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Abstract

This paper begins by re-examining the spectral properties of several cyclically sen-
sitive variables such as hours worked, unemployment and capacity utilization. For each
of these series, we document the presence of an important peak in the spectral density
at a periodicity of approximately 36-40 quarters. We take this pattern as suggestive of
intriguing but little-studied cyclical phenomena at the long end of the business cycle,
and we ask how best to explain it. In particular, we explore whether such patterns may
reflect slow-moving limit cycle forces, wherein booms sow the seeds of the subsequent
busts. To this end, we present a general class of models, featuring local complemen-
tarities, that can give rise to unique-equilibrium behavior characterized by stochastic
limit cycles. We then use the framework to extend a New Keynesian-type model in a
manner aimed at capturing the notion of an accumulation-liquidation cycle. We esti-
mate the model by indirect inference and find that the cyclical properties identified in
the data can be well explained by stochastic limit cycles forces, where the exogenous
disturbances to the system are very short lived. This contrasts with results from most
other macroeconomic models, which typically require very persistent shocks in order
to explain macroeconomic fluctuations.
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Introduction

It is well known that market economies repeatedly go through periods where, for sustained

lengths of time, productive factors are used very intensively—with low rates of unemploy-

ment, high levels of hours worked per capita, and intensive use of productive capital—

followed by periods where these utilization rates rates are reversed. A key aim of business

cycle analysis is to explain such fluctuations. There are at least two potential types of ex-

planations. According to the first, a period of low factor usage and high unemployment can

be seen as mainly reflecting the effects of a negative shock to the economy, whereby an econ-

omy’s internal adjustment mechanisms have not yet managed to fully adjust to the outside

disturbance. Within this class of explanations, economic booms and busts are not closely

linked, since periods of high unemployment are not viewed as being caused by a previous

boom period, but instead are viewed as resulting foremost from an external shock to the

system. Such a framework for understanding business cycles generally results in a rich time-

varying narrative in terms of the shocks driving observed fluctuations. An alternative class

of explanation is one where boom and bust are tightly linked, being the natural outcome of

market forces. The idea of endogenous boom-bust cycles is well captured by the expression

that “a boom sows the seeds of the subsequent bust.” According to this alternative per-

spective, a low rate of factor usage arises as the equilibrium consequence of a prior boom

period and, symmetrically, a bust period predicts the subsequent arrival of a boom period,

rather than a return to normality. In this second class of explanations shocks can still play a

role, but are generally less important since there are strong internal propagation mechanisms

that would endogenously produce fluctuations even in their absence. Let us emphasize that,

according to this second view, booms and busts are not reflective of animal spirits and/or

indeterminacy, but are instead the unique equilibrium outcome of market forces.

With the risk of over-generalizing, it appears fair to say that a majority of modern

macroeconomic models—especially those used by central banks—are much closer to the first

type of explanation than the second.1 There are good reasons for this state of affairs, the most

1One way to classify the type of endogenous forces present in an estimated macro model is to (i) simulate
the model with the autocorrelation of the exogenous shock processes set to zero (with all other parameters
set to their estimated values), then (ii) plot the implied spectral densities of the main stationary endogenous
variables. Unless these spectral densities all exhibit similar peaks at business cycle frequencies, then it
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important of which is that equilibrium models that feature simple endogenous auto-regressive

forces combined with persistent shocks have been shown to offer a quantitatively reasonable

explanation to many aspects of business cycle data. Notwithstanding this feature, the goal

of this paper is to present theory and evidence in favor of a view of fluctuations in which

sustained booms and busts are the unique equilibrium outcome of a system of interacting

agents. We approach the issue in three steps. First, we re-examine the cyclical properties

of the US economy by focusing on the spectral densities of factor usage variables such as

hours worked, unemployment, and capacity utilization over the period 1947-2015.2 We will

show that these variables suggest that the US economy exhibits important recurrent cyclical

fluctuations at a periodicity of about nine to ten years. While this periodicity is slightly

longer than traditionally associated with business cycles, it is only marginally so. For this

reason, we believe these movements should be seen as part of the business cycle, as opposed

to being associated with much longer medium-run cycles.3 Second, we will present a general

class of models in which recurrent booms and busts emerge under fairly simple conditions.

This class of models extends the work of Cooper and John [1988] to a dynamic environment,

and shows how static strategic complementarities between agents, when embedded in a

dynamic environment, tend to produce unique equilibrium outcomes characterized by boom-

bust cycles. In particular, we will emphasize why strategic complementarities should be seen

as more likely to produce a unique equilibrium featuring boom-bust cycles than multiple

equilibria featuring sunspot-driven cycles. Third, we extend a simple New Keynesian model

to allow for strategic complementarities and capital accumulation in a manner consistent

with our general framework, and then estimate this model by indirect inference. The object

of this exercise is to see whether this flexible New Keynesian model favors an interpretation

of the data as featuring endogenously recurring cycles, or instead favors a predominantly

shock-driven theory of cycles.

can be said that the model does not generate endogenous boom-bust cycles. According to this metric,
most quantitative New Keynesian models and most real business cycle models do not generate endogenous
boom-bust cycles, and can therefore be considered as part of the first class of explanations.

2In Beaudry, Galizia, and Portier [2014] we provide some complementary reduced-form evidence suggestive
of recurrent boom-bust cycles in the US economy. However, the evidence presented there can be criticized
as being sensitive to filtering procedures. The evidence we present here is more robust to such criticism.

3For example, we do not believe that these features should be lumped in with those emphasized in Comin
and Gertler [2006], where medium-run cycles last up to 50 years.
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Before proceeding further, it is necessary to clarify what we mean by an economy en-

dogenously exhibiting boom-bust phenomena, as opposed to being driven mainly by shocks.

To do so, it will be useful to draw a distinction between two different but related notions of

an endogenous boom-bust cycle: a strong version, and a weak version. The strong version is

the one we will focus upon in this paper, as it is less studied and allows for a much clearer

distinction from most mainstream models. In the strong version, the macro-economy is seen

as a locally unstable system, so that even in the absence of any shocks the economy would

not settle down to a steady growth path. Instead, factor utilization would continuously

fluctuate, neither exploding nor converging to a steady state. Accordingly, absent of shocks,

this system would repeatedly go through booms and busts. The simplest embodiment of

this idea is one where the deterministic forces of the system produce a limit cycle. This limit

cycle interpretation will in fact be the operational notion we will associate with the strong

version of the endogenous boom-bust cycle hypothesis.4

It is important to note that the idea that macroeconomic fluctuations may reflect limit

cycle forces is not at all novel, having been advocated by many in the past, including early

incarnations due to Kalecki [1937], Kaldor [1940], Hicks [1950] and Goodwin [1951].5 In

the 1970s and 1980s, a larger literature emerged that examined the conditions under which

qualitatively and quantitatively reasonable economic fluctuations might occur in purely de-

terministic settings (see, e.g., Benhabib and Nishimura [1979] and [1985], Day [1982] and

[1983], Grandmont [1985], Boldrin and Montrucchio [1986], Day and Shafer [1987]; for sur-

veys of the literature, see Boldrin and Woodford [1990] and Scheinkman [1990]). By the

early 1990s, however, the interest in such models for understanding business cycle fluctua-

tions greatly diminished and became quite removed from the mainstream research agenda.6

The reasons why the notion of macroeconomic fluctuations driven by limit cycles plays little

4Another possibility is one where the deterministic forces of the economy produce chaotic behavior. In
our empirical explorations, we have not found any evidence for such outcomes and therefore we will not focus
on this possibility.

5An earlier mention of self-sustaining cycles as a model for economic fluctuations is found in Le Corbeiller
[1933] in the first volume of Econometrica.

6There are at least two strands of the macroeconomic literature that has productively continued to pursue
ideas related to limit cycles: a literature on innovation cycles and growth (see, for, example Shleifer [1986]
and Matsuyama [1999]), and a literature on endogenous credit cycles in an OLG setting (see, for example,
Azariadis and Smith [1998], Matsuyama [2007] and [2013], Myerson [2012] and Gu, Mattesini, Monnet, and
Wright [2013]).
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role in modern quantitative research can be attributed to at least two difficulties. First,

if the economy exhibited a deterministic limit cycle, the cycles would be very regular and

predictable, which is inconsistent with the data. Second, the literature on limit cycles has

generally made neither a clear empirical case nor a strong theoretical one for why they should

be considered to be as or more relevant than the alternative explanations. An important

contribution of this paper can therefore be seen as reviving the limit cycle view of fluctua-

tions by offering new perspectives on these two arguments. In particular, with respect to the

first argument, we directly address the criticism of the excessive regularity of limit cycles by

examining instead the notion of a stochastic limit cycle, which corresponds to a system that

is subject to exogenous shocks, but where the deterministic part of the system admits a limit

cycle. Such systems have been studied little by quantitative macro-economists, but recent

solution techniques make this a tractable endeavor. With respect to the second argument

regarding the empirical relevance and theoretical plausibility of limit cycles, we address it

by presenting a whole class of simple models that are capable of exhibiting stochastic limit

cycles, and showing that this class of models finds support in the data. In particular, in the

last section of the paper, we present a simple New Keynesian model with financial frictions

and durable goods accumulation which fits into our general structure. The model is set up

in a way so as to be flexible enough to allow for the possibility of limit cycles under certain

parameterizations, but without imposing them. The type of cyclical behavior the model aims

to capture is that generally associated with what we like to call accumulation-liquidation

cycles, though others may prefer to think of them as a credit cycles. In our setup, agents

make their consumption decisions to satisfy their Euler equation, where the interest rate

they face reflects both the policy rate set by the central bank, as well as a risk premium.

When the stock of durables (which may include housing) is sufficiently low, agents will want

to make new purchases, and this will stimulate economic activity and employment. As the

economy starts booming, two forces come into play. On the one hand, the policy interest

rate may increase as the result of central bank action; on the other hand, the risk premium

on borrowing may decrease. The net effect of these two forces drives the dynamics of the

system, with the possibility of limit cycles arising. We use this model as a lens to interpret

post-war macroeconomic data, and especially to see if, when estimated using observations
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on hours worked and interest rate spreads, it favors a choice of parameters that interprets

the data as embedding limit cycle forces.

While our aim is to provide theoretical and empirical support for the strong version

of the endogenous boom-bust hypothesis—as embodied by the notion of stochastic limit

cycles—it is nevertheless relevant to briefly discuss the weaker version of this hypothesis,

and to highlight why we chose not to make it our focus. In the weak version, the system is

such that, in the absence of shocks, the economy’s transitional dynamics feature dampened

oscillations.7 For example, this could happen if the macro-economy can be represented as

a linear system with complex eigenvalues of modulus smaller than one. Such a system can

be seen as at least partially embedding an endogenous boom-bust mechanism. While it

could be relevant to systematically study this weaker version of boom-bust cycles, we see it

as less interesting than our current focus for two reasons. First, there are many models in

the literature that satisfy this weaker definition, so that providing theoretical and empirical

support for this weaker hypothesis is not very difficult, especially if we allow the weak version

to be arbitrarily weak.8 Second, as we shall show, our main results also shed light on when

the weaker version is likely to arise, and our empirical exploration does not rule out this

possibility ex ante (though we find that the estimation nonetheless favors the strong version

in the end). Hence, by exploring the strong version, we also provide a clear framework for

thinking about the plausibility and relevance of the weak version.

The remaining sections of the paper are organized as follows. In Section 1 we highlight a

set of spectral properties of U.S. data on hours worked, unemployment, capacity utilization,

GDP, and TFP. These properties motivate our analysis and will be partly used later on in

estimating our model. Note that the evidence presented in this section will not differentiate

between the strong or weak versions of the endogenous boom-bust hypothesis. In Section

2 we present a simple reduced-form dynamic set-up where agents both accumulate goods

and interact strategically with one another. Following Cooper and John [1988], these strate-

gic interactions can be characterized either by substitutability or complementarity. In this

7Kiyotaki and Moore [1997] is one example of such a model (see Figure 3 of the paper).
8A very weak version of the hypothesis could correspond to any linear model with complex eigenvalues,

even if those complex eigenvalues were close to zero in absolute value, and therefore unlikely to generate
quantitatively important boom-bust cycles.
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framework we discuss the conditions that tend to give rise to limit cycles, and in particular,

we show how and when demand complementarities can cause the steady state of the sys-

tem to become locally unstable and for a limit cycle to appear around it as part of a Hopf

bifurcation.9,10 We further establish a simple condition under which this limit cycle will be

attractive. We also use this section to introduce the notion of stochastic limit cycles, and to

illustrate the effects of shocks in such a setup. To this point, we will have downplayed the

role of forward-looking behavior so as to make the analysis as simple as possible. In Section

2.6, however, we extend the setup to include forward-looking elements, which allows us to

discuss conditions under which equilibrium dynamics are determinate and the saddle path

converges to a limit cycle. In Section E, we extend a standard three-equation New Keynesian

model in a manner that allows for the features highlighted in our reduced-form model. For

example, the model is extended to an environment where consumption services come from

both newly purchased goods as well from an accumulated stock of durable goods. We intro-

duce complementarities in this setup by allowing for an interest rate spread on household

borrowing that is counter-cyclical. Section 3.3 takes the model to the data to see whether

estimation will reveal the presence of a limit cycle or whether the data is better explained

through more traditional channels. Since our estimation framework allows the limit cycle to

compete with exogenous disturbances in explaining the data, we will be able to assess the

extent to which it can reduce the reliance on persistent exogenous disturbances in explaining

business cycle fluctuations. Finally, in the last section we offer concluding comments.

1 Motivating Observations

In this section we examine the cyclical properties of a set of quarterly U.S. macroeconomic

variables covering the period 1947Q1-2015Q2.11 One potential way of describing the cyclical

9Since our model is formulated in discrete time, the bifurcation we consider is more appropriately referred
to as a Neimark-Sacker (rather than Hopf) bifurcation. Nonetheless, we will typically follow convention in
applying the term “Hopf bifurcation” to both continuous and discrete environments.

10Informally, a Hopf bifurcation—which may occur in both continuous and discrete formulations—is char-
acterized by a loss of stability in which the resulting limit cycle involves rotation around the steady state
in two-dimensional phase space. Discrete (but not continuous) systems may also produce limit cycles in a
one-dimensional setting via a “flip” bifurcation, in which case the system “jumps” back and forth over the
steady state.

11Sources for all data series are discussed in Appendix A.
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properties of stationary data is to focus on the spectral density of the series, which depicts

the importance of cycles of different frequencies in explaining the data. As is well known,

if the spectral density of a time series displays a substantial peak at a given frequency, this

is an indication of recurrent cyclical phenomena at that frequency.12 The difficulty in using

spectral analysis with macroeconomic data is that these data are frequently non-stationary,

and therefore some detrending procedure must be done to make a series stationary before

looking at its spectral density. This problem is especially acute for quantity variables such as

GDP. However, for labor market variables, the problem is less severe since these data can be

considered close to stationary. Accordingly, we begin our exploration of cyclical properties

by focusing on U.S. non-farm business hours worked per capita. The series is plotted in

Panel (a) of Figure 1.

Figure 1: Properties of Hours Worked per Capita

(a) Data (b) Spectral Density
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Notes: Panel (a) plots the log of Non-Farm Business Hours divided by Total Population. Panel (b) is an
estimate of the spectral density of hours in levels (black line) and for 101 series that are high-pass (P )
filtered version of the levels series, with P between 100 and 200 (grey lines). A high-pass (P ) filter removes
all fluctuations of period greater than P .

As the figure shows, over the sample period hours worked exhibited substantial fluctua-

tions, but with limited evidence of any long-run trend. For this reason, it may be reasonable

to look directly at the spectral density of this series without any initial detrending transfor-

12See for example Sargent [1987].
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mation. Panel (b) of Figure 1 plots several different versions of the hours worked spectral

density over the range of periodicities from 4 to 80 quarters. The dark line in the figure

represents the spectral density of the demeaned series (i.e., without any attempt to remove

low-frequency movements that may reflect non-stationarities).13 Since we do not want to

claim that this data is necessarily completely stationary, we also plot in the figure the spec-

tra obtained after first detrending the data using a number of different filters designed to

remove very low-frequency movements. In particular, each grey line in the figure represents

the spectral density of the series after it has been detrended using a high-pass filter that re-

moves fluctuations with periodicities greater than x quarters in length, where x ranges from

100 to 200. The results suggest that the spectral properties of hours worked at periodicities

below 60 quarters—the range of periodicities we will focus on henceforth—are very robust

to whether or not one first removes very low-frequency movements from the series.

What does Panel (b) of Figure 1 reveal about the cyclical properties of hours worked? To

us, the dominant feature that emerges is the distinct peak in the spectral density at around 40

quarters, with this peak being much more pronounced than anything found at periodicities

lower than 32 quarters. This suggests that a significant proportion of the fluctuations in

hours worked are coming from some type of cyclical force with a periodicity of about 10

years. It is interesting to notice that this spectral hump is mainly contained in the range

from 32-50 quarters, and therefore just slightly beyond the traditional range of periodicities

(6-32 quarters) usually thought of as capturing business cycle fluctuations. Note also that

this peak, while at a slightly lower frequency than traditional business cycle analysis, is not

capturing the type of medium-run phenomena emphasized in work by Comin and Gertler

[2006] who focus indistinctly on cycles between 32 and 200 quarters. In our opinion, this

hump should be considered as part of the business cycle, suggesting that the traditional

definition of the business cycle may be slightly too narrow. To make this case, in Panel (a)

of Figure 2 we plot the hours worked series after having removed fluctuations longer than 60

quarters using a high-pass filter. In the figure, we also highlight NBER recessions in grey. As

13We obtain non-parametric power spectral density estimates by computing the discrete Fourier transform
(DFT) of the series using a fast Fourier transform algorithm, and then smoothing it with a Hamming kernel.
One key element is the number of points in the DFT, which determines the graphical resolution. In order to
be able to clearly observe the spectral density between periodicities of 32 to 50 quarters, we use zero-padding
to interpolate the DFT (see Section D in the Online Appendix for more details).
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can be seen, the fluctuations in detrended hours that we observe when retaining these slightly

lower frequencies match extremely well with the standard narrative of the business cycle,

rather than reflecting, say, lower-frequency movements that are unrelated to the business

cycle.

To further support the notion of a peak in the spectral density of work input around

a periodicity of 40 quarters, in Panels (b) and (c) of Figure 2 we redo the same exercise

for two other measures of work activity. Panel (b) reports the spectral density for total

hours worked per capita, and Panel (c) the spectral density for the unemployment rate. In

addition, in Panel (d) we report the spectral density of a capacity utilization measure. In

all three cases, we plot both the spectral density for the untransformed data (dark line),

as well as a set of spectra where we first remove low-frequency movements using high-pass

filters as in Figure 1 (light grey lines). We highlight in dark grey the band of frequencies

corresponding to periodicities from 32 to 50 quarters.14 As can be seen, in all of these

plots we see distinct peaks in the spectra around 40 quarters, and these peaks are apparent

regardless of whether or not we first remove very low-frequency movements. Together, Panel

(b) of Figure 1 and Panels (b)-(d) of Figure 2 indicate that the aggregate utilization of

workers and capital by firms in the U.S. exhibits important recurrent cyclical phenomena

at approximately ten-year intervals. To explain such phenomena, one needs to rely on a

theory where substantial cyclical forces are present. While there are different mechanisms

that can explain such observations, we will explore in subsequent sections the plausibility

and relevance of stochastic limit cycle forces as a potential candidate.

