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Abstract

We investigate an optimal control problem with an averaging cost. The asymp-
totic behavior of the values is a classical problem in ergodic control. To study the
long run averaging we consider both Cesàro and Abel means. A main result of the
paper says that there is at most one possible accumulation point - in the uniform
convergence topology - of the values, when the time horizon of the Cesàro means
converges to infinity or the discount factor of the Abel means converges to zero.
This unique accumulation point is explicitly described by representation formulas
involving probability measures on the state and control spaces. As a byproduct we
obtain the existence of a limit value whenever the Cesàro or Abel values are equicon-
tinuous. Our approach allows to generalise several results in ergodic control, and
in particular it allows to cope with cases where the limit value is not constant with
respect to the initial condition.

Introduction
Let us consider the following control system

x′(t) = f(x(t), α(t)), α(t) ∈ A, t ∈ R,(1)

with its unique solution x(t, x0, α) such that x(0) = x0. Here f : Rd×A 7→ Rd is supposed
to be bounded and Lipschitz, and A is some compact metric space. We will denote by A
the set of all measurable controls α : R 7→ A.

Given a bounded cost function l : Rd × A 7→ R, we consider two ways of averaging
the cost along the trajectory x(t, x0, α), t ≥ 0,

(Cesàro Mean)
1

T

∫ T

0
l(x(s, x0, α), α(s))ds,

∗This work has been partially supported by the French National Research Agency ANR-10-BLAN
0112.
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(Abel Mean) λ
∫ +∞

0
e−λsl(x(s, x0, α), α(s))ds,

where λ > 0 and T > 0. This leads to the definition of the following value functions:

vT (x0) :=
1

T
inf
α∈A

∫ T

0
l(x(s, x0, α), α(s))ds,(2)

uλ(x0) := λ inf
α∈A

∫ +∞

0
e−λsl(x(s, x0, α), α(s))ds.(3)

The existence of the limit of vT , as T → +∞, and of uλ, as λ→ 0+, is a crucial problem
studied in a huge literature: We refer the reader to [1, 2, 3, 10, 17, 18, 19] and the
references therein.

The works in ergodic control deal with sufficient conditions proving the existence of
a limit - in the uniform convergence topology - which is constant, i.e., which does not
depend on the initial condition x0. These studies use different methods. For instance, the
PDE method which uses the possibility of characterising the values as the unique viscosity
solution of an associated Hamilton-Jacobi-Bellman equation. A typical assumption for
this approach is that of coercivity of the Hamiltonian.

In the present paper we manage to consider the much harder case, where the limit is
not necessarily constant (cf also [19, 18]). Our main aim is to provide a representation
formula of the cluster points in the uniform convergence topology of vT , as T → +∞,
and of uλ, as λ→ 0+. As we will prove, there is only one possible cluster point, and the
problems of the convergence of vT and of uλ will be reduced to the relative compactness of
the families (vT (·))T>0 and (uλ(·))λ>0. We also stress that in [18] the authors have proved
that, if vT converges uniformly to some function then uλ converges uniformly to the same
function and conversely.

In the present work we establish two representations formulas. The first one corre-
sponds to the case, where the cost function l does not depend on the control variable,
and it is based on invariant measures for differential inclusion [4, 5]. It relates to similar
questions for discrete time systems [20, 21, 22]. The second representation formula is
well adapted to the more general case (x, a) 7→ l(x, a) of a cost function l depending also
on the control variable, but it is based on probability measures which description with
respect to the dynamical system is more involved (cf [14, 15, 16]).

Both representation formulas have a common structure: For any initial condition x0
the only possible cluster point u?(·) is the supremum of all continuous bounded functions
w(·) satisfying the following two conditions

i) t ∈ [0,+∞) 7→ w(x(t, x0, α)) is nondecreasing, for all (x0, α) ∈ X ×A,
ii)

∫
X
w(x)dµ(x, a) ≤

∫
X×A

l(x, a)dµ(x, a), for all µ ∈ W ,

where W is a suitable set of probability measure on X ×A and X ⊂ Rd is a compact set
which is supposed to be invariant with respect to the controlled equation (1).

The difference between both representation formulas concerns relation ii): When the
cost function l does not depend on the control variable, ii) reduces to

ii)
∫
X
w(x)dµ(x) ≤

∫
X
l(x)dµ(x), for all µ ∈M,
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where M is the set of invariant measures of the differential inclusion. In the general
case l(x, a), the set W of probability measures is defined through infinitely many linear
equalities.

Both formulas crucially require the existence of a compact set X ⊂ Rd invariant for
(1) and that the cost l is continuous and bounded (throughout the paper we will suppose
for sake of simplicity that the cost l belongs to [0, 1]). Because the ideas of the proofs
of the representations formulas for Abel and the Cesàro means are very similar, we have
chosen to prove the first representation formula for the Cesàro means and the second one
for the Abel means.

An important consequence of the uniqueness of the (possible) accumulation point of
the values is the possibility to deduce the convergence of the values from an equicontinuity
condition on the families (vT (·))T>0 and (uλ(·))λ>0. We discuss several nonexpansivity
conditions (see [19]) which allows to obtain the equicontinuity and, thus, the convergence
of the values (cf [11] for an extension to stochastic control).

Let us now describe how the paper is organised. In Section 1 we recall preliminaries and
notations. Section 2 is devoted to the first representation formula with invariant measures
in the case of a cost independent of the control. Section 3 concerns the general case of
a cost possibly depending on the control. In Section 4 we compare briefly both obtained
representation formulas. In Section 5 we discuss potential applications of the formulas
and several examples. An Appendix concerning occupational measures is provided at the
end of the paper.

1 Preliminaries, Assumptions and Notations

For any metric space U we will denote by ∆(U) the set of Borel probability measures on
U and by C(U) the set of continuous functions ϕ : U 7→ R. The notation B(U) stands
for the Borel σ-algebra on U .

We will suppose throughout the article that

X ⊂ Rd is compact and invariant by (1).(4)

Recall that this invariance means that, for all x0 ∈ X and all measurable control α ∈ A,
the trajectory t 7→ x(t, x0, α) always remains in X.

We now describe the assumptions made on the coefficients f and l. Choosing as control
set A a compact metric space, we suppose:

The function l : Rd × A −→ [0, 1] is continuous;
The function f : Rd × A −→ Rd is continuous;
∃L ≥ 0, ∀(y, y′) ∈ R2d,∀a ∈ A, ‖f(y, a)− f(y′, a)‖ ≤ L‖y − y′‖;
The set f(x,A) is convex, for all x ∈ X

(5)

Let M ∈ R denote a real such that sup(x,a)∈X×A |f(x, a)| < M . Under assumption (5)
it is well known that, for all control α ∈ A and all x0 in X, there is a unique solution
x(., x0, α) := x(·) of (1), defined over (−∞,+∞) and satisfying x(0) = x0. We also recall
that, for each positive T and λ, the value functions vT and uλ defined by (2) and (3),
respectively, are continuous on X.
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Given T > 0, x0 ∈ Rd and α ∈ A, we associate with the solution x(., x0, α) the
following occupational measure µx0,αT ∈ ∆(X) defined by

µx0,αT (Q) :=
1

T
meas{s ∈ [0, T ], x(s, α, x0) ∈ Q }, Q ∈ B(X),

where meas denotes the Lebesgue measure on R. The measure µx0,αT can be equivalently
defined by the relation∫

X
ϕdµx0,αT =

1

T

∫ T

0
ϕ(x(s, x0, α))ds, ϕ ∈ C(X).

