of the elasticity increases. For instance, the mean market

own price elasticity of the most popular product, Walkers Regular 300g+, is -2.61. Shutting off advertising

in the current market for Walkers Regular results in demand for Walkers Regular 300g+ becoming more

elastic, with an average increase in the absolute value of the own price elasticity of 2.65%. The effect is also

to make demand for the smaller 150g-300g pack more elastic, although the strength of the effect is less. A

similar pattern holds for the other brands.
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Table 4.6: Effect of advertising on market own price elasticities

Walkers Regular Pringles KP

Own price elasticity in observed equilibrium
<150g -1.22

[-1.25, -1.18]
150g-300g -1.63 -1.45 -1.57

[-1.68, -1.57] [-1.51, -1.40] [-1.62, -1.52]
300g+ -2.61 -2.66 -2.53

[-2.73, -2.50] [-2.78, -2.54] [-2.62, -2.43]

% reduction in price elasticity under zero market advertising
<150g 1.13%

[0.86, 1.44]
150g-300g 1.78% 1.74% 1.25%

[1.44, 2.07] [1.38, 2.14] [0.97, 1.56]
300g+ 2.65% 2.48% 1.72%

[2.14, 3.09] [2.01, 3.03] [1.30, 2.14]

Notes: The top panel reports the mean market own price elasticity for each pack size available in the food at home
segment for the brands Walkers Regular, Pringles and KP. For each of these brands we unilaterally set current market
advertising to zero and we compute the change in own price elasticities. The bottom panel shows the percent reduction
for each elasticity. 95% confidence intervals are given in square brackets.

We undertake a similar exercise to illustrate the impact advertising has on brand demand. For each

brand we simulate what demand would have been if that brand had not been advertised in that month (and

all other brands’ advertising had remained at observed levels). In Table 4.7 we report the results for the most

highly advertised brands. If Walkers unilaterally stopped advertising its Regular brand quantity demanded

for that brand would fall by 1.60%, demand for Pringles would increase by 0.24%, while demand for most

other brands, and for potato chips overall, would fall. Unilaterally shutting down Pringles’ advertising

results in a larger reduction in the quantity of that brand demanded of 4.45%, demand for Walkers Regular

is unaffected, and demand for most other brands either is unaffected or falls. The overall effect is to reduce

potato chips demand by 0.41%.

Table 4.7 makes clear that, for a number of brands, advertising is cooperative (if one brand stops ad-

vertising in a month, other brands see a fall in demand). The fact that we find evidence of cooperative

effects of advertising underlines the importance of allowing advertising to enter demand in a flexible way

that does not unduly constrain the impact of advertising on demand a priori; if we had only included own

brand advertising in the payoff function and omitted the competitor advertising effect the functional form

assumptions would have ruled out cooperative advertising effects.
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Table 4.7: Effect of advertising on brand demand

Walkers Regular Pringles KP

% change in row brand demand if column brand market advertising is set to zero
Walkers Regular -1.60 -0.06 0.05

[-2.13, -0.95] [-0.15, 0.08] [-0.01, 0.14]
Walkers Sensations -0.51 -0.14 -0.17

[-0.72, -0.37] [-0.24, -0.06] [-0.23, -0.09]
Walkers Doritos -0.24 -0.06 -0.05

[-0.40, -0.06] [-0.15, 0.01] [-0.11, 0.01]
Walkers Other 0.32 -0.05 0.13

[0.15, 0.49] [-0.17, 0.08] [0.06, 0.21]
Pringles 0.24 -4.45 0.06

[0.07, 0.43] [-5.07, -3.75] [-0.03, 0.17]
KP -0.03 -0.12 -1.29

[-0.16, 0.10] [-0.22, 0.03] [-1.73, -0.94]
Golden Wonder -1.05 -0.26 -0.81

[-1.19, -0.92] [-0.35, -0.12] [-0.96, -0.69]
Asda -0.31 -0.29 -0.33

[-0.43, -0.14] [-0.37, -0.17] [-0.41, -0.19]
Tesco -0.44 -0.35 -0.48

[-0.57, -0.27] [-0.42, -0.22] [-0.59, -0.34]
Other 0.17 -0.15 0.23

[0.04, 0.36] [-0.31, 0.06] [0.10, 0.35]

% change in total potato chips demand if column brand market advertising is set to zero
-0.43 -0.41 -0.22

[-0.53, -0.34] [-0.46, -0.32] [-0.25, -0.19]

Notes: For each brand Walkers Regular, Pringles and KP, in each market, we unilaterally set current brand advertising
expenditure to zero. Numbers in the table report the resulting percentage change in quantity demanded for all brands
and for the potato chips market as a whole. Numbers are means across markets. 95% confidence intervals are given
in square brackets.

Table 4.8 shows how unilaterally setting market advertising to zero for each of the most advertised brands

affects quantity demanded (measured in 1000s of kilograms) for each of the pack sizes available for food at

home. For all three brands it is demand for the largest pack size that declines when advertising expenditure is

set to zero; demand for smaller packs either does not change by a statistically significant amount or increases

slightly. This highlights that an important effect of brand advertising is to lead consumers to switch to the

larger pack size of that brand.
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Table 4.8: Effect of advertising on demand by pack size

Walkers Regular Pringles KP

Change in own brand demand by pack size if flow of brand advertising is set to zero
<150g 0.57

[0.03, 0.91]
150g-300g 1.24 -1.46 1.56

[-2.88, 6.04] [-3.37, 0.26] [-1.69, 3.89]
300g+ -78.54 -36.39 -32.80

[-98.20, -56.92] [-40.86, -31.15] [-40.62, -25.07]

Change in food at home demand for brand if flow of brand advertising is set to zero
-77.30 -37.86 -30.67

[-99.51, -52.96] [-44.23, -31.33] [-42.27, -20.26]

Notes: For each brand Walkers Regular, Pringles and KP, in each market, we unilaterally set current brand advertising
expenditure to zero. Numbers in the table are measured in 1000s of kilograms and report the change in quantity
demands for all pack sizes of the brand available on food at home purchase occasions. Numbers are means across
markets. 95% confidence intervals are given in square brackets.

4.4 Counterfactual analysis of advertising ban

We compare the observed market equilibrium to one in which advertising is banned. Specifically, we set the

advertising stocks of all firms to zero. This would be the situation after advertising has been banned for long

enough for the stock to fully depreciate; with δ = 0.9 it would take less than a year for stocks to depreciate

to 4% of their original value prior to the ban. We find the new equilibrium in all markets (months) and

report the means across markets.

4.4.1 Impact on market equilibrium

One effect that advertising has on consumer demand is to lower consumers’ sensitivity to price (see Table

4.6). Banning advertising therefore leads to tougher price competition. The (quantity weighted) average

price in the market falls by 4%. This fall is driven by price reductions for products in the food at home

segment that belong to the most heavily advertised brands. Table 4.9 shows the mean market price in

the observed equilibrium with advertising and in the counterfactual equilibrium in which all advertising is

banned; we show this for the food at home products belonging to the three most advertised brands. The ban

results in a fall in price for all products in Table 4.9. Walkers reduces the price of its most popular brand

by the most, reducing the price of the 150-300g pack by 15p (or 12%) and the 300g+ pack by 17p (or 6%).

Walkers also reduces the price of products belonging to the other brands it offers. The brands for which

there is little advertising (e.g. Asda and Tesco) see small increases in their equilibrium prices post ban (not

shown in Table). Equilibrium prices in the smaller food on-the-go segment do not change much following

the advertising ban.
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Table 4.9: Effect of advertising ban on equilibrium prices

Walkers Regular Pringles KP
Pre ban Advertising Pre ban Advertising Pre ban Advertising

equilibrium banned equilibrium banned equilibrium banned

<150g 0.86 0.82
[0.81, 0.84]

150g-300g 1.26 1.11 1.11 1.05 1.19 1.14
[1.09, 1.13] [1.03, 1.08] [1.13, 1.16]

300g+ 2.79 2.62 2.60 2.50 2.38 2.31
[2.58, 2.64] [2.47, 2.52] [2.30, 2.33]

Notes: Numbers show the mean price across markets in £s. “Pre ban equilibrium” refers to the prices observed in
the data; “Advertising banned” refers to counterfactual prices when advertising is banned. 95% confidence intervals
are given in square brackets.

Table 4.10 summarizes the overall impact of an advertising ban on total monthly expenditure on potato

chips and the total quantity of potato chips sold.18 The first column shows the average of each variable

across markets in the observed pre ban equilibrium, the second column shows values in the counterfactual

when advertising is banned but prices are held constant, and the final column shows the values in the new

equilibrium when advertising is banned and firms reoptimise prices.