Our observations of a distinct peak in the spectral density of a set of macroeconomic

variables may appear somewhat at odds with conventional wisdom. In particular, it is well

known, at least since Granger [1966], that several macroeconomic variables do not exhibit

such peaks, and for this reason the business cycle is often defined in terms of co-movement

between variables instead of reflecting distinct cyclical timing. This view of business cycle

dynamics depends on the variables one chooses to examine. We have focused on variables—

which we like to call cyclically sensitive variables—where business cycle fluctuations are large

14Given our stated focus on periodicities below 60 quarters, we cut the x-axis off at this point. For higher
periodicities, as we have seen in Panel (b) of Figure 1, high-pass filtering is likely to affect the spectral density
estimate.
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Figure 2: Cyclical Component and Spectral Densities

(a) Filtered NFB hours (b) Total hours
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(c) Unemployment (d) Capacity utilization
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Notes: Panel (a) plots the high-pass (60) filtered version of Non Farm Business Hours per capita for the
U.S.A. Panels (b) to (d) show estimates of the spectral density of Total Hours per capita, Unemployment rate
and Capacity utilization rate in levels (black line) and for 101 series that are high-pass (P ) filtered version
of the levels series, with P between 100 and 200 (grey lines). A high-pass (P ) filter removes all fluctuations
of period greater than P .
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in relation to trend movements. For such variables, the breakdown between trend and cycle

is less problematic and one can more easily detect spectral density peaks. In contrast, if one

focuses on quantity variables, for example GDP, one does to easily detect any such peaks.

To see this, in Figure 3 we report the same information we reported before regarding the

spectral density, but in this case the series is real per capita GDP. Here we see that the

spectra of the non-detrended data and of the filtered data have very little in common with

each other. Since it does not make much sense to report the spectral density of non-detrended

GDP (it is clearly non-stationary), in Panel (a) of Figure 4 we focus on the spectral density

of GDP after removing low-frequency movements using the various high-pass filters. These

spectral densities are in line with conventional wisdom: even when we have removed very

low-frequency movements, we still do not detect any substantial peak in the spectral density

of GDP around 40 quarters. How can this be? What explains the different spectral properties

of output versus hours worked? The main explanation to this puzzle lies in the behavior

of TFP. In Panel (b) of Figure 4 we plot the spectral density of TFP after having removed

low-frequency movements in the same way we have done for GDP and other variables. What

is noticeable about the spectral density of TFP is the quick pick-up it exhibits just above

periodicities of 40 quarters. As with GDP, we do not see any marked peaks in the spectral

density of TFP. An interesting aspect to note is that if we add the spectral density of hours

worked to that of TFP, we get almost exactly that of GDP. This suggests that looking at

the spectral density of GDP may be a much less informative way to understand business

cycle phenomena than looking at the behavior of cyclically sensitive variables such as hours

worked and capacity utilization. Instead, GDP likely captures two distinct processes: the

business cycle process associated with the usage of factors, and a lower-frequency process

associated with movement in TFP. For this reason, we believe that business cycle analysis

may gain by focusing more closely on explaining the behavior of cyclically sensitive variables,

such as employment, which are less likely to be contaminated by lower-frequency movements

in TFP, and this is precisely what we aim to do.

As a final data exploration step, we also examined whether the business cycle fluctuations

which we have been focusing upon can be taken to be normally distributed. To this end,

we perform D’Agostino and Pearson’s [1973] and Jarque and Bera’s [1987] omnibus tests,
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Figure 3: Spectral Density of U.S. GDP per Capita, Levels and Various Bandpass Filters
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Notes: This figure shows an estimate of the spectral density of U.S. GDP per capita in levels (black line) and
for 101 series that are high-pass (P ) filtered version of the levels series, with P between 100 and 200 (grey
lines). A high-pass (P ) filter removes all fluctuations of period greater than P .

Figure 4: Spectral Density for GDP and TFP
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Notes: This figure shows an estimate of the spectral density of U.S. GDP per capita (panel (a) and Total
Factor Productivity (panel (b)) for 101 series that are high-pass (P ) filtered version of the levels series, with
P between 100 and 200 (grey lines). A high-pass (P ) filter removes all fluctuations of period greater than P .
TFP is the corrected quarterly TFP series of Fernald [2014].
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which combine skewness and kurtosis into a single statistic, on our main series after using

a high-pass filter to remove periodicities greater than 60 quarters, which allows us to retain

all the variation that we have argued is relevant for the business cycle, while removing more

medium- and long-run fluctuations. The null hypothesis for the test is normality. For non-

farm business hours, the unemployment rate, and capacity utilization, the p-values we find

are, respectively, 5%, 1% and smaller than 1% for the D’Agostino-Pearson test and 7%, 1%

and close to 0% for the Jarque-Bera test. This indicates that linear-Gaussian models might

not be an appropriate way to describe these data, and that one may need to allow for some

type of non-linearity in order to explain these movements. Accordingly, we will explore a

class of explanation that allows for such non-linearities. Moreover, when we estimate our

model below, we will use the skewness and kurtosis properties of the data to help identify

parameters.

2 Demand Complementarities as a Source of Limit Cy-

cles: A Simple Reduced-Form Model

In this section we present a simple reduced-form dynamic model aimed at illustrating how

and when limit cycles can emerge in an environment with demand complementarities, and

how this can create a peak in the spectral density of a variable. As we show, the key

mechanism that allows the model to generate limit cycles is the interplay between demand

complementarities and dynamic accumulation. We begin with a reduced-form setup so as to

highlight the generality of this mechanism, regardless of the precise micro-foundations that

drive agents’ interactions. In the next section, we will provide a structural model that fits

into this general class.

In addition to establishing that the model can, under fairly general conditions, produce a

Hopf bifurcation associated with an attractive limit cycle, an important goal of the analysis

in this section is to show that this happens even when we restrict the strength of the demand

complementarities to be too weak to create static multiple equilibria. In fact, as we make

clear, the strength of the demand complementarities necessary for a limit cycle to appear in

this environment is always less than that needed to generate multiple equilibria.
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2.1 The Environment

Consider an environment with a large number N of agents indexed by i, where each agent

can accumulate a good Xit, which can be either productive capital or a durable consumption

good. The accumulation equation is given by

Xit+1 = (1− δ)Xit + Iit, 0 < δ < 1, (1)

where Iit is agents i’s investment in the good. Suppose initially that there are no interactions

between agents and that the decision rule for agent i’s investment is given simply by

Iit = α0 − α1Xit + α2Iit−1, (2)

where parameters α1, α2 and δ are strictly between 0 and 1. In this decision rule, the effect

of Xit on investment is assumed to be negative so as to reflect some underlying decreasing

returns to capital accumulation, while the effect of past investment is positive so as to reflect

a sluggish response that may be due, for example, to adjustment costs.15

When all agents behave symmetrically, the aggregate dynamics of the economy are given

by the linear system:(
It
Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)
︸ ︷︷ ︸

ML

(
It−1

Xt−1

)
+

(
α0

0

)
. (3)

The stability of this system is established in the following proposition.

Proposition 1. Both eigenvalues of the matrix ML lie strictly inside the unit circle. There-

fore, system (3) is stable.

All proofs are given in Appendix B. According to Proposition 1, the dynamics are ex-

tremely simple, with the system converging to its steady state for any starting values of

Xit = Xt and Iit−1 = It−1. We now add agent interactions to the model and study how the

dynamics are affected.

15We focus here on a system with two state variables. We do this since we need a system with at least two
state variables for the possibility of a Hopf bifurcation to arise. It is our conjecture that limit cycles that
emerge from Hopf bifurcations are more likely to be relevant for business cycle analysis than those arising
from flip bifurcations (which can arise in one-dimensional systems).
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2.2 Adding Interactions Between Agents

To generalize the previous setup in order to allow for interactions between individuals, we

modify the investment decision rule to

Iit = α0 − α1Xit + α2Iit−1 + Eit [F (It)] , (4)

while keeping the law of motion for X (Equation (1)) unchanged. Here, It ≡
∑
Ijt/N is the

average level of investment in the economy and Eit is the expectation operator. Hence, in

this setup, agent actions depend on their expectations of other agents’ actions. We assume

that the function F (·) is continuous and differentiable at least three times and that F (0) = 0.

The function F (·) captures how the actions of others, summarized by the average level of

investment It, affect agent i’s investment decision Iit. For example, if F ′(·) < 0 then the

function F (·) can implicitly capture an agent’s optimal response to an increase in prices

caused by increased demand by others, while if F ′(·) > 0 it can capture some form of

demand complementarity. As we will focus on a symmetric equilibrium and since there are

no stochastic driving forces, we can drop the expectation operator and treat the system as

deterministic. In this formulation, we are assuming that agents take the average actions in

the economy as given, so that (4) can be interpreted as agent i’s best-response rule to the

average action.

Figure 5 illustrates this best-response rule for two different values of the intercept. Note

that in this diagram the intercept is given by αt = α0−α1

∑∞
j=0(1−δ)jIit−1−j+α2Iit−1, which

is a function of the history of the economy prior to date t. Thus, past investment decisions

determine the location of the best-response rule, which in turn determines the current level

of investment, which then feeds into the determination of the next period’s intercept, and so

on. In order to rule out static multiple equilibria—that is, multiple solutions for It for given

values of Iit−1 and Xit—we assume that F ′ (It) < 1.16 Thus, we are restricting attention

to cases where demand complementarities, if they are present, are never strong enough to

produce static multiple equilibria.

In what follows we consider only symmetric equilibria, so that we may henceforth drop

16Under the condition F ′ (It) < 1, the static equilibrium depicted in Figure 5 is generally viewed as stable
under a tâtonnement-type adjustment process. This stability property is not the focus of the current paper.
Instead we are interested in the explicit dynamics induced by the system (1) and (4).
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Figure 5: Best-Response Rule for Two Different Histories

It

Iit
Iit = It

αt

Iit = αt + F (It)

α′t

Iit = α′t + F (It)

Notes: This figure plots the best-response rule (Equation (4)), Iit = αt + F (It), with αt ≡ α0 −
α1
∑∞

j=0(1− δ)τIit−1−j +α2Iit−1. The intercepts αt and α′t correspond to two different histories of
the model.
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the subscript i. We make the additional assumption that α2 < α1/δ so that a steady state

necessarily exists and is unique, and let Is and Xs denote the steady state values of I and

X. Note that the condition α2 < α1/δ will always be satisfied when δ is sufficiently small,

since both α1 and α2 are strictly positive.

Our goal is to examine how the dynamics of the system (1) and (4) are affected by the

properties of the interaction effects, and especially what conditions on F (·) will give rise to

a Hopf bifurcation that is associated with the emergence of an attractive limit cycle.

2.3 The Local Dynamics of the Model with Interactions Between
Agents

We now consider the dynamics implied by the bivariate system (1) and (4). In order to

understand those dynamics, it is useful to first look at local dynamics in the neighbourhood

of the steady state. The first-order approximation of this dynamic system is given by(
It
Xt

)
=

(
α2−α1

1−F ′(Is) −
α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
It−1

Xt−1

)
+

([
1− α2−α1

1−F ′(Is)

]
Is + α1(1−δ)

1−F ′(Is)X
s

0

)
. (5)

The eigenvalues of the matrix M are the solutions to the quadratic equation

Q(λ) = λ2 − Tλ+D = 0,

where T is the trace of M (and also the sum of its eigenvalues) and D is the determinant of

M (and also the product of its eigenvalues). The two eigenvalues are thus given by

λ, λ =
T

2
±

√(
T

2

)2

−D, (6)

where

T =
α2 − α1

1− F ′(Is)
+ 1− δ (7)

and

D =
α2(1− δ)
1− F ′(Is)

. (8)

When F ′(Is) = 0, the model dynamics are locally the same as in the model without

demand complementarities, and in particular, as noted in Proposition 1, the roots of the

system lie inside the unit circle in this case. More generally, we may (locally) parameterize

F by F ′(Is) and ask what happens as F ′ varies.
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Geometric analysis: It is informative to consider a geometric analysis of the location

of the two eigenvalues of the linearized system (5). This is done in Figure 6, which presents

the plane (T,D). A point in this plane is a pair (Trace, Determinant) of matrix M that

corresponds to a particular configuration of the model parameters (including F ′(Is)). We

have drawn three lines and a parabola in that plane. The line BC corresponds to D = 1,

the line AB to the equation Q(−1) = 0 (⇔ D = −T − 1) and the line AC to the equation

Q(1) = 0 (⇔ D = T − 1). On the perimeter of triangle ÂBC, at least one eigenvalue has

a modulus of one. We review in the proofs of Appendix B why both eigenvalues of the

system are inside the unit circle when (T,D) is inside ÂBC, while at least one eigenvalue

is outside the unit circle when (T,D) is outside ÂBC. Whether the eigenvalues are real

or complex depends on the sign of the discriminant of the equation Q(λ) = 0, which is

given by ∆ =
(
T
2

)2 − D. The parabola in Figure 6 corresponds to the equation ∆ = 0

(⇔ D = T 2/4). Above the parabola, the eigenvalues are complex and conjugate, while on

or below the parabola they are real. The possible configurations of the local dynamics can

then be easily characterized by considering the location of (T,D) within this diagram.

Without any restrictions on F ′(Is), the steady state can be locally stable, unstable, or a

saddle, with either real or complex eigenvalues. Proposition 1 proves that when F ′(Is) = 0,

the steady state values correspond to points E or E ′ (depending on the parameters) that

are inside ÂBC. Furthermore, it is easy to verify that D is always greater than zero, so that

the steady state must lie in the top part of ÂBC. As an example, in Figure 6 we have put

E and E ′ in the region of stability with complex eigenvalues.

As F ′(Is) varies, the eigenvalues of the system will vary, implying changes to the dynamic

behavior of I and X. From equations (7) and (8), assuming α1 6= α2,17 we may obtain the

following relationship between the trace and determinant of matrix M :

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1

. (9)

Therefore, when F ′(Is) varies, T and D move along the line (9) in (T,D)-space, which allows

for an easy characterization of the impact of F ′(Is) on the location of the eigenvalues, and

therefore also of the stability of the steady state. We need to systematically consider the two

17The case where α1 = α2 is addressed in the proofs of Appendix B.
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cases α2 > α1 and α2 < α1, as the line (9) slopes positively in the former case and negatively

in the latter.

Let us consider first the strategic substitutability case where F ′(Is) is negative; that is,

where the investment decisions of others have a negative effect on one’s own decision. In

that case, it is clear from equations (7) and (8) that

lim
F ′(Is)→−∞

T = 1− δ

and

lim
F ′(Is)→−∞

D = 0.

We will denote the point (1− δ, 0) by E1 on Figure 6. Note that E1 lies inside the “stability

triangle” ÂBC.

Let’s assume that the steady state without strategic interactions is E and α2 > α1. When

F ′(Is) goes from 0 to −∞, the point (T,D) moves from E to E1 along the line given by

Equation (9). This movement corresponds to the half-line denoted (a) on Figure 6. As E

and E1 both belong to the interior of ÂBC, and because the interior of ÂBC is a convex

set, any point of the segment [E,E1] also belongs to the interior of triangle ÂBC. The

same argument applies if parameters are such that the steady state corresponds to E ′ and

α2 < α1, with the relevant half-line being (a′). Thus, the following proposition holds:

Proposition 2. As F ′(Is) varies from 0 to −∞, the eigenvalues of M always stay within

the complex unit circle, and therefore the system remains locally stable.

Proposition 2 indicates that, when the actions of others play the role of strategic substi-

tutes with one’s own action, the system always maintains stability. Since Walrasian settings

are typically characterized by strategic substitutability, this is one reason why dynamic Wal-

rasian environments are generally stable.

We now turn to exploring how the presence of strategic complementarities (i.e., when

F ′(Is) > 0) affects the dynamics of the system. In Figure 6, a rise in F ′(Is) beginning from

F ′(Is) = 0 corresponds to movement along the line given by Equation (9), starting from

the point E or E ′ and in the opposite direction to E1. This movement is denoted by the

half-lines (b), (b’) or (b”) in Figure 6. It can also be easily verified that, as F ′(Is) gets
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Figure 6: Local Stability When F ′(Is) ∈ (−∞, 1)

T

D

A

CB

1 2-1-2

-1

1

1-δ

E1

E′

(a’)

(b’)

(b”) E

(a)

(b)

Saddle, real eigenvalues

Unstable, complex eigenvalues

Unstable, real eigenvalues

Stable, real eigenvalues

Stable, complex eigenvalues

Notes: This figure shows the plane (T,D), where T is the trace and D the determinant of matrix
M . The points E and E′ correspond to two possible configurations of the model without demand
externalities. According to Proposition 1, those points are inside the triangle of stability ÂBC.
They are arbitrarily placed in the zone where the two eigenvalues are complex. E and arrows (a)
and (b) correspond to the case where α2 > α1; E′ and arrows (a’), (b’) and (b”) to the case where
α2 < α1. The case α1 = α2 is investigated in the proofs of Appendix B.
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closer to one, (T,D) will necessarily cross the perimeter of triangle ÂBC, thereby causing

the steady state to change from being locally stable to being unstable. The location of the

crossing depends on parameters.

Consider first the case where α2 > α1, and assume that the steady state corresponds to

E on Figure 6. Under our earlier assumption that α2 < α1/δ (which helped guaranteeing a

unique steady state), it can be verified that the half line (b) will never cross line segment

AC, which is the line segment associated with the largest of two real eigenvalues being equal

to one. Thus, when α2 > α1, (b) must cross line segment BC; that is, the point at which

the system loses stability as F ′(Is) increases must be associated with complex eigenvalues.

Now consider the case where α2 < α1, and assume that the steady state corresponds to

E on Figure 6. In this case, (T,D) can cross the perimeter of triangle ÂBC under two

different possible configurations. If the slope of line (9) is sufficiently negative, it will cross

line segment BC, at which point the eigenvalues will be complex. This is the case drawn

in the figure as half line (b’). On the other hand, if the slope of line (9) is negative but

sufficiently flat, the point F ′(Is) = 0 will be associated with a point in (T,D)-space like E ′

rather that in E. In that case, as shown by half-line (b”) in Figure 6, as F ′(Is) increases

(T,D) will cross line segment AB, which is the line segment associated with the smaller of

two real eigenvalues being equal to negative one.

2.4 Bifurcations and the Occurrence of Limit Cycles

Our graphical analysis of the previous subsection shows that the presence of demand com-

plementarities can change the qualitative dynamics of the system. In particular, if the

complementarities become strong enough the system will transition from being locally sta-

ble to being locally unstable. In the theory of dynamical systems, a change in local stability

when a parameter varies is referred to as a bifurcation. Bifurcations are of interest since

there is a close relationship between the nature of a bifurcation and the emergence of limit

cycles. We formalize the nature of possible bifurcations for our bivariate system (1) and (4)

in the following proposition.