We observe that µx0,αT ∈ ∆(X), where the space of probability measures ∆(X) over the
compact set X is compact with respect to the topology generated by the weak convergence
of measures. In the Appendix (Section 6) a description of cluster points of occupational
measures is discussed.

2 First Representation Formula

In this section we first investigate the simpler case of a running cost l(x, a) = l(x) which
does not depend on the control variable a. In this case the cost depends only on the tra-
jectory x(·, x0, α), and this makes it more convenient to use a formulation of the problem
in terms of differential inclusions.

We know that under assumptions (5), any solution x(·) = x(·, x0, α) of (1) is a solution
of the differential inclusion

x′(t) ∈ F (x(t)), x(0) = x0,(6)

with
F (x) := {f(x, a), a ∈ A}.

Conversely, for any absolutely continuous function x(·) which solves (6), there exists a
control α ∈ A such that x(·) = x(·, x0, α). We refer the reader to [7, 9].

For x0 in X, we denote by F(x0) the set of absolutely continuous solution of (6) with
initial condition x0, i.e., the collection of all absolutely continuous functions x : R −→ X
such that x(0) = x0 and x′(t) ∈ F (x(t)), a.e. Then we have:

vT (x0) =
1

T
inf

x(·)∈F(x0)

∫ T

0
l(x(s))ds, uλ(x0) = λ inf

x(·)∈F(x0)

∫ +∞

0
e−λsl(x(s))ds.

One advantage of the differential inclusion is its nice topological structure. Define by
F the set of all solutions of (6) in X, i.e. F = ∪x0∈XF(x0). We endow F with the uniform
topology

‖x‖∞ := sup
t∈R
|x(t)e−M |t||

(where M > sup(x,a)∈X×A |f(x, a)|). Thanks to assumption (5) the set F endowed with
this uniform norm is a compact metric space (cf Theorem 3.5.2 in [9]).

We also introduce the reachable map in time t associated with (1) (or (6)):

Rt

∣∣∣∣∣ X → X
x0 7→ {x(t, x0, α), α ∈ A} = {x(t), x(·) ∈ F(x0) }.
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2.1 Preliminaries on Invariant Measures

Let us recall some useful notions that will be used frequently in what follows (cf [4]).
We consider the following flow Φ on F defined for every t ∈ R by

Φt

∣∣∣∣∣ F → F
x(·) 7→ x(·+ t),

and we recall that a Borelian probability measure p ∈ ∆(F) is invariant for Φ, if and only
if

p(Φt(Γ)) = p(Γ), for all Γ ∈ B(F), t ∈ R.

Definition 2.1 Given p ∈ ∆(F), we associate it with the projected probability measure
µ ∈ ∆(X) defined by:

µ(B) := p(< B >), B ∈ B(X), where < B >:= {x(·) ∈ F , x(0) ∈ B}.

The measure µ is equivalently defined by the relation
∫
X ϕ(x)dµ(x) =

∫
F ϕ(x(0))dp(x(·)), ϕ ∈

C(X).
If p is an invariant probability measure for Φ, then we say that the projected measure

µ is a projected invariant measure on X. We denote by M the set of projected invariant
measures on X.

Let us point out that M is a closed convex set of probability measures on X.

2.2 A representation Formula for Cesàro Means

Definition 2.2 We define H as the set of continuous functions w : X → [0, 1] satisfying
the following two conditions:

i) t ∈ [0,+∞) 7→ w(x(t, x0, α)) is nondecreasing, for all (x0, α) ∈ X ×A;

ii)
∫
X
w(x)dµ(x) ≤

∫
X
l(x)dµ(x), for all µ ∈M.

We also introduce the function

v?(x0) = sup{w(x0), w ∈ H}, x0 ∈ X.

Let us illustrate the previous definitions with the following example.

Example 2.3 Let X be the unit circle in R2, and let the uncontrolled dynamics be given
by:

x′(t) =

(
0 −1
1 0

)
x(t).(7)

Here, the uniform (Haar) measure on X is the unique projected invariant measure, and
H is the set of functions w : X → [0, 1] which are constant (by condition (i)) and not
greater than 1

2π

∫ 2π
0 l(eiθ)dθ (condition (ii)). Thus, for all x0 in X, we have v∗(x0) =

1
2π

∫ 2π
0 l(eiθ)dθ.
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Remark 2.4 We say that the control problem is leavable, if for all x in X we have
0 ∈ F (x). This condition means that at any point x ∈ X it is possible to stop by
choosing a suitable control and stay at this point forever.

We remark that for leavable problems any probability µ in ∆(X) is a projected invari-
ant measure, and so condition (ii) of the definition of H is equivalent to w ≤ l. Then, for
x0 in X, we obtain: v?(x0) = sup{w(x0), w : X → [0, 1] continuous, w ≤ l and such that
t ∈ [0,+∞) 7→ w(x(t, x, α)) is nondecreasing for every α ∈ A and any x ∈ X}.

Remark 2.5 We say that the problem is controllable, if for any states x and y in X,
starting from x allows to approach to y arbitrarily closely, i.e., y belongs to the closure
of the reachable set ∪t≥0Rt(x0). In this case all functions in H are constant (by condition
(i)), and it follows that v∗ itself is constant and satisfies

v∗(x0) = inf
µ∈M

∫
X
l(x)dµ(x), x0 ∈ X.

Example 2.6 Let X be the unit circle in R2, and let the dynamics be given by

x′(t) =

(
0 −1
1 0

)
a x(t), a ∈ [0, 1].(8)

Then one can generate any anticlockwise motion on X with speed varying between 0 and 1.
This problem is both leavable and controllable, and so we can apply the previous remarks
and obtain:

v∗(x0) = inf
x∈X

l(x), x0 ∈ X.

Example 2.7 We consider the two-dimensional dynamics{
x′1(t) = a(t)(1− x1(t))
x′2(t) = a2(t)(1− x1(t))

a(t) ∈ [0, 1], x(0) = x0,(9)

endowed with the cost function l(x) = 1− x1(1− x2), x = (x1, x2) ∈ R2.
It is easy to check that X = {(x1, x2) ∈ [0, 1]2, x1 ≥ x2} is an invariant set, and

for x0 ∈ X we always have x′1(t) ≥ x′2(t) ≥ 0. Obviously, the problem is leavable, but
not controllable. However, starting from any (x1, x2) in X, by choosing arbitrarily small
constant controls it is possible to approach arbitrarily closely to (1, x2). Thus, all functions
w in H satisfy: w(x1, x2) ≤ x2. Moreover, as the function w : (x1, x2) → x2 belongs to
H, we obtain:

v∗(x1, x2) = x2, x = (x1, x2) ∈ X.

We observe that here the function v∗(x0) does depend on x0 and the problem cannot be
reduced to an ergodic one by changing the state space X (see cf [19] p.4).

Theorem 2.8 Suppose that the assumptions (4) and (5) are satisfied and that, moreover,
the cost function l does not depend on the control variable a. Then any accumulation point
- in the uniform convergence topology on X - of (vT (·))T>0, as T →∞, is equal to v?(·) .
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Proof : Let v be an accumulation point of (vT (·))T>0. Then, up to a subsequence, vT
converges uniformly to v as T → +∞. In order to avoid too many notations, we suppose
that vT → v.