Table 4.10: Effect of advertising ban on purchases

Pre ban Advertising banned
equilibrium no price response with price response

Expenditure (£m) 100.85 85.62 87.11
[99.78, 101.91] [82.44, 88.26] [84.25, 89.77]

% change -15.10 -13.62
[-17.83, -12.67] [-16.18, -11.18]

Quantity (mKg) 14.80 12.55 13.36
[14.64, 14.98] [12.05, 12.97] [12.96, 13.71]

% change -15.24 -9.72
[-17.93, -12.61] [-11.83, -7.40]

Notes: Percentage changes are shown below variables. “No price response” refers to the situation where advertising
is banned and prices are held at their pre ban level; “with price response” refers to the situation where advertising is
banned and firms reoptimise their prices. Expenditure refers to total expenditure on potato chip and quantity refers
to the total amount of potato chips sold. Numbers are means across markets. 95% confidence intervals are given in
square brackets.

In the pre ban equilibrium (in which advertising is allowed) total monthly expenditure on potato chips

was around £100m and total quantity sold was 15m kg. The impact of the ban if we hold prices constant is

to induce a 15.1% fall in expenditure and a 15.2% fall in quantity sold. The reduction in quantity is mainly

18To gross the numbers up from our sample to the UK market we need a measure of the total market size Mt and how it is
split between food at home and food on-the-go segments. From Mintel we know that total annual potato chip expenditure in
the UK is around £1200m (http://www.marketingmagazine.co.uk/article/1125674/sector-insight-crisps-salty-snacks) and from
the Living Cost and Food Survey we know that 14% of potato chips by volume were purchased as food on-the-go. Based on
this information we can compute the implied potential market size and the size of each segment of the market.
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driven by consumers purchasing potato chips less frequently. When we account for the fact that oligopolistic

firms will respond to the advertising ban by adjusting prices we find that expenditure falls by 13.6% and

total quantity sold falls by 9.7%. The reason for this smaller reduction in the quantity of potato chips sold

is that a number of firms – including Walkers, the dominant firm in the market – respond to the advertising

ban by lowering their prices. Important in driving this result is that our demand specification is flexible

enough to capture the fact that advertising leads consumers to have demands that are less price sensitive.

4.4.2 Impact on health

The key motivation for advocates of advertising restrictions in junk food markets is to lower consumption of

nutrients associated with diet related health problems (see for instance, WHO (2010) and Gortmaker et al.

(2011)). Whether banning advertising does reduce consumption of targeted nutrients will depend on both

how advertising affects demand, including demand substitutions across products, and on the equilibrium

pricing response of firms operating in the market. It will also depend on what alternatives consumers

substitute to if they switch out of the market altogether.

We first focus on the impact of the advertising ban on nutrients obtained from potato chips in Table 4.11.

The top panel describes the impact of the ban on the total monthly quantity of energy, saturated fat and

salt that households buy as potato chips. The bottom panel describes the impact on the nutrient content of

the potato chips that households buy.

Holding prices at their pre ban level, the advertising ban leads to a reduction in the total quantity of energy

(by 15.2%), saturated fat (by 16.3%) and salt (by 15.4%) consumers purchase from potato chips. Conditional

on purchasing potato chips, consumers also buy healthier varieties; the nutrient score of purchases falls by

0.5% (which corresponds to an increase in healthiness), and the quantity of saturated fat and salt per 100g

of potato chip purchases fall by 1.1% and 0.2%. Abstracting from the equilibrium response of firms, the

advertising ban appears successful in improving the nutritional content of consumers’ purchases of potato

chip.

However, the improvement in nutrients purchased as potato chips is partially offset by firms reducing

prices in response to the ban. The full effect of the ban (accounting for the pricing response of firms) is

to lower energy (by 9.7%), saturated fat (by 11.9%) and salt (by 10.3%) purchased as potato chips. The

reductions are smaller than when prices are held at their pre ban level. However, the pricing response of firms

reinforces the improvements in nutritional characteristics of products purchased. Conditional on purchase,

the nutrient score of purchases now falls (i.e. improves) by 1.2% and the saturated fat and salt content per

100g of potato chip purchases falls by 2.4% and 0.6%. This is because the products that see the biggest
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fall in price (e.g. the Walkers Regular products) are among the more healthy (least unhealthy) products

available in the market.

Table 4.11: Effect of advertising ban on nutrient purchases

Pre ban Advertising banned
equilibrium no price response with price response

Energy (bn kj) 313.70 265.94 283.23
[310.22, 316.37] [256.46, 274.18] [274.70, 290.29]

% change -15.23 -9.71
[-17.33, -12.55] [-11.45, -7.18]

Saturates (1000 kg) 584.79 489.78 515.24
[576.73, 589.84] [472.66, 506.86] [498.46, 528.92]

% change -16.25 -11.89
[-18.05, -13.56] [-13.57, -9.66]

Salt (1000 kg) 264.94 224.18 237.67
[261.89, 266.95] [216.29, 231.02] [230.45, 243.13]

% change -15.38 -10.29
[-17.41, -12.78] [-12.01, -7.84]

Nutrient score 13.78 13.72 13.62
[13.74, 13.80] [13.66, 13.74] [13.56, 13.65]

% change -0.46 -1.19
[-0.83, -0.13] [-1.55, -0.92]

Saturates intensity (g/100g) 3.95 3.90 3.85
[3.93, 3.97] [3.87, 3.92] [3.83, 3.87]

% change -1.19 -2.41
[-1.73, -0.72] [-2.90, -2.03]

Salt intensity (g/100g) 1.79 1.79 1.78
[1.79, 1.79] [1.78, 1.79] [1.77, 1.78]

% change -0.17 -0.63
[-0.37, 0.01] [-0.83, -0.48]

Notes: Percentage changes are shown below variables. “No price response” refers to the situation where advertising
is banned and prices are held at their pre ban level; “with price response” refers to the situation where advertising
is banned and firms reoptimise their prices. Nutrient score reports the mean nutrient profiling score for potato chip
purchases; a reduction indicates consumers are switching to more healthy potato chips. Numbers are means across
markets. 95% confidence intervals are given in square brackets.

Table 4.11 makes clear that a ban on advertising in the potato chip market would improve the nutritional

quality of purchases of potato chips. Part of this improvement is due to people switching out of the potato

chip market (by purchasing potato chips less often). An overall assessment of the health consequences of the

policy also depends on what these consumers switch to instead. To address this question we have included

in the model a less healthy outside option and a more healthy outside option. As described in Section 4.2.3,

the less healthy outside option consists of other junk foods, which are typically less healthy than potato

chips, while the more healthy outside option comprises non-junk foods.

Table 4.12 summarises the impact of the advertising ban on the consumers’ probabilities of selecting

potato chips, the less healthy outside option and the more healthy outside option. Prior to the advertising

ban, the mean probability of a consumer purchasing potato chips on a given purchase occasion is 35%, the
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probability that they instead select the less healthy outside option is 39% and the probability they select

the more healthy outside option is 26%. The full effect of the ban (taking into account the pricing response

of firms) is to lower the probability of a consumer purchasing potato chips by 4.0 percentage points to

31%. Consumer substitution from the potato chip market to other less healthy junk foods is stronger than

substitution away from junk food products; after the ban the probability of selecting the less healthy outside

option rises by 2.7 percentage points while the increase for the more healthy outside option is 1.4 percentage

points.

Table 4.12: Substitution to alternatives

Pre ban Advertising banned
equilibrium no price response with price response

Probability of selecting potato chips (%) 35.34 30.07 31.31
[34.85, 35.61] [28.82, 31.13] [30.14, 32.60]

Change -5.27 -4.03
[-6.25, -4.16] [-5.03, -2.80]

Probability of selecting less healthy outside option (%) 38.93 42.44 41.61
[38.61, 39.45] [41.72, 43.41] [40.75, 42.53]

Change 3.51 2.67
[2.87, 4.15] [2.01, 3.24]

Probability of selecting more healthy outside option (%) 25.72 27.49 27.09
[25.44, 26.02] [27.00, 28.10] [26.54, 27.70]

Change 1.77 1.36
[1.28, 2.17] [0.87, 1.78]

Notes: Percentage point changes are shown below variables. “No price response” refers to the situation where ad-
vertising is banned and prices are held at their pre ban level; “with price response” refers to the situation where
advertising is banned and firms reoptimise their prices. Numbers are means across markets. 95% confidence intervals
are given in square brackets.

While the overall effect of the ban is to lower the probability of a consumer purchasing any junk food

(the probability of selecting the healthy outside option increases), the ban also has the effect of increasing

the likelihood that consumers that do purchase junk food buy products other than potato chips. These

alternative snacks are, on average, less healthy than potato chips (their mean nutrient score is 20 compared

to around 14 for potato chips), so this mitigates the positive health effects of the policy from looking only

at potato chip consumption. While the effect of the ban is to reduce the probability of purchasing any junk

food (potato chips or the less healthy outside option) by 1.4 percentage points, it also leads to an increase

worsening) in the average nutrient score of purchases conditional on purchasing a junk food.