Proposition 3. As F ′(Is) increases from zero towards one, the dynamic system given by

(1) and (4) will eventually become locally unstable. In particular:
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− If α2 > α1/(2− δ)2, then a Hopf (Neimark-Sacker) bifurcation will occur.

− If α2 < α1/(2− δ)2, then a flip bifurcation will occur.

A flip bifurcation occurs with the appearance of an eigenvalue equal to negative one, and

a Hopf bifurcation with the appearance of two complex conjugate eigenvalues of modulus

one. The proof of Proposition 3 involves establishing conditions under which line (9) crosses

line segment BC (for the Hopf bifurcation) or line segment AB (for the flip bifurcation) as

F ′(Is) increases from zero. In either case, the bifurcation that occurs as F ′(Is) increases will

be associated with the emergence of a limit cycle. In the case of a flip bifurcation, the limit

cycle that emerges close to the bifurcation point will be of period two, i.e., will involve jumps

back and forth over the steady state every period. Such extreme fluctuations are unlikely

to be very relevant for business cycle analysis. We therefore henceforth focus on the more

interesting case from our point of view, which is the case where the system experiences a

Hopf bifurcation. In this case, close to the bifurcation point there will emerge around the

steady state (in (X, I)-space) a unique isolated closed invariant curve.18 Beginning from any

point on this closed curve, the system will remain on it thereafter, neither converging to a

single point nor diverging to infinity, but instead rotating around the steady state along that

curve indefinitely. Further, in contrast to the flip bifurcation, the cycle that emerges near a

Hopf bifurcation may in general be of any period length and hence the resulting dynamics

appear more promising for understanding business cycles.

The condition on α2 under which a Hopf bifurcation (rather than a flip bifurcation) will

arise according to Proposition 3 may, at first pass, look rather restrictive. In fact, as δ → 1

this condition approaches α2 ≥ α1, which necessitates a fairly large amount of sluggishness

in investment. However, if δ is small, the condition becomes significantly less restrictive.

For example, as δ → 0 the condition becomes α2 > α1/4, a simple lower bound on the

degree of sluggishness. Given these considerations, one could loosely re-state Proposition 3

18We have to this point side-stepped a minor technical issue, which is that, in discrete time, the bounded
non-convergent orbits appearing near a Hopf bifurcation will possess the basic qualitative features of a limit
cycle, but may never exactly repeat themselves and thus may not strictly speaking be limit cycles. For
example, in a bivariate discrete-time system characterized by rotation along the unit circle by θ radians per
period, if θ/π is irrational then the system will never return to the same point twice, despite the clear sense
in which the dynamics are cyclical. We will ignore this uninteresting technicality and apply the term “limit
cycle” broadly to also include the entire isolated closed invariant curve (e.g., the entire unit circle in the
example of this footnote) that emerges.
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as indicating that if depreciation is not too fast, and sluggishness not too small, then the

system will experience a Hopf bifurcation as F ′(Is) increases from 0 towards 1.19

Having established conditions under which a Hopf bifurcation emerges, we turn now to

the question of whether such a limit cycle is attractive; that is, whether the economy would

be expected to converge towards such an orbit given an arbitrary starting point. To use

language from the theory of dynamical systems, a bifurcation may be either supercritical or

subcritical. In a supercritical bifurcation, the limit cycle emerges on the “unstable” side of

the bifurcation and attracts nearby orbits, while in a subcritical bifurcation the limit cycle

emerges on the “stable” side of the bifurcation and repels nearby orbits.

The emergence of a limit cycle is mainly of interest to us if it is attractive, so that

departures from the steady state will approach the limit cycle over time. The conditions

governing whether a Hopf bifurcation is supercritical or subcritical are often hard to state.

However, in our setup, a simple sufficient condition can be given to ensure that the Hopf

bifurcation is supercritical. This is stated in Proposition 4, where we make use of the Wan

[1978] theorem.

Proposition 4. If F ′′′(Is) is sufficiently negative, then the Hopf bifurcation noted in Propo-

sition 3 will be supercritical.

The economics for why increasing F ′(Is) will cause the system to become unstable is

rather intuitive. A high value of F ′(Is) implies that an individual agent has a large incen-

tive to accumulate more capital at times when other agents increase their accumulation.

This leads to a feedback effect whereby any initial individual desire to have high current

investment—due to some combination of a low current capital stock (the decreasing returns

channel) and a high level of investment in the previous period (the sluggishness channel)—

becomes amplified in equilibrium through a multiplier-type mechanism. When this feedback

effect is strong enough, it will cause small initial deviations from the steady state to grow

over time, pushing the system away from the fixed point. As a result, the economy will tend

to go through repeated episodes of periods of high accumulation followed by periods of low

accumulation, even in the absence of any exogenous shocks. Such behavior contrasts sharply

19Note also that it is precisely when δ is small that our earlier condition on α2 guaranteeing a unique
steady state (i.e., α2 < α1/δ) is also likely to be satisfied.
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with the steady flow of I over time that would be the natural point of rest of the system in

the absence of complementarities.

The requirement that F ′′′(Is) be sufficiently negative for the emergence of an attrac-

tive limit cycle can also be related to economic forces. If the best-response function, F , is

positively sloped near the steady state and F ′′′(Is) is negative, then it will take an S-shaped

form.20 Note that Figure 5 was drawn with these features. The intuition for why an S-shaped

best-response function favors the emergence of an attractive limit cycle can be understood as

follows. As noted above, when the system is locally unstable, the demand complementarities

are strong enough near the steady state that any perturbation from that point will tend

to induce outward “explosive” forces. If the best-response function is S-shaped, however,

then as the system moves away from the steady state the demand complementarities will

eventually fade out (i.e., F ′(I) eventually falls), so that the explosive forces that are in play

near the steady state are gradually replaced with inward “stabilizing” ones. As long as

F ′′′(Is) is sufficiently negative, these stabilizing forces will emerge quickly enough, and an

attractive limit cycle will appear at the boundary between the inner explosiveness region

and the outer stability region. Such a configuration for F is the one we have assumed when

drawing Figure 5.

If instead the best-response function has F ′′′(Is) > 0, then instead of dying out, the

demand complementarities would tend to grow in strength as the system moves away from

the steady state,21 so that inward stabilizing forces do not appear. In this case, when F ′(Is)

is large enough for the system to become unstable, the Wan [1978] theorem implies the

presence of a subcritical Hopf bifurcation in which a repulsive limit cycle appears just before

the system becomes unstable.22

20A parametric example of such an S-shaped function is the sigmoid function F (x) = 1
1+e−x for x on the

real line.
21A parametric example of such a function is the logit function, which is the reciprocal of the sigmoid,

and takes the form g(y) = log
(

y
1−y

)
for y ∈ (0, 1).

22Note that subcriticality of a bifurcation does not necessarily imply global explosiveness on the unstable
side of the bifurcation, nor does it rule out the emergence of an attractive limit cycle in that region. Rather,
the results of this section (including those based on Wan [1978]) are inherently about the local behavior of the
system, where “local” in this case means “to a third-order Taylor approximation on some sufficiently small
neighbourhood of the steady state”. Conclusions about the global behavior of the system cannot in general
be inferred from these local results. In particular, subcriticality only implies that if an attractive limit cycle
does emerge on the unstable side, then it must involve terms higher than third order. For example, if we
impose the additional assumptions that limI→0 F (I) =∞ and limI→Ī F (I) = −∞ for some Ī ∈ (0,∞), then
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The general insight we take away from the Wan [1978] theorem regarding Hopf bifur-

cations is that attractive limit cycles are likely to emerge in our setting if demand comple-

mentarities are strong and create instability near the steady state, but tend to die out as

one moves away from the steady state. We may refer to such a setting as one with local

demand complementarities. In an economic environment, it is quite reasonable to expect

that positive demand externalities are likely to die out if activity gets very large. For exam-

ple, if investment demand becomes sufficient large, some resource constraints are likely to

become binding, causing strategic substitutability to emerge in place of complementarities.

Similarly, physical constraints, such as a non-negativity restrictions on investment and cap-

ital or Inada conditions implying that the marginal productivity of capital tends to infinity

at zero are reasonable considerations in economic environments that will limit systems from

diverging to zero or to negative activity. Such forces will in general favor the emergence of

attractive limit cycles in the presence of demand complementarities.

2.5 Stochastic Limit Cycles

As we have seen, in dynamic environments with accumulation, strategic complementarities

between agents’ actions can readily create limit cycles in aggregate outcomes. We showed

that this can arise even when individual-level behavior favors stability, in that the system

would converge to the steady state in the absence of agent interactions. Moreover, in our

environment the complementarities can be considered modest, in that they imply elasticities

less than one. However, if the behavior of all agents is deterministic, then the resulting

cyclical dynamics will be far too regular to match the patterns observed in macroeconomic

data series. For example, in Figure 7 we report an example of the limit cycle dynamics

implied by a simple parameterization of Equation (4).23 While the dynamics are not those

of a perfect sine wave, the pattern is nonetheless very regular.

For the concept of limit cycles to potentially have a chance of helping to explain macroe-

conomic fluctuations, it is necessary to include exogenous stochastic driving forces.24 For

the system never becomes explosive, even if the Hopf bifurcation of Proposition 4 is subcritical.
23In this simulation, the function F is assumed to be piecewise-linear. See Appendix C for more details.
24An alternative route, which we do not pursue here, would be to focus on chaotic dynamics.
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Figure 7: Deterministic Simulation
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Notes: This figure shows the deterministic simulation of a model given by equations (10) and (1) for sym-
metrical allocations and with µt = 0 ∀ t. The function F is assumed to be piecewise-linear. See Appendix C
for more details.

example, suppose we modify our agents’ decision rule (4) to

Iit = α0 − α1Xit + α2Iit−1 + F (It) + µt, (10)

where µt is a stationary stochastic process representing an exogenous force affecting agents’

investment decision.25 How does the addition of this exogenous stochastic force affect equilib-

rium dynamics? In this case, we can no longer say that the dynamic system exhibits a limit

cycle, but rather that it exhibits a stochastic limit cycle. What is important to understand

is that the addition of the stochastic term µt does not simply add noise around an otherwise

deterministic cycle, as for example would be the case in Panel (a) of Figure 8.26 That is, the

exogenous forces do not simply produce random amplitude shifts that temporarily perturb

the system from the limit cycle. Rather, they also create random phase shifts that acceler-

ate/delay the cycle itself. Furthermore, even though µt is stationary, and while the amplitude

displacement caused by a shock is temporary, the phase displacement will nonetheless have a

25We are restricting attention to the introduction of stochastic elements that enter in an additive form.
Looking at the implications of allowing for stochastic elements that enter in some other form would be
interesting but is left for future work. As we will focus on symmetric equilibria, and since the stochastic
driving force is common across agents, we have again dropped the expectation operator.

26Panel (a) of Figure 8 is generated with the model It = sin
(
π
25 t
)

for the deterministic cycle, and with

It = sin
(
π
25 t
)

+ µt for the stochastic cycle, with µt = ρµt−1 + εt and ρ = 0.15, σε = 0.2.
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permanent component.27 To illustrate these effects, we return to the parameterization used

in Figure 7, but now add in the shock µt.
28 The resulting dynamic system is presented in

Panel (b) of Figure 8. This model would still have a deterministic cycle if no shocks were

present, but now instead of observing a smooth cycle, the model generates data that look

more like that observed for macroeconomic variables; namely, boom-and-bust cycles that

have both stochastic amplitudes and durations. As we will later show, the addition of such

stochastic elements also has the effect of changing the spectral density of a series. In the

absence of stochastic elements, the spectral density implied by a limit cycle will tend to have

very extreme peaks. In contrast, the presence of stochastic elements will tend to smooth out

the spectral density, making peaks less pronounced but without generally removing them

altogether.

Figure 8: Stochastic Limit Cycles
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Notes: Panel (a) of this figure shows the deterministic and stochastic simulation of the model It = sin
(
π
25 t
)
+

µt. Panel (b) shows the deterministic and stochastic simulations of a model given by equations (10) and
(1) for symmetrical allocations and where µt follows an AR(1) process. The function F is assumed to be
piecewise-linear. µt is always equal to 0 in the deterministic simulations while it follows an AR(1) process
in the stochastic ones. See Appendix C for more details.

27That is, in the absence of any further shocks, the system will converge back to the limit cycle, but will
be permanently either ahead of or behind where it would have been had it never been perturbed.

28In this simulation, the F function is the piecewise-linear one used before, and the shock follows the
autoregressive process µt = ρµt−1 + εt and ρ = 0.95, σε = 0.03. See Appendix C for more details.
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2.6 Adding Forward-Looking Elements

In the previous section, we illustrated how agent interaction can create limit cycles when

agents are accumulating goods and when there is inertia in their behavior. However, the

framework we explored purposely omitted any forward-looking elements on the part of agents.

This omission has the advantage of allowing us to highlight key forces that can give rise to

limit cycles without needing to simultaneously address issues regarding the extra potential

source of multiple equilibria that may arise when agents are forward-looking. In this section,

we extend the results of the previous section to the case where individual agents’ decisions

take the form

Iit = α0 − α1Xit + α2Iit−1 + α3Eit [Iit+1] + Eit [F (It)] (11)

Here, as before, the determination of Xt still obeys Xit+1 = (1− δ)Xit+ Iit, and the function

F (·) controls the complementarity between agents’ decisions. Also as before, we focus on

symmetric equilibrium and assume that 0 ≤ F ′(·) < 1 so that the complementarity is

never sufficiently strong that it creates static multiple equilibria.29 For now we return to

a formulation where we omit any exogenous stochastic driving forces and consider perfect

foresight dynamics, so that we can remove the expectation operators in Equation (11). Note

that when we consider an environment with forward-looking agents, microfounded models

most often will include a transversality condition (TVC). For this reason, let us assume

that our reduced form model also includes a TVC of the form limt→∞ β
tXt = 0 for some

parameter 0 < β < 1.

With respect to our previous setup, the only difference in (11) is the inclusion of the

expectation term Et [Iit+1]. We again restrict attention to situations where the parameters

are such that there is a unique steady state. The condition α1 > δ(α2 + α3), which we

henceforth assume holds, guarantees the absence of multiple steady states when 0 < F ′ < 1.

Note that as δ goes to zero, this constraint reduces simply to a non-negativity constraint

on α1. We also assume henceforth that the parameters are such that, in the absence of any

agent interaction (i.e., F ′(I) = 0 for all I), the behavior of Iit is determinate and converges

to the steady state. Having α1, α2, α3 ∈ (0, 1) is almost sufficient for this.30

29We may also want to assume that F ′′′ < 0 and that F ′ is largest at the steady state.
30We need the additional restriction that if (1−δ)α2 > α3 then α1 > (1−δ)+(α2−α3)

[
1 + α2

α3
(1− δ)2

]
−
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As before, let us denote the steady state of the system by Is and let the strength of

the complementarities be parameterized by F ′(Is), which we will allow to vary from zero

to one. Supposing initially that F ′(Is) = 0, we are starting from a situation where two

of the eigenvalues of the dynamic system, λ11 and λ12, are inside the unit circle, and the

third eigenvalue, λ2, is real and outside; that is, we are starting from a saddle-path stable

configuration. The following proposition establishes that we must have λ2 > 1 in such a

configuration.

Proposition 5. Suppose the dynamic system governed by (11) and (1) has a real eigenvalue

less than or equal to −1. Then, for any value of F ′(Is) < 1, it also has a real eigenvalue

that is greater than 1.

Given Proposition 5, if this dynamic system undergoes a bifurcation as F ′(Is) increases

from zero to one, it must be one of the following four types:31

1. λ2 falls below 1 (indeterminacy-inducing fold).

2. λ11 (or λ12) is (or first becomes) real and rises above 1 (destabilizing fold).

3. λ11 (or λ12) is (or first becomes) real and falls below −1 (flip).

4. λ11 and λ12 are (or become) complex and leave the unit circle together (Hopf).

The first type of bifurcation corresponds to the case where the system becomes locally

indeterminate as complementarities increase, in the sense of generating a continuum of equi-

librium paths satisfying the TVC. We will refer to this as an indeterminacy-inducing fold

bifurcation. This is the type of bifurcation emphasized in the sunspot literature (see, for

example, Benhabib and Farmer [1994]). The second type of bifurcation corresponds to a

situation where the system no longer has any equilibrium paths that satisfy the TVC, so

that the system becomes globally unstable.32 The third and fourth types of bifurcation cor-

respond to the flip and Hopf bifurcations, which were discussed in Section 2.4, and which

α2

α3
(1 − δ). Note also that, while we are assuming that α3 < 1, the results from this section extend to the

case where α3 is also allowed to be in the interval (0, 2).
31We focus here only on the first bifurcation that the system undergoes as F ′(Is) increases. In general, it

may undergo further bifurcations beyond this point.
32In particular, this is only necessarily true under our maintained assumption that the steady state is

unique.
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give rise (locally) to limit cycles. As noted earlier, the question that interests us most is

under what conditions a Hopf bifurcation arises. However, before discussing this case, it is

useful to first recognize that, in our setup with the parameter restrictions discussed above,

the first two types of bifurcation never arise, as stated formally in the following proposition.

Proposition 6. As F ′(Is) increases from zero to one, the dynamic system governed by (11)

and (1) will not undergo either type of fold bifurcation. Therefore, increasing the strength of

the complementarities will not produce indeterminacy.

Proposition 6 is interesting as it implies that, although we have extended our framework

to include forward-looking behavior in the presence of complementarities across agents, we do

not observe (self-fulfilling) multiple equilibria in our setup. This may seem surprising given

that the literature on indeterminacy often seems to draw on complementarities to generate

multiplicity. However, since fold bifurcations are always associated with multiple steady

states (see, for example, Kuznetsov [1998], ch. 4), and since we have ruled out multiple

steady states by assumption, it should not be too surprising that our system cannot undergo

an indeterminacy-inducing (nor a destabilizing) fold bifurcation. Note that, as long as δ is

small, the assumption made to rule out multiple steady states (i.e., α1 > δ(α2 + α3)) will

not be very restrictive. Given this, and given that it ensures a unique steady state, it seems

reasonable for our purposes to maintain this assumption.

Proposition 6 leaves us with only two possible types of bifurcation that can arise as the

strength of the complementarity increases: a Hopf bifurcation, or a flip bifurcation. Note

that these were also the only two types of bifurcation that could arise in our analysis of

the previous section where we omitted forward-looking behavior. As previously noted, flip

bifurcations are unlikely to be very relevant in explaining macroeconomic phenomena, as

they are associated with cycles of periodicity 2. In the current setup, such bifurcations can

again only arise if α2 is sufficiently small, as indicated by Proposition 7.