Step 1 : v?(x0) ≥ v(x0) For proving this, it is enough to show that v ∈ H.
Let us fix arbitrarily r < t, x0 ∈ X and α ∈ A, and let us prove v(x(r, x0, α)) ≤

v(x(t, x0, α)). Without loss of generality we can suppose r = 0. Then,

vT (x(t, x0, α)) =
1

T
inf
α̃

∫ T

0
l(x(s, x(t, x0, α), α̃))ds =

1

T
inf
α̃

∫ T

0
l(x(s+ t, x0, α� α̃(· − t)))ds

where α̃ runs all controls in A and

α� α̃(· − t)(s) =

{
α(s), if s ≤ t,
α̃(s− t), if s > t.

Thus,

vT (x(t, x0, α)) =
1

T
inf
α̃

∫ T+t

t
l(x(σ, x0, α� α̃(· − t)))dσ

≥ 1

T
inf
α̃

∫ T

0
l(x(σ, x0, α� α̃(· − t)))dσ − t

T

≥ vT (x0)−
t

T
.

Passing to the limit as T →∞ we get v(x(t, x0, α)) ≥ v(x0). This proves that v satisfies
the property i) of the definition of H.

Now we proceed by checking that v satisfies the property ii) of the definition of H.
For this end we fix µ ∈M and show that

∫
X vdµ ≤

∫
X ldµ.

Let T > 0. Since, for all α ∈ A,

vT (x0) ≤
1

T

∫ T

0
l(x(s, x0, α))ds,

we have, for any x(·) ∈ F ,

vT (x(0)) ≤ 1

T

∫ T

0
l(x(s))ds =

1

T

∫ T

0
l([Φs(x(·)](0))ds.

Now we integrate the above inequality with respect to an invariant probability measure
p ∈ ∆(F) which projection is µ. By using the Fubini Theorem and the invariance property
of p, we obtain

∫
X
vTdµ =

∫
F
vT (x(0))dp(x(·))

≤ 1

T

∫
F

∫ T

0
l([Φs(x(·)](0))dsdp(x(·))

≤ 1

T

∫ T

0

∫
F
l([Φs(x(·)](0))dp(x(·))ds

=
1

T

∫ T

0

∫
F
l(x(0))dp(x(·))ds

=
∫
F
l(x(0))dp(x(·)) =

∫
X
ldµ.
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Consequently, taking the limit as T tends to∞, we get
∫
X vdµ ≤

∫
X ldµ. This proves that

v ∈ F .
Step 2: v?(x0) ≤ v(x0) By definition of v? it is enough to show that w(x0) ≤ v(x0), for

all w ∈ H. Let us fix arbitrarily w ∈ H.
For any arbitrarily given T > 0 and ε > 0, there exists a ε-optimal control αε ∈ A

such that
1

T

∫ T

0
l(x(s, x0, αε))ds ≤ vT (x0) + ε(10)

We consider the occupational measure on µx0,αεT ∈ ∆(X). This measure µx0,αεT can be
regarded as the projection (in the sense of Definition 2.1) of the occupational measure pT
on F defined by ∫

F
GdpT =

1

T

∫ T

0
G(Φs(x(·, x0, αε)))ds, G ∈ C(F).

On the other hand, relation (10) can be written as∫
X
ldµx0,αεT ≤ vT (x0) + ε.(11)

As a consequence of Prohorov’s Theorem, the compactness of the spaces F and X im-
plies that of ∆(F) and ∆(X). Consequently, there is (p, µ) ∈ ∆(F) × ∆(X) such that
(pT , µ

x0,αε
T )→ (p, µ) weakly along a subsequence, as T → +∞. Once again, for simplicity,

let us denote this weakly converging subsequence by (pT , µ
x0,αε
T ). Referring to Theorem

6.2 in [4] or Lemma 6.1 of the Appendix, we know that p is an invariant probability
measure and, consequently, also µ is invariant, i.e., µ ∈ M. Consequently, as w ∈ H, we
have

∫
X wdµ ≤

∫
X ldµ. On the other hand, since w satisfies the monotonicity condition i)

in Definition 2.2, we have∫
X
wdµx0,αεT =

1

T

∫ T

0
w(x(s, x0, αε))ds ≥ w(x0).(12)

The relations (11) and (12), combined with
∫
X wdµ ≤

∫
X ldµ, allow to pass to the limit

as T → +∞ and yield

v(x0) + ε ≥
∫
X
ldµ ≥

∫
X
wdµ ≥ w(x0).

To finish the proof of the claimed result, it suffices to observe that ε > 0 has been chosen
arbitrarily.

QED

Remarks 2.9 1. The proof of Theorem 2.8 shows that the above result remains valid,
when we replace M by the set of accumulation points (in the sense of the topology
of weak convergence) of occupational measures µx0,αTn (Tn ↑ +∞):

M(x0) := { lim
n
µx0,αTn , Tn → +∞, α ∈ A}.

2. Observe that M(x0) ⊂M thanks to Lemma 6.1.
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3. Since vT (x0) = infα
∫
X l(x)dµx0,αT (x), we deduce from Theorem 2.8 the following

”pointwise” representation formula

v?(x0) = inf
µ∈M(x0)

∫
X
ldµ.(13)

2.3 A representation formula for Abel Means

At the end of this section we provide a representation formula for cluster points of uλ,
when λ→ 0+.

Theorem 2.10 We suppose that the assumptions (4) and (5) are satisfied and that, more-
over, the cost function l does not depend on the control variable a. Then any accumulation
point - in the uniform convergence topology - of (uλ(·))λ>0 as λ→ 0+, is equal to v?(·).

We omit the proof of this result, since it is based on similar arguments than those
used in Theorem 2.8, with the only real difference that now Lemma 6.2 in the appendix
instead of Lemma 6.1 has to be used.

3 Second representation formula

This section is devoted to the investigation of the general case of a cost function l(x, a)
which may depend on the control variable a.

3.1 On the accumulation points of uλ as λ→ 0.

We begin our studies with establishing a representation formula for the accumulation
points of uλ as λ→ 0+. Recall that uλ has been defined in (3).

3.1.1 Discounted Occupational Measures on X × A

Given any λ > 0, x0 and a control α ∈ A, we define the discounted occupational measure
νx0,αλ ∈ ∆(X × A) as follows:∫

X×A
ϕdνx0,αλ (x, a) := λ

∫ +∞

0
e−λsϕ(x(s, x0, α), α(s))ds, ϕ ∈ C(X × A),

and introduce the following set of discounted occupational measures over X × A:

Γλ(x0) := {νx0,αλ ∈ ∆(X × A), α ∈ A}.

We observe that, for all νx0,αλ ∈ Γλ(x0) and ϕ ∈ C1(X),∫
X×A

(∇ϕ(x) · f(x, a) + λ(ϕ(x0)− ϕ(x))) dνx0,αλ (x, a) = 0.(14)
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Indeed∫
X×A
∇ϕ(x) · f(x, a)dνx0,αλ (x, a) = λ

∫ +∞

0
e−λs∇ϕ(x(s, x0, α))f(x(s, x0, α), α(s))ds

= λ
∫ +∞

0

(
d

ds
[e−λsϕ(x(s, x0, α))] + λe−λsϕ(x(s, x0, α))

)
ds

= −λϕ(x0) + λ2
∫ +∞

0
e−λsϕ(x(s, x0, α))ds = −λ

∫
X×A

(ϕ(x0)− ϕ(x))dνx0,αλ (x, a).

