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Abstract

We propose a new and simple lack-of-fit test for a parametric quantile regression. It involves one-

dimensional kernel smoothing, so that the rate at which it detects local alternatives is independent of
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can be applied to obtain more accurate ones in small samples. Our procedure appears to be

competitive with existing ones in simulations and in an empirical application with several covariates.
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1 Introduction

Parametric quantile regression, as introduced by Koenker and Bassett (1978), has emerged as a powerful

alternative to mean regression. It allows for a richer data analysis by exploring the effect of covariates

at different quantiles of the conditional distribution of the variable of interest. It is then particularly

valuable if variables have asymmetric distributions or heavy tails. The monograph of Koenker (2005)

and the review of Yu et al. (2003) detail the theory and practice of quantile regression.

As in any statistical modeling exercise, it is crucial to check the fit of a parametric quantile model.

Sound inference hinges on the correct functional specification of the regression function, but the possi-

bility of misspecification in a parametric framework cannot be ignored, especially as applied researchers

tend to choose functional forms on the basis of parsimony and tractability. While there has been a large

effort devoted to testing the fit of parametric mean regressions, only a few lack-of-fit tests of parametric

quantile regressions have been proposed. Two competing approaches have been investigated. The first

essentially compares the parametric fit with a nonparametric one. In this vein, Zheng (1998) builds

a test on kernel smoothing over the design. Horowitz and Spokoiny (2002) extend this approach to

propose an adaptive procedure that allow for a data-driven choice of the smoothing parameter. But, as

in any multidimensional nonparametric problem, the curse of dimensionality may be detrimental to the

performances of the test, see e.g. Lavergne and Patilea (2012) for illustrations. A second approach is

based on a weighted cumulative sum (cumsum) process of the residuals. Along these lines, He and Zhu

(2003) extend the approach developed by Stute (1997) for mean regression checks, Bierens and Ginther

(2001) generalize the integrated conditional moment test of Bierens and Ploberger (1997) to quantile

regression, and Escanciano and Goh (2014) consider testing the correct specification of a linear quantile

function for a continuum of quantile levels. Conde-Amboage et al. (2015) develop a cumsum-type test

suitable for high-dimensional covariates. The smoothing approach and the cumsum one are related. As

shown by Fan and Li (2000) in the context of goodness-of-fit tests of a parametric regression, the test

statistic proposed by Bierens and Ploberger (1997) is essentially the same as the kernel-smoothing test

of Härdle and Mammen (1993) but with a smoothing parameter that is held fixed independently of the

sample size. This however has huge consequences on the properties of the test. The kernel-smoothing

statistic has an asymptotically pivotal distribution, while the limit distribution of its competitor is

a non-linear functional of a Gaussian process. The power properties of the two tests are also pretty

different depending on the kind of alternatives considered, see e.g. Fan and Li (2000) and Guerre and

Lavergne (2002). Practically, one observes in small samples different performances of the two types of

test, whether in terms of size control or power, in the case where many covariates are present, see e.g.

Lavergne and Patilea (2010).

In this work, we introduce a new testing methodology that mixes some features of the two main

approaches investigated up to date. Our approach has three specific features. First, it does not require

smoothing with respect to all covariates, but only on one continuous covariate. The test is omnibus,

but mitigates the curse of dimensionality that appears with nonparametric smoothing, hence weakening

the influence of the smoothing parameter and improving the power properties of the test with respect
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to a standard smooth test. Our empirical application shows that indeed our test can be less sensitive to

bandwidth and more powerful than such a competitor when several covariates are present. Moreoevr,

in practice, when there are several continuous covariates, the covariate on which we smooth does not

influence dramatically the test’s outcome. Second, because there is still some smoothing, the test

statistic is asymptotically pivotal, while bootstrap can be used to obtain accurate critical values of

the test in small samples. We find indeed in our simulations that our test’s level is well controlled

by wild bootstrapping. Third, our test easily applies in a model with continuous as well as discrete

covariates, but avoids sample splitting with respect to the modalities of the discrete variables. This

feature also contributes to a better detection of an incorrect parametric model as illustrated in our

empirical application.

The paper is organized as follows. In Section 2, we present our testing procedure, we study its

asymptotic behavior under the null hypothesis and under a sequence of local alternatives, and we es-

tablish the validity of wild bootstrap procedure to compute critical values. In Section 3, we compare the

small sample behavior of our test to some existing procedures, and we illustrate its use and advantages

in analyzing data on children birthweight. Section 4 gathers our technical proofs.

2 Lack-of-Fit Test for Quantile Regression

2.1 Principle and Test

Consider modeling the quantile of a real random variable Y conditional upon covariates Z ∈ Rq, q ≥ 2.

We assume that Z = (W,X ′)′, where W is a one-dimensional continuous random variable that admits

a density with respect to the Lebesgue measure, while X may include both continuous and discrete

variables.

We assume that the conditional distribution of Y given Z = z is absolutely continuous for almost all

z. The τ -th conditional quantile of Y given Z is then defined as Qτ (z) = inf{y : P(Y ≤ y | Z = z) ≥ τ}.