Proposition 7. As F ′(Is) increases from zero to one, the dynamic system governed by (11)

and (1) will undergo a flip bifurcation only if α2 <
α1

2−δ − α3.
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Since flip bifurcations are not our focus, for the remaining discussion of this section we

assume that α2 >
α1

2−δ − α3; i.e., we assume that individual behavior is characterized by

sufficient sluggishness to rule out flip bifurcations. Under this added condition, Propositions

6 and 7 together imply that the only potential type of bifurcation in the system governed

by (11) and (1) is a Hopf bifurcation.

Let us emphasize that the nature of the Hopf bifurcation in the presence of forward-

looking behavior is somewhat different from the case without it. In particular, in the presence

of forward-looking behavior, as the two complex stable eigenvalues become unstable due to

a Hopf bifurcation, the system nonetheless retains a similar saddle-path structure to the

pre-bifurcation system. Specifically, even if an attractive limit cycle appears, it will only be

attractive on a two-dimensional manifold—which we refer to as the non-explosive manifold—

in our three-dimensional phase space.33 The transversality condition will then force It to

jump—for any given initial values of Xt and It−1—onto this manifold. Figure 9 presents a

phase diagram that illustrates this configuration, which we refer to as a saddle limit cycle.

The light grey manifold in the figure contains an attractive limit cycle, and beginning from

any point initially on this manifold (except the steady state), the system converges to the

cycle (dark grey lines). The dynamics of the system beginning from any other point, however,

are dominated by the remaining (real) unstable eigenvalue, causing paths emanating from

such points to explode (black lines).34

We are now in a position to examine under what conditions an increase in complemen-

tarity will lead to a Hopf bifurcation in our forward-looking system. Proposition 8 gives a

necessary condition for this, while Proposition 9 gives sufficient one.

Proposition 8. As F ′(Is) increases from zero to one, the dynamic system governed by (11)

and (1) can lead to a Hopf bifurcation only if (1− δ)α2 > α3.

33Formally, if A is the eigenspace associated with the two complex eigenvalues, then the non-explosive
manifold is the invariant two-dimensional subspace that is tangent to A at the steady state.

34The dynamic system we are considering is three-dimensional, which allows for the possibility of such a
saddle limit cycle to appear as part of a Hopf bifurcation. In a two-dimensional system, on the other hand,
a Hopf bifurcation would necessarily be associated with indeterminacy, since beginning from any point in
the phase space the system would converge to the limit cycle (i.e., the transversality condition would be
satisfied). This latter case has appeared often in the macroeconomic literature. In contrast, the type of
configuration implied by Figure 9 is less common.
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Figure 9: A Saddle Limit Cycle

Notes: The light grey zone is the non-explosive manifold (which is here locally drawn as a linear plane, but
which is in general nonlinear). The dark grey lines are two paths that converge to the limit cycle, one from
the inside and one from the outside. The black lines are two paths for which the jump variable has not jumped
onto the non-explosive manifold, and which therefore diverge.
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Proposition 9. As F ′(Is) increases from zero to one, the dynamic system governed by (11)

and (1) will experience a Hopf bifurcation if 0 < (1− δ)2 α2
2

α3
+
[
1− (1− δ)2]α2 − α1 − α3 <

(1− δ)
(
α2

α3
− 1
)

.

Proposition 8 indicates that complementarities may not be sufficient to create a Hopf

bifurcation when agents are forward-looking. This is in contrast to the case with no forward-

looking elements, where complementarities could always create local instability. In effect, the

proposition indicates that the amount of sluggishness in the system needs to be sufficiently

important (as governed by α2) relative to the forward-looking behavior (as governed by α3)

for complementarities to potentially create a Hopf bifurcation. For example, if α2 < α3 then

a Hopf bifurcation cannot arise. This condition will be helpful when exploring whether or

not a particular model may allow for limit cycles.

Proposition 9 provides a sufficient condition for the emergence of a Hopf bifurcation

due to complementarities in the presence of forward-looking agents. This condition is not

easily interpretable. In order to get a better idea of its meaning, we illustrate its impact in

Figure 10. The box in the figure corresponds to the set of α1, α2 and α3 ∈ [0, 1]. The light

grey balls correspond to the set of points where the system undergoes a Hopf bifurcation

as F ′(Is) increases from zero to one.35 The figure is drawn for the case where δ = 0.01

(similar figures arise for alternative values of δ). As can be seen in the figure, most of the

points satisfying the necessary condition (1− δ)α2 > α3 actually support the emergence of a

limit cycle as complementarities increase. In this sense, the condition (1− δ)α2 > α3 can be

seen as necessary and almost sufficient for the emergence of a Hopf bifurcation, even though

Proposition 9 indicates that the actual sufficient condition is more subtle. For the parameter

space where the system does not experience a Hopf bifurcation as we increase F ′(Is) towards

1, it can be further be shown that the eigenvalues of the system will necessarily become

complex when F ′(Is) is sufficiently large. In this sense, increasing complementarities in this

system always tends to create cyclical forces, either of the strong form associated with limit

cycles, or in the weaker form of complex eigenvalues in a stable system.

35The darker grey balls in the figure represent combinations where the system undergoes a flip bifurcation,
and the black balls correspond to indeterminacy-inducing fold bifurcations. Both of these case are in areas
ruled out by our assumptions.
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Figure 10: Nature of the Bifurcation When Complementarities Are Increased

Notes: This figure is related to the forward-looking model given by equations (1) and (11) for symmetrical
allocations. For various values of the parameters (α1, α3, α3) ∈ (0, 1)3 and for fixed depreciation δ = 0.01,
we increase the degree of complementarity F ′(Is) from 0 to the point where the first bifurcation occurs.
The light grey balls correspond to the triplets of parameters where the system undergoes a Hopf bifurcation.
The darker grey balls in the figure represent combinations where the system undergoes a flip bifurcation,
and the black balls correspond to indeterminacy-inducing fold bifurcations. Areas without balls correspond
to parameter configurations for which the steady state is non-unique (i.e., α1 ≤ δ(α2 + α3)) or, if it is
unique, the system is not initially in a saddle-path stable configuration (i.e., if (1 − δ)α2 > α3 then α1 >

(1− δ) + (α2 − α3)
[
1 + α2

α3
(1− δ)2

]
− α2

α3
(1− δ)).
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3 A New Keynesian Model with Financial Frictions

that Can Generate Limit Cycles

3.1 The Model

In this section, we extend the canonical three-equation New Keynesian model to include

a set of elements that will allow it to capture the key forces emphasized in our reduced-

form model. This involves adding to the canonical model a form of capital accumulation,

some sluggishness in behavior, and most importantly some form of complementarity. In the

next section, we will estimate this extended model by indirect inference and check whether

the estimated parameters suggest that limit cycle forces may be an important driver of the

business cycle.

Before we present the equations of the model, it is helpful to first briefly describe the

mechanisms we want to capture with it. The model is aimed at capturing what we like to call

an accumulation-liquidation cycle, but which others may prefer to think of as a credit cycle.36

The narrative for such a cycle has many precedents in the literature, and our formulation

is only one possible interpretation. Complementarity in our model will emerge through the

determination of the risk premium faced by households on their borrowing, and the main

capital variable will be household capital (which can be interpreted as combining durable

goods and housing). The interest rate faced by households reflects the behavior of the central

bank, as well as a risk premium. A limit cycle can potentially arise in our setup when the

process of accumulation interacts sufficiently strongly with the determination of the risk

premium. In such cases, when the economy is perturbed from its steady state, instead of

returning to that point it will converge to a boom-bust cycle, wherein for several periods

consumption expenditures are high, the risk premium is low, and the accumulation of capital

is rapid, before the boom eventually becomes a bust as the excess stock of capital reduces

demand for new durable goods/housing, which produces lower equilibrium expenditures and

a higher risk premium. It is important to emphasize that the model we develop does not a

priori impose the presence of such boom-bust cycles. Rather, our goal is simply to construct

an environment that is flexible enough to capture such forces, and then estimate to the model

36We are reluctant to call it a credit cycle as we adopt a setup where no credit is actually extended in
equilibrium.
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to see whether these forces may be present in the data. In the development of the model,

we chose to keep all aspects as simple as possible in order to keep a close connection with

the reduced-form model of the previous section. A more thorough derivation of a similar

structure, where we are more explicit about the source of the market imperfections that can

produce complementarities, can be found in a earlier version of this paper.37

The formal environment we consider is one with a continuum of mass one of households

indexed by i who purchase consumption services from the market. The preferences of agent

i are given by E0

∑
t β

tξt−1[U (Cit − γCt−1) +ν(1−Lit)], with U ′(·) > 0, U ′′(·) < 0, ν ′(·) > 0,

ν ′′(·) < 0 and 0 ≤ γ < 1−δ. Cit represents the consumption services purchased by household

i in period t, Ct denotes the average level of consumption in the economy, β is the discount

factor, and ξt denotes an exogenous shock to the discount factor at date t. Note that this

preference structure assumes the presence of external habit, which will be the source of

sluggishness in the economy.38 Household i’s problem takes the form39

maxE0

∞∑
t=0

βtξt−1 [U (Cit − γCt−1) + ν(1− Lit)]

subject to

PtCit + (1 + rt−1)Bit + P x
t Dit = Bit+1 + rxtXit + wtLit + Γit,

Xit+1 = (1− δ)Xit +Dit.

Here, Bit+1 represents the borrowing by the household at time t, to be repaid with interest

at t + 1, rt represents the nominal interest rate faced by the household on such borrowing,

wtLit is labor income, Xit represents the stock of durable goods (or houses) held by the

household at the beginning of period t, Γit are firm profits that are returned to households,

and Dit the quantity of new durable goods purchased by the household at t. Pt and P x
t

are the (nominal) prices of consumption services and new durable goods, respectively, at

date t. Households are assumed to buy all of their consumption services—including those

derived from durable goods—from the market. Specifically, households do not consume the

37See Beaudry, Galizia, and Portier [2015].
38We assume that habit is external to the individual only for simplicity. Extending the analysis to have

internal habit is not difficult.
39The full details of the derivations in this section are presented in Section E of the Online Appendix.
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services of their durable goods directly. Instead, they rent Xit out to firms each period

at nominal rental rate rxt . Firms then combine the rented stock of durables with labor in

order to produce consumption services, C, as well as new durable goods, D, in a manner to

be described shortly. Under these conditions, dropping i subscripts, the household’s Euler

equation with respect to their optimal choice of C takes the familiar form40,41

U ′ (Ct − γCt−1) = βtEt [U (Ct+1 − γCt) (1 + rt − πt+1)] , (12)

where πt+1 is the inflation rate from t to t+ 1, and βt ≡ β ξt
ξt−1

.

There are two types of firms in the model: final good firms, and intermediate good firms.

The final good sector is competitive. This sector provides consumption services to households

by buying a set of differentiated intermediate services, denoted Cjt, from intermediate good

firms. We assume a measure one of intermediate good firms, indexed by j. The technology

of the final good firms is

Ct =

(∫ 1

0

Cη
jtdj

) 1
η

, (13)

with η ∈ (0, 1). The objective of the final good firm is thus to solve

maxPtCt −
∫ 1

0

PjtCjtdj

subject to (E.22), where pjt is the price of intermediate good j. This gives rise to demand

for intermediate good j given by

Cjt =

(
Pjt
Pt

)− 1
1−η

Ct.

Intermediate good producers are monopolistically competitive and take the demand from

final good firms as given. These firms also exhibit sticky prices, in that the arrival of the

40We have here used the approximation 1+r
1+π = 1 + r − π.

41The household’s problem also produces a labor supply condition

ν′(Lt)

U ′ (Ct − γCt−1)
=
wt
Pt

and an arbitrage condition between the holding of bonds and capital given by

Et
[
U ′ (Ct+1 − γCt)

Pt+1

{
(1 + rt)−

(
rxt+1 + (1− δ)P xt+1

P xt

)}]
= 0.
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option to change their price follows a Poisson process. At this point, we could choose to close

the model by specifying that the production of Cjt comes exclusively from currently produced

goods. However, if this were the case then there would be no role for accumulation forces.

Since we want to capture dynamics that may arise due to the accumulation and liquidation of

household capital, we allow consumption services to come from either the production of new

goods or from the service flow of existing durables. Specifically, we assume that intermediate

firms produce an intermediate factor M according to the technology

Mjt = BF (ΘtLjt) ,

with B > 0. A fixed fraction42 (1 − ϕ) of that factor is transformed one-to-one into con-

sumption services, whereas the use of the rented stock of durables also produces consumption

services with a one to one technology, so that, letting Xjt denote the amount of capital rented

by intermediate firm j, the amount of consumption services produced by this firm is

Cjt = Xjt + (1− ϕ)Mjt = Xjt + (1− ϕ)BF (ΘtLjt) (14)

The remaining fraction ϕ of the intermediate factor M is transformed one-to-one into new

durable goods D, so that

Djt = ϕMjt = ϕBF (ΘtLjt)

Period-t profits of an intermediate good producer are given by

Γjt = PjtCjt + PX
t Djt − rxtXjt − wtLjt.

Cost minimization implies that

wt = [(1− ϕ)rxt + ϕP x
t ] ΘtBF

′ (ΘtLjt)

Hence, assuming F ′′ < 0, all intermediate good firms will hire the same amount of labor

(i.e., Ljt = Lt), which implies that the aggregate capital stock will satisfy

Xt+1 = (1− δ)Xt + ϕBF (ΘtLt) . (15)

42Our modeling structure implies that agents do not separately choose how many new durable and non-
durable goods to purchase. Instead, these are assumed to be in constant fixed proportions. This keeps the
model very tractable and gives it a structure almost identical to what we have presented in previous sections.
Allowing for a more general treatment that decouples these two decisions is not difficult, but it makes the
model more complex and less directly comparable to the previous sections. We have chosen the simpler route
so as to favor more clarity regarding the functioning of the model.
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With the normalization B = 1
1−ϕ , and letting ψ ≡ ϕ

1−ϕ , we obtain

Ct = Xt + F (ΘtLt) (16)

and

Xt+1 = (1− δ)Xt + ψF (ΘtLt) . (17)

In contrast to the baseline New Keynesian model, we do not assume that the interest

rate faced by households is equal to the policy rate set by the central bank. Instead we

assume that it is equal to the policy interest rate (which we denote it) plus a risk premium

rpt ; that is, we assume that rt = it + rpt . The environment we consider is one where the risk

premium rpt potentially changes with the state of the economy in a way that can produce

complementarities between agents. In particular, we allow for the possibility that, when the

labor market is tight, creditors may perceive lending to households to be less risky, leading

to a fall in the risk premium. To keep the model as simple as possible, we directly allow for

this counter-cyclical risk premium by positing rpt to be a non-increasing function of the level

of employment in the economy, Lt, via

rpt = R(Lt), R′(Lt) ≤ 0.

We could alternatively have explicitly microfounded this mechanism,43 but doing so would

significantly complicate the presentation without, we believe, adding much insight to the

properties we are focused on.

In setting the policy rate it, we assume that the central bank follows a slightly modified

Taylor-type rule where the interest rate reacts to expected inflation and to expected labor

market conditions44 via

it = φπEt [πt+1] + φ`Et [G (Lt+1)] , φπ, φ`, G
′ > 0. (18)

Choosing to have the central bank react to expected developments in this economy—as

opposed to reacting only to contemporaneous variables—will allow us to simplify the model

43For example, Gourio [2013] generates a countercyclical risk premium in a model with disaster risk. See
also the discussion on “risk-averse recessions” in Cochrane [2016].

44Note that the level of employment in this model can also be viewed as a measure of the output gap.
Hence, wherever we refer to employment we could alternatively have referred to the output gap.
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considerably without losing the flavor of standard New Keynesian models. In particular,

since our aim is to use this model to explain the dynamics of a set of real variables, and since

we would like to stay away from the general debate over whether or a not a Phillips curve

properly calibrated to micro-economic data can explain inflation movements, we will assume

that the central bank sets φπ = 1. This parameterization implies that the central bank

varies its nominal policy rate such that the expected real policy rate increases with expected

labor market activity. The attractiveness of this assumption is that it will allow the model

to take a block-recursive structure, wherein the aggregate quantity variables are determined

independently of the inflation rate. The inflation rate remains a function of these quantity

variables, but it will not affect them. The degree of price stickiness then governs the extent

to which inflation varies with economic activity. By varying the degree of price stickiness,

inflation in the model can become arbitrarily volatile or arbitrarily stable, but this margin

does not affect the other variables. This convenient assumption will allow us to focus on

the implications of the model for real variables while allowing us to sidestep debates about

inflation and about the degree of price stickiness that is necessary to match the data. All

we need to assume regarding price-setting for our purposes is that there is some stickiness,

so that production of consumption services remains demand-determined.

Intermediate firms in our environment are assumed to be subject to nominal rigidities.

However, as we have assumed that φπ = 1, we can bypass the need to be explicit about the

intermediate firm’s pricing problem and its implications for inflation, as the realizations of

inflation do not feed back into the determination of the quantity variables that are of interest

to us. Specifically, substituting (E.27) (with φπ = 1) and (16) into the Euler Equation (E.21),

and assuming the shocks are small enough that the approximation Et [πt+1] ≈ πt+1 holds, we

obtain45

U ′ (Xt + F (θtLt)− γ (Xt−1 + F (θt−1Lt−1))) =

βtEt {U ′ (Xt+1 + F (θt+1Lt+1)− γ (Xt + F (θtLt))) [1 + φ`G (Lt+1) +R (Lt)]} . (19)

Equation (E.30) and the accumulation Equation (E.26) together form a two-variable system

45We adopt the common approximation used in these model that the aggregate production of consumption
services can be represented by Ct = Xt+F (θtLt); that is, we dis-regard the effect of price dispersion among
intermediate firms in affecting aggregate production.
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in X and L, and in particular notice that inflation π does not appear anywhere. Since C and

D can be obtained from X and L, it then follows that all quantity variables are determined

independently from the inflation rate.

The attractive feature of Equation (E.30) is that it is in a form very similar to Equation

(11). To see this even more clearly, let us posit the following simple functional forms. Let

us assume that the utility function is U(z) = − exp
{
− z
ω

}
, ω > 0, the production of new

goods is given by F (ΘL) = ln(ΘL), the interest rate policy function is G(L) = ln(L), and

Θt is constant. Under these conditions, (E.30) can be rewritten46

`t = µt − α̂1Xt + α̂2`t−1 + α̂3Et [`t+1] + F̂ (`t) (20)

where `t = lnLt, µt = 1
κ

[
ψ
(
1− γ

1−δ

)
ln Θ− ω ln βt

]
, α̂1 = δ

κ

(
1− γ

1−δ

)
, α̂2 = γ

κ

(
1− ψ

1−δ

)
,

α̂3 = 1−ωφ`
κ

and F̂ (`t) = −ω
κ
R̃ (`t), with κ = 1 + γ − ψ > 0.