Overall, therefore, the positive health effects of the ban on advertising potato chips that comes from

lowering potato chip demand are partially offset by the equilibrium pricing response of firms and by consumer

substitution to other junk foods. A ban with broader scope, for example imposed on all junk food markets,
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as well as affecting more of the unhealthy items in consumers’ shopping baskets, would likely suffer less from

these offsetting effects by inducing less consumer substitution to other unhealthy products.

4.5 Measuring consumer welfare

Economists are generally interested in measuring the impact of policy change on traditional economic mea-

sures of welfare. In our case this includes the effect on consumer welfare and the profits of firms that

manufacture and sell potato chips.19 Our aim in specifying the demand model presented in Section 2 is

to ensure the specification is flexible enough to capture the impact of pricing and advertising on demand

regardless of which view one takes about advertising. However, to understand the effect of the advertising

ban on consumer welfare we have to take a stance on which view of advertising is most appropriate (is

it informative about product characteristics, persuasive or a characteristic). We consider how to measure

consumer welfare under the views that advertising is persuasive or that it is a product characteristic. Figure

4.5 shows prominent examples of potato chip advertising.

Our welfare measures do not take into account any long run health consequences that results from the

ban that are not taken into account by consumers at the point of purchase. However, the numbers in Tables

4.11 and 4.12 could be combined with estimates from the medical literature to say something about monetary

consequences of long term health effects.

The persuasive view of advertising has a long tradition in the advertising literature (Robinson (1933),

Kaldor (1950)). More recently, the behavioural economics literature (see Bernheim and Rangel (2005)) has

suggested advertising might lead consumers to act as non-standard decision makers; advertising providing

environmental “cues” to consumers. While policies that improve cognitive processes are potentially welfare

enhancing if the environmental cues have information content, persuasive advertising might distort choices

in ways that do not enhance welfare. Bernheim and Rangel (2009) argue that “choices made in the presence

of those cues are therefore predicated on improperly processed information, and welfare evaluations should be

guided by choices made under other conditions.” The welfare implications of restricting advertising that acts

to distort decision making has been explored by Glaeser and Ujhelyi (2010), who are particularly concerned

with firm advertising (or misinformation in their terms) in food markets, while Mullainathan et al. (2012)

consider the broad policy framework in public finance applications when consumers make decisions that are

inconsistent with their underlying welfare.

19Profits of firms in the advertising industry may also be affected. Though we have less to say about this, we can state the
total advertising budgets, which represent an upper bound on advertisers’ profits.
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Figure 4.5: Example adverts for potato chip brands

Notes: The advertisement on the top left shows supermodel Elle Macpherson eating Walkers potato chips;
the one on the lower left shows an ex-professional football player and TV personality Gary Lineker with the
FA Cup (football) trophy full of Walkers potato chips; the top right shows one of a series of adverts for KP
Hola Hoops aimed at children, and the bottom right shows a model with Golden Wonder Skins.

As pointed out by Dixit and Norman (1978), the welfare effects of changes in advertising will depend on

whether one uses pre or post advertising tastes to evaluate welfare. When assessing the welfare implications

of banning persuasive advertising it is natural to assess welfare changes using undistorted preferences (i.e.

the parameters in the consumer’s payoff function in the absence of advertising). This mirrors the distinction

made by Kahneman et al. (1997) between decision and experience utility; in their terms, advertising affects

choice and therefore decision utility, but it does not affect underlying experience utility.

Under the persuasive view of advertising, decisions made when advertising is non-zero maximize a payoff

function that does not coincide with the consumer’s utility function. Consumers will choose the product

that provides them with the highest payoff v̄ijt as in equation (2.1), but the underlying experience utility is
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based on the consumer’s product valuation in the absence of advertising.

v̂ijt = α1ipjt + ψ1ixj + ξib(j) + τdb(j)t + εijt. (4.4)

In this case the consumer’s expected utility at the advertising state and price vectors (ait,pt) is given by

evaluating the choice made by maximising the payoff function (2.1) at preferences described by equation

(4.4):

Ŵi (ait,pt) = Eε [v̂ij∗t] .

where we define j∗ = arg max
j
{v̄ijt}. In this case, following the terminology of Kahneman et al. (1997), v̂ is

the experience utility while v̄ is the decision utility of the consumer. Noting that

v̂ijt = v̄ijt −
[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
,

we can write Ŵi (ait,pt) as:

Ŵi(ait,pt) =Eε[v̄ij∗t]− Eε
[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
=Eε

[
max
j
{v̄ijt}

]
− Eε

[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
=Wi(ait,pt)−

∑
j>0

sijt

[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
,

where sijt is given by equation (2.2) and, up to an additive constant,

Wi (ait,pt) ≡Eε
[
max
j
{v̄ijt}

]
= ln

[
exp (ξi0j + ψ1ix0 + τd0t) +

∑
j>0

exp

(
α1ipjt + ψ1ixj + ξib(j) + τdb(j)t+

[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)])]
,

using the standard closed form (Small and Rosen (1981)) when the error term ε is distributed i.i.d. type I

extreme value.

This says that when a consumer’s choices are distorted by advertising, expected utility is equal to expected

utility if advertising was in the consumer’s utility function, minus a term reflecting the fact that the consumer

is making choices that do not maximize her experience utility function.

Denote by p0 price in the counterfactual equilibrium in which there is no advertising (defined in Section

3.2). Evaluating the impact of banning advertising under the welfare standard of v̂ijt, the difference in
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consumer welfare between the equilibrium with advertising and the one in which advertising is banned can

be decomposed as:

Wi

(
0,p0

t

)
− Ŵi (ait,pt) =Wi (0,pt)− Ŵi (ait,pt) (choice distortion effect) (4.5)

+Wi

(
0,p0

t

)
−Wi (0,pt) (price competition effect),

where we use the fact that Ŵi (0,p) = Wi (0,p).

Under this persuasive view of advertising, advertising has the effect of inducing the consumer to make

suboptimal choices. Banning advertising removes this distortion to decision making, which benefits con-

sumers. We label this the “choice distortion effect”. However, banning advertising also affects consumer

welfare through the “price competition effect” channel. The sign of this effect will depend on the change in

pricing equilibrium. The price competition effect is independent of the view we take about advertising since

firms’ behaviour depends only on decision utilities of consumers.

An alternative to the persuasive view of advertising is that it is a characteristic of the product that

consumers value (Stigler and Becker (1977) and Becker and Murphy (1993)). In this case, in the terminology

of Kahneman et al. (1997), advertising would enter both experience and decision utilities. The welfare effect

of banning advertising would be given by the more standard term Wi

(
0,p0

t

)
−Wi (ait,pt) and the choice

distortion term in the equation (4.5) would be replaced by a term reflecting the impact on welfare of removing

the advertising characteristic from the market, Wi (0,pt)−Wi (ait,pt).

The identification of this characteristic effect is influenced by the normalisation of the outside option

utility. We include own brand and competitor advertising in the payoff function of inside goods, but the

alternative specification where own brand advertising appears in the payoff of inside goods and total ad-

vertising appears in the payoff of the outside option would give rise to observationally equivalent demand.

Although observationally equivalent, these two specifications would lead to different welfare predictions under

the characteristics view.20 However, as advertising does not enter the experience utility under the persuasive

view, this problem does not exist in this alternative welfare definition.

We focus on welfare measures of the direct monetary costs for consumers and firms of an advertising ban.

To measure the monetary costs to a consumer we convert the welfare changes to compensating variation

(dividing by the marginal utility of income):

CVi
(
ait,pt,p

0
t

)
=

1

α0i

[
Wi

(
0,p0

t

)
− Ŵi (ait,pt)

]
. (4.6)

20See Appendix C for details.
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Aggregate compensating variation is given by integrating across the observable and unobservable consumer

level heterogeneity,

CV
(
at,pt,p

0
t

)
=

∫
CVi

(
ait,pt,p

0
t

)
f(π|d)f(d)dπdd. (4.7)

Table 4.13 shows the impact of the ban on consumer welfare under the persuasive view of advertising

(column 1) and the characteristic view (column 2). The first four rows describe the impact of the ban

on consumer welfare, row 5 gives the change in profits (inclusive of the reductions in advertising expen-

diture) and the final row gives the overall welfare effect (equal to the sum of compensating variation and

changes in profits). The difference between the persuasive and characteristic views is that in the former the

compensating variation includes the “choice distortion effect”, while in the latter this is replaced with the

“characteristics effect”.