This means that
Γλ(x0) ⊂ Wλ(x0),

where

Wλ(x0) := {ν ∈ ∆(X × A) :∫
X×A

(∇ϕ(x) · f(x, a) + λ(ϕ(x0)− ϕ(x))) dν(x, a) = 0, for all ϕ ∈ C1(X)}.

Since the set Wλ(x0) is defined by linear equalities, it is convex. Moreover, by Prohorov’s
Theorem it is compact. Consequently, co(Γλ(x0)) ⊂ Wλ(x0), where co denotes the closed
convex hull.

Now if νn ∈ Wλn(x0) and νn ⇀ ν for some sequence λn → 0+, then, obviously, ν
belongs to the set

W := {ν ∈ ∆(X × A) :
∫
X×A
∇ϕ(x) · f(x, a)dν(x, a) = 0, for all ϕ ∈ C1(X)}.(15)

Thus,

lim sup
λ→0+

co(Γλ(x0)) ⊂ W,

where lim supλ→0+ co(Γλ(x0)) denotes the set of accumulation points1 of all sequences
νn ∈ co(Γλn(x0)). The above inclusion has a kind of converse as stated in the following

Lemma 3.1 (see [15], Proposition 6.1) We have

lim
λ→0+

dH(co(Γλ(X)),W ) = 0,(16)

where dH is the Haussdorff distance associated with any distance d which is consistent
with the weak convergence of measures in ∆(X × A).

Here Γλ(X) =
⋃
x0∈X Γλ(x0). Recall that the Haussdorff distance dH between two sets M1

and M2 is given by

dH(M1,M2) = max{ sup
µ∈M1

d(µ,M2), sup
µ∈M2

d(µ,M1)}.

1In fact, lim supλ→0+ co(Γλ(x0)) is the upper Kuratowski limit of co(Γλ(x0)) (cf for instance [8]).
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Remark 3.2 - The distance d on ∆(X × A) could be any distance compatible with the
weak convergence of measures, for instance a Wasserstein distance [23] or a distance
defined through a dense countable family of elements of C(X × U), cf, e.g., [15].
- The fact that relation (16) is independent of the distance d relies on the fact that it can
be equivalently written as

lim
λ→0+

coΓλ(X) = W,

where lim denotes the Kuratowski limit of sets, see [8].

3.1.2 Representation formula for Abel Means

Definition 3.3 For all x0 in X we set

u?(x0) := sup{w(x0), w ∈ K}

where K denotes the set of all functions w : X → [0, 1] which are continuous and satisfy
the following conditions:

i) t ∈ [0,+∞) 7→ w(x(t, x0, α)) is nondecreasing, for all (x0, α) ∈ X ×A;

ii)
∫
X×A

w(x)dµ(x, a) ≤
∫
X×A

l(x, a)dµ(x, a), for all µ ∈ W .

Recall that the set W has been defined in (15).

Theorem 3.4 We suppose that the assumptions (4) and (5) hold true. Then any accu-
mulation point - in the uniform convergence topology - of (uλ(·))λ>0 as λ → 0+, is equal
to u?(·).

Proof : Let us consider any accumulation point u of (uλ(·))λ>0. Then, along a subse-
quence, uλ converges uniformly to u as λ→ 0+. In order to simplify the notation, let us
suppose that uλ → u.

Step 1: u?(x0) ≥ u(x0) For proving this assertion, it suffices to show that u ∈ K.
Let us fix any r < t, x0 ∈ X and α ∈ A, and let us show that u(x(r, x0, α)) ≤

u(x(t, x0, α)). Without loss of generality we can suppose r = 0. Recalling the definition
of uλ, we observe that

uλ(x(t, x0, α)) = λ inf
α̃∈A

∫ +∞

0
e−λsl(x(s, x(t, x0, α), α̃), α̃(s))ds

= λ inf
α̃∈A

∫ +∞

0
e−λsl(x(s+ t, x0, α� α̃(· − t)), α� α̃(· − t)(s+ t))ds,

where

α� α̃(· − t)(s) :=

{
α(s), if s ≤ t,
α̃(s− t), if s > t.

11



Thus, with the help of a change of variables σ = t+ s we obtain

uλ(x(t, x0, α)) = λeλt inf
α̃∈A

∫ +∞

t
e−λσl(x(σ, x0, α� α̃(· − t)), α� α̃(· − t)(σ))dσ

≥ λeλt inf
α̃∈A

[
∫ +∞

0
e−λσl(x(σ, x0, α� α̃(· − t)), α� α̃(· − t)(σ))dσ

−
∫ t

0
e−λσl(x(σ, x0, α� α̃(· − t)), α� α̃(· − t)(σ))dσ]

≥ λeλt inf
α̃∈A

∫ +∞

0
e−λσl(x(σ, x0, α� α̃(· − t)), α� α̃(· − t)(σ))dσ − (eλt − 1)

≥ eλtuλ(x0)− (eλt − 1).

Finally, passing to the limit as λ→ 0+ we get u(x(t, x0, α)) ≥ u(x0). This proves that u
satisfies property i) of the definition of K.

Now we proceed with checking that u satisfies property ii) of the definition of K.
Let us consider any λ′ < λ and the discounted occupational measure νx0,αλ′ ∈ ∆(X × A)
associated with (x0, α) ∈ X ×A and λ′ > 0. Then, taking into account that

uλ(y) ≤ λ
∫ ∞
0

e−λrl(x(r, y, α(·+ s)), α(r + s))dr, y ∈ X,

a forward computation combined with Fubini’s theorem and a change of variables yield∫
X×A

uλdν
x0,α
λ′ = λ′

∫ ∞
0

e−λ
′suλ(x(s, x0, α))ds

≤ λ′
∫ ∞
0

e−λ
′sλ

∫ ∞
0

e−λrl(x(r, x(s, x0, α), α(·+ s)), α(r + s))drds

= λ′
∫ ∞
0

e−λ
′sλ

∫ ∞
0

e−λrl(x(s+ r, x0, α), α(r + s))drds

= λ
∫ +∞

0
e−λrλ′eλ

′r
∫ +∞

r
e−λ

′σl(x(σ, x0, α), α(σ))dσdr

= λ
∫ +∞

0
e−λr{λ′eλ′r

∫ +∞

0
e−λ

′σl(x(σ, x0, α), α(σ))dσ

−λ′eλ′r
∫ r

0
e−λ

′σl(x(σ, x0, α), α(σ))dσ}dr

= λ
∫ +∞

0
e−λr{λ′(1 + eλ

′r)
∫ +∞

0
e−λ

′σl(x(σ, x0, α), α(σ))dσ

−λ′
∫ +∞

0
e−λ

′σl(x(σ, x0, α), α(σ))dσ − λ′eλ′r
∫ r

0
e−λ

′σl(x(σ, x0, α), α(σ))dσ}dr

≤ λ
∫ +∞

0
e−λr

∫
X×A

ldνx0,αλ′ dr + λ
∫ +∞

0
e−(λ−λ

′)rdr.