Ignoring the stochastic component of µt, Equation (E.32) has a form identical to that of

Equation (11) as long as ωφ` < 1. In effect, one can view this Euler equation as giving a

structural interpretation to the behavior explored in the previous section. Since this equation

is of the form we previously analysed, we know that it can potentially generate endogenous

cyclical behavior in the form of limit cycles. For this to arise, we would need—among other

conditions—that R̃′ be sufficiently negative near the steady state (but remaining greater than

-1). In other words, for limit cycles to arise, we need the counter-cyclical sensitivity of the risk

premium to be sufficiently strong. If this is the case, then this model can in principle exhibit

a type of accumulation-liquidation cycle in which the model’s steady state would be unstable

and the forward-looking agents in the model would find it optimal to bunch their purchases in

boom times. That is, during booms, agents consume and accumulate durables, which creates

a strong labor market so that lending to household is less risky, which rationalizes a low

risk premium on loans and high purchases by households. Eventually, however, households

accumulate enough so that demand for new goods falls, causing a bust in employment, and

the risk premium on loans to increase. The bust acts as a liquidation period, which comes

to an end once the stock of durables has become sufficiently depleted that the purchasing of

more new goods becomes desirable once again. While this narrative has a similar flavor to

46In this derivation we have used the approximations E[ln(z)] ≈ ln(E[z]) and ln(1 + z) ≈ z.
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the one often associated with indeterminacy and multiple equilibria, we wish to re-emphasize

that in our framework such boom-bust cycles do not require expectational effects to be so

strong as to create self-fulfilling expectations.

From Equation (E.32) we see that current employment—and thus consumption—depends

positively on both past and future employment. These effects reflect those commonly found

in consumption Euler equations. In addition to these effects, Equation (E.32) also includes

the effect of the state variable Xt, whereby higher levels of Xt decrease employment, since

less employment is required to achieve the same consumption level. It is through this channel

that the model captures liquidation effects. Finally, employment exhibits a complementarity

structure through the risk premium: increased employment lowers the risk premium on

borrowing, which favors more consumption and the purchase of new goods, which in turn

further stimulates employment. As long as −ω
κ
R̃′ is smaller than one, such a feedback effect

will not create static multiple equilibria, but as we have seen, it may nonetheless cause a

limit cycle to emerge.

3.2 Spectral Properties of the Interest Rates and Interest Spreads

Our extended New Keynesian model jointly determines employment, the policy rate, and

the risk premium. One of the implications of this model is that interest rates and interest

rate spreads should share some cyclical properties with that of employment. For example,

if the dynamics of employment are determined by this model and these dynamics induce a

peak in the spectral density of employment, then the policy rate set by the central bank and

the interest rates faced by private agents should also exhibit similar peaks in their spectral

densities. Hence, before bringing this model to the data in a formal manner, it is desirable

to first examine the spectral properties of interest rates and the risk premium to see if they

indeed exhibit spectral peaks somewhat similar to those observed for employment.

In Panels (a) and (b) of Figure 11, we report an estimate of the spectral density of the

real return on U.S. federal funds47 and that of the spread between the federal funds rate and

BBA bonds, which we will take as our measure of the risk premium on borrowing.48 In each

47This corresponds to the interest on three-month federal funds minus realized inflation over the holding
period.

48See Appendix A for a precise description of the data.
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case, we report the spectral density for the level of the series, as well as spectral densities for

transformed series where we have removed very low-frequency movements using a high-pass

filter as in Section 1. The interesting aspect to note in both of these figures is that these

series appear to exhibit a spectral peak in the vicinity of 40 quarters, regardless again of

whether or not we first remove very low-frequency movements. The peak around 40 quarters

is most noticeable in our spread series, but is also visible in the behavior of the policy rate.

These similarities are important since the simplicity of our extended New Keynesian model

implies that all three series should have somewhat similar spectral properties. The model

also implies that the policy interest rates should co-move positively with employment, while

the interest spread should co-move negatively, which is what we observe in the data (see

Figure 14). While these observations certainly do not validate the model on their own, they

represent preconditions for such a model to be potentially relevant.

Figure 11: Spectral Densities of the Policy Rate and the Risk Premium

(a) Policy rate (b) Risk Premium
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Notes: This figure shows an estimate of the spectral density of the real return on U.S. federal funds (policy
rate) (Panel (a)) and the spread between the federal funds rate and BBA bonds (Panel (b)), for levels (black
lines) and for 101 series that are high-pass (P ) filtered version of the levels series, with P between 100 and
200 (grey lines). A high-pass (P ) filter removes all fluctuations of period greater than P .
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3.3 Estimation

To bring our model to the data, it remains only to specify the process for µt and the functional

form for R̃. For the former, we assume simply that µt follows a stationary AR(1) process49

µt = ρµt−1 + εt, where εt is a Gaussian white noise with variance σ2. For the latter, since

we have no clear prior about the form of this relationship, we approximate it simply by a

third-order polynomial.

We estimate this model using the indirect inference method of Gourieroux, Monfort,

and Renault [1993], where for each parameter set the model is solved by a third-order

perturbation method.50 The solution and estimation is somewhat involved, as it allows for

the possibility of limit cycles in a stochastic model with forward-looking agents. To our

knowledge, such an exercise is novel. The parameters of the model are chosen so as to

minimize its distance to a set of features of the data we have already emphasized. We focus

on three sets of observations. The first set corresponds to the spectral density of hours

worked per capita (as shown in Panel (b) of Figure 1). The second set corresponds to the

spectral density of the risk premium (as shown in Panel (b) of Figure 11). In these first two

cases, we aim to fit the point estimates of the spectral densities (using the non-detrended

data) at periodicities between 2 and 50 quarters. The last set of observations is a set of five

additional moments of the data: the correlation between hours and the risk premium, as

well as the skewness and kurtosis of each of these two variables. Each of the data moments

in this last set are obtained after first detrending the data series using a high-pass filter that

removes fluctuations longer than 50 quarters. This is in line with our objective of using the

current model to explain macroeconomic fluctuations arising at periodicities ranging from

2-50 quarters. Our estimation does not directly aim to match the real policy interest rate.

Instead, we will use this series to provide a non-targeted dimension on which to judge the

model’s overall fit.

We estimate nine parameters: γ, ω, ψ, φ`, ρ, σ, and the coefficients on the first-, second-,

and third-order polynomial terms for the function R̃(·), which we denote R̃1, R̃2 and R̃3.

49To avoid cluttering the notation, we henceforth omit all constant terms, with all variables now denoting
the corresponding deviations from the non-stochastic steady state.

50Details of the solution and estimation are given in Section F of the Online Appendix.
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The weighting matrix used in estimation is a simple identity matrix. The depreciation rate

is not estimated but set to δ = 0.05 in order to match the average depreciation of houses

and durable goods.

Figures 12-14 illustrate the fit of the estimated model along the targeted dimensions, as

well as the fit of the (non-targeted) real policy rate spectral density. As can be seen from

the figures, the model is capable of replicating many of the salient features of all three of our

variables of interest, although with some exceptions. For example, as can be seen in Panel

(a) of Figure 13, the model does not capture the peak in the spectral density of the risk

premium observed around a periodicity of 20 quarters. As can be seen in Panel (b) of that

figure, the model also over-predicts the over all variance of the policy rate at the targeted

frequencies. Notwithstanding these exceptions, the model—which uses only eight parameters

to attempt to fit a large set of features of the data—over all provides a reasonable fit. It is

especially interesting to note from Figure 12 how well our parsimonious model is able to fit

the spectral density of hours worked between 2 and 50 quarters. It does not capture all the

bumps and wiggles, but it fits the overall pattern very nicely, especially the marked peak

around 40 quarters. In Figure 14 we report the fit of the model with respect to the final

set of moments targeted by the estimation. As can be seen in the figure, the model also

does well at capturing these additional properties of the data, with the exception of the risk

premium skewness, which is of the wrong sign in the model.

The parameter estimates for the model are presented in Table 1 (standard errors in

parentheses) and the implied eigenvalues evaluated at the steady state are given in Table 2.

The estimates imply a habit parameter of γ = 0.53, which is in line with the values commonly

found in the literature. We also find that monetary authorities react reasonably aggressively

to (expected) economic activity, with an elasticity of the policy rate to employment of φ` =

0.19. Interestingly, the model implies that the first-order effect of economic activity on the

risk premium (R̃1) is of the same order of magnitude as—but of the opposite sign to—that

on the policy rate. The most interesting finding regarding the parameter estimates is that

the shock process is estimated to have an auto-correlation that is effectively zero. This

implies that the model’s dynamics are almost completely due to endogenous forces. The one

parameter that may be considered somewhat large relative to the literature is our estimate
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Figure 12: Fit of Hours Spectral Density
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Notes: This figure compares the estimate of the spectral density of U.S. Non Farm Business hours per capita
with the one obtained from our estimated model. Both series have been high-pass (50) filtered, in order to
remove all fluctuations of period greater than 50 quarters.

Figure 13: Fit of Risk Premium and Real Policy Rate Spectral Densities

(a) Risk premium (b) Real policy rate
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Notes: This figure compares the estimate of the spectral density of U.S. risk premium and real policy rate
with the one obtained from our estimated model. Both series have been high-pass (50) filtered, in order to
remove all fluctuations of period greater than 50 quarters.
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Figure 14: Fit of Moments
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Notes: This figure compares various moments estimated using U.S. data with the ones obtained from our
estimated model. All series have been high-pass (50) filtered, in order to remove all fluctuations of period
greater than 50 quarters.

of ω, which gives the elasticity of consumption with respect to the effective interest rate.

Our estimates suggest that this elasticity is between 4 and 5, indicating a very high response

of consumption expenditures. Note that, in our setup, the effective interest rate faced by

households reflects not only the policy interest rate, but also a risk premium. Although the

sum of these two parts moves only mildly with economic activity (see below), their combined

effect on consumption is nonetheless important since ω is relatively high.

Table 1: Estimated Parameter Values

Habit persistence γ 0.5335
Durables proportion ψ 0.4000
Taylor rule parameter on output gap φ` 0.1903
CARA utility parameter ω 4.6248
Persistence of shocks ρ -0.0000
S.D. of shock innovations σ 0.8530

Spread function parameter R̃1 -0.1624

Spread function parameter R̃2 0.00076

Spread function parameter R̃3 0.00027

Notes: Table displays the estimated parameters of the model.

To illustrate the deterministic mechanisms implied by the parameter estimates, Figure
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Table 2: Estimated Eigenvalues at the Steady State

Re(λ) Im(λ) |λ|
1.1030 0.2166 1.1241
1.1030 -0.2166 1.1241
1.9393 0 1.9393

Notes: Eigenvalues are computed using a first-order approximation of the model around the non-stochastic
steady state.

15 reports results obtained when feeding in a constant value of µt = 0 for the exogenous pro-

cess.51 Panel (a) of Figure 15 plots a simulated 270-quarter sample52 of log-hours generated

from the deterministic version of the model. Two key properties should be noted. First,

the parameters obtained from fitting the model to the data produce endogenous cyclical

behavior, with cycles of a reasonable length (around 38 quarters). This is consistent with

Table 2, which indicates that the steady state is unstable and features two complex eigen-

values. The difficulty that some earlier models had in generating cycles of quantitatively

reasonable lengths may have been one of the factors leading to limited interest in using

a limit cycle framework to understand business cycles. However, as this exercise demon-

strates, reasonable-length endogenous cycles can be generated in our framework relatively

easily, precisely because the model possesses the three key features we highlighted in the

previous section: diminishing returns to capital accumulation, sluggishness, and local de-

mand complementarities. Second, notwithstanding the reasonable cycle length, it is clear

when comparing the simulated data in Panel (a) of Figure 15 to actual economic data that

the fluctuations in the deterministic version of the model are far too regular. These prop-

erties of the deterministic version of our estimated model—i.e., a highly regular 38-quarter

cycle—can also be seen clearly in the frequency domain. Panel (b) of Figure 15 plots the

spectral density of hours for the deterministic model (grey line), along with the spectral den-

sity for the data (black line) for comparison.53 This spectral density exhibits an extremely

51Note that the model was solved (and simulated) using the estimated parameters presented in Table 1, and
in particular we did not first re-solve the model with σ = 0. Thus, agents in this deterministic simulation
implicitly behave as though they live in the stochastic world. As a result, any differences between the
deterministic and stochastic results in this section are due exclusively to differences in the realized sequence
of shocks, rather than differences in, say, agents’ beliefs about the underlying data-generating process.

52This is equal to the length of the sample period of the data.
53Note that the model was not re-estimated after shutting down the exogenous shock. As such, there
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large peak—characteristic of a highly regular cycle—at the 38-quarter periodicity,54 while

the spectral density of the data is much flatter.

Figure 15: Estimated Model When Shocks Are Turned Off

(a) Sample path of hours (b) Spectral density of hours
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Notes: This figure corresponds to the counterfactual simulation of the estimated model when shocks are turned
off, and initial conditions place the system on the limit cycle. Panel (a) shows the evolution of hours along
the limit cycle. Panel (b) compares the spectral density of hours in the data (black line) and in the model
(grey line).

Re-introducing the estimated shocks into the model, we see a markedly different picture

in both the time and frequency domains. Figure 16 plots an arbitrary 270-quarter sample of

log-hours generated from the full stochastic model. While clear cyclical patterns are evident

in the figure, it is immediately obvious that the inclusion of shocks results in fluctuations

that are significantly less regular than those generated in the deterministic model, appearing

qualitatively quite similar to the fluctuations found in actual data. This is confirmed by

the hours spectral density (Figure 12), which matches the data quite well. In particular,

the spectral density of the stochastic model includes a distinct peak close to 40 quarters,

suggesting some degree of regularity at that periodicity, but without the exaggerated peak

may be alternative parameterizations of the deterministic model that are better able to match the spectral
density in the data.

54The deterministic model spectral density also contains smaller peaks at integer multiples of the frequency
of the main cycle (i.e., at around 19 = 38/2 quarters, 12.67 = 38/3 quarters, etc.). Such secondary peaks
arise when the data exhibits a regular but not perfectly sinusoidal cycle, as is clearly the case in Panel (a)
of the figure.
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Figure 16: Sample Path of Hours in the Estimated Model with Shocks
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Notes: This figure shows one particular 270 quarters simulation of the estimated model.

observed at this point in the deterministic model.

It should be emphasized that the exogenous shock process in this model primarily acts

to accelerate and decelerate the endogenous cyclical dynamics, causing significant random

fluctuations in the length of the cycle, while only modestly affecting its amplitude. In fact,

somewhat counter-intuitively, when the shock is shut down (as in Figure 15), the variance

of log-hours actually increases relative to the full stochastic case (the variance of log-hours

in the stochastic case is 6.24, while in the deterministic case it is 7.35).55 Moreover, it is

worth emphasizing once again that the estimated shocks in the model are essentially i.i.d.,

indicating that, in an environment featuring limit cycles, macroeconomic fluctuations can

be explained without the need to rely on persistent exogenous disturbances.

The role of complementarities in the model, however, is extremely important. To illus-

trate this, in Figure 17 we plot the spectral density implied by the model for hours worked

55Note that, since we have simply fed a constant sequence µt = 0 of shocks into our model without first re-
solving it under the assumption that σ = 0, this phenomenon is not due in any way to rational-expectations
effects. The fact that a fall in shock volatility can lead to a rise in the volatility of endogenous variables in a
limit cycle model was pointed out in Beaudry, Galizia, and Portier [2016]. Roughly speaking, because of the
nonlinear forces at play, shocks that push the system “inside” the limit cycle have more persistent effects
than those that push it “outside”. For relatively small shocks, this leads to a decrease in outcome volatility
when the shock volatility increases. See Beaudry, Galizia, and Portier [2016] for a more detailed discussion
of these mechanisms in the context of an estimated reduced-form univariate equation.
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after shutting down the endogenous risk premium (i.e, setting R̃i = 0 for i = 1, 2, 3, but keep-

ing all other parameters at their estimated levels). As can be seen, in this case the model

no longer mimics the properties of the data, and in fact the spectral density is very close to

zero. That is, without the complementarities to amplify them, the small i.i.d. disturbances

are sufficient to generate only a tiny amount of volatility in hours.

Figure 17: Spectral Density of Hours with Complementarities Turned Off
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Notes: This figure corresponds to the counterfactual simulation of the estimated model when the risk premium
is forced to be constant, which correspond to imposing R̃1 = R̃2 = R̃3 = 0. The other parameters are not
re-estimated. It compares the spectral density of hours in the data (black line) and in the model (the flat grey
line that is almost confounded with the x-axis).

As we have already emphasized, nonlinearities are crucial in order to have a steady

state that is locally unstable without also having explosive dynamics, a combination which

is a pre-condition for limit cycles to emerge. To get a sense of the estimated degree of

nonlinearity in our model, we plot in Figure 18 the effective real interest rate function

r(`) = φ`` +
∑3

i=1 R̃i`
i. The nonlinearities coming from the nonlinear response of the risk

premium to economic activity are apparent in the figure, though they are mild. Near the

steady state, a one-percent rise in hours is associated with around a 65-basis-point fall in the

risk premium. As we move away from the steady state, this sensitivity fades. For example,

at the deepest trough and highest peak recorded in our data sample, a one-percent rise in

hours would be associated with 57- and 53-basis-point falls in the risk premium (12% and
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18% less sensitivity than at the steady state), respectively. Such differences in the strength

of the complementarities may appear small at first pass, but they are sufficient to have large

quantitative impacts on the dynamics of the system.

Figure 18: Sensitivity of the Real Interest Rate Faced by the Households to Economic
Activity
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Notes: This figure plots the real interest rate function r(`) = φ`` +
∑3
i=1 R̃i`

i, with estimated coefficients
and over the range of hours deviations that we observe in the data. In the figure, r is annualized.

3.4 Robustness

In this section we report results from some robustness checks on the baseline estimation of

our New Keynesian limit cycle model. As we noted in Section 1, the data spectral densities of

several key stationary macroeconomic variables exhibit peaks around 40 quarters, declining

from there before reaching a local minimum at around 50 quarters, then increasing again

beyond that point. This was our motivation for choosing the range of periodicities between

2 and 50 quarters to focus on in our estimation. We turn now to evaluating how robust our

results are to focusing on some alternative ranges. In particular, since the lower end of the

standard business cycle range in the literature is 6 quarters, we consider what happens if

we estimate the parameters of the model restricting attention to periodicities from 6 to 50

quarters. We also consider what happens if we restrict attention further to the range beyond

the traditional upper bound of 32 quarters (i.e., restricting to periodicities between 32 and
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50 quarters). Finally, we repeat these same exercises, but using 60 quarters as the upper

bound.

Figure 19 reports the results. Column (a) of Figure 19 plots the hours, risk premium,

and real policy rate spectral densities for period ranges of the form (x,50), x = 2, 6, 32, while

column (b) does the same for period ranges of the form (x,60).56 The corresponding data

spectral densities are also plotted (solid black lines) for comparison. Several things emerge

from the figure. First, from column (a) we see that increasing the lower bound from 2 (solid

grey line) to 6 (dashed grey line) quarters has a minimal effect on the parameter estimates,

and this translates into a correspondingly minimal effect on the model fit. Second, when we

move to a lower bound of 32 quarters (dash-dot black line) in column (a), we unsurprisingly

see a much better fit of the hours and policy rate spectral densities in this range (the model

spectral density for hours in particular lies almost directly on top of the data spectral density)

with roughly the same fit of the risk premium, while the estimates lead to substantial under-

prediction of the volatility of hours and the risk premium at the traditional business cycle

periodicities (6 to 32 quarters). Finally, moving the upper bound from 50 to 60 quarters

(column (b)) appears to have only a modest effect on the fit of our target series (hours and

the risk premium), while the model no longer over-predicts the over all volatility of the real

policy rate.