Table 4.13: Effect of advertising ban on welfare

Persuasive view Characteristic view

Choice distortion effect (£m) 15.0
[14.2, 16.1]

Characteristic effect (£m) -23.2
[-25.4, -20.4]

Price competition effect (£m) 3.7 3.7
[3.1, 4.3] [3.1, 4.3]

Total compensating variation (£m) 18.7 -19.5
[17.7, 20.4] [-21.3, -16.7]

Change in profits (£m) -5.1 -5.1
[-6.0, -3.7] [-6.0, -3.7]

Total change in welfare (£m) 13.6 -24.6
[12.7, 15.1] [-27.0, -20.4]

Notes: Total compensating variation is equal to the sum of the choice distortion effect or characteristic effect and the
price competition effect. Total change in welfare is equal to the sum of total compensating variation and change in
profits. Profits are inclusive of savings from no advertising expenditure. Numbers are means across markets. 95%
confidence intervals are given in square brackets.

Focusing first on the persuasive view, the advertising ban benefits consumers as they no longer make

decisions distorted by advertising and because it leads to lower prices for a number of products in the

market; the “choice distortion effect” leads to a £15 million per month increase in consumer welfare and the

“price competition effect” raises consumer welfare by a further £4 million. The ban increases total consumer

welfare by £19 million per month. However, banning advertising leads to a reduction in firms’ profits of £5

million.21 Under the persuasive view of advertising, the effect of the ban is thus to raise total welfare by

around £14 million.

21See Appendix D for a breakdown by firms.

44



Under the alternative characteristic view of advertising the “choice distortion effect” is replaced by the

“characteristic effect”. The characteristic effect is influenced by the normalisation of the outside option

utility. Under our adopted normalisation, where own brand and competitor advertising enter the payoff

function of inside goods, the characteristic effect leads to a reduction in consumer welfare of £23 million.

This outweighs the price competition effect, meaning that under this view total welfare is reduced by £25

million.

4.6 Robustness

In this section we test the robustness of our results to two potential concerns. First, we use a control function

approach to correct for any potential remaining endogeneity in advertising and price. Second, we consider

firms as setting prices collusively, rather than according to Nash-Bertrand competition.

In Section 2.4 we argued that we were able to isolate plausibly exogenous variation in advertising exposure

and prices. Nevertheless, concern may remain that our estimates are contaminated by endogeneity. Our first

robustness check is therefore to repeat our analysis implementing a control function approach (see Blundell

and Powell (2004) and for multinomial discrete choice models Petrin and Train (2010)). We estimate a

control function for both advertising and price.

For advertising we estimate a first stage regression of household i’s period t advertising exposure for brand

j (denoted aijt and defined by equation 4.3), on time varying brand effects and an instrument (interacted

with brand effects). We use the average advertising price per second in period t for the stations and times

that consumer i reported watching TV as the instrument. Variation in advertising prices is likely to drive

changes in potato chip advertising. However, as potato chips are only a small part of the TV advertising

market, demand shocks to potato chip demand (not captured by our brand-time-demographic effects) are

unlikely to induce changes in advertising prices. The F-stat for a test of the (ir)relevance of this instrument

leads us to very strongly reject the hypothesis of no relationship between the advertising exposure of the

consumer and advertising prices.

As an instrument for product price, we use past prices. Product prices in the UK potato chip market

are set nationally, and over the time period of our data there is very little variation in product attributes,

products or sets of competitors, which are other commonly used instruments. Lagged prices will control for

any contemporaneous correlation between idiosyncratic demand shocks and current price. Unsurprisingly,

our price instruments are highly correlated with price (conditional on exogenous variables included in the

demand model).
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Table 4.14: Effect of advertising on demand: with control functions

Main specification With control functions

Walkers Regular Pringles KP Walkers Regular Pringles KP

% change in row brand demand if column brand market advertising is set to zero
Walkers Regular -1.60 -0.06 0.05 -2.05 -0.12 0.05

[-2.13, -1.01] [-0.14, 0.09] [-0.01, 0.15] [-2.36, -1.23] [-0.15, 0.06] [-0.01, 0.17]
Walkers Sensations -0.51 -0.14 -0.17 -0.44 -0.20 -0.21

[-0.69, -0.37] [-0.21, -0.05] [-0.24, -0.09] [-0.58, -0.32] [-0.21, -0.05] [-0.22, -0.06]
Walkers Doritos -0.24 -0.06 -0.05 -0.16 -0.14 -0.07

[-0.38, -0.06] [-0.14, 0.05] [-0.13, 0.05] [-0.28, -0.01] [-0.13, 0.05] [-0.12, 0.07]
Walkers Other 0.32 -0.05 0.13 0.41 -0.13 0.13

[0.17, 0.49] [-0.13, 0.10] [0.05, 0.24] [0.24, 0.53] [-0.14, 0.08] [0.06, 0.27]
Pringles 0.24 -4.45 0.06 0.24 -4.50 0.00

[0.09, 0.43] [-5.77, -3.49] [-0.02, 0.19] [0.08, 0.43] [-5.71, -3.41] [-0.03, 0.17]
KP -0.03 -0.12 -1.29 0.03 -0.22 -1.40

[-0.14, 0.10] [-0.20, 0.03] [-1.98, -0.78] [-0.05, 0.17] [-0.22, 0.01] [-2.10, -0.78]
Golden Wonder -1.05 -0.26 -0.81 -0.90 -0.32 -0.75

[-1.21, -0.91] [-0.35, -0.16] [-0.96, -0.67] [-1.02, -0.72] [-0.36, -0.15] [-0.82, -0.58]
Asda -0.31 -0.29 -0.33 -0.30 -0.38 -0.39

[-0.43, -0.18] [-0.37, -0.19] [-0.43, -0.19] [-0.41, -0.18] [-0.37, -0.18] [-0.42, -0.20]
Tesco -0.44 -0.35 -0.48 -0.47 -0.43 -0.53

[-0.56, -0.31] [-0.42, -0.22] [-0.59, -0.35] [-0.54, -0.32] [-0.42, -0.23] [-0.59, -0.35]
Other 0.17 -0.15 0.23 0.23 -0.24 0.21

[0.04, 0.35] [-0.25, 0.06] [0.14, 0.38] [0.12, 0.40] [-0.27, 0.03] [0.15, 0.42]

% change in own pack size demand if brand market advertising is set to zero
<150g 0.89 1.35

[0.08, 1.52] [0.05, 1.57]
150g-300g 0.34 -1.01 0.36 0.47 -0.51 0.85

[-0.58, 1.37] [-2.17, 0.03] [-0.39, 0.95] [-0.37, 1.28] [-2.30, -0.04] [-0.34, 1.02]
300g+ -2.63 -5.16 -1.79 -3.09 -5.33 -1.87

[-3.29, -1.89] [-6.58, -4.22] [-2.64, -1.16] [-3.32, -1.92] [-6.56, -4.11] [-2.72, -1.15]

% reduction in own price elasticity if brand market advertising is set to zero
<150g 1.13 1.21

[0.86, 1.44] [0.77, 1.31]
150g-300g 1.78 1.74 1.25 1.94 1.83 1.34

[1.44, 2.07] [1.38, 2.14] [0.97, 1.56] [1.33, 1.94] [1.29, 1.93] [0.87, 1.40]
300g+ 2.65 2.48 1.72 3.04 2.69 1.98

[2.14, 3.09] [2.01, 3.03] [1.30, 2.14] [1.99, 2.88] [1.82, 2.68] [1.22, 1.98]

Notes: The first row refers to the model specification. Main specification refers to the demand specification outlined
in Section 2. Control function refers to demand estimates when control functions for advertising and price are used.
For brands in the second row (Walkers Regular, Pringles and KP), in each market, we unilaterally set current brand
advertising to zero. Numbers in the first panel report the resulting percentage change in quantity demanded for all
brands. Numbers in the second panel report the percentage change in own demands for pack sizes available on food at
home purchase occasions for the brand in the second row. The third panel reports the percent reduction in the market
own price elasticity for each pack size available in the food at home segment for the brand in the second row. Numbers
are means across markets. 95% confidence intervals are given in square brackets.

We re-estimate the full model. In Table 4.14 we summarise the effect on demands that would result if

Walkers Regular, Pringles and KP, separately and unilaterally, ceased advertising in one market (month).

We report the average effect across all markets. The top panel shows percent changes in brand level demands.

The second panel shows the percentage change in demand for the smaller and larger food at home pack sizes

that would result for that brand if the flow of advertising was set to zero. The final panel reports the percent

reduction in the value of own price elasticities that would result for each pack size if the flow of advertising

was set to zero. We show the results for our main specification (mirroring the information in Tables 4.6,
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4.7 and 4.8), and for the control function specification. The numbers make clear that our findings that

advertising is partially predatory and partially cooperative, that it leads consumers to switch to larger pack

sizes and it acts to make demand more price elastic hold across both specifications. The control function

specification, like our baseline model, also predicts that an advertising ban holding prices constant leads to

a reduction in energy, saturated fat and salt purchases, but that firms respond to the ban by lowering prices.