The parametric quantile regression model of interest posits that the conditional τ -th quantile of Y is

given by g(Z;β0), where g(·;β) is known up to the parameter vector β ∈ B ⊂ Rp, that is,

Y = g(Z;β0) + ε, P (Y ≤ g(Z;β0) | Z) = τ . (2.1)

The validity of the parametric quantile regression is thus equivalent to

H0 : ∃β0 ∈ B : P(Y ≤ g(Z;β0) | Z) − τ = E {I{Y ≤ g(Z;β0)} − τ | Z} = 0 a.s. (2.2)

Testing the correct specification of our parametric quantile regression models thus reduces to testing a

zero conditional mean hypothesis. The alternative hypothesis is

H1 : P [E {I{Y ≤ g(Z;β)} − τ | Z} = 0] < 1 for any β ∈ B .

The key element of our testing approach is the following lemma, that for our purpose will be applied

to the random variable U = I{Y ≤ g(Z;β0)} − τ . Hereafter, if g : Rk → R is an integrable function,
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F [g] denotes its Fourier transform, that is

F [g](t) =

∫

Rk

exp(−2πit′u)g(u)du .

Lemma 2.1. Let (W1, X1, U1) and (W2, X2, U2) be two independent draws of (W, X, U). Let K(·)
and ψ(·) be bounded, even, integrable functions with (almost everywhere) positive, integrable Fourier

transforms, and assume
∫

R K(v)dv > 0. Assume E(|U |2) < ∞, and define

I (h) = E
[
U1U2h

−1K ((W1 −W2) /h)ψ (X1 −X2)
]
.

Then for any h > 0,

E [U | W,X] = 0 a.s. ⇔ I(h) = 0.

Moreover, if P (E [U | W,X] = 0) < 1, then infh∈(0,1] I(h) > 0.

The result could be proved following the lines of Lavergne et al. (2015, Lemma 1). The details are

provided in the Supplementary Material. From the above result, the null hypothesisH0 : E [U | W,X] =

0 a.s., with U = I{Y ≤ g(Z;β0)} − τ , reduces to I(h) = 0 for an arbitrary h. We consider a sequence

of h decreasing to zero when the sample size increases, which is one of the ingredients to obtain an

asymptotically pivotal distribution for the test statistic. Assume we have at hand a random sample

(Yi,Wi, Xi), 1 ≤ i ≤ n, from (Y,W,X). If we knew β0, we could estimate I (h) by the second-order

U-statistic

In (β0) =
1

n(n− 1)

∑

1≤j 6=i≤n

Ui (β0)Uj (β0)
1

h
Kh (Wi −Wj)ψ(Xi −Xj)

where Ui(β) = I{Yi ≤ g(Zi;β)} − τ and Kh(·) = K(·/h). To estimate β0, we follow Koenker and

Bassett (1978), who showed that under (2.1) a consistent estimator of β0 is obtained as

β̂ = arg min
β

n∑

i=1

ρτ (Yi − g(Zi;β)) , (2.3)

where ρτ (e) = e (τ − I(e < 0)) is the so-called check function. While this is not a differentiable optimiza-

tion problem, it is convex and tractable, see e.g. Koenker (2005) for some computational algorithms.

Let us define

Tn = nh1/2 In(β̂)

vn
with v2

n =
2 τ2(1 − τ)2

n(n− 1)

∑

j 6=i

h−1K2
h (Wi −Wj)ψ

2(Xi −Xj) . (2.4)

An asymptotic α-level test of H0 is then

Reject H0 if Tn ≥ zα, where zα is the (1−α)−quantile of the standard normal distribution.

Our test statistic is similar to the one proposed by Zheng (1998), with the fundamental difference

that the latter uses a multidimensional smoothing kernel over Z = (W,X ′)′, that is h−qK̃((Wi −
Wj)/h, (Xi −Xj)/h), so that its statistic exhibit a nhq/2 rate of convergence under H0. By contrast

we smooth only on one of the covariates, while the smoothing on the other covariates is replaced by
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suitable weights determined by the function ψ(·). Consequently, as will be shown, our statistic has a

nh1/2 rate of convergence under the null hypothesis irrespective of the dimension of Z. The test statistic

of Bierens and Ginther (2001) has a n rate of convergence, but its asymptotic distribution is not pivotal.

As acknowledged by the authors, this yields some practical difficulties. The asymptotic distribution

involves the density of the error term at zero, which could in principle be estimated nonparametrically,

but this may yield unreliable results due do the sensitivity of the estimator to the smoothing parameter.

Other authors rely on bootstrapping for obtaining critical values of cumsum-type tests. This however

may not provide an accurate approximation for small or moderate sample sizes, and might become

unpractical for very large data sets. Our proposal is an hybrid approach that combines the advantages

of existing procedures.

The statistic v2
n is an estimator of the variance of nh1/2In(β0) conditional on the Zi under H0. It

does not consistently estimate the conditional variance of a properly centered version of nh1/2In(β̂)

under the alternative hypothesis in general, and it may overestimate this conditional variance causing

some loss in power for the test. One could build a more robust estimator by adapting the ones proposed

by Horowitz and Spokoiny (2001) and Guerre and Lavergne (2005) in a mean regression context. But

we decided in favor of v2
n as it is easier to compute and yields a well-behaved and powerful test in our

simulations.

In practice, to obtain scale invariance of our test statistic, we recommend that the observations on

each component of Z are scaled by an indicator of dispersion, such as their sample standard deviation.