Table 3 reports, for each of the estimations, the eigenvalues associated with the steady

state of the system. In all cases, the eigenvalues retain the same basic configuration as in

the baseline estimation: a pair of complex conjugate eigenvalues outside the unit circle, and

a real positive eigenvalue greater than one. That is, in all cases our estimations produce

parameters that generate limit cycles.

56Note that the (2,50) plots simply reproduce Figures 12 and 13.
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Figure 19: Robustness: Estimated and Data Spectral Densities for Various Estimations
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This figure shows estimated and actual spectral densities of hours, risk premium and policy rate when data are
filtered with various band-pass filters before estimation. These band-pass filters are either (x,50) or (x,60),
with x =2, 6 or 32.
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Table 3: Robustness: Estimated Eigenvalues at the Steady State for Various Estimations

Band-Pass filter λ1, λ̄1 (|λ1|) λ2

(2,50) 1.1031 ± 0.2166i (1.1241) 1.9386
(6,50) 1.0993 ± 0.2069i (1.1185) 2.0745
(32,50) 1.0719 ± 0.1881i (1.0882) 2.3744
(2,60) 1.0621 ± 0.2140i (1.0835) 2.2491
(6,60) 1.0745 ± 0.2071i (1.0943) 2.2078
(32,60) 1.0771 ± 0.2021i (1.0959) 2.2206

Notes: Each line of this table corresponds to a different estimation of the model. In each estimation, we
minimize the distance between the model and the data (a) spectral densities of hours and risk premium and
(b) set of five moments. In each estimation, the data are filtered with a different band-pass filter.
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Conclusion

Why do market economies repeatedly go through periods of boom and bust? There are at

least two broad classes of explanations. On the one hand, it could be that the economy is

inherently stable and that observed booms and busts are entirely due to outside disturbances

and the resulting adjustment processes. On the other hand, it could be that the economy

is locally unstable, in that it does not contain forces that tend to push it towards a stable

resting position. Instead, the economy’s internal forces keep it in a constant state of motion,

never converging to a single point nor exploding. According to this explanation, the economy

is still buffeted by outside disturbances, but these shocks are neither the sole nor primary

drivers of the business cycle. Instead, they mainly serve to make fluctuations irregular and

hard to predict.

In this paper our aim has been to examine the plausibility and relevance of this second,

less mainstream view of macroeconomic fluctuations. To this end, we have made three

contributions. First, we have documented a set of patterns in the data that should be

present if limit cycle forces play a relevant role in the economy. In particular, we have shown

that several macroeconomic variables exhibit distinct peaks in the spectral density, and that

these peaks occur at roughly the 40-quarter periodicity. While this periodicity is somewhat

long relative to the standard definition of the business cycle, we argue that cycles of this

length should be thought of as an integral part of business cycle phenomena, as opposed to

reflecting some more medium-run behavior. It is important to note that such observations do

not necessarily imply the presence of limit cycles, but rather provide suggestive evidence for

their existence. Second, we present a simple class of economic model capable of producing

limit cycles. Our goal in this section was to clarify how readily limit cycles can arise in

environments commonly studied by macroeconomists. The class of models we consider can

be seen as a dynamic extension of the models studied by Cooper and John [1988] in their

seminal article, which emphasized how forces of strategic complementarity may help to

explain macroeconomic behavior. As part of our analysis, we attempted to clarify how the

concept of limit cycles is distinct from the concepts of indeterminacy and multiple equilibria

(though the two can sometimes coincide). Finally, in the last section of the paper, we
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extended the canonical three-equation New Keynesian model in a manner that incorporates

the elements emphasized in the second section. The model is aimed at capturing a simple

narrative of endogenous boom-bust cycles, wherein the accumulation of capital interacts

with financial conditions to sustain fluctuations. When we explore the model empirically,

we find that the data favor parameter estimates that support the presence of limit cycle

forces; that is, the data favor being explained through limit cycles forces instead of through

more conventional mechanisms. We also find that shocks remain important in explaining

macroeconomic fluctuations, but interestingly the estimated shock process is essentially i.i.d.,

instead of the highly persistent shock processes that are often required in more mainstream

models. It should be emphasized that model we present in the last section is highly stylized

and is certainly not a full description of all macroeconomic behavior. Nonetheless, it is

interesting that such a parsimonious and simple model with an i.i.d. shock can capture many

features of macroeconomic data once limit cycles are allowed to be part of the endogenous

mechanisms. This, we believe, nicely illustrates the potential empirical relevance of such a

framework.
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Appendix

A Data

− U.S. Population: Total Population: All Ages including Armed Forces Overseas, obtained from
the FRED database (POP) from 1952Q1 to 2015Q2. Quarters from 1947Q1 to 1952Q1 are
obtained from linear interpolation of the annual series of National Population obtained from
U.S. Census, where the levels have been adjusted so that the two series match in 1952Q1.

− U.S. Total GDP is obtained from the Bureau of Economic Analysis National Income and
Product Accounts. Real quantities are computed as nominal quantities (Table 1.1.5) over
prices (Table 1.1.4.). Sample is 1947Q1-2015Q2.

− Non-Farm Business Hours, Total Hours and unemployment rate (16 years and over) are ob-
tained from the Bureau of Labor Statistics. Sample is 1947Q1-2015Q2 (1948Q1-2015Q2 for
total hours), and we do not use the observations of 2015.

− Capacity utilization: Manufacturing (SIC), Percent of Capacity, Quarterly, Seasonally Ad-
justed, obtained from the FRED database, (CUMFNS). Sample is 1948Q1-2015Q2.

− TFP: utilization-Adjusted quarterly-TFP series for the U.S. Business Sector, produced by
John Fernald, series ID: dtfp util, 1947Q1-2015Q2.

− Spread: Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate, quarterly average,
obtained from the FRED database, (BAAFFM). Sample is 1954Q3-2015Q2.

− Policy rate : computed from the FRED database as Moody’s Seasoned Baa Corporate Bond
Yield (BAAFFM) minus the spread (BAAFFM). Sample is 1954Q3-2015Q2. The real policy rate
is obtained by subtracting realized inflation, computed using the “Consumer Price Index for
All Urban Consumers: All Items” (CPIAUCSL from the FRED database).

B Proofs of Propositions

B.1 Proposition 1

The two eigenvalues of matrix ML are the solution the equation

Q(λ) = λ2 − Tλ+D = 0, (B.1)

where T is the trace of the ML matrix (and also the sum of its eigenvalues) and D is the determinant
of the ML matrix (and also the product of its eigenvalues). The two eigenvalues are therefore given
by

λ, λ =
T

2
±

√(
T

2

)2

−D (B.2)

where
T = α2 − α1 + (1− δ) (B.3)

and
D = α2(1− δ). (B.4)

From (B.4), we have that λλ ∈ (0, 1). Therefore, if the eigenvalues are complex, then their modulus
is between zero and one, and thus they are both inside the unit circle. If the two eigenvalues are
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real, then they have the same sign and at least one of them is less than one in absolute value. From
(B.3), we have that λ+ λ ∈ (−1, 2). Therefore, if the eigenvalues are both negative, then they are
both inside the unit circle. If they are both positive, let λ be the larger eigenvalue, and suppose
λ ≥ 1. Given that λλ < 1, we have λ < 1

λ and thus λ + λ = T < 2 implies that λ + 1
λ < 2, which

in turn implies (1 − λ)2 < 0. This is not possible and hence we must have λ < 1. Since λ is the
largest of two real positive eigenvalues, both eigenvalues must lie inside the unit circle.

B.2 Proposition 2

With demand complementarities, the trace and determinant of matrix M are given by

T =
α2 − α1

1− F ′(Is)
+ (1− δ) (B.5)

and

D =
α2(1− δ)
1− F ′(Is)

. (B.6)

From equations (B.5) and (B.6), we have the following relationship between T and D:

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1
. (B.7)

Therefore, when F ′(Is) varies, T and D move along the line (B.7) in the plane (T,D). We have

shown that when F ′(Is) = 0, (T,D) belongs to the triangle ÂBC, meaning that both eigenvalues of
M are inside the unit circle. This corresponds to point E or point E′ (depending of the configuration
of parameters) in Figure 6.

When F ′(Is)→ −∞, we have D → 0 and T → 1−δ, which corresponds to point E1 in Figure 6.

As this point is inside the triangle ÂBC, both eigenvalues are inside the unit circle. When F ′(Is)
goes from 0 to −∞, (T,D) moves along the segment [E,E1] or [E′, E1]. Because both belong to

ÂBC and because the interior of triangle ÂBC is a convex set, both eigenvalues of matrix M stay
inside the unit circle when F ′(Is) goes from 0 to −∞.

B.3 Proposition 3

A flip bifurcation occurs with the appearance of an eigenvalue equal to -1, and a Hopf bifurcation
with the appearance of two complex conjugate eigenvalues of modulus 1. From (B.6) and (B.5),
we see that when F ′(Is) tends to 1 from below, D tends to +∞ and T tends to ±∞ depending on
the sign of α2 − α1. Therefore, starting either from point E or E′ (for which F ′(Is) = 0), (T,D)

will eventually exit the triangle ÂBC. At the point where the half-line along (B.7) starting from

E (or E′) crosses ÂBC, at least on eigenvalue will have a modulus one.
Consider first the case α2 < α1. In this case, the line (B.7) has a negative slope, and will cross

either segment AB ((a) in the figure) or segment BC ((b) in the figure). In case (a), we will have
a flip bifurcation since the eigenvalues will be real and one of them equal to -1 when crossing the
triangle ÂBC. In case (b), we will have a Hopf bifurcation since the eigenvalues will be complex

and will both have modulus 1 when crossing ÂBC. We will be in case (b) when D = 1 and T > −2.
D = 1 implies F ′(Is) = 1−α2(1−δ). Plugging this into the expression for T , the condition T > −2
becomes 1− δ+ α2−α1

α2(1−δ) > −2 which can be simplified to α2 >
α1

(2−δ)2 . Therefore, if α2 <
α1

(2−δ)2 , we

have a flip bifurcation, while if α1 > α2 >
α1

(2−δ)2 , we have a Hopf bifurcation.
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Consider next the case α2 > α1. In this case, the line (B.7) has a positive slope, and could
potentially cross either segment AC or segment BC . If it crosses the segment BC, the eigenvalues
will be complex with modulus 1 when crossing ÂBC, so that we will have a Hopf bifurcation. We
will be in this case when D = 1 and T < 2. D = 1 implies F ′(Is) = 1 − α2(1 − δ). Plugging
this into the expression of T , the condition T < 2 becomes 1 − δ + α2−α1

α2(1−δ) < 2 which can be

simplified to α2 <
α1
δ2

. Therefore, if α1 < α2 <
α1
δ2

, we will have a Hopf bifurcation. If α2 >
α1
δ2

,

then as we increase F ′ we would cross the segment AC. However, this possibility is ruled out by
our assumption that α2 >

α1
δ , which was imposed to guarantee a unique steady state.

Finally, in the case α1 = α2, we always have T = 1− δ, so that D increases with F ′(Is) along a
vertical line that necessarily crosses the segment BC, so that we have a Hopf bifurcation. Putting
all of these results together gives the conditions stated in Proposition 3.

B.4 Proposition 4

For this proposition, we make use of Wan’s [1978] theorem and of the formulation given by Wikan
[2013] (See Kuznetsov [1998] for a comprehensive exposition of bifurcation theory). For symmetric
allocations, our non-linear dynamical system is given by(

It − F (It)
Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
It−1

Xt−1

)
+

(
α0

0

)
. (B.8)

To study the stability of the limit cycle in case this system goes through a Hopf bifurcation, we
need to write the system in the following “standard form”(

y1t

y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1

y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
, (B.9)

where y1 and y2 are (invertible) functions of I and X. Let µ be the bifurcation parameter (µ =
F ′(Is) in our case) and µ0 the value for which the Hopf bifurcation occurs. Define

d =
d|λ(µ0)|

dµ

and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21),

where

ξ20 ≡
1

8
[(f11 − f22 + 2g12) + i(g11 − g22 − 2f12)] ,

ξ11 ≡
1

4
[(f11 + f22) + i(g11 + g22)] ,

ξ02 ≡
1

8
[(f11 − f22 − 2g12) + i(g11 − g22 + 2f12)] ,

ξ21 ≡
1

16
[(f111 + f122 + g112 + g222) + i(g111 + g122 − f112 − f222)] .

According to Wan [1978], the Hopf bifurcation is supercritical if d > 0 and a < 0.
We first write (B.8) in the standard form (B.9). Denoting it = It − Is and xt = Xt −Xs and

F̂ (it) = F (it + Is), and recalling that F (Is) = F̂ (0) = 0, we can rewrite (B.8) as(
it − F̂ (it)

xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
it−1

xt−1

)
. (B.10)
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Define H(it) = it − F̂ (it). Under the restriction F ′(·) < 1, H is a strictly increasing function, and
is therefore invertible. Denote G(·) ≡ H−1(·). Adding and subtracting to the right-hand side of
the first equation of (B.10) a first order approximation of G around zero, we obtain(

it − F̂ (it)
xt

)
=

(
α2−α1

1−F ′(Is) − α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
it−1

xt−1

)
+

(
m(it−1, xt−1)

0

)
, (B.11)

with

m(it−1, xt−1) ≡ G
(
α1(1− δ)xt−1 + (α2 − α1)it−1

)
+

α1(1− δ)
1− F ′(Is)

xt−1 −
α2 − α1

1− F ′(Is)
it−1.

The eigenvalues of M are the solution of the equation

Q(λ) = λ2 − Tλ+D = 0,

where T is the trace of the M matrix and D its determinant, with T = α2−α1
1−F ′(Is) + (1 − δ) and

D = α2(1−δ)
1−F ′(Is) . At the Hopf bifurcation, D = 1 and the two eigenvalues are λ = cos θ ± i sin θ,

where θ is the angle between the vector
(
T/2,

√
D − (T/2)2

)
and the positive x-axis. Let λ be the

eigenvalue with positive imaginary part and λ its conjugate, and let Λ and C be the two matrices

Λ ≡
(
λ 0

0 λ

)
and

C ≡
(

cos θ − sin θ
sin θ cos θ

)
.

By construction, λ and λ are the eigenvalues of C. We introduce matrices

VC ≡
(

sin θ sin θ
−i sin θ i sin θ

)
and

VM ≡
(
λ+ δ − 1 λ+ δ − 1

1 1

)
whose columns are eigenvectors of C and M , respectively, and are thus such that C = VCΛV −1

C

and M = VMΛV −1
M . We therefore have C = VCΛV −1

C = VCV
−1
M MVMV

−1
C = BMB−1 with

B ≡ VCV −1
M =

(
0 sin θ
−1 cos θ − (1− δ)

)
.

Let us make the change of variables (y1t, y2t)
′ = B× (it, xt)

′ to obtain the “standard form” of (B.8)(
y1t

y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1

y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
, (B.9)

with

f(y2t−1, y2t−1) = 0,

g(y1t−1, y2t−1) = −G
( γ1

sin θ
y1t−1 − γ2y2t−1

)
+

1

1− F ′(Is)

( γ1

sin θ
y1t−1 − γ2y2t−1

)
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and γ1 ≡ −α2(1− δ) + (α2 − α1) cos θ, γ2 ≡ α2 − α1.

We can now check the conditions for the Hopf bifurcation to be supercritical, namely

d =
d|λ(µ0)|

dµ
> 0

and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21) < 0.

With µ ≡ F ′(Is) as the bifurcation parameter, we have |λ| = det(M) = α2(1−δ)
1−µ , so that

d =
d|λ|
dµ

=
(1− µ) + α2(1− δ)

(1− µ)2
> 0,

as µ = F ′(Is) < 1.
Consider now the expression for a. As G(I) is the reciprocal function of I − F (I), we have

G′′′ =
F ′′′(1− F ′)2 + 2F ′′2(1− F ′)

(1− F ′)4
,

with F ′ < 1. This shows that G′′′ is an increasing function of F ′′′. When F ′′′ becomes large
in absolute terms and negative, so does G′′′. In the expression for a, the first three terms,

−Re

(
(1−2λ)λ

2

1−λ ξ11ξ20

)
− 1

2 |ξ11|2 − |ξ02|2, are not functions of F ′′′, while the last term is

Re(λξ21) =
α2(1− δ)

16

(
γ2

1

sin2 θ
+ γ2

2

)
G′′′

= κG′′′,

with κ > 0. If F ′′′ is sufficiently negative, then so will be G′′′, and therefore Re(λξ21) and a.

Therefore, d > 0 and under the condition F ′′′ << 0, we have a < 0, in which case by Wan’s
[1978] theorem the limit cycle is supercritical.

B.5 Proposition 5

Since we are considering the properties of a deterministic system, we can replace Et [It+1] by It+1,
and rewrite equations (11) and (1) as

(1− ρ)It =− α1Xt + α2It−1 + α3It+1 (B.12)

Xt+1 =(1− δ)Xt + It (B.13)

where ρ ∈ [0, 1) stands in for F ′(Is) and we have omitted constant terms for simplicity.57 Rewrite
(B.12) as

It+1 = b1It + b2It−1 + b3Xt

57Note that this formulation embeds the case where Xt+1 = (1− δ)Xt + ψIt if we replace α3 by α3/ψ.
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where b1 = 1−ρ
α3

, b2 = −α2
α3

, and b3 = α1
α3

. The characteristic equation associated with this system
is

λ3 − (1− δ + b1)λ2 + [b1(1− δ)− b2 − b3]λ+ (1− δ)b2 = 0. (B.14)

Suppose d is any real root of this equation. Then this equation can be factored into the form

(λ− d)
(
λ2 − τλ+ c

)
= 0. (B.15)

Expanding this expression and equating the coefficients with those in (B.14), we may obtain the
system

τ + d =1− δ + b1 (B.16)

c+ τd =b1(1− δ)− b2 − b3 (B.17)

cd =− (1− δ)b2. (B.18)

Suppose that this system contains a real eigenvalue that is less than or equal to −1. Letting
d denote this eigenvalue, we have from (B.18) that c < (1− δ) b2 < 0, while from (B.16) we have

that τ > 2− δ+ b1 > 1. Since the roots of λ2− τλ+ c = 0 are given by τ±
√
τ2−4c
2 , this implies that

these two roots are real. The larger of these two roots is given by τ+
√
τ2−4c
2 > τ > 1, so that we

also have a real root that is greater than 1, which completes the proof.