Our main conclusions are unaffected.

In our supply model, presented in Section 3.2, we made the assumption that firms set their prices

according to a per period Nash-Bertrand game. An alternative to this assumption is that firms set prices

collusively. We test the Nash-Bertrand assumption against this alternative. To do this we recover marginal

costs under the assumption of collusive pricing. These marginal costs do not make economic sense; across

all product-months 56.5% of the costs recovered under collusive pricing are negative (while, in contrast, only

2.7% of the marginal costs recovered under the Nash-Bertrand assumption have negative point estimates

and these are not statistically significantly different from zero). This is evidence against collusive pricing

(and in favour of the alternative of Nash-Bertrand pricing). We formally test between the marginal costs

inferred under Nash-Bertrand and collusive pricing using the non-nested tests developed in Vuong (1989)

and Rivers and Vuong (2002). Under the assumption of a linear additive cost function (in size, brand and

market fixed effects) we reject the model of collusion in favour of Nash-Bertrand pricing with a statistic of

9.09, much above its 5% critical value of 1.64. The test is robust to other cost equation specifications and

always rejects collusion.

5 Summary and Conclusions

In this paper we develop a model of demand and supply in a market where firms compete over prices and

advertising. We allow advertising to affect demands in a flexible way; allowing for past advertising to affect

current demand, for the possibility of predatory or cooperative effects, and for advertising to affect consumer

price sensitivities and willingness to pay for characteristics. We apply the model to the UK potato chip

market using detailed data on households’ exposures to brand advertising and novel transaction level data

on purchases of food taken into the home and food bought on-the-go for immediate consumption. Our

estimates highlight that allowing for a flexible relationship between advertising and demand is empirically

important; we find evidence that advertising is, at least in part, cooperative, it acts to lower consumer

sensitivity to price and it lowers consumers’ willingness to pay for more healthy products. It also acts to

attract new consumers into the market and to trade up to larger pack sizes.

We use the model to simulate the impact of an advertising ban on market equilibrium. We find that

banning advertising, holding prices fixed, lowers potato chip demand, as well as total purchases of potato

47



chip calories, saturated fat and salt. However, these health gains are partially offset for two reasons. Firstly,

some firms respond to the ban by lowering prices, which leads to an offsetting increase in potato chip demand.

Secondly, some consumers switching out of the market choose to substitute to other less healthy junk foods.

In our main analysis we remain agnostic about how exactly advertising affects consumers’ underlying

utilities, instead focusing on allowing advertising to flexibly shift demand. However, to calculate the impact

of the advertising ban on consumer welfare we must take a view. We consider the change in welfare under

different assumptions about how advertising affects experience utility. We show how to evaluate consumer

welfare under the view that advertising is persuasive, acting to distort consumer decision making, leading

them to take decisions that are inconsistent with their underlying preferences. Under this view of advertising

the ban acts to raise consumer and total welfare. In the counterfactual equilibrium consumers no longer

make distorted decisions and benefit from lower prices.

In this paper our focus has been on the impact of an advertising ban on a market with a set of well

established and known brands. An interesting avenue for future research would be to consider an alternative

counterfactual; for instance how would firms’ pricing and advertising strategies respond to the introduction

of a tax. The framework we develop in this paper could potentially be used to study such a question,

although solving for the set of counterfactual equilibria would present considerable challenges. In markets

with a reasonable degree of product churn, entry and exit considerations may play a more prominent role

than in the potato chips market. In such a case, the ex ante evaluation of an advertising ban could be

extended to study the effects of a ban on industry structure. Advertising may constitute a barrier to entry,

and banning advertising may facilitate entry of competitors who would not need to invest in building up

large advertising stocks.22 While in the particular market studied in the paper, this consideration is not of

first-order concern, in other less mature markets it may be more important. This represents a promising

direction for future research.
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Dubé, J., G. Hitsch, and P. Manchanda (2005). An empirical model of advertising dynamics. Quantitative
Marketing and Economics 3, 107–144.

Eckard, W. (1991). Competition and the Cigarette TV Advertising Ban. Economic Inquiry 29, 119–133.

Erdem, T., M. Keane, and B. Sun (2008). The impact of advertising on consumer price sensitivity in
experience goods markets. Quantitative Marketing and Economics 6 (2), 139–176.

Ericson, R. and A. Pakes (1995). Markov-perfect industry dynamics: A framework for empirical work.
Review of Economic Studies 62, 53–82.

Fox, J. and A. Gandhi (2016). Nonparametric identification and estimation of random coefficients in multi-
nomial choice models. Rand Journal of Economics 47 (1), 118–139.

Fox, J., K. Kim, S. P. Ryan, and P. Bajari (2012). The rando; coefficient logit model is identified. Journal
of Econometrics 166, 204–212.

Friedman, J. (1983). Advertising and Oligopolistic Equilibrium. Bell Journal of Economics 14, 461–473.

Fudenberg and Tirole (1984). The Fat-cat Effect, The Puppy-dog Ploy, and The Lean and Hungry Look.
American Economic Review Papers and Proceedings 74, 361–366.

Gabaix, X. and D. Laibson (2006). Shrouded attributes, consumer myopia, and information suppression in
competitive markets. Quarterly Journal of Economics 121 (2), 505–540.

Glaeser, E. L. and G. Ujhelyi (2010). Regulating misinformation. Journal of Public Economics 94, 247 –
257.

Goris, J., S. Petersen, E. Stamatakis, and J. Veerman (2010). Television food advertising and the prevalence
of childhood overweight and obesity: a multi country comparison. Public Health Nutrition 13, 1003–12.

Gortmaker, S., B. Swinburn, D. Ley, R. Carter, D. Mabry, T. Finegood, T. Huang, Marsh, and M. Moodie
(2011). Changing the future of obesity: science, policy, and action. The Lancet 378, 838–847.

Johnson, J. and D. Myatt (2006). On the Simple Economics of Advertising,Marketing, and Product Design.
American Economic Review 96, 756–784.

Kahneman, D., P. P. Wakker, and R. Sarin (1997). Back to Bentham? Explorations of experienced utility.
Quarterly Journal of Economics 112 (2), 375–405.

Kaldor, N. (1950). The economic aspects of advertising. Review of Economic Studies 18, 1–27.

Lewis, R. A. and J. M. Rao (2015). The unfavorable economics of measuring the returns to advertising*.
Quarterly Journal of Economics 140, 1941–1973.

Liu, Q., T. Steenburgh, and S. Gupta (2015). The Cross-Attributes Flexible Substitution Logit: Uncovering
Category Expansion and Share Impacts of Marketing Instruments. Marketing Science 34 (1), 144–159.

Marshall, A. (1921). Industry and Trade: A study of Industrial Technique and Business Organization and
of Their Influences on the Conditions of Various Classes and Nations. MacMillan and Co.: London.

Maskin, E. and J. Tirole (1988). A theory of dynamic oligopoly, I: Overview and quantity competition with
large fixed costs. Econometrica 56, 549–569.

McClure, S., D. Laibson, G. Loewenstein, and J. Cohen (2004). Separate neural systems value immediate
and delayed monetary rewards. Science 306, 503–507.

Milyo, J. and J. Waldfogel (1999). The Effect of Price Advertising on Prices: Evidence in the Wake of 44
Liquormart. American Economic Review 89, 1081–96.

Motta, M. (2007). Advertising bans. Technical Report 205, UPF Working Papers.

50



Mullainathan, S., J. Schwartzstein, and W. J. Congdon (2012). A Reduced Form Approach to Behavioral
Public Finance. Annual Review of Economics 4 (17), 1–30.

National Academies, T. (2006). Committee on Food Marketing and the Diets of Children and Youth report
on Food marketing to children and youth: threat or opportunity? Technical report, National Academies
Press, Washington, DC.

Nelson, P. (1995). Information and consumer behavior. Journal of Political Economy 78, 311–329.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Econometrica 69 (2), 307–342.

Ofcom (2007). Television advertising of food and drink products to children: Final statement. London:
Ofcom.

Petrin, A. and K. Train (2010). A Control Function Approach to Endogeneity in Consumer Choice Models.
Journal of Marketing Research XLVII, 3–13.

Qi, S. (2013). The impact of advertising regulation on industry: The cigarette advertising ban of 1971. The
RAND Journal of Economics 44 (2), 215–248.

Rao, A. and E. Wang (2015). Demand for ‘healthy’ products: false claims in advertising.

Rayner, M., P. Scarborough, A. Boxer, and L. Stockley (2005). Nutrient profiles: Development of final
model. Technical report, Food Standards Agency: London.

Rayner, M., P. Scarborough, and T. Lobstein (2009). The UK Ofcom Nutrient Profiling Model. Technical
report, Nuffield Department of Population Healthy, Oxford University.