Consequently, ∫
X×A

uλdν ≤
∫
X×A

ldν +
λ′

λ− λ′
, for all ν ∈ Γλ′(X).

Then, by taking the limit as λ′ → 0+ and considering Lemma 3.1, we get∫
X×A

uλdν ≤
∫
X×A

ldν, for all ν ∈ W.

Letting now λ tend to 0+, we obtain∫
X×A

udν ≤
∫
X×A

ldν, for all ν ∈ W,

12



and this is just condition ii) in the definition of K.
Step 2: u?(x0) ≤ u(x0) Let us fix any w ∈ K and prove that w(x0) ≤ u(x0).
For an arbitrarily given but fixed ε > 0 we consider an ε-optimal control αλ,ε ∈ A for

uλ(x0), ∫
X×A

ldν
x0,αλ,ε
λ = λ

∫ ∞
0

e−λsl(x(s, x0, αλ,ε), αλ,ε(s))ds ≤ ε+ uλ(x0).(17)

By Prokohov’s Theorem, as λ → 0+, ν
x0,αλ,ε
λ converges weakly along a subsequence to

some measure ν ∈ ∆(X × A). Once again we suppose for simplicity of notation that
ν
x0,αλ,ε
λ ⇀ ν. By taking the limit λ→ 0+, we deduce from (17) that∫

X×A
ldν ≤ u(x0) + ε.(18)

Moreover, since ν
x0,αλ,ε
λ ∈ Γλ(x0) ⊂ coΓλ(X), Lemma 3.1 implies that ν ∈ W . Conse-

quently, from condition ii) of Definition 3.3 we have∫
X×A

wdν ≤
∫
X×A

ldν.(19)

On the other hand, since w satisfies condition i) of Definition 3.3, we also have

w(x0) = λ
∫ ∞
0

e−λsw(x0)ds ≤ λ
∫ ∞
0

e−λsw(x(s, x0, αλ,ε), αλ,ε(s))ds =
∫
X×A

wdν
x0,αλ,ε
λ .

Hence, letting λ tend to 0+, this gives

w(x0) ≤
∫
X×A

wdν.(20)

Finally, combining (18), (19) and (20), we obtain

w(x0) ≤ ε+ u(x0),

which is just the wished conclusion, recalling that ε > 0 has been chosen arbitrarily.

QED

Remark 3.5 Condition i) of Definition 3.3 of K can be translated equivalently in the
following Hamilton-Jacobi equation satisfied by u?(·) in viscosity sense:

inf
a∈A
〈∇u?(x), f(x, a)〉 = 0, x ∈ X.(21)

Indeed, the stability result for viscosity solutions (see [10]) enables us to pass to the limit
λ→ 0+ in the Hamilton-Jacobi equation satisfied by uλ(·), and this gives precisely (21).

3.2 On Limits of vT as T → +∞.

This subsection is devoted to the study of a representation formula for the accumulation
points of the value functions vT as T → ∞ in the case of a control l depending on the
control variable (Recall the definition (2) of vT ).
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3.2.1 Occupational Measures on X × A

Given any T > 0 and (x0, α) ∈ X × A, we define the occupational measure µx0,αT ∈
∆(X × A) by the following relation:∫

X×A
ϕdµx0,αT (x, a) :=

1

T

∫ T

0
ϕ(x(s, x0, α), α(s))ds, for all ϕ ∈ C(X × A),

and we introduce the set of occupational measures

ΓT (x0) := {µx0,αT ∈ ∆(X × A), α ∈ A}.

In particular, we observe that∫
X×A

< ∇ϕ(x), f(x, a) > dµx0,αT (x, a) =
1

T
(ϕ(x(T, x0, α))− ϕ(x0)), ϕ ∈ C1(X).(22)

This property allows to deduce easily that, if a sequence µn ∈ ΓTn(x0) converges weakly
to some µ, as Tn → +∞, then µ ∈ W .

As in Lemma 3.1 the set W can be somehow understood as the limit of the set of oc-
cupational measures. More precisely, we have the following with ΓT (X) =

⋃
x0∈X ΓT (x0):

Lemma 3.6 (See [14], Theorem 2.1)

lim
T→+∞

dH(co(ΓT (X)),W ) = 0,(23)

where dH is the Haussdorff distance associated with any distance d which is consistent
with the weak convergence of measures in ∆(X × A).

Remark 3.7 The relation (23) can be equivalently written as

lim
T→∞

coΓT (X) = W,

where lim denotes the Kuratowski limit.

3.2.2 Representation formula for Cesàro Means

Theorem 3.8 Let us suppose that the assumptions (4) and (5) are satisfied. Then any
accumulation point in the sense of the uniform convergence topology of (vT (·))T>0, as
T → +∞, coincides with u?(·).

We omit the proof here, because it is based on the same ideas as that for Theorem 3.4.
The main difference here consists in the use of the occupational measures described in
Section 3.2.1 instead of the discounted occupational measures defined in Section 3.1.1.

4 Comparison between both representation formulas

In the Sections 2 and 3 we have obtained two representations of different nature: While
the first one is based on invariant measures and concerns mainly the case where l is
independent of the control, the second one is based on measures which are limits of
occupational measures on the product space X×A. In this section we discuss the relations
between the both approaches.
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4.1 Invariant measure approach

A natural question is the possibility to use an approach based on invariant measures (as
that in Section 2) also in the case of a running cost l(x, a) which depends on the control
variable. In fact, this is possible to a certain extent, if one equips the space of controls
with a weak L2-topology. Let us be more precise and discuss this question.

We define by G the set of all pairs (x(·), α(·)) solving equation (1) on (−∞,+∞), and
we equip G with the product topology defined by a following norm for the x(·) component

‖x(.)‖∞ := sup
t∈R
|x(t)e−M |t||

(Recall that M > sup(x,a)∈X×A |f(x, a)|) and by the L2
weak-topology associated with the

following L2 norm

‖α(·)‖L2 := (
∫ +∞

−∞
|α(t)|2e−M |t|dt)

1
2 ,

for the α(·) component.
From [8] we now that the space G is (sequentially) compact (cf Theorem 3.5.2 in [9]).

Hence, since the topology of G is metrizable, G can be considered as a complete metric
space and Prohorov’s Theorem can be used.

Let us define the following continuous flow ϕ = (ϕt)t∈R on G by putting, for t ∈ R,

ϕt

{
G → G
(x(·), α(·)) 7→ (x(·+ t), α(·+ t)).

The main difficulty in the use of the approach of Section 2 consists in the fact that,
for defining the measures, we need to consider

∫
G ldp for p ∈ ∆(G), and we have to pass

to the limit in such integrals. But this requires that through the function l one can define
continuous functions on the space G endowed with the weak topology introduced above.