While we do not formally consider this in our theoretical analysis, it can be easily seen that this does

not affect our results. When there are several continuous covariates, one should choose one as the

W variable on which smoothing is applied. If one suspects a potential deviation from the null that

is localized around some values of a particular W , one can expect a better power if the test statistic

smoothes on this variable. In our simulations, we investigate the influence of the choice of W for the

power performances of the test. In our empirical example, we find that the covariate on which we

smooth does not matter much for the test’s outcome.

From our theoretical study, the function ψ(·) as well as the kernel K(·) should possess an almost

everywhere positive and integrable Fourier transform. This is true in particular for (products of) the tri-

angular, normal, Laplace, logistic, and Student densities. Alternatively, one can choose ψ(x) = g(‖x‖)

where g(·) is any of the above univariate functions. While the outcome of the test may depend on the

choice of the kernel K(·), this influence is expected to be limited as usual in nonparametric estima-

tion. For the choice of the function ψ(·), unreported simulations results, as well as the experiments of

Lavergne et al. (2015) for a test of significance of covariates in a nonparametric regression, reveal that

it is not so.

Our following theory does not allow for a data-driven choice of the bandwidth h. It seems likely that

the procedures of Horowitz and Spokoiny (2002) and Guerre and Lavergne (2005) could be adapted

to our setup, but this is outside the scope of the present paper. In our simulations, we adopt a

rule-of-thumb approach, and we let the bandwidth vary so as to evaluate the sensitivity of the test’s

performances to its choice.
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2.2 Behavior Under the Null Hypothesis

To derive the asymptotic properties of our lack-of-fit test, we introduce our set of assumptions on the

data-generating process, the parametric model, the functions K(·) and ψ(·), and the bandwidth h.

Assumption 2.1. (a) The random vectors (ε1, Z
′
1)

′, . . . , (εn, Z
′
n)′ are independent copies of the random

vector (ε, Z ′)′ ∈ R1+q. The conditional τ th quantile of ε given Z = (W,X ′)′
is equal to zero.

(b) The variable W admits an absolutely continuous density with the respect of the Lebesgue measure

on the real line.

(c) The conditional density fε(· | z) of ε given Z = z is uniformly bounded. There exists a > 0 such

that fε(· | z) is differentiable on (−a, a) for any z with |f ′
ε (0 | z)| ≤ C < ∞. Moreover, the derivatives

f ′
ε (· | z) satisfy a uniform Hölder continuity condition, that is there exist positive constants C2 and c

independent of z such that |f ′
ε (u1 | z) − f ′

ε (u2 | z)| ≤ C2 |u1 − u2|c , ∀ |u1| , |u2| ≤ a.

Assumption 2.2. (a) The parameter space B is a compact convex subset of Rp. There exists a unique

β0 solution of minB E [ρτ (Y − g(Z, β))], and it is an interior point of B.

(b) The matrix

E
[
fε(0 | Z )

∂

∂β
g(Z;β0)

∂

∂β′ g
′(Z;β0)

]

is finite and nonsingular.

(c) There exists functions A (·), B (·), and D (·), with E[A4(Z )], E[B2(Z )] < ∞, and E[D4(Z )],

such that ∥∥∥∥
∂

∂β
g(z;β)

∥∥∥∥ ≤ A (z) ,

∥∥∥∥
∂

∂β
g(z;β)

∂

∂β′ g
′(z;β)

∥∥∥∥ ≤ D(z) for any β ,

∥∥∥∥
∂

∂β
g(z;β1) − ∂

∂β
g(z;β2)

∥∥∥∥ ≤ B(z) ‖β1 − β2‖ for any z, β1, β2 .

(d) The class of functions {g(Z;β) : β ∈ B} is a Vapnik-Červonenkis (VC) class.

Assumption 2.3. (a) The function K(·) is a bounded symmetric univariate density of bounded vari-

ation with positive Fourier transform.

(b) The function ψ(·) is a bounded symmetric multivariate function with positive Fourier transform.

(c) h → 0 and nαh2 → ∞ for some α ∈ (0, 1) as n → ∞.

Our assumptions combine standard assumptions for parametric quantile regression estimation and

ones specific to our lack-of-fit test. Among the latter, the conditions on the error term ε in Assumption

2.1 impose neither independence of ε and Z, nor a specific form of dependence such as ε = s (Z) e with

e independent of Z as in He and Zhu (2003). Assumption 2.2(a) does not impose the correctness of the

parametric quantile model but ensures that the parameter estimator defined by (2.3) has a well-defined

probability limit. Assumption 2.2(d) is a mild technical condition that guarantees suitable uniform

rates of convergence for some U−processes appearing in the proofs. This condition is satisfied for

many parametric models, for instance when g(Z, β) = q(Z ′β) with q : R → R monotone or of bounded

variation, see e.g. van der Vaart and Wellner (1996, Section 2.6). If there exists β ∈ B such that g(Z, β)
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is squared integrable, then Assumption 2.2(d) follows from 2.2(c). Restrictions on the bandwidth from

Assumption 2.3 are compatible with optimal choices for nonparametric estimation, see e.g. Härdle

and Marron (1985), for regression checks, see Guerre and Lavergne (2002), or for quantile checks, see

Horowitz and Spokoiny (2002). The following theorem states the asymptotic validity of our test.