Rivers, D. and Q. Vuong (2002). Model Selection tests for nonlinear Dynamic Models. Econometrics
Journal 5, 1–39.

Robinson, J. (1933). Economics of Imperfect Competition. MacMillan and Co., London.

Rojas, C. and E. Peterson (2008). Demand for Differentiated Products: Price and Advertising Evidence
from the U.S. beer Market. International Journal of Industrial Organization 26, 288–307.

Sass, T. and D. Saurman (1995). Advertising Restrictions and Concentration: The Case of Malt Beverages.
Review of Economics and Statistics 77, 66–81.

Schmalensee, R. (1983). Advertising and Entry Deterrence: An Exploratory Model. Journal of Political
Economy 91, 636–53.

Shapiro, B. (2015). Positive Spillovesr and Free Riding in Advertising of Prescription Pharmaceuticals: The
Case of Antidepressants.

Small, K. and H. Rosen (1981). Applied welfare economics of discrete choice models. Econometrica 49,
105–130.

Sovinsky-Goeree, M. (2008). Limited Information and Advertising in the US Personal Computer Industry.
Econometrica 76 (5), 1017–1074.

Spiegler, R. (2006). Competition over agents with bounded rationality. Theoretical Economics I , 207–231.

Stigler, G. (1961). The economics of information. Journal of Political Economy 69, 213–225.

Stigler, G. and G. Becker (1977). De gustibus non est disputandum. American Economic Review 67, 76–90.

Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University Press.

Vuong, Q. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 42,
307–333.

WHO (2010). Set of recommendations on the marketing of foods and non-alcoholic beverages to children.
Geneva: World Health Organization.

51



Appendices for “The effects of banning advertising in junk food

markets”

Pierre Dubois, Rachel Griffith and Martin O’Connell

December 13, 2016

1



A Dynamic oligopoly competition in prices and advertising

In Section 3.2 of the paper we argue that because i) prices do not directly affect future demand or the evolution

of the state variables and ii) we observe the advertising state variables, optimal price are determined by a

static equilibrium pricing condition, and for the purposes of considering an advertising ban, we can restrict

our attention to this optimality condition. Here we outline an example of a fully dynamic oligopoly game

which implies additional optimality conditions (not required in our case) that will characterise dynamic

equilibrium advertising strategies. This is one example of many games that is consistent with the validity

of focusing only on the price first order conditions for our counterfactual of considering an advertising ban.

We abstract from explicitly considering entry and exit for notational simplicity, but as will become clear,

identification of marginal costs of products present in the market is independent of whether we allow for

entry and exit of firms or products.

Before turning to discuss a fully dynamic oligopoly game in advertising we discuss some reduced form

evidence supporting no dynamics in prices.

A.1 Omitted unobserved heterogeneity or habits?

In models of habit formation (e.g Meghir and Weber (1996)) intertemporal nonseparabilities result in past

consumption having a causal impact on current consumption. We consider the reduced form relationship

between current quantity purchased and past purchase decisions by estimating the reduced form regression:

qit =

8∑
k=1

βkwk
it + τt + ci + eit, (1.1)

where qit is the quantity of potato chips household i purchased in week t, and wk
it are dummy variables equal

to one if the last time household i purchased potato chips was k weeks ago, τt are week effects and ci are

household fixed effects.

The coefficient βk can be interpreted as capturing habits, i.e. the effect of past purchases on the quantity

of potato chips purchased today, conditional on unobserved heterogeneity and aggregate time effects, with

the baseline being not purchasing potato chips any time in the last two months. We estimate this separately

by demographic group.

We first estimate equation (1.1) without the unobserved heterogeneity term, ci. The estimated coefficients

in Table A.1 shows considerable evidence of a strong association between past purchase behaviour and current

behaviour; having purchased potato chips recently is associated with purchasing more potato chips now.
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However, as Heckman (1981) and others have argued, this association seen in Table A.1 could be driven

by omitted unobserved heterogeneity, reflecting spurious state dependence, rather than structural state

dependence. Therefore, in Table A.2 we include ci, and see that once we include heterogeneity in the form

of household fixed effects the relationship between recent past purchases of potato chips and the current

purchase level is very small, and almost everywhere not statistically different from zero.
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Table A.1: Relationship between current and past purchases: no unobserved preference heterogeneity

Dep var: No kids, No kids, No kids, No kids, No kids, Pensioners Kids, Kids, Kids, Kids, Kids,
quantity high income, medium income, low income, high-medium income, low income, high income, medium income, low income, high-medium income, low income,
purchased high skill high skill high skill low skill low skill high skill high skill high skill low skill low skill

Purchased:

1 week ago (β1) 0.101∗∗∗ 0.135∗∗∗ 0.128∗∗∗ 0.113∗∗∗ 0.150∗∗∗ 0.0733∗∗∗ 0.137∗∗∗ 0.165∗∗∗ 0.161∗∗∗ 0.151∗∗∗ 0.179∗∗∗
(0.00266) (0.00407) (0.00447) (0.00481) (0.00447) (0.00342) (0.00487) (0.00627) (0.0106) (0.00986) (0.00772)

2 weeks ago (β2) 0.0836∗∗∗ 0.0905∗∗∗ 0.104∗∗∗ 0.0850∗∗∗ 0.112∗∗∗ 0.0610∗∗∗ 0.110∗∗∗ 0.133∗∗∗ 0.133∗∗∗ 0.121∗∗∗ 0.138∗∗∗
(0.00348) (0.00494) (0.00555) (0.00595) (0.00543) (0.00427) (0.00552) (0.00724) (0.0119) (0.0105) (0.00865)

3 weeks ago (β3) 0.0641∗∗∗ 0.0639∗∗∗ 0.0694∗∗∗ 0.0613∗∗∗ 0.0854∗∗∗ 0.0399∗∗∗ 0.0850∗∗∗ 0.110∗∗∗ 0.102∗∗∗ 0.0875∗∗∗ 0.103∗∗∗
(0.00427) (0.00578) (0.00620) (0.00687) (0.00665) (0.00475) (0.00635) (0.00879) (0.0135) (0.0116) (0.00960)

4 weeks ago (β4) 0.0519∗∗∗ 0.0443∗∗∗ 0.0567∗∗∗ 0.0396∗∗∗ 0.0749∗∗∗ 0.0354∗∗∗ 0.0730∗∗∗ 0.0722∗∗∗ 0.0878∗∗∗ 0.0713∗∗∗ 0.0776∗∗∗
(0.00465) (0.00632) (0.00747) (0.00783) (0.00778) (0.00529) (0.00731) (0.00988) (0.0164) (0.0128) (0.0114)

5 weeks ago (β5) 0.0483∗∗∗ 0.0280∗∗∗ 0.0403∗∗∗ 0.0381∗∗∗ 0.0481∗∗∗ 0.0299∗∗∗ 0.0502∗∗∗ 0.0599∗∗∗ 0.0528∗∗ 0.0545∗∗∗ 0.0489∗∗∗
(0.00561) (0.00611) (0.00792) (0.00936) (0.00832) (0.00579) (0.00857) (0.0112) (0.0172) (0.0144) (0.0124)

6 weeks ago (β6) 0.0164∗∗ 0.0272∗∗∗ 0.0292∗∗∗ 0.0212∗ 0.0341∗∗∗ 0.0161∗∗ 0.0490∗∗∗ 0.0536∗∗∗ 0.0834∗∗∗ 0.0176 0.0422∗∗
(0.00511) (0.00766) (0.00843) (0.00845) (0.00885) (0.00537) (0.00998) (0.0133) (0.0235) (0.0159) (0.0145)

7 weeks ago (β7) 0.0262∗∗∗ 0.0208∗∗ 0.0268∗∗ 0.0135 0.0450∗∗∗ 0.0217∗∗∗ 0.0225∗ 0.0362∗∗ 0.0257 0.0185 0.0231
(0.00576) (0.00797) (0.00946) (0.00904) (0.0113) (0.00629) (0.00981) (0.0138) (0.0242) (0.0163) (0.0155)

8 weeks ago (β8) 0.0187∗∗ 0.0414∗∗∗ 0.0248∗ 0.0201 0.0332∗∗ 0.0144∗ 0.0237∗ 0.00924 0.0208 0.0171 0.0142
(0.00661) (0.0107) (0.00971) (0.0108) (0.0124) (0.00637) (0.0120) (0.0126) (0.0280) (0.0188) (0.0153)

Time-group effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household effects No No No No No No No No No No No
Number observations 20011 11405 10985 8867 13140 11995 18143 12564 6264 13422 13036

Notes: Each column is a separate regression of the quantity of potato chips a household purchases in a week (at home and on-the-go) on eight indicator variables indicating
whether the household purchased any potato chips in the previous week, two weeks ago, etc. for each of the previous 8 weeks. Household fixed effects are not included. Standard
errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗, p < 0.001.