One possible way is to observe that the mapping

Gs

{
G → R
(x(·), α(·)) 7→

∫ s
0 ϕ(x(r), α(r))dr

is continuous on G, when ϕ(x, a) is continuous in x and affine with respect to a.
Then we can associate with any p ∈ ∆(G) a family (νs)s>0 of probability measures

νs ∈ ∆(X × A) defined by the relation∫
X×A

ϕ(x, a)dνs(x, a) :=
1

s

∫
G

∫ s

0
ϕ(x(r), α(r))drdp(x, α),

satisfied by all functions ϕ : X × A 7→ R continuous in x and affine in a.
Thus we are able to state and prove results similar to those of Section 2.
We define M̂ as the set of all µ ∈ ∆(X × A) which are accumulation points - in

the sense of the weak convergence of measures - for (νs)s>0 associated with all possible
invariant probability measures p ∈ ∆(G) through the above relation.
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Definition 4.1 For x0 in X we set

v?(x0) := sup{w(x0), w ∈ Ĥ }

where Ĥ is the set of all functions w : X → [0, 1] which are continuous and satisfy the
following both condition:

-i) The function t ∈ [0,+∞) 7→ w(x(t, x0, α)) is nondecreasing, for every (x0, α) ∈
X ×A;

-ii)
∫
X×A

w(x)dµ(x, a) ≤
∫
X×A

l(x, a)dµ(x, a), µ ∈ M̂.

Proposition 4.2 Suppose that the assumptions (4) and (5) hold true and that, moreover,
a 7→ l(x, a) is affine, for all x ∈ X. Then any accumulation point - in the sense of the
uniform convergence topology - of (vT (·))T>0, as T →∞, is equal to v?.

We also have the corresponding result for the accumulation points of the sequence (uλ(·))λ>0.

Proposition 4.3 If the assumptions (4) and (5) are satisfied and a 7→ l(x, a) is affine,
for all x ∈ X, then any accumulation point - in the sense of the uniform convergence
topology - of (uλ(·))λ>0, as λ→ 0+, coincides with v?.

We do not prove both above propositions because, firstly, the representation formulas
(3.4) and (3.8) are more general (they do no not require that l is affine), secondly, the
definition of M̂ is less direct that those in Section 2, and last not least, the proofs are
rather technical (due to the topology on G) and this for a result weaker than (3.4) and
(3.8).

4.2 The case of a cost independent of the control variable

Let us now discuss the case of a cost function l which is independent of the control variable.
In this case, we have two different representation formulas in Sections 2 and 3. We will
explain how the results of Section 2 can be deduced from those of Section 3 thanks to
Proposition 4.4 which is stated in this subsection and concerns the relation between the
set W (defined in (15) ) and the set M given by Definition 2.1.

One can deduce from (23) and Lemma 6.1 that

ΠX(W ) ⊂M,

where ΠX(m) ∈ ∆(X) denotes the projection on X of a measure m ∈ ∆(X×A). However,
it is not clear a priori if the above inclusion is even an equality. Such an equality would
imply that the both types of representation formula are in fact the same.

Let us consider µ ∈M and an associated invariant measure p ∈ ∆(F). Let us also fix
an arbitrary ϕ ∈ C1(X). Then, for all t > 0,

0 =
∫
F
ϕ(Φt(x·)(0))dp(x·)−

∫
F
ϕ(x(0)·)dp(x·)

=
∫
F
ϕ(x(t))dp(x·)−

∫
F
ϕ(x(0))dp(x·).
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Then, dividing by t and letting t→ 0+, we obtain by the dominated convergence theorem
that

0 ≤
∫
F

sup
a∈A
〈∇ϕ(x(0)), f(x(0), a)〉dp(x·) =

∫
X

sup
a∈A
〈∇ϕ(x), f(x, a)〉dµ(x).

By replacing in the above relation ϕ by −ϕ, we obtain2

∫
X

inf
a∈A
〈∇ϕ(x), f(x, a)〉dµ(x) ≤ 0 ≤

∫
X

sup
a∈A
〈∇ϕ(x), f(x, a)〉dµ(x), µ ∈M.

Thus, for the particular case where f(x, a) does not depend on a, we have∫
X
〈∇ϕ(x), f(x)〉dµ(x) = 0, µ ∈M,

and, consequently, ΠX(W ) =M. In fact, this relation is valid in a more general context,
as it is stated in the following

Proposition 4.4 Let the set W be defined by (15) and the set M be given by Definition
2.1. Then

ΠX(W ) =M.(24)

Before proving the above Proposition we state two auxiliary results which proofs are
postponed to the end of the section.

Lemma 4.5 For every x(·) ∈ F there exists a measurable control αx(·) ∈ A such that, for
almost all t ∈ R, we have x′(t) = f(x(t), αx(·)(t)) and such that, moreover, the mapping{

F → A
x(·) 7→ αx(·)

is measurable, where A is endowed with the L2(e−mA|t|dt) topology3 and F is equipped with
the uniform topology described in Section 2.

Lemma 4.6 For all t, t′ in R and all ϕ ∈ C1(X) we have

∫
F

∫ t′

t
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉dsdp(x·) = 0,

for any invariant measure p ∈ ∆(F).

Proof of Proposition 4.4: Since we already know that ΠX(W ) ⊂M , we only need
to prove the converse inclusion. Let us consider an arbitrary µ ∈M and let p ∈ ∆(F) be
an associated invariant measure. We want to show that µ ∈ ΠX(W ).

2This is also related to the relation 0 ∈
∫
X
F (x)dµ(x) proved in Proposition 4.2 of [4] for an invariant

measure µ ∈M.
3Here mA denotes an upper bound of the distance function d(a, 0) on A, where 0 is a reference point

of the compact set A and a runs A.
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For this end, for any h > 0, let γh ∈ ∆(X ×A) be the probability measure defined by
the relation ∫

X×A
ψdγh =

∫
F

1

h

∫ h

0
ψ(x(s), αx(·)(s))dsdp(x·), ψ ∈ C(X × A).

We observe that the above integral is well defined thanks to Lemma 4.5. Moreover, by
Prokhorov’s Theorem we know that there exists an accumulation point γ ∈ ∆(X ×A) of
γh as h→ 0+. By abuse of notation we suppose that γh ⇀ γ weakly.

We claim that ΠX(γ) = µ. Indeed, for any fixed ϕ ∈ C(X) we have thanks to the
dominated convergence theorem∫

X
ϕdΠX(γ) =

∫
X×A

ϕ(x)dγ(x, a) = lim
h→0+

∫
X×A

ϕ(x)dγh(x, a)

= lim
h→0+

∫
F

1

h

∫ h

0
ϕ(x(s))dsdp(x·) =

∫
F
ϕ(x(0))dp(x(·))

=
∫
X
ϕ(x)dµ(x).

Now, again for ϕ ∈ C1(X), we observe that∫
X
〈∇ϕ(x), f(x, a)〉dγ(x, a) = lim

h→0+

∫
X×A
〈∇ϕ(x), f(x, a)〉dγh(x, a)

= lim
h→0+

∫
F

1

h

∫ h

0
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉dsdp(x·) = 0

due to Lemma 4.6. But,
∫
X〈∇ϕ(x), f(x, a)〉dγ(x, a) = 0, for all ϕ ∈ C1(X), means that

γ ∈ W .
Hence µ = ΠX(γ) ∈ ΠX(W ), and the proof is complete.

QED

Let us now come to the proof of the auxiliary lemmas.