Theorem 2.2. Under Assumptions 2.1 to 2.3, the test based on Tn has asymptotic level α under H0.

Asymptotic pivotalness is obtained for our test statistic because some amount of smoothing is

involved. However it is customary to observe that the normal asymptotic approximation is not very

precise for small to moderate sample sizes. Hence bootstrap is usually relied upon to obtain more

accurate critical values. In cumsum-type tests, the statistic is not asymptotically pivotal, and bootstrap

should be used for any sample size. However, bootstrapping an asymptotically pivotal statistic is

expected to provide a more accurate approximation. Results of Li and Wang (1998), who show that the

bootstrap moments match the original moments at a rate which depends on the smoothing parameter,

suggest that bootstrap approximation is more accurate when there is some smoothing. Even if bootstrap

is used in both approaches, we can expect a better size control when bootstrapping a smooth test.

Lavergne and Patilea (2012) report some simulations results illustrating this feature.

2.3 Behavior under Local Alternatives

We now investigate the behavior of our test when H0 does not hold, and specifically we consider a

sequence of local alternatives of the form

H1n : Y = g(Z;β0) + rnδ(Z) + ε, P (Y ≤ g(Z;β0) + rnδ(Z) | Z) = τ , (2.5)

where rn, n ≥ 1, is a sequence of real numbers tending to zero and δ(Z) is a real-valued function

satisfying

E
[
fε(0 | Z )δ(Z)

∂

∂β
g(Z;β0)

]
= 0 and 0 < E[δ4(Z)] < ∞ . (2.6)

This condition ensures that our sequence of models defined by (2.5) does not belong to the null hypoth-

esis H0. We do not impose any smoothness restriction on the function δ(·) as is frequent in this kind of

analysis, see e.g. Zheng (1998). As shown in Lemma 4.1 in the Proofs section, β̂−β0 = OP(n−1/2 + r2n)

under H1n. To our knowledge, this result on the behavior of β̂ under local alternatives is new. He

and Zhu (2003) only considered the case rn = n−1/2 while Zheng (1998) assumed
√
n convergence to

some fixed β∗ under H1n. Our next result states that these local alternatives can be detected whenever

r2nnh
1/2 → ∞. Hence our test does not suffer from the curse of dimensionality against local alternatives,

since its power is unaffected by the number of regressors.

Theorem 2.3. Under Assumptions 2.1 to 2.3, the test based on Tn is consistent against the sequence

of alternatives H1n with δ(Z) satisfying (2.6) if r2nnh
1/2 → ∞.

Our test has more than trivial power against the above local alternative when the rate rn at which

they decrease is at most
√
nh1/2, whether they depend on the variable W on which smoothing occurs, or
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on X only. This comes from the rate of convergence of the test statistic under H0. By contrast, Zheng’s

test is consistent against the above local alternative when r2nnh
q/2 → ∞, where q = dim(Z), and a

cumsum-type test detects those with r2nn → ∞. So smoothing entails some loss of power against these

local alternatives. Of course, one could consider different kind of local alternatives. Since smooth tests

are typically powerful against a localized or oscillating alternative, one can expect that our test will be

powerful against such a deviation from the null hypothesis if it depends on W only. We investigate this

issue in our simulation experiments.

2.4 Bootstrap Critical Values

While the test statistic is asymptotically pivotal underH0, the asymptotic approximation of its behavior

may not be satisfactory in small samples as is customary in smoothing-based lack-of-fit tests. This

motivates the use of bootstrapping for obtaining critical values. The distribution of Tn depends weakly

on the distribution of the error term ε, because I{Y ≤ g(Z;β0)} − τ is under H0 a Bernoulli random

variable irrespective of the particular distribution of ε, as noted by Horowitz and Spokoiny (2002).

Their proposal is thus to naively (or nonparametrically) bootstrap from the empirical distribution of

the residuals. This bootstrap procedure remains asymptotically valid for non identically distributed

errors. Alternatively, He and Zhu (2003) note that one could use any continuous distribution with a

τ -th quantile equal to 0. While asymptotically valid, these two methods do not explicitly account for

potential heteroscedastic errors. As will be shown in simulations, this can yield distorted levels for the

test. Thus we will favor the wild bootstrap method for quantile regression introduced by Feng et al.

(2011), that for our test works as follows.

1. Let ε̂i = Yi − g(Zi; β̂), 1 ≤ i ≤ n, and w1, · · ·wn be bootstrap weights generated independently

from a two-point mass distribution with probabilities 1 − τ and τ at 2(1 − τ) and −2τ . Compute

ε∗
i = wi|ε̂i| and Y ∗

i = g(Zi; β̂) + ε∗
i for each i = 1, ..., n.

2. Use the bootstrap data set {Y ∗
i , Zi : i = 1, ..., n} to compute the estimator β̂∗, the new U∗

i (β̂∗) =

I{Y ∗
i ≤ g(Zi; β̂

∗)} − τ , and the new test statistic T ∗
n .

3. Repeat Steps 1 et 2 many times, and estimate the α-level critical value z∗
α by the (1 − α)-th

quantile of the empirical distribution of T ∗
n .

The bootstrap test then rejects H0 if Tn ≥ z∗
α. The following theorem states the asymptotic validity of

the bootstrap test.