Table A.2: Relationship between current and past purchases: unobserved preference heterogeneity included

Dep var: No kids, No kids, No kids, No kids, No kids, Pensioners Kids, Kids, Kids, Kids, Kids,
quantity high income, medium income, low income, high-medium income, low income, high income, medium income, low income, high-medium income, low income,
purchased high skill high skill high skill low skill low skill high skill high skill high skill low skill low skill

Purchased:

1 week ago (β1) 0.00247 -0.00713 0.00257 0.00162 0.00774 -0.00726 0.00941 0.0127 0.0311∗ -0.000953 0.0104
(0.00433) (0.00635) (0.00677) (0.00728) (0.00739) (0.00500) (0.00764) (0.0115) (0.0150) (0.0122) (0.0106)

2 weeks ago (β2) 0.0103∗ -0.00116 0.0179∗ 0.00733 0.0102 0.00343 0.0186∗ 0.0231∗ 0.0340∗ 0.0117 0.0197
(0.00435) (0.00621) (0.00693) (0.00759) (0.00742) (0.00482) (0.00788) (0.0115) (0.0159) (0.0121) (0.0108)

3 weeks ago (β3) 0.00802 -0.00554 0.00398 0.00349 0.00828 -0.00427 0.0129 0.0277∗ 0.0211 0.00493 0.0138
(0.00447) (0.00654) (0.00693) (0.00846) (0.00808) (0.00523) (0.00756) (0.0115) (0.0151) (0.0122) (0.0122)

4 weeks ago (β4) 0.00906 -0.00871 0.00571 -0.00429 0.0122 -0.00129 0.0161 0.00959 0.0195 0.0103 0.00715
(0.00483) (0.00698) (0.00785) (0.00884) (0.00829) (0.00554) (0.00828) (0.0115) (0.0181) (0.0146) (0.0134)

5 weeks ago (β5) 0.0152∗∗ -0.0130∗ -0.000740 0.00431 -0.00263 -0.00157 0.00567 0.0113 0.00163 0.00804 -0.00417
(0.00509) (0.00618) (0.00855) (0.0103) (0.00834) (0.00587) (0.0101) (0.0123) (0.0198) (0.0141) (0.0128)

6 weeks ago (β6) -0.00757 -0.00745 -0.00335 -0.00404 -0.00664 -0.0102 0.0141 0.0174 0.0410 -0.0182 -0.0000541
(0.00480) (0.00809) (0.00788) (0.00981) (0.0111) (0.00551) (0.0106) (0.0135) (0.0222) (0.0160) (0.0150)

7 weeks ago (β7) 0.00655 -0.00674 0.000714 -0.00709 0.0105 -0.00155 -0.00457 0.00828 -0.00405 -0.0117 -0.0103
(0.00611) (0.00843) (0.00905) (0.00903) (0.0109) (0.00552) (0.0109) (0.0154) (0.0207) (0.0159) (0.0163)

8 weeks ago (β8) 0.00464 0.0184 0.00755 0.00454 0.00485 -0.00345 -0.0000289 -0.0115 0.00454 -0.00577 -0.00901
(0.00606) (0.0105) (0.00997) (0.0112) (0.0127) (0.00597) (0.0114) (0.0120) (0.0226) (0.0208) (0.0175)

Time-group effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 20011 11405 10985 8867 13140 11995 18143 12564 6264 13422 13036

Notes: Each column is a separate regression of the quantity of potato chips a household purchases in a week (at home and on-the-go) on eight indicator variables indicating
whether the household purchased any potato chips in the previous week, two weeks ago, etc. for each of the previous 8 weeks. Household fixed effects are included. Standard
errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗, p < 0.001.
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A.2 A fully dynamic oligopoly game in advertising

We model demand as depending on individual stocks of advertising exposure, ait = (ai1t, ..., aiBt) and collect

the vectors of all consumer specific advertising states into at. Firms do not directly choose at, as this depends

also on the TV watching behaviour of households. We denote by ebt the vector of advertising choices made

by a firm for brand b at time t. This includes how many adverts to air on each station on each time-slot.

We denote the cost of this advertising by C(ebt).

Before describing the details of the dynamic oligopoly game, we start by writing the objective function of

a firm as a function of strategic variables, prices and advertising, and the vectors of state variables. The firm

owning product j chooses the product’s price, pjt, and advertising, eb(j)t in each period t. The intertemporal

variable profit of firm f at period 0 is:

∑∞

t=0
βt

[∑
j∈Jf

(pjt − cjt) sj (at,pt, τt)Mt −
∑

b∈Bf
C(ebt)

]
, (A.1)

As outlined in Section 4.1.3 of the main paper we assume aibt = δaibt−1 + aibt where aibt denotes the

households current period advertising exposure. aibt will be a function of ebt as well as the household’s TV

watching behaviour. The stock aibt will be a function of current and past advertising choices ebt, ebt−1, ....

Suppose that at each period t all firms observe the total market size, Mt, the vector of all firms’ marginal

costs ct, and the aggregate demand shocks τt. Denote the information set θt = (Mt, ct, τt). Suppose that

firms form symmetric expectations about future shocks according to the assumption: Marginal costs and

market size follow independent Markov processes such that for all t, Et [cjt+1] = cjt, Et [Mt+1] = Mt and

Et [τt+1] = τt.

The majority of the empirical literature restricts attention to pure Markov strategies (see, inter alia,

Ryan (2012), Sweeting (2013) and Dubé et al. (2005)). This restricts firms’ strategies to depend only on

payoff relevant state variables, (at−1, θt). For each firm f , a Markov strategy σf is a mapping between the

state variables (at−1, θt), and the firm f decisions
{
pjt}j∈Jf {ebt

}
b∈Bf

, which consist of choosing prices and

advertising expenditures for the firm’s own products (σf (at−1, θt) = ({pjt}j∈Jf {ebt}b∈Bf )).

There is no guarantee that a Markov Perfect Equilibrium (MPE) in pure strategies of this dynamic game

exists. In a discrete version of this game, existence of a symmetric MPE in pure strategies follows from

the arguments in Doraszelski and Satterthwaite (2003, 2010), provided that we impose an upper bound on

advertising strategies. Ericson and Pakes (1995) and Doraszelski and Satterthwaite (2003) provide general

conditions for the existence of equilibria in similar games, but as our model set up differs, the conditions

cannot be directly applied in our case. If we assume the technical conditions for the existence of a subgame

5



perfect Markov Perfect Equilibrium of this game are satisfied, we can use necessary conditions to characterise

an equilibrium (Maskin and Tirole (2001)). However, we do not need to assume that an equilibrium is unique,

and indeed it is perfectly possible that this game has multiple equilibria.

In this dynamic oligopoly game, each firm f makes an assumption on the competitors’ strategy profiles

denoted σ−f , where σ−f (at−1, θt) = (σ1 (at−1, θt) , .., σf−1 (at−1, θt) , σf+1 (at−1, θt) , .., σF (at−1, θt)). Equi-

librium decisions are generated by a value function, π∗f (., .), that satisfies the following Bellman equation

π∗f (at−1, θt) = max
({pjt}j∈Jf ,{ebt}b∈Bf )

{ ∑
j∈Jf

(pjt − cjt) sj (at,pt, τt)Mt −
∑
b∈Bf

C(ebt) + βEt

[
π∗f (at, θt+1)

] }
,

where π∗f (at, θt+1) is the next period discounted profit of firm f , given the future advertising states. The

Bellman equation is conditional on a specific competitive strategy profile σ−f . A MPE is then a list of

strategies, σ∗f for f = 1, .., F , such that no firm deviates from the action prescribed by σ∗f in any subgame

that starts at some state (at−1, θt).

Assuming that the technical conditions for the profit function to be differentiable in price and have a

single maximum are satisfied, we can use the first order conditions of firm f profit with respect to prices for

each j ∈ Jf :

sj (at,pt, τt) +
∑

j′∈Jf

(pj′t − cj′t)
∂sj′ (at,pt, τt)

∂pjt
= 0space (A.2)

We can identify price-cost margins using the condition (A.2) provided this system of equations is invert-

ible, which will be the case if goods are “connected substitutes” as in Berry and Haile (2014). Another set

of conditions for the optimal choice of advertising flows exists and characterises the equilibrium relationship

between advertising flows, prices and all state variables including past advertising. We however do not need

to use such a condition for identifying marginal costs since the price first order conditions are sufficient.

Thus, we do not need to impose differentiability of the profit function with respect to advertising, nor conti-

nuity, we only need to use the necessary first order condition on price, which depends on the observed state

vector at. In addition, if we allowed for entry and exit of firms we still would be able to identify marginal

costs using equation (A.2); entry and exit would change optimal advertising and the set of the firms in the

market (both of which we observe), but it would not change the form of the price first order condition for

active firms.