Proof of Lemma 4.5 : It is easy to show that the function

D

{
F → L2(R→ X; e−mA|t|dt)
x(·) 7→ x′(·)

has a closed graph with respect to the F×L2(R→ X; e−M |t|dt) product topology. Hence,
it is in particular measurable. Let us now show that the set-valued map

E

{
Graph(E) → L2(R→ A; e−mA|t|dt)
(x(·), x′(·)) 7→ {α(·) ∈ L2(e−mA|t|dt), x′(t) = f(x(t), α(t)), for a.e. t ∈ R}

is measurable with respect to the (F × L2(R → X; e−M |t|dt)) − L2(R → A, e−mA|t|dt)
topology. We know that E has nonempty images. Once again the measurability of E is
a consequence of the fact that E has a closed graph, and this we will prove now.

For this end we consider a sequence (xn(·), x′n(·), αn(·)) ∈ Graph(E) and we sup-
pose that (xn(·), x′n(·), αn(·)) converges to some (x(·), y(·), α(·)) in the F × L2(R →
X; e−M |t|dt) × L2(R → A; e−mA|t|dt) product topology. We want to prove that α(·) ∈
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E(x(·), y(·)). As Graph(D) is closed, we know already that y(·) = x′(·). On the other
hand, since αn(·) converges to α(·) in L2(R→ A; e−mA|t|dt), it converges also in measure
dt. Let us denote by ωf (·) the modulus of continuity of f(x, a) with respect to the variable
a on the compact X × A. Then, for all t ∈ R,

|x(t)− x(0)−
∫ t

0
f(x(s), α(s))ds|

≤ |xn(t)− xn(0)−
∫ t

0
f(xn(s), αn(s))ds|+ |xn(t)− x(t)|+ |x(0)− xn(0)|

+
∫ t

0
|f(xn(s), αn(s))− f(x(s), αn(s))ds|+

∫ t

0
|f(x(s), αn(s))− f(x(s), α(s))|ds

≤ 2‖xn(·)− x(·)‖FeM |t| +K‖xn(·)− x(·)‖F
∫ t

0
eM |s|ds+

∫ t

0
ωf (|αn(s))− α(s)|)ds,

where we have used for the latter estimate the Lipschitz continuity of f in x and its
uniform continuity in a. We notice that, thanks to the dominated convergence theorem,
the latter integral converges to zero, as n→ +∞, and we also observe that all the other
terms vanish in the limit. Consequently,

x(t) = x(0) +
∫ t

0
f(x(s), α(s))ds, for all t,

but this means that α(·) ∈ E(x(·), x′(·)). Therefore, the graph of E is closed.
This implies that the set valued map

Z

{
F → L2(R→ A; e−mA|t|dt)
x(·) 7→ {α(·) ∈ L2(e−mA|t|dt), x′(t) = f(x(t), α(t)) for a.e. t ∈ R}

is measurable, since it is just a composition between the two measurable maps E and D.
Finally, the measurable selection theorem (cf, e.g., Theorem 8.1.3 in [8]) enables us to
choose a measurable selection x(·) 7→ αx(·)(·) of Z. The proof is complete.

QED

Proof of Lemma 4.6: Let p ∈ ∆(F) be an arbitrary invariant measure. Let us fix any
t, t′ ∈ R with t < t′ and let ϕ ∈ C1(X). Since p is an invariant measure, we know that

∫
F

ϕ(x(s+ h))− ϕ(x(s))

h
dp(x(·)) = 0,(25)

for all h > 0 and all s ∈ [t, t′]. On the other hand, as for all x(·) ∈ F , ds-a.e. in [t, t′],

lim
h→0+

ϕ(x(s+ h))− ϕ(x(s))

h
= 〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉,

we get from the dominated convergence theorem that, for all x(·) ∈ F ,

lim
h→0+

∫ t′

t

ϕ(x(s+ h))− ϕ(x(s))

h
ds =

∫ t′

t
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉ds.
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Thus, ∫
F

∫ t′

t
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉dsdp(x(·))

=
∫
F

lim
h→0+

∫ t′

t

ϕ(x(s+ h))− ϕ(x(s))

h
dsdp(x(·)).

Consequently, applying Fatou’s Lemma and Fubini’s Theorem, we obtain in view of (25)∫
F

∫ t′

t
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉dsdp(x(·))

≤ lim inf
h→0+

∫
F

∫ t′

t

ϕ(x(s+ h))− ϕ(x(s))

h
dsdp(x(·))

= lim inf
h→0+

∫ t′

t

∫
F

ϕ(x(s+ h))− ϕ(x(s))

h
dp(x(·))ds = 0.

Hence, for all ϕ ∈ C1(X),∫
F

∫ t′

t
〈∇ϕ(x(s)), f(x(s), αx(·)(s))〉dsdp(x(·)) ≤ 0.

By changing ϕ into −ϕ, we complete the proof.

QED

5 Applications and Examples

One of the main advantages of the representation formulas provided in the previous sec-
tions lies in the fact that the convergence of averaging values is deduced from equiconti-
nuity.

Corollary 5.1 We suppose that the assumptions (4) and (5) are satisfied. Then, if the
family (vT (·))T>0 is equicontinuous, it converges uniformly to u?(·), as T →∞. The same
holds true for the family (uλ(·))λ>0: Its equicontinuity implies its uniform convergence to
u?(·), as λ→ 0+.

Indeed, from the Arzelà-Ascoli Theorem we deduce that (vT (·))T>0 and (uλ(·))λ>0 are
relatively compact, and by the Theorems 2.8 and 2.10 we obtain the uniform convergence
of these both families of functions to u?(·).

Let us illustrate this observation in several cases.

5.1 Nonexpansivity

Corollary 5.2 (Nonexpansivity [19]) Let us suppose that the assumptions (4), (5) as well
as the following nonexpansivity condition hold true: There is some c ∈ R+ such that, for
all x1, x2 ∈ X,

sup
a1∈A

inf
a2∈A

max{〈x1 − x2, f(x1, a1)− f(x2, a2)〉, |l(x1, a1)− l(x2, a2)| − c|x1 − x2|} ≤ 0.

Then both vT (·) and uλ(.) converge uniformly to u?, as T →∞ and λ→ 0+, respectively.
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Under the above nonexpansivity condition [19] proves the existence of a limit. A crucial
argument in the proof enables to deduce the equicontinuity of the families (vT (·))T>0 and
(uλ(·))λ>0 from the above nonexpansivity condition (26). Finally, from Corollary 5.1 we
obtain the uniform convergence to v?(·).

Let us also observe that for a Lipschitz cost l(x) independent of the control variable
a the nonexpansivity condition reduces to

sup
a1∈A

inf
a2∈A
〈x1 − x2, f(x1, a1)− f(x2, a2)〉 ≤ 0, x1, x2 ∈ X.(26)

Indeed the nonexpansivity condition of Corollary 5.2 is obtained from (26) by choosing
as constant c a Lipschitz constant of l.

Let us also point out that [19] studies several extensions of the nonexpansivity condi-
tion (26). However, for all these extensions we obtain the equicontinuity of the families
(vT (·))T>0 and (uλ(·))λ>0 and, hence, with the help of the Theorems 2.8 and 2.10, their
uniform convergence to u?(·). We also mention the paper [12], where equicontinuity and
monotone convergence are proved by PDE arguments.