Theorem 2.4. Under the conditions of Theorem 2.2,

sup
t∈R

|P (T ∗
n ≤ t | Y1, Z1, ..., Yn, Zn) − P (Tn ≤ t | H0)| p−→0 ,

where P (Tn ≤ · | H0) is the cumulative distribution of Tn under H0.
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3 Numerical Evidence

3.1 Small Sample Performances

We investigated the performances of our procedure for testing lack-of-fit of a linear quantile regression

for the basic model considered by He and Zhu (2003), namely

Y = 1 +W +X + δ
(
W 2 +WX +X2

)
+ ε , (3.1)

where W follows a standard normal distribution, and X independently follows a binomial of size 5 and

probability of success 0.5. We also studied a model with many covariates and deviations depending on

linear indices, where

Y = 1+W ′α+X ′β+δ1
√

2 sin (θ(W1 +X1))+δ2
(W2 −X2 +X3)

2 − 3

2
√

3
+σ

(
W2 +X2 +X3√

3

)
η, (3.2)

where W ∈ R2 follows a standard multivariate distribution, X ∈ R3 independently follows a standard

multivariate distribution, α = (1, −1)
′
, β = (1, 1, 1)

′
, σ2 (x) =

(
1 + x2

)
/2 and η = N (0, 1) − Φ−1 (τ)

where Φ is the standard Gaussian c.d.f. and τ is the tested quantile’s order, so that the quantile of

order τ of η is always 0.

We first consider the comparative performances of the three possible bootstrapping procedures

detailed in the last section applied to our test under the null hypothesis, corresponding to δ = 0 for

Model (3.1) and δ1 = δ2 = 0 for Model (3.2). The linear quantile regression is estimated using the

R package quantreg, see Koenker (2015). In computing our statistic , we chose ψ(·) and K(·) as the

standard normal density. Figures 1 and 2 report our results based on 5000 replications for Models (3.1)

and (3.2) and sample sizes of n = 100 and n = 200 at nominal level 10%, when the bandwidth is h =

cn−1/5 with c varying. To check the sensitivity of our results to the error’s distribution, we considered

in Model (3.1) the three distributions N (0, 1), log N (0, 1) − 1 and σ (W ) ×
(
N (0, 1) − Φ−1 (τ)

)
. The

three bootstrap methods provide accurate levels for any bandwidth choice when errors are identically

distributed, while the use of asymptotic critical values yields large underrejection. In the heteroscedastic

case, however, only the wild bootstrap delivers an empirical level close to the nominal one, while naive

or uniform bootstrap result in a severely oversized test. These findings hold for the median regression

model as well as the lowest decile model, i.e. τ = 0.1. Hence we will use only the wild bootstrap in

what follows.

Next, we investigated the power of our test. We compared our test to the one proposed by He and

Zhu (2003, hereafter HZ), based on

max
‖a‖=1

n−1
n∑

i=1

(a′Rn (Zi))
2

with Rn (t) = n−1/2
n∑

j=1

(
τ − I

[
Uj(β̂) < 0

])
ġ

(
Zj , β̂

)
I (Zj ≤ t) ,

where ġ = ∂g/∂β. We also computed the statistic proposed by Zheng (1998), which writes

hq/2

σ̃(n− 1)

∑

j 6=i

Ui(β̂)Uj(β̂)h−qK̃

(
Wi −Wj

h
,
Xi −Xj

h

)
,
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where

σ̃2 =
2τ2 (1 − τ)

2

n(n− 1)

∑

j 6=i

h−qK̃2

(
Wi −Wj

h
,
Xi −Xj

h

)
,

K̃ is the standard multivariate normal density and h = n−1/(q+4) where q is the total number of

covariates. Finally, we computed the statistic from Conde-Amboage et al. (2015) (hereafter CSG), a

bootstrapped version of the largest eigenvalue of

n−2
n∑

i=1

n∑

j=1

(
τ − I

[
Ui(β̂) < 0

]) (
τ − I

[
Uj(β̂) < 0

])
ġ′

(
Zi, β̂

)
ġ

(
Zj , β̂

) n∑

r=1

Aijr,

where Aijr is proportional to the complementary angle between the vectors (Xi −Xr) and (Xj −Xr).

For Model (3.2), we performed smoothing on either the first or the second component of W .

We applied the wild bootstrap procedure to compute the critical values of all tests. Figure 3 gathers

the power curves of the different tests for Model (3.1) as a function of δ based on 2500 replications

for a median and a first decile regression model with n = 100, with either standard Gaussian or

heteroscedastic Gaussian errors. For the median regression model with normal homoscedastic errors,

all tests perform almost similarly. Our test is more powerful for a larger bandwidth, which was expected

given our theoretical analysis. For heteroscedastic errors, our test, the smoothing test and CSG test

always outperform HZ test. In the linear decile case (τ = 0.1), our test and Zheng’s perform similarly

while CSG test is less powerful and HZ test is no better than a test with trivial power.