As shown by Dubé et al. (2005) and Villas-Boas (1993), this type of dynamic game can give rise to

alternating strategies or pulsing strategies in advertising, corresponding to each MPE profile σ. However, the

identification of marginal costs, cjt, does not depend on the equilibrium value function π∗f for a given level of

observed optimal prices and advertising (pt, et). First order conditions will depend on equilibrium strategies

6



only through observed prices and advertising decisions, and marginal costs will simply be the solution of

the system of equations (A.2). Therefore we can identify marginal costs without making assumptions about

the uniqueness of dynamic equilibria, whether firms’ value function are differentiable, or whether the same

equilibria is played in each market.

B Demand linkages between segments

We denote the set of potato chip products available for food at home purchase occasions as Ωin and the set

available for food on-the-go purchase occasions as Ωout. The two sets of products are disjoint; Ωin∩Ωout = ∅.

We denote the set of households we observe making decisions on food at home purchase occasions by Iin

and the set of individuals we observe making decisions for food on-the-go purchase occasions by Iout. The

individuals who we observe making food on-the-go decisions are drawn from the households that we observe

making food at home decisions (although the individuals need not be the household main shopper).

We allow for the possibility that the demands of individuals on food on-the-go purchase occasions are

influenced by recent food at home purchases made by the household the individual belongs to. Specifically we

define a dummy variable indicating whether the household the consumer belongs to was observed purchasing

potato chips on a food at home purchase occasion in the preceding week – we denote this variable by fiit.

We include this variable in the payoff function of potato chip products targeted at on-the-go consumption.

This allows for the possibility that a recent food at home purchase lowers (or increases) the probability an

individual purchases potato chips while on-the-go. The payoff functions associated with the various purchase

options are then:

v̄ijt =α1ipjt + ψ1ixj+[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
+ ξib(j) + τdb(j)t + εijt ∀j ∈ Ωin

v̄ijt =α1ipjt + ψ1ixj + φifiit+[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)]
+ ξib(j) + τdb(j)t + εijt ∀j ∈ Ωout

v̄i0t =ξi0j + ψ1ix0 + τd0t + εi0t

v̄i0t =εi0t,

7



and the purchase decision of consumers in each market segment is then:

∀ i ∈ Iin : select j if v̄ijt ≥ v̄ij′t ∀ j′ ∈ (Ωin ∪ {0, 0})

∀ i ∈ Iout : select j if v̄ijt ≥ v̄ij′t ∀ j′ ∈ (Ωout ∪ {0, 0})

C Expected utility under characteristics view of advertising

Our model specification leads, under the characteristic view of advertising, to expected utility given (up to

an additive constant) by:

Wi (ait,pt) = ln

[
exp (ξi0j + ψ1ix0 + τd0t) +

∑
j>0

exp

(
α1ipjt + ψ1ixj + ξib(j) + τdb(j)t+

[
λiaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j) + ρi

(∑
l 6=b(j)

ailt

)])]

An alternative to our model specification is:

ṽijt =α1ipjt + ψ1ixj +
[
λ̃iaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j)

]
+ ξib(j) + τdb(j)t + εijt (C.1)

ṽi0t =ξi0j + ψ1ix0 + τd0t + ρ̃i

(∑
l
ailt

)
+ εi0t (C.2)

ṽi0t =ρ̃i

(∑
l
ailt

)
+ εi0t. (C.3)

Note:

ṽijt − ṽi0t =α1ipjt + ψ1ixj +
[
λ̃iaib(j)t − ρ̃i

(∑
l
ailt

)
+ α2iaib(j)tpjt + ψ2iaib(j)tnb(j)

]
+ ξib(j) + τdb(j)t + (εijt − εi0t)

ṽi0t − ṽi0t =ξi0j + ψ1ix0 + τd0t + (εi0t − εi0t)

Setting λ̃i = λi − ρi and ρ̃i = −ρi shows that ṽijt − ṽi0t = v̄ijt − v̄i0t, while clearly ṽi0t − ṽi0t = v̄i0t − v̄i0t.

Hence this alternative specification yields observationally equivalent demand to our main specification.

8



However, expected utility under equations (C.1)-(C.3) is given by

W̃i (ait,pt) = ln

[∑
j>0 exp

[
α1ipjt + ψ1ixj +

[
λ̃iaib(j)t + α2iaib(j)tpjt + ψ2iaib(j)tnb(j)

]
+ ξib(j) + τdb(j)t

]

+ exp

[
ξi0j + ψ1ix0 + τd0t + ρ̃i

(∑
l
ailt

)]
+ exp

[
ρ̃i

(∑
l
ailt

)]]

= ln

[∑
j>0 exp

[
α1ipjt + ψ1ixj + ξib(j) + τdb(j)t +

[
λ̃iaib(j)t + α2daib(j)tpjt + ρi

(∑
l
ailt

)
+ ψ2daib(j)tnb(j)

]]

+ exp

[
ξi0j + ψ1ix0 + τd0t + ρ̃i

]]
− ρi

(∑
l
ailt

)
= Wi (ait,pt)− ρi

∑
l
ailt

Therefore the two specifications, giving rise to identical demand, lead to different welfare conclusions. Under

the characteristic view of advertising, welfare is not identified without an assumption about whether com-

petitor advertising is included in inside product utilities or whether total advertising is included in outside

option utility.

D Additional Tables

D.1 Coefficients Estimates
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D.2 Price elasticities
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D.3 Marginal costs estimates

Table D.6: Marginal costs

Price (£) Cost (£) Margin

Selected food at home products
Walkers Regular:150-300g 1.11 0.32 0.72

[0.28, 0.36] [0.68, 0.75]
Walkers Regular:300g+ 2.60 1.61 0.38

[1.56, 1.65] [0.37, 0.40]
Walkers Sensations:150-300g 1.26 0.09 0.93

[0.04, 0.15] [0.89, 0.97]
Walkers Sensations:300g+ 2.79 1.36 0.51

[1.29, 1.43] [0.49, 0.54]
Walkers Doritos:150-300g 1.30 0.15 0.91

[0.10, 0.20] [0.87, 0.95]
Walkers Doritos:300g+ 2.58 1.23 0.53

[1.17, 1.28] [0.51, 0.55]
Walkers Other:<150g 1.20 0.07 0.95

[0.02, 0.12] [0.90, 0.98]
Walkers Other:150-300g 2.48 1.13 0.54

[1.07, 1.19] [0.52, 0.57]
Walkers Other:300g+ 1.24 0.08 0.94

[0.03, 0.14] [0.89, 0.98]
Pringles:150-300g 1.77 0.51 0.71

[0.46, 0.58] [0.68, 0.74]
Pringles:300g+ 3.17 1.68 0.47

[1.61, 1.75] [0.45, 0.49]

Food on-the-go products
Walkers Regular:34.5g 0.45 0.27 0.39

[0.26, 0.28] [0.37, 0.42]
Walkers Regular:50g 0.64 0.44 0.31

[0.42, 0.45] [0.29, 0.33]
Walkers Sensations:40g 0.60 0.41 0.33

[0.39, 0.42] [0.31, 0.35]
Walkers Doritos:40g 0.54 0.36 0.34

[0.34, 0.37] [0.32, 0.37]
Walkers Other:<30g 0.45 0.28 0.38

[0.27, 0.29] [0.36, 0.40]
Walkers Other:30g+ 0.61 0.42 0.31

[0.41, 0.43] [0.29, 0.33]
KP:50g 0.51 0.38 0.27

[0.37, 0.38] [0.25, 0.28]
Golden Wonder:<40g 0.39 0.27 0.31

[0.26, 0.27] [0.29, 0.33]
Golden Wonder:40g+ 0.71 0.57 0.21

[0.55, 0.58] [0.19, 0.22]
Other:<40g 0.49 0.36 0.26

[0.35, 0.37] [0.25, 0.28]
Other:40g+ 0.66 0.52 0.21

[0.51, 0.53] [0.20, 0.22]

Notes: The top panel gives numbers for the food at home segment for the set of products produced by the two firms that
advertise most. The bottom panel gives numbers for the food on-the-go segment. Margins are defined as (p−mc)/p.
Numbers are means across markets. 95% confidence intervals are given in square brackets.
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D.4 Profits

Table D.7 disaggregates the impact of the ban by firm and reports the average impact across months. The

first panel reports pre ban numbers, showing the average price, total quantity of potato chips sold and total

variable profits. The second panel details the percent change in quantity sold and variable profits resulting

from the ban if firms do not re-optimize their prices in response. The final panel shows the impact on prices,

quantity and variable profits following the ban in equilibrium, when firms are allowed to re-optimize prices.
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