The interest of the nonexpansivity property lies in the fact that under this condition
the limit u?(·) may depend on the initial condition x0. We refer the reader to several
examples discussed in Section 2.2 of [19]. Unlike the nonexpansivity property, the follow-
ing stronger condition - called dissipativity condition - implies that the limit u?(·) is a
constant independent of x0 (see [6]):

sup
a1∈A

inf
a2∈A

< x1 − x2, f(x1, a1)− f(x2, a2) >≤ −C‖x1 − x2‖2,

for all x1, x2 ∈ X and some constant C > 0.
This convergence to a constant phenomenon will be met also in the case discussed in

the following subsection.

5.2 Coercivity of the Hamiltonian and controllability

Let us focus our consideration upon the Abel means uλ, when the cost function l is
Lipschitz (Remark that in this case also uλ is Lipschitz). Our aim is to discuss and to
comment a well known PDE approach with the help of the results obtained in the present
paper (See [1, 2, 3], [10], [17] and the references therein).

A typical assumption in this pde approach is the coercivity of the Hamiltonian :

lim
|p|→∞

H(x, p) = +∞.(27)

The PDE approach is based on the fact that uλ is the unique viscosity solution of the
Hamilton-Jacobi equation

V (x) +H(x,
1

λ
∇V (x)) = 0,(28)

with the Hamiltonian

H(x, p) := max
a∈A
{〈−f(x, a), p〉 − l(x, a)}, x, p ∈ Rd.
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Let us explain roughly4 this method in view of our result Theorem 2.10. Since, thanks
to our assumptions uλ is bounded by some constant C independent of λ, the coercivity
assumption (27) together with (28) enables us to obtain that 1

λ
∇uλ is bounded by some

constant M independent of λ. This implies not only that uλ is equi-Lipschitz (and thus, by
Corollary 5.1, limλ→0+ uλ = u?), but also that the Lipschitz constant of uλ is bounded by
Mλ and, hence, its convergence to zero. It follows that the function u? must be constant.

It is worth pointing out that in this case equation (21) - which is deduced from con-
dition i) of the definition of K - does not bring any information on the constant u?. But
condition ii) of the definition of K does imply that the constant u? is given by

u? = inf
µ∈W

∫
X×A

ldµ,

which can be compared to results obtained through the weak KAM theory [13].
Finally, let us mention that the coercivity (27) of the Hamiltonian is usually deduced

from controllability conditions on the control system (1) (cf [10]). Such a typical control-
lability assumption is that of the existence of an ω > 0 such that, for all x ∈ Rd,

B(0, ω) := {y ∈ Rd, |y| < ω} ⊂ F (x) = {f(x, a), a ∈ A}.(29)

Similar ideas than those described above for Abel means can be used to show that
under the coercivity condition (27) the values vT converge uniformly to a constant, as
T → +∞.

5.3 Examples

We have seen in examples that the limit u? may not be constant. Let us revisit the ex-
amples 2.3 and 2.7 from Section 2.

Example 2.3 Here the coercivity condition (27) is not fulfilled. Indeed, it cannot be
satisfied, when the dynamics and the cost function do not depend on the control. But,
on the other hand, if the cost function l : x ∈ R2 7→ l(x) ∈ [0, 1] is Lipschitz and
independent of a, Corollary 5.2 shows that, choosing as c the Lipschitz constant of l, we
have the convergence of uλ and vT , as λ→ 0+ and T → +∞, respectively.

Example 2.7 By explicit computations it can be shown that vT converges to v?(x) = x2
(cf [19] p.4). However, also a variant of Corollary 5.2 can be used here. Indeed, it is easy
to prove that here, for the given example,

sup
a1∈A

inf
a2∈A
〈f(x1, a1),

∂

∂x1
∆(x1, x2)〉+ 〈f(x2, a2),

∂

∂x2
∆(x1, x2)〉 ≤ 0(30)

with
∆(x, y) := |x1 − y1|+ |x2 − y2|.

4This explanation would be correct, if uλ were of class C1. However, since it is only continuous, a
rigorous proof would require detailed a priori estimations of the super and subdifferentials of uλ; cf, e.g.,
[17].
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But this implies that the families (vT (·))T>0 and (uλ(·))λ>0 are equicontinuous (cf Propo-
sition 3.6 in [19]), and, thus, they both converge to u?(·) uniformly on X.

This example illustrates that the equicontinuity can be obtained through various non-
expansivity conditions. The nonexpansivity condition (26) corresponds to the case, where
∆ is the Euclidean norm.

6 Appendix

Let us consider a flow Φ defined on a complete metric space P . Recall that a flow Φ is a
function R× P 3 (t, p) 7→ Φt(p) ∈ P satisfying the three following conditions:

a) Φ is continuous,
b) Φ(0, p) = p, for all p ∈ P ,
c) Φ(t+ s, p) = Φ(t,Φ(s, p)), for all p ∈ P and all reals t, s.

We know state two lemmas. Since the proofs of both lemmas are very similar and
because the first can be found in a very close form in the literature (cf, e.g., Lemma 5.4
in [4] or Proposition 4.3 in [5]), we only prove the second one for the reader convenience.

Lemma 6.1 Suppose that the complete metric space P is compact. We fix q ∈ P and we
define for all T > 0 the occupational measure µqT as follows5∫

P
ϕdµqT :=

1

T

∫ T

0
ϕ(Φs(q))ds, for all ϕ ∈ C(P ).

If for some sequence Tn → ∞ we have the weak convergence of µqTn to some measure µ,
then µ is an invariant measure for the flow Φ.

Lemma 6.2 Let P be a compact complete metric space. For all q ∈ P and λ > 0 we
define the discounted occupational measure νqλ by the following relation:∫

P
ϕdνqλ := λ

∫ +∞

0
e−λsϕ(Φs(q))ds, for all ϕ ∈ C(P ).

Then, if for some sequence λn → 0+ we have the weak convergence of νqλn to some measure
ν, then this measure ν is invariant for the flow Φ.

Proof : In order to prove that ν is an invariant measure, it is enough to prove that for
any any ϕ ∈ C(P ) and t > 0, we have∫

P
ϕ(p)dν(p) =

∫
P
ϕ(Φt(p))dν(p).(31)

5The occupational measure µqT can be equivalently defined by µqT (Q) := 1
Tmeas{τ ∈ [0, T ], Φτ (q) ∈

Q}, Q ∈ B(P ).
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Fix such ϕ ∈ C(P ) and t > 0. We remark that, thanks to the flow condition c) and a
change of variable,∫

P
ϕ(Φt(p))dν

q
λn

(p)

= λn

∫ ∞
0

e−λnsϕ(Φt(Φs(q)))ds

= λn

∫ ∞
0

e−λnsϕ(Φt+s(q))ds = λne
λnt
∫ ∞
t

e−λnσϕ(Φσ(q))dσ

= λne
λnt
∫ ∞
0

e−λnσϕ(Φσ(q))dσ − λneλnt
∫ t

0
e−λnσϕ(Φσ(q))dσ

= eλnt
∫
P
ϕ(p)dνqλn(p)− λneλnt

∫ t

0
e−λnσϕ(Φσ(q))dσ

Thus,

|
∫
P
ϕ(Φt(p))dν

q
λn

(p)−
∫
P
ϕ(p)dνqλn(p)| ≤ 2(eλnt − 1)‖ϕ‖∞.

Finally, passing in the above relation to the limit as n→ +∞, we obtain with

|
∫
P
ϕ(Φt(p))dν(p)−

∫
P
ϕ(p)dν(p)| = 0

the wished equation (31).

QED
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