On Figure 4, we considered Model (3.2) with δ2 = 0 but δ1 varying and θ = 2. We represent the

results for different sample sizes n = 50, 100, 200 and 400. As suggested by a referee, we also considered

Zheng’s test using a fixed bandwidth, namely h = 1 whatever the sample size. By comparison, n−1/5

varies from 0.46 to 0.3, and n−1/9 varies from 0.65 to 0.51. The CSG and HZ non-smooth tests are

not better than a constant test for n = 100 and only slightly better for larger sample sizes. Our test

performs better when smoothing on W1, which is not surprising because the alternative depends only

on W1 and X1. But, contrary to what observed in the previous experiments, a larger bandwidth does

not improve power, due to the oscillating nature of the alternative. When smoothing on W2, our test

is less powerful as expected, but its power steadily improves with increasing sample size. Whatever

component of W is smoothed, the influence of the bandwidth is much less for our test than for Zheng’s

test. Finally, the “fixed bandwidth” Zheng test is far to be the best performaing.

On Figure 5 we graph the results for Model (3.2) when δ1 and δ2 vary together. The considered

sample sizes are n = 100 or 200 and the frequencies θ = 1 or 2. For θ = 1, our test performance does

not depend on the smoothed covariate we choose. It is however more powerful for a larger bandwidth

and in this case, its performance is similar to Zheng’s test with a large or fixed bandwidth. For θ = 2,

the power curves of all the smooth tests are pretty close, with the exception of our test when we smooth

on W2 with a relatively small bandwidth. The power of CSG test increases with the sample size while

the power of HZ test is nearly trivial.
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3.2 Empirical Illustration

Our empirical example allows us to compare the results of different tests in a practical situation where

several covariates are present and also to investigate whether the choice of the continuous variable on

which smoothing is performed in our test matters in practice. We considered some parametric quantile

models for children birthweight using data analyzed by Abrevaya (2001) and Koenker and Hallock

(2001), who also gave a detailed data description. We focused on median regression and the 10th

percentile quantile regression. Models are estimated and tested on a subsample of 1168 smoking college

graduate mothers. Results are gathered in Table 1. We first considered a simple model which is linear

in weight gain during pregnancy (WTGAIN) and average number of cigarettes per day (CIGAR), and

quadratic in age (AGE) as suggested by the analysis of Koenker and Hallock (2001). We standardize

all explanatory variables and we implement our test in turn with age, the average number of cigarettes,

or the weight gain as the W variable. Other details are identical to what was done in our simulations.

None of the tests detects misspecification in quantile models at a 10% nominal level, that is all the

corresponding p-values are larger than 0.1.

We then considered a more complete model similar to Abrevaya (2001), where we added the ex-

planatory binary variables BOY (1 if child is male), BLACK (1 if mother is black), MARRIED (1 if

married), and NOVISIT (1 if no prenatal visit during the pregnancy). HZ and CSG tests do not reject

the model at either quantiles, while Zheng’s test detects a misspecified median regression model only for

the smaller bandwidth (c = 1) at 10% level. Our test detects a misspecified median regression model at

10% level, irrespective of the the considered bandwidth when we smooth on the weight gain as well as

when we smooth on the age with bandwidth constant c = 2 or when smoothing on the average number

of cigaretttes with c = 1. This shows that it can be more powerful than its competitors, especially in

a practical situation where the number of covariates is large. This empirical exercise hence illustrates

that our new test, beside existing procedures, is a valuable addition to the practitioner toolbox.
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Table 1: Application: point estimates, standard deviations (in parentheses) and tests p-values

τ = 0.5 τ = 0.1 τ = 0.5 τ = 0.1

CIGAR -5.05 -8.36 -5.07 -8.07

(2.3) (3.53) (2.36) (3.25)

WTGAIN 7.69 14.96 8.31 15.91

(1.32) (1.2) (1.31) (1.4)

AGE 43.6 133.67 78.59 117.62

(50.59) (30.11) (45.85) (48.42)

AGESQ -0.84 -2.23 -1.38 -1.94

(0.81) (0.5) (0.72) (0.82)

BOY 137.22 -5.22

(34.35) (47.33)

BLACK -177.78 -124.18

(75.09) (69.17)

MARRIED 21.62 41.75

(48.39) (54.66)

NOVISIT -211.62 -275.15

(406.72) (112.5)

HZ 0.255 0.373 0.429 0.296

CSG 0.829 0.913 0.371 0.771

Zheng’s test c=1 0.395 0.950 0.050 0.843

Zheng’s test c=2 0.560 0.980 0.125 0.575

Our test c=1 W=AGE 0.812 0.930 0.130 0.990

Our test c=2 W=AGE 0.756 0.965 0.077 0.854

Our test c=1 W=CIGAR 0.131 0.988 0.081 0.499

Our test c=2 W=CIGAR 0.311 0.973 0.108 0.390

Our test c=1 W=WTGAIN 0.276 0.710 0.059 0.797

Our test c=2 W=WTGAIN 0.266 0.960 0.049 0.815
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Figure 1: Empirical rejections for model (3.1) under H0 as a function of the bandwidth, n = 100 and

200
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Figure 2: Empirical rejections for model (3.2) under H0 as a function of the bandwidth, n = 100 and

200

4 Proofs

We first recall some definitions. For the definition of a VC-class, we refer to Section 2.6.2 of van der Vaart and