B.6 Proposition 6

Suppose the system undergoes either type of fold bifurcation. Then, at that point, there must be
a root of (B.14) equal to one. Using the factorization (B.15) with d = 1, we can eliminate τ and c
in (B.16)-(B.18) to yield δ(b2 − 1) = −δb1 − b3, or, equivalently, α1 = δ (α2 + α3)− δ (1− ρ). But
this latter expression implies that α1 < δ (α2 + α3), a possibility that we have ruled out in order
to ensure a unique steady state. Thus, the system cannot undergo a fold bifurcation

B.7 Proposition 7

Suppose the system undergoes a flip bifurcation. Then, at that point, there must be a root of
(B.14) equal to −1. Using the factorization (B.15) with d = −1, we can substitute this value
into (B.16)-(B.18) and eliminate τ and c to yield α2 = α1

2−δ − α3 − (1− ρ), which implies that
α2 <

α1
2−δ − α3. This completes the proof.

B.8 Proposition 8

Suppose the system undergoes a Hopf bifurcation. Then at that point the roots of λ2− τλ+ c = 0
(see (B.15)) must be complex with modulus 1. The latter condition implies that c = 1, which
implies from (B.18) that d = −(1− δ)b2. Since we must have d > 1 at the bifurcation, this implies
that (1− δ)α2 > α3, which completes the proof.
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B.9 Proposition 9

A Hopf bifurcation will arise if there exists a ρ ∈ [0, 1) such that c = 1. Substituting this value into

(B.16)-(B.18) and eliminating τ and d yields (1− δ) [(1− δ) b2 + b1] b2 = 1 +
[
1− (1− δ)2

]
b2 +

b3 − b1 (1− δ) or, equivalently,

1− ρ =
(1− δ)2 α2

2
α3

+
[
1− (1− δ)2

]
α2 − α1 − α3

(1− δ)
(
α2
α3
− 1
) .

The desired result follows if the right-hand side of this expression is between 0 and 1, which is true
if the condition stated in the Proposition holds.

C Simulations in Figures 7 and 8

The cycle model : Panel (a) of Figure 8 are obtained with the following reduced form model:

It = sin (ωt) + µt

with ω = π/25. In the deterministic simulations, we have µt = 0 ∀ t. In the stochastic simulation,
the shock µ follows the autoregressive process µt = ρµt−1 + εt and ρ = .15, σε = .2.

The limit cycle model : Figure 7 and panel (b) of Figure 8 are obtained with the following
reduced form model:

Iit = α0 + u1t − α1Xit + α2Iit−1 + F

(∑
Ijt
N

)
+ µt,

Xit+1 = (1− δ)Xit + Iit.

when we restrict to symmetric allocations.
F is assumed to be piecewise linear and is constructed as follows:

F (I) =


a0 + β0I if I < I1

a1 + β1I if I1 ≤ I ≤ I2

a2 + β2I if I < I2

Denoting by Is the steady state level of investment, we assume I1 < Is < I2. F is constrained to
be continuous, which implies

a0 + β0I1 = a1 + β1I2

a1 + β1I1 = a2 + β2I2

Finally, we assume that F (I1) = γ1I1 and F (I2) = γ2I2.
This formulation allows to choose I1, I2, γ1, γ2 , β1 and β2. The parameters β1, a0, a1 and a2

are then chosen to satisfy continuity of F . They are given by

β1 =
γ2I2 − γ1I1

I2 − I1

a0 = (γ1 − β0)I1

a1 = (γ1 − β1)I1

a2 = (γ2 − β2)I2
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Figure 20: The F function
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The obtained F function is displayed on Figure 20.
Finally, given δ, α1 and α2, we set α0 such that the steady state Is is equal to one, which

implies

α0 = (1 +
α1

δ
− α2 − β2)Is − a1

The parameters values are I1 = .5, I2 = 1.5, γ1 = 1.2 and γ2 = .8, β0 = .01 and β2 = .1. In the
deterministic simulations, we have µt = 0 ∀ t. In the stochastic limit cycle, the shock µ follows the
autoregressive process µt = ρµt−1 + εt and ρ = .95, σε = .03.
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Online Appendix

D Spectral Density Estimation

D.1 Schuster’s Periodogram

We estimate the spectral density of series {xt}T−1
t=0 of finite length T by first computing the Discrete

Fourier Transform (DFT) Xk, which results from sampling the Discrete Time Fourier Transform
(DTFT) at frequency intervals ∆ω = 2π

T in [−π, π):

Xk = X
(
ei

2π
T
k
)

=
T−1∑
t=0

xte
−i 2π

T
kt, (D.19)

for k = 1, ..., T − 1. We then can compute samples of the Sample Spectral Density (SSD) Sk from
samples of Schuster’s periodogram Ik

58 according to

Sk = Ik =
1

T
|Xk|2 (D.20)

Taking advantage of the fact that X is even, this amounts to evaluating the spectral density at T
frequencies equally spaced between 0 and π.59

D.2 Zero-Padding to Increase the Graphic Resolution of the Spec-
trum

As we have computed only T samples of the DTFT X
(
eiω
)
, we might not have a detailed enough

picture of the shape of the underlying function X
(
eiω
)
, and therefore of the spectral density

|X
(
eiω
)
|2. This problem is particularly acute if one is interested in the behavior of the spectrum

at longer periodicities (i.e., lower frequencies). Specifically, since we uniformly sample frequencies,
and since the periodicity p corresponding to frequency ω is given by p = 2π

ω , the spectrum is sparser
at longer periodicities (and denser at shorter ones). While the degree of accuracy with which the
samples of Xk describe the shape of X

(
eiω
)

is dictated and limited by the length T of the data
set, we can nonetheless increase the number of points at which we sample the DTFT in order to
increase the graphic resolution of the spectrum. One common (and numerically efficient) way to
do this is to add a number of zeros to the end of the sequence xt before computing the DFT. This
operation is referred to as zero-padding. As an example, suppose that we add exactly T zeros to
the end of the length-T sequence {xt}. One can easily check that this has no effect on the DFT
computed at the original T sampled frequencies, instead simply adding another set of T sampled
frequencies at the midpoints between each successive pair of original frequencies.60

58Another approach for obtaining the spectral density is to take a Fourier transform of the sequence of
autocovariances of x. We show below that this method gives essentially the same result when applied to our
hours series.

59See Priestley [1981] for a detailed exposition of spectral analysis, Alessio [2016] for practical implemen-
tation and Cochrane [2005] for a quick introduction.

60This is true when the number of zeros added to the end of the sample is an integer multiple of T . When
instead a non-integer multiple is added, the set of frequencies at which the padded DFT is computed no longer
contains the original set of points, so that the two cannot be directly compared in this way. Nonetheless,
the over all pattern of the sampled spectrum is in general unaffected by zero-padding.
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If one is interested in the behavior of the spectral density at long enough periodicities, zero-
padding in this way is useful. We will denote by N the number of samples at which the DTFT
(and thus the SSD) is sampled, meaning that T ′ = N −T zeros will be added to the sequence {xt}
before computing the DFT. In the main text, we have set N = 1, 024.61

D.3 Smoothed Periodogram Estimates

We obtain the raw spectrum estimate of a series non-parametrically as the squared modulus of the
DFT of the (zero-padded) data sequence, divided by the length of the data set.62 This estimate
is called Schuster’s periodogram, or simply the periodogram. It turns out that the periodogram
is asymptotically unbiased, but is not a consistent estimate of the spectrum, and in particular the
estimate of the spectrum at a given frequency ωk is generally quite unstable (i.e., it has a high
standard error). Notwithstanding this fact, the over all pattern of the spectrum is much more
stable, in the sense that the average value of the estimated spectrum within a given frequency
band surrounding ωk is in fact consistent. In order to obtain a stable and consistent estimate of
the spectrum, we exploit this fact by performing frequency-averaged smoothing. In particular, we
obtain our estimate of the SSD S(ω) by kernel-smoothing the periodogram I(ω) over an interval
of frequencies centered at ω. Since the errors in adjacent values of I(ω) are uncorrelated in large
samples, this operation reduces the standard errors of the estimates without adding too much bias.
In our estimations, we use a Hamming window of length W = 13 as the smoothing kernel.63

D.4 Smoothing and Zero-Padding with a Multi-Peaked Spectral
Density

To illustrate the effects of smoothing and zero-padding, in this section we compare the estimated
spectral density with the known theoretical one for a process that exhibits peaks in the spectral
density at periods 20, 40 and 100 quarters. We think this is a good description of the factor
variables we are studying (i.e., hours worked, unemployment, capacity utilization), that display
both business cycle movements and lower-frequency movements unrelated to the business cycle.
We construct our theoretical series as the sum of three independent stationary AR(2) processes,
denoted x1, x2 and x3.

Each of the xi follows an AR(2) process

xit = ρi1xit−1 + ρi2xit−2 + εit,

where εi is i.i.d. N(0, σ2
i ). The spectral density of this process can be shown to be given by

S(ω) = σ2
i

{
2π[1 + ρ2

i1 + ρ2
i2 + 2(ρi1ρi2 − ρi1) cos(ω)− 2ρi2 cos(2ω)]

}−1

It can also be shown (see, e.g., Sargent [1987]) that for a given ρi2, the spectral density has a peak
at frequency ωi if

ρi1 = −4ρi2 cos(2π/ωi)

1− ρi2
61As is well known, standard numerical routines for computing the DFT (i.e., those based on the Fast

Fourier Transform algorithm) are computationally more efficient when N is a power of 2, which is why we
set N = 1, 024 rather than, say, N = 1, 000.

62Note that we divide by the original length of the series (i.e., T ), rather than by the length of the
zero-padded series (i.e., N).

63Using alternative kernel functions makes little difference to the results.
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We set ωi equal to 20, 40, and 100 quarters, respectively, for the three processes, and ρi2 equal to
-0.9, -0.95, and -0.95. The corresponding values for ρi1 are 1.802, 1.9247, and 1.9449. We set σi
equal to 6, 2, and 1. We then construct xt = x1t + x2t + x3t. The theoretical spectral density of x
is shown in Figure 21. As in the factor utilisation series we are using in the main text, the spectral
density shows long-run fluctuations, but the bulk of the business cycle movements is explained
by movements at the 40-quarter periodicity, although we observe another peak at periodicity 20
quarters.

Figure 21: Theoretical Spectral Density (Sum of Three AR(2))
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Notes: Figure shows the theoretical spectral density of the sum of three independent AR(2)
processes, which have peaks in their spectral densities at, respectively, 20, 40 and 100
quarters.

We simulate this process 1,000,000 times, with T = 270 for each simulation, which is the
length of our observed macroeconomic series. We estimate the spectral density for various values
of N (zero-padding) and W (length of the Hamming window). Higher N corresponds to higher
resolution, and higher W to more smoothing. On each panel of Figure 22, we report the mean of
the estimated spectrum over the 1,000,000 simulations (solid grey line), the mean ± one standard
deviation (dashed lines), and the theoretical spectrum (solid black line). As we can see moving
down the figure (i.e., for increasing W ), more smoothing tends to reduce the error variance, but
at the cost of increasing bias. Effectively, the additional smoothing “blurs out” the humps in the
true spectrum. For example, with no zero-padding (N = 270), the peak in the spectral density at
40 quarters is (on average) hardly detected once we have any smoothing at all. Meanwhile, moving
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rightward across the figure (i.e., for increasing N), we see that more zero-padding tends to reduce
the bias (and in particular, allows for the humps surrounding the peaks to be better picked up on
average), but typically increases the error variance. As these properties suggest, by appropriately
choosing the combination of zero-padding and smoothing, one can minimize the error variance while
maintaining the ability to pick up the key features of the true spectrum (e.g., the peaks at 20 and
40 quarters).

Figure 22: Effects of Smoothing and Zero-Padding (Sum of Three AR(2))
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Notes: Figure shows estimates of the spectral density using simulations of the sum of three indepen-
dent AR(2), which have peaks in their spectral densities at, respectively, 20, 40 and 100 quarters.
The black line is the theoretical spectrum, the solid grey line is the average estimated spectrum
over 1,000,000 simulations, and the dotted grey lines corresponds to that average ± one standard
deviation. W is the length of the Hamming window (smoothing parameter) and N is the number
of points at which the spectral density is evaluated (zero-padding parameter).
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D.5 Smoothing and Zero-Padding with Non-Farm Business Hours
per Capita

Figure 23 presents estimates of the spectral density of U.S. Non Farm Business Hours per Capita for
different choices of the zero-padding parameter (N) and different lengths of the Hamming window
(W ). The results indicate that, as long as the amount of zero-padding is not too small (i.e., N
larger), we systematically observe the peak at around 40 quarters in the spectral density. In fact, it
is only with minimal zero-padding (N low) and a wide smoothing window (W high) that the peak
is entirely washed out. We take this as evidence of the robustness of that peak.

Figure 23: Changing Smoothing and Zero-Padding
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2. The different lines correspond to estimates of the spectral density
of hours in levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels
series, with P between 100 and 200 (thin grey lines). W is the length of the Hamming window
(smoothing parameter) and N is the number of points at which the spectral density is evaluated
(zero-padding parameter).
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D.6 Detrending with a Polynomial Trend

In this section, we check that detrending our hours series with a polynomial trend of degrees 1 to
5 does not affect our main finding; namely, the existence of a peak in the spectrum at a periodicity
around 40 quarters. Plots confirming that our finding is robust to polynomial detrending are shown
in Figure 24.

D.7 Alternative Estimators

As another robustness test, we estimate the spectrum using the SPECTRAN package (for Matlab),
which is described in Marczak and Gómez [2012]. The spectrum is computed in this case as the
Fourier transform of the covariogram (rather the periodogram as we have done thus far). Smoothing
is achieved by applying a window function of length M to the covariogram before taking its Fourier
transform.64 Three different window shapes are proposed: the Blackman-Tukey window, Parzen
window, and Tukey-Hanning window. The width of the window used in estimation is set as a
function of the number of samples of the spectrum. In the case where no zero-padding is done
(N = 270), these “optimal” widths correspond to lengths of, respectively, M = 68, 89, and 89
quarters for the three methods.65 Figure 25 shows the estimated spectrum of Non Farm Business
hours for the three windows and with or without zero-padding (N = 270, 512, or 1024). Results
again confirm the existence of a peak at a periodicity around 40 quarters, as long as there is enough
zero-padding.

64Specifically, the k-th-order sample autocovariance is first multiplied by w(|k|), where the window function
w is an even function with the property that maxkw(k) = w(0) = 1, and the window length M > 0 is such
that w(|k|) 6= 0 for |k| = M − 1 and w(|k|) = 0 for |k| ≥M .

65Note that, in contrast to the kernel-smoothing case, in this case a wider window corresponds to less
smoothing.
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Figure 24: Using a Polynomial Trend of Various Orders for Benchmark Smoothing (W = 13)
and Zero-Padding (N = 1024)
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(c) Order 3 (d) Order 4
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2, when polynomial trends of order 1 to 5 have been removed from
the data. The different lines correspond to estimates of the spectral density of hours in levels
(black line), of hours detrended with a polynomial trend (thick grey line) and of 101 series that are
high-pass (P ) filtered version of the levels series, with P between 100 and 200 (thin grey lines).
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Figure 25: Non-Farm Business Hours with Various Windows and Estimation Using the
Covariogram
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Notes: Notes: This Figure shows estimates of the spectral density of U.S. Non Farm Business
Hours per Capita over the sample 1947Q1-2015Q2, as computed from the covariogram using the
SPECTRAN package. The different lines correspond to estimate of the spectral density of hours in
levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels series, with P
between 100 and 200 (thin grey lines). N is the number of points at which is evaluated the spectral
density (zero padding).
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E Steps in Deriving the Equilibrium of the New Key-

nesian Model with Financial Frictions and Durables

E.1 The Model

Households

There is a continuum of mass one of households indexed by i who purchase consumption services
from the market. The preferences of agent i are given by E0

∑
t β

tξt−1[U (Cit − γCt−1)+ν(1−Lit)],
with U ′(·) > 0, U ′′(·) < 0, ν ′(·), ν ′′(·) < 0 and 0 ≤ γ < 1−δ. Cit represents the consumption services
purchased by household i in period t, Ct denotes the average level of consumption in the economy,
β is the discount factor, and ξt denotes an exogenous shock to the discount factor at date t. Note
that this preference structure assumes the presence of external habit. Household i’s problem takes
the form

maxE0

∞∑
t=0

βtξt−1 [U (Cit − γCt−1) + ν(1− Lit)]

subject to

PtCit + (1 + rt−1)Bit + P xt Dit = Bit+1 + rxtXit + wtLit + Γit,

Xit+1 = (1− δ)Xit +Dit.

Here, Bit+1 represents the borrowing by the household at time t, to be repaid with interest at t+1,
rt represents the nominal interest rate faced by the household on such borrowing, wtLit is labor
income, Xit represents the stock of durable goods (or houses) held by the household at the beginning
of period t, Γit are firm profits that are returned to households, and Dit the quantity of new
durable goods purchased by the household at t. Pt and P xt are the (nominal) prices of consumption
services and new durable goods, respectively, at date t. Households are assumed to buy all of their
consumption services—including those derived from durable goods—from the market. Specifically,
households do not consume the services of their durable goods directly. Instead, they rent Xit out
to firms each period at nominal rental rate rxt . Firms then combine the rented stock of durables
with labor in order to produce consumption services, C, as well as new durable goods, D, in a
manner to be described shortly. Under these conditions, dropping i subscripts, the household’s
Euler equation with respect to their optimal choice of C takes the familiar form:

U ′ (Ct − γCt−1) = βtEt [U (Ct+1 − γCt) (1 + rt − πt+1)] , (E.21)

where πt+1 is the inflation rate from t to t + 1, and βt ≡ β ξt
ξt−1

. Note that we have here used the

approximation 1+r
1+π = 1 + r − π.

The households problem also leads a labor supply decisions represented by

ν ′(Lt)

U ′ (Ct − γCt−1)
=
wt
Pt

and an arbitrage condition between the holding of bonds and capital given by

Et
[
U ′ (Ct+1 − γCt)

Pt+1

{
(1 + rt)−

(
rxt+1 + (1− δ)P xt+1

P xt

)}]
= 0.
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Final Good producers

The final good sector is competitive. This sector provides consumption services to households by
buying a set of differentiated intermediate services, denotes Cjt, from intermediate good firms. We
assume a measure one of intermediate good firms, indexed by j. The technology of the final good
firms is

Ct =

(∫ 1

0
Cηjtdj

) 1
η

, (E.22)

with η ∈ (0, 1). The objective of the final good firm is thus to solve

maxPtCt −
∫ 1

0
PjtCjtdj

subject to (E.22), where pjt is the price of intermediate good j. This gives rise to demand for
intermediate good j given by

Cjt =

(
Pjt
Pt

)− 1
1−η

Ct.

Intermediate good firms

Intermediate good producers are monopolistically competitive and take the demand from final good
firms as given. We assume that intermediate firms produce an intermediate factor M according to
the technology

Mjt = BF (ΘtLjt) .