Wellner (1996). Next, let G be a class of real-valued functions on a set S. We call G an Euclidean(c,d) family of

functions, or simply Euclidean, for the envelope G if there exists positive constants c and d with the following

properties: if 0 < ε ≤ 1 and λ is a measure for which
∫
G2dλ < ∞, then there are functions g1, . . . , gj in G such

that (i) j ≤ cε−d; and (ii) for each g in G there is an gi with
∫

|g − gi|2dλ ≤ ε2
∫
G2dλ. The constants c and d

must not depend on λ. See e.g. Nolan and Pollard (1987) or Sherman (1994). Recall that if F is a VC-class of

functions then the class {I{f ≥ 0} : f ∈ F} is Euclidean for the envelope F ≡ 1, see van der Vaart and Wellner

(1996) Lemma 2.6.18(iii) and Theorem 2.6.7 or Pakes and Pollard (1989). Bellow, we shall use this property

with the VC-classes of functions of {ε+g(Z, β0)−g(Z, β) : β ∈ B} and {ε+g(Z, β0)+rnδ(Z)−g(Z, β) : β ∈ B}.

In the following, Fε (· | z) is the conditional distribution function of ε given Z = z, such that Fε (0 | ·) ≡ τ .

Below C, C1, C2,... denote constants, not necessarily the same as before and possibly changing from line to

line.

4.1 Proof of Theorem 2.2

Proof. First, we prove that if H0 holds

n
√
h

{
Wn(β̂) −Wn(β0)

}
= oP (1) . (4.1)

Let us introduce some simplifying notation:

Gi (β, β0) = g(Zi;β) − g(Zi;β0), ψij = ψ(Xi −Xj), Kh,ij = Kh (Wi −Wj) . (4.2)
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Figure 3: Power curves for model (3.1).

15



0.0 0.4 0.8 1.2 1.6 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ = δ1, δ2 = 0, τ = 0.5, n = 50, θ = 2

Deviation δ

E
m

pi
ric

al
 r

ej
ec

tio
n

Theoretical level
Our statistic, c = 1, W = W1

Our statistic, c = 2, W = W1

Our statistic, c = 1, W = W2

Our statistic, c = 2, W = W2

Zheng, c = 1
Zheng, c = 2
Zheng, h = 1
CSG
HZ

0.0 0.3 0.6 0.9 1.2 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ = δ1, δ2 = 0, τ = 0.5, n = 100, θ = 2

Deviation δ

E
m

pi
ric

al
 r

ej
ec

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ = δ1, δ2 = 0, τ = 0.5, n = 200, θ = 2

Deviation δ

E
m

pi
ric

al
 r

ej
ec

tio
n

0.00 0.16 0.32 0.48 0.64 0.80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ = δ1, δ2 = 0, τ = 0.5, n = 400, θ = 2

Deviation δ

E
m

pi
ric

al
 r

ej
ec

tio
n

Figure 4: Power curves for model (3.2), θ = 2, δ2 = 0.
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Figure 5: Power curves for model (3.2), θ = 1 and 2, δ1 = δ2.
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Under H0

Wn(β) =
h−1

n(n− 1)

∑

j 6=i

[I{Yi ≤ g(Zi;β)} − τ ] [I{Yj ≤ g(Zj ;β)} − τ ]Kh,ijψij

=
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (0 | Zi)]

× [I{εj ≤ Gj(β, β0)} − Fε (0 | Zj)]Kh,ijψij .

By a Taylor expansion, decompose

Fε (0 | Zi) = Fε (Gi(β, β0) | Zi) − fε (0 | Zi) ġ
′(Zi;β0) (β − β0) +OP

(
‖β − β0‖2) .

We can write Wn(β) −Wn(β0) = {W 0
1n(β) −W 0

1n(β0)} + 2W 0
2n(β) +W 0

3n(β) +R0
n where

W 0
1n(β) =

h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]

× [I{εj ≤ Gj(β, β0)} − Fε (Gj(β, β0) | Zj)]Kh,ijψij

W 0
2n(β) = (β − β0)

′ W̃ 0
2n(β) with

W̃ 0
2n(β) =

h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]

×fε (0 | Zj) ġ(Zj ;β0)Kh,ijψij ,

W 0
3n(β) = (β − β0)

′ W̃ 0
3n (β − β0) with

W̃ 0
3n =

h−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) ġ(Zi;β0)ġ
′(Zj ;β0)fε (0 | Zj)Kh,ijψij = OP(1).

The rate of W̃ 0
3n follows simply by computing its mean and variance. By Assumption 2.1(c) and Assump-

tion 2.2(c) it is easy to check that
∣∣R0

n

∣∣ ≤ ‖β − β0‖2OP (1) . For deriving the order of W̃ 0
2n, apply Hoeffding

decomposition and write hW̃ 0
2n(β) = V 2

n (β) + V 1
n (β) with V 1

n , V 2
n degenerate U−processes or order 1 and 2,

respectively. In view of Assumptions 2.2(d) and 2.3(a), apply Corollary 4 of Sherman (1994) and deduce that

V 2
n (β) = OP

(
n−1

)
uniformly in β (and h). For the required Euclidean property, see, for instance, Nolan and

Pollard (1987) and Pakes and Pollard (1989). Next, if ġ(l) denotes the lth component of the vector of first-order

derivatives ġ, 1 ≤ l ≤ p, and

π(l) (Zi) = E
[
fε (0 | Zj) ġ

(l)(Zj ;β0)h
−3/4Kh,ijψij | Zi

]

we can rewrite the lth component of the vector V 1
n (β) as

h3/4

n

n∑

i=1

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]π
(l) (Zi) .