A fixed fraction (1−ϕ) of that factor is transformed one to one into consumption services, whereas
the use of the rented stock of durables also produces consumption services with a one to one
technology, so that the amount of consumption services produced by intermediate firm j is

Cjt = Xjt + (1− ϕ)Mjt = Xjt + (1− ϕ)BF (ΘtLjt) . (E.23)

The remaining fraction ϕ of the intermediate factor M is transformed one to one into durable goods
D, so that

Djt = ϕMjt = ϕBF (ΘtLjt) .

Period-t profits of an intermediate good producer are given by

Γjt = PjtCjt + PXt Djt − rxtXjt − wtLjt.

Cost minimisation implies that

wt =
(
(1− ϕ)rxt + ϕP xt

)
ΘtBF

′ (ΘtLjt) .

Hence, assuming F ′′ < 0, all intermediate good firms will hire the same amount of labor (i.e.,
Ljt = Lt), which implies that the aggregate capital stock will satisfy

Xt+1 = (1− δ)Xt + ϕBF (ΘtLt) . (E.24)

With the normalisation B = 1
1−ϕ and denoting ψ = ϕ

1−ϕ , we obtain

Ct = Xt + F (ΘtLt) (E.25)

and
Xt+1 = (1− δ)Xt + ψF (ΘtLt) . (E.26)
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Setting of interest rates

We assume that the interest rate faced by households is equal to the policy rate set by the central
bank (which we denote it) plus a risk premium rpt ; that is, we assume that rt = it+ rpt . We directly
allow for counter-cyclical risk premium by positing rpt to be a non-increasing function of the level
of employment in the economy, Lt, via

rpt = R(Lt), R′(Lt) ≤ 0.

In setting the policy rate it, we assume that the central bank follows a slightly modified Taylor-type
rule where the interest rate reacts to expected inflation and to expected labor market conditions
via

it = φπEt [πt+1] + φ`Et [G (Lt+1)] , φπ, φ`, G
′ > 0. (E.27)

Equilibrium in the absence of sticky prices

In the absence of sticky prices, all intermediate good producers will act in the same manner and
set Pjt as a mark-up over the marginal cost, implying that

Pjt =
rxt

1− η
.

The equilibrium values for {P xt , wt, rxt , Pt, rt, πt, it, Lt, Ct, Xt} are given as the solution to the
set of equations:

U ′ (Ct − γCt−1) = βtEt [U (Ct+1 − γCt) (1 + rt − πt+1)] ,

ν ′(Lt)

U ′ (Ct − γCt−1)
=
wt
Pt
,

Et
[
U ′ (Ct+1 − γCt)

Pt+1

{
(1 + rt)−

(
rxt+1 + (1− δ)P xt+1

P xt

)}]
= 0,

wt = (rxt + ψP xt )ΘtF
′ (ΘtLt) ,

Pt =
rxt

1− η
,

Ct = Xt + F (ΘtLt) ,

Xt+1 = (1− δ)Xt + ψF (ΘtLt) ,

it = φπEt [πt+1] + φ`Et [G (Lt+1)] ,

πt =
Pt
Pt−1

,

rt = it +R(Lt).

In fact, this system does not determine the level of Pt, but instead gives solutions for {P
x
t
Pt
, wtPt ,

rxt
Pt
, πt, it, rt, Lt, Ct, Xt}.

81



With sticky prices

Assume now that intermediate firms are confronted to price stickiness, in that the arrival of the
option to change their price follows a Poisson process. In that case, the previous equilibrium
conditions are not affected except for the two equations

Pt =
rxt

1− η
(E.28)

Ct = Xt + F (ΘtLt) ; (E.29)

With sticky prices, the pricing equation (E.28) is replaced by a pricing equation for a firm that
adjusts its price, with the result that the price is set to essentially be a markup on expected
discounted marginal cost. From this we can derive a Phillips curve following standard steps.

Aggregate output in the presence of sticky prices is now be given by

Ct =

(∫ 1

0
(Xjt + F (ΘtLjt))

ρ dj

) 1
ρ

,

where this differs from (E.29) because of the distribution in Xjt. The Xjt will satisfy the equation

Xjt − F (ΘtLjt) =

(
Pjt
Pt

) −1
1−ρ

Ct

One important approximation step we are taking in the paper is that we disregard the impact of
production dispersion on aggregate output, and are indeed assuming that (E.29) holds even in the
case with sticky prices, while this is only approximatively true.

Deriving the linear reduced form

With the assumption φπ = 1, we can bypass the need to be explicit about the intermediate firm’s
pricing problem and its implications for inflation, as the realisations of inflation do not feed back
into the determination of the quantity variables that are of interest to us. Specifically, substituting
(E.27) (with φπ = 1) and (E.29) into the Euler Equation (E.21), and denoting επt+1 = Et [πt+1] −
πt+1, we obtain:

U ′
(
Xt + F (θtLt)− γ (Xt−1 + F (θt−1Lt−1))

)
=

βtEt
{
U ′
(
Xt+1 + F (θt+1Lt+1)− γ (Xt + F (θtLt))

)
×
(
1 + επt+1 + φ`G (Lt+1) +R (Lt)

)}
. (E.30)

We assume the following functional forms. The utility function is U(z) = − exp
{
− z
ω

}
, ω > 0,

the production of new goods is given by F (ΘL) = ln(ΘL), the interest rate policy function is
G(L) = ln(L), and Θt is constant. With the approximation ln(1 + z) ≈ z, we have

ln
(
1 + επt+1 + φ`G (Lt+1) +R (Lt)

)
≈ επt+1 + φ` lnLt+1 +R (Lt) .

Therefore, (E.30) can be rewritten, with the approximation E[ln(z)] ≈ ln(E[z]):

1

ω
(Xt + ln Θ + lnLt − γ (Xt−1 + ln Θ + lnLt−1)) =

lnβt +
1

ω
(Et [Xt+1] + ln Θ + Et [lnLt+1]− γ (Xt + ln Θ + lnLt))

+ Et
[
επt+1

]
+ φ`Et [lnLt+1] +R (Lt) . (E.31)
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Given that Et
[
επt+1

]
= 0, this equations rewrites, using `t = lnLt,

`t = µt − α̂1Xt + α̂2`t−1 + α̂3Et [`t+1] + F̂ (`t), (E.32)

where µt = 1
κ

[
ψ
(

1− γ
1−δ

)
ln Θ− ω lnβt

]
, α̂1 = δ

κ

(
1− γ

1−δ

)
, α̂2 = γ

κ

(
1− ψ

1−δ

)
, α̂3 = 1−ωφ`

κ and

F̂ (`t) = −ω
κ R̃ (`t), with κ = 1 + γ − ψ > 0.

Equation (E.32) and the accumulation Equation (E.26) together form a two-variable linear
system in X and `. It is worth noticing that inflation π does not appear anywhere. Since C
and D can be obtained from X and L, it then follows that all quantity variables are determined
independently from the inflation rate.

F Solving and Estimating the Model

F.1 Solution Method

F.1.1 Solving a Deterministic Version of the New Keynesian Model

Consider the deterministic version of our model, with all variables expressed as deviations from the
steady state. We can write our dynamic economic system as(

yt+1

`t+1

)
=

(
f (yt, `t)
g (yt, `t)

)
≡ h (yt, `t) , (F.33)

where yt = (Xt, `t−1)′ is the vector of predetermined variables, h (0) = 0, and y0 is given. Letting
xt ≡ (y′t, `t)

′, a solution is a function φ : R2 → R such that, after setting `0 = φ (y0), the resulting
sequence {xt} obtained from (F.33) satisfies the transversality condition (TVC) lim supt→∞ ‖xt‖ <
∞ (i.e., the system remains bounded). Suppose this φ exists and is unique, and let x (t; y) ≡
ht (y, φ (y))66 denote the state at date t when y0 = y and `0 = φ (y) (i.e., we have xt = x (t; y0)).
Letting

M≡
{
x (0; y) : y ∈ R2

}
⊂ R3,

it must be the case that x (t; y) ∈ M for all t, y.67 That is, M is the unique 2-dimensional
invariant manifold68 of h such that system (F.33), when restricted to M, produces non-explosive
dynamics.69 In this case, φ is the function that projects x onto M by choice of l. We henceforth
make the following assumption about φ (if it exists), which is necessary if we are to solve for it
using perturbation methods (as we do below): φ is analytic on a neighborhood of the steady state.

To find M, let A ≡ Dxh (0),70 and write the linearized version of (F.33) as.

xt+1 = Axt. (F.34)

66We use ht to denote the t-th iterate of h; i.e., h0 is the identity function and ht ≡ h ◦ ht−1 for t ≥ 1.
67To see this, let y (t; y) denote the first two elements of x (t; y) and l (t; y) the third, and note that the

trajectory passing through x (t; y) ≡
(
y (t; y)

′
, l (t; y)

)′
remains bounded by construction. Furthermore, also

by construction, the trajectory passing through x (0; y (t; y)) ≡
(
y (t; y)

′
, φ (y (t; y))

)′
remains bounded as

well. If l (t; y) 6= φ (y (t; y)), then if we had y0 = y (t; y) there would be two different solutions for `0 that
produce bounded trajectories, which contradicts our supposition that φ is unique.

68A manifold M̃ is said to be h-invariant if x ∈ M̃ implies h (x) ∈ M̃.
69That is, M is precisely the “non-explosive manifold” referred to in the text.
70Here, the notation Dz indicates the partial derivative operator with respect to the vector z.
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Let E ⊂ R3 be a 2-dimensional invariant subspace of A; that is, (a) E = {αz1 + βz2 : α, β ∈ R} for
some linearly independent basis vectors z1, z2 ∈ R3, and (b) if x ∈ E then Ax ∈ E . Note that there
are at most three possible such subspaces.71 Given such an E , we look for a candidate M as the
2-dimensional invariant manifold of (F.33) with the following properties: (a)M is tangent to E at
the steady state; and (b) the associated projection function φ is analytic on a neighborhood of the
steady state.72 Given a candidate M and the associated φ, we can then obtain an expression for
the evolution of yt on M as

yt+1 = θ (yt) ≡ f (yt, φ (yt)) .

Using this expression, we can check numerically whether indeed trajectories on the candidate M
remain bounded. If they do, thenM continues to be a candidate non-explosive manifold; otherwise,
we rule it out. We can check all possible E ’s and their associated candidate M’s in this way. If,
after doing so, we have found more than one candidate M, then we conclude that the solution
is indeterminate (i.e., that φ is not unique). If, on the other hand, all candidate M’s contain
unbounded trajectories, then we conclude that no solution exists. Finally, if exactly one candidate
M is found whose trajectories are bounded, then we conclude that M is indeed the non-explosive
manifold we sought.73

F.1.2 Finding φ Using Perturbation Methods

Given a subspace E as defined above, the associated candidate φ (which fully determines M)
will in general not possess a closed-form solution. We thus solve for φ up to a k-th-order Taylor
approximation around the steady state as follows. First, note that, by invariance of M, φ must
implicitly solve74

φ (f (y, φ (y))) = g (y, φ (y)) . (F.35)

Differentiating (F.35) once with respect to y and evaluating at y = 0 yields

Dyφ · [Dyf +Dlf ·Dyφ] = Dyg +Dlg ·Dyφ, (F.36)

which is a quadratic system in the two elements of Dyφ. In general, this equation has a multiplicity
of solutions. However, Dyφ is, by definition,75 the function that projects x onto E by choice of l.

71To ensure this, we must actually impose the following additional technical requirement in constructing
E : if the algebraic multiplicity of an eigenvalue λ of A is greater than one, and E contains a generalized
eigenvector corresponding to λ, then E must contain all of the generalized eigenvectors corresponding to λ.
We henceforth impose this requirement. As a consequence, if the three eigenvalues of A are all real and
distinct, then there are three E ’s; namely, those associated with the three possible ways of choosing two
linearly independent eigenvectors of A as the basis vectors z1 and z2. If instead A has an eigenvalue λ with
an algebraic multiplicity of two, then there is only one E ; i.e., the one given by the generalized eigenspace
of λ. If instead A has a complex conjugate pair of eigenvalues, then there is also only one E ; i.e., the one
obtained by taking Re (v) and Im (v) as the basis vectors, where v is any eigenvector associated with one of
the complex eigenvalues. Finally, if A has an eigenvalue with an algebraic multiplicity of three, then such
an E does not exist.

72In general, there are an uncountably infinite number of manifolds satisfying requirement (a), but only
one of these manifolds also satisfies requirement (b).

73If A has either an eigenvalue with an algebraic multiplicity of two or a complex conjugate pair of
eigenvalues, so that there is only one E , then we also need to verify that trajectories passing through points
not on M do become unbounded. If they do not, then we also conclude in this case that the solution is
indeterminate.

74This expression can be obtained from (F.33) by using the “invariance” relationships `t = φ (yt) and
`t+1 = φ (yt+1), and the fact that yt+1 = f (yt, `t).

75In particular, we are using here the fact that M is tangent to E at the steady state.
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It can be verified that this projection function—which can be obtained using standard eigenvalue-
eigenvector methods—is indeed a solution to (F.36). This gives us a candidate φ up to a first-order
approximation.

To obtain the desired k-th-order approximation, we proceed iteratively as follows. Suppose we
have in hand a (j − 1)-th order approximation. To obtain the j-th-order approximation, obtain all
j-th-order derivatives of the expression (F.35) and evaluate them at y = 0. We can express the
result as a system of linear equations in the j-th-order derivatives of φ, with coefficients that are
functions of the known derivatives of φ up to (j − 1)-th order. It is thus straightforward to solve
this system for the j-th-order derivatives.

F.1.3 Extension to the Stochastic Case

Write the stochastic version of the model as(
yt+1

Et [`t+1]

)
=

(
f (yt, `t, µt;σt)
g (yt, `t, µt;σt)

)
≡ h (yt, `t, µt;σt) , (F.37)

with µt = ρµt−1 + σtηt, ηt ∼ N (0, 1), and σt = σ.76 Write the augmented state vector of this
system as zt = (x′t, µt, σt)

′. Whereas before the solution φ was the function that projected the
system onto a manifold M in x-space, in the stochastic environment the corresponding manifold
is in z-space, and in particular, φ : R4 → R is the function such that (a) `t = φ (yt, µt;σ) for all t
satisfies (F.37), and (b) the sequence generated by

yt+1 = θ (yt, µt;σ) ≡ f (yt, φ (yt, µt;σ) , µt;σ)

satisfies the stochastic TVC, lim supt→∞ E0 ‖yt‖ <∞.
Noting that Dσh (0) = 0 in our setup, and taking date-t expectations of both sides of the

linearized version of (F.37), we may obtain

Et [zt+1] =

0
0
σ

+

Ax Aµ 0
0 ρ 0
0 0 0


︸ ︷︷ ︸

A

zt, (F.38)

where Ax ≡ Dxh (0) and Aµ ≡ Dµh (0). Note that ρ and 0 are eigenvalues of A, and let vρ and
v0 denote corresponding eigenvectors. Let E be a 4-dimensional invariant subspace of A such that

vρ, v0 ∈ E ; that is, (a) E =
{∑4

j=1 αjzj : αj ∈ R, j = 1, . . . , 4
}

for some linearly independent basis

vectors zj ∈ R5, (b) vρ, v0 ∈ E , and (c) if x ∈ E then Ax ∈ E . Note that, as in the non-stochastic
case, there are at most three possible such subspaces.

Given such an E , we look for a candidateM (or, equivalently, the associated projection function
φ) in a similar way to the non-stochastic case. That is, we seek the 4-dimensional manifold M
with the following properties: (a) `t = φ (yt, µt;σ) for all t satisfies the expression (F.37); (b) M
is tangent to E at the non-stochastic steady state zt = 0; and (c) the function φ is analytic on a
neighborhood of the non-stochastic steady state. After obtaining the candidateM for each possible
E , we can then check numerically whether the stochastic TVC is satisfied for exactly one of these
candidate M’s, in which case we have found the desired solution.

76The reason we introduce σt as a (degenerate) state variable should become apparent shortly.
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As in the non-stochastic case, we cannot in general find φ analytically. However, from (F.37),
we may obtain that φ implicitly solves

E [φ (f (y, φ (y, µ;σ) , µ;σ) , ρµ+ ση;σ)] = g (y, φ (y, µ;σ) , µ;σ) , (F.39)

where the expectation on the left-hand side of (F.39) is taken over realizations of the i.i.d. N (0, 1)
random variable η. Note also that the other time-varying variables in this expression (i.e., y and µ)
are determined independently of η. We can thus easily solve for the k-th-order Taylor approximation
to φ around the non-stochastic steady state z = 0 in a manner similar to the non-stochastic case
by sequentially differentiating the expression (F.39) with respect to the vector (y, µ;σ).

F.2 Estimation Procedure

To estimate the model, we use an indirect inference method as follows. Let xt ∈ Rn denote a vector
of date-t observations in our data set, t = 1, . . . , T , and let xT ≡ (x′1, . . . , x

′
T )′ denote the full data

set in matrix form. Let F : RT×n → Rq be the function that generates the q-vector of features of
the data we wish to match (i.e., F (xT ) is a vector containing all relevant spectrum values, plus the
correlation, skewness and kurtosis for hours and the risk premium).

Suppose we simulate M data sets of length T from the model using the parameterization θ.
Collect the m-th simulated simulated data set in the matrix x̃mT (θ) ∈ RT×n, m = 1, . . . ,M . The
estimation strategy is to choose the parameter vector θ to minimize the Euclidean distance between
F (xT ) and the average value of F (x̃mT (θ)), i.e., we seek the parameter vector

θ̂ = argmin
θ∈Θ

[
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]′ [
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]
,

where Θ is the parameter space. In practice, we simulate M = 3,000 data sets for each parameter
draw, and estimate θ̂ using Matlab ’s fminsearch optimization function.

F.2.1 The Parameter Space

We estimate the nine parameters of the model imposing several restrictions on the parameter space
Θ. First, we require that the habit parameter γ and durables-share parameter ψ be non-negative
and less than one, i.e., 0 ≤ γ, ψ < 1. Second, we require that the policy rate reacts positively to
expected hours, but not so strongly as to cause current hours to fall in response to an increase in
expected hours, i.e., 0 < φ` < 1/ω. Third, we impose that R̃′ (0) ≤ 0 (i.e., we have complementarity
near the steady state), but that the degree of complementarity is never so strong as to generate

static multiple equilibria.77 This latter property is ensured if the function ̂̀+ ω
κ R̃
(̂̀) is strictly

increasing in ̂̀ (so that it is invertible), which requires 0 ≥ R̃1 > −1+γ−ψ
ω and R̃3 >

ωR̃2
2

3(1+γ−ψ+ωR̃1)
.

Fourth, we impose that the shock process is stationary, i.e., |ρ| < 1. Finally, we require that the
parameters be such that a solution to the model exists and is unique (see Appendix F.1). None of
the estimated parameters is on the boundary of the set of constraints we have imposed.

77By static multiple equilibria, we mean a situation where, for a given X̂t, ̂̀t−1 and expectation about̂̀
t+1, there are multiple values of ̂̀t consistent with the dynamic equilibrium condition.
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