By Hölder inequality, Assumption 2.1(c), Assumption 2.2(c) and a change of variables,

∣∣∣π(l) (Xi)
∣∣∣ ≤ E

[
fε (0 | Zj)

∣∣∣ġ(l)(Zj ;β0)
∣∣∣h−3/4Kh,ij |ψij | | Zi

]

≤ C1E1/4 [
A4(Zj)

]
E3/4

[
h−1K

4/3
h,ij | Zi

]
≤ C2,
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for any 1 ≤ l ≤ p. Now, by Corollary 4 of Sherman (1994), h−3/4V 1
n (β) = OP

(
n−1/2

)
uniformly in β. Deduce

that

sup
β

|W 0
2n(β)| ≤ ‖β − β0‖OP

(
h−1n−1 + h−1/4n−1/2

)
.

Finally, by Lemma 1 of Zheng (1998), for any α ∈ (0, 1)

sup
β

|W 0
1n(β) −W 0

1n(β0)| = OP
(
h−1n−1−α/4

)

uniformly over OP
(
n−1/2

)
neighborhoods of β0. Gathering the results and using Lemma 4.1 with δ(·) ≡ 0 we

obtain (4.1). Now, it remains to check that nh1/2Wn(β0)/vn converges in law to a standard normal distribution.

This result easily follows as a particular case of Lemma 4.2 below.

4.2 Proof of Theorem 2.3

First, we state the behavior of β̂, the estimator of β0 under the sequence of local alternatives H1n. The proof is

provided in the Supplementary Material.

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 hold, let δ(·) be a function such that Condition (2.6) holds,

and let rn, n ≥ 1 be a sequence of real numbers such that rn → 0. If β̂ = arg minβ∈BΓn (β) with Γn (β) =∑n
i=1 ρτ (Yi −g(Zi;β)), then under H0, β̂ −β0 =OP(n

−1/2) and under H1n defined in (2.5), β̂ − βn = OP(n
−1/2)

where

βn = β0 − r2n
[
E

[
fε(0 | Z )ġ(Z;β0)ġ

′(Z;β0)
]]−1 E

[
f ′

ε (0 | Z)δ2(Z)ġ(Z;β0)
]
.

Lemma 4.1 shows in particular that under H1n, β̂−β0 = OP(n
−1/2 +r2n). To our best knowledge, this result

on the behavior of β̂ under the local alternatives is new. He and Zhu (2003) only considered the case rn = n−1/2

while Zheng (1998) assumed β̂ − β∗ = OP(n
−1/2) under H1n, for some fixed β∗. Our Lemma 4.1 indicates that

such
√
n−convergence assumptions on the local alternatives may be too restrictive. Below, we improve the

point (C) in the Theorem of Zheng (1998) also because we can take into account the rates of convergence of β̂

under the alternatives slower than OP(n
−1/2).

In the case of a fixed deviation from the null hypothesis, that is rn ≡ 1, the tools used for proving Theorem

2.3 could be easily adapted to show the
√
n−convergence of β̂ to β∗ that minimizes the map β 7→ E[ρτ (Y −

g(Z, β))] = E[ρτ (g(Z, β0) + δ(Z) + ε − g(Z, β))]. The consistency of the test is then a consequence of the fact

that nh1/2In(β∗) tends to infinity.

Let δi = δ(Zi) and let Gi (β, β0) and Kh,ij be defined as in equation (4.2). Under H1n

Wn(β) =
h−1

n(n− 1)

∑

j 6=i

[I{Yi ≤ g(Zi;β)} − τ ] [I{Yj ≤ g(Zj ;β)} − τ ]Kh,ijψij

=
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (0 | Zi)]

× [I{εj ≤ Gj(β, β0) − rnδj} − Fε (0 | Zj)]Kh,ijψij .

Let us decompose

Fε (0 | Zi) = Fε (Gi(β, β0) − rnδi | Zi) − fε (0 | Zi)
{
ġ′(Zi;β0) (β − β0) − rnδi

}

−2−1r2nf
′

ε (0 | Zi) δ
2
i +OP

(
‖β − β0‖2 + rn ‖β − β0‖

)
+ oP

(
r2n

)
.
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We can write

Wn(β) = W1n(β) + 2[W2n(β) +W3n(β) +W4n(β)] +W5n(β) + 2W6n(β) +W7n +Rn

where

W1n(β) =
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0) − rnδi | Zi)]

× [I{εj ≤ Gj(β, β0) − rnδj} − Fε (Gj(β, β0) − rnδj | Zj)]Kh,ijψij

W2n(β) = (β − β0)
′ W̃2n(β) with

W̃2n(β) =
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0) − rnδi | Zi)]

×fε (0 | Zj) ġ(Zj ;β0)Kh,ijψij ,

W3n(β) =
rnh

−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0) − rnδi | Zi)] fε (0 | Zj) δjKh,ijψij ,

W4n(β) =
r2nh

−1

2n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0) − rnδi | Zi)] f
′

ε (0 | Zj) δ
2
jKh,ijψij ,

W5n(β) = (β − β0)
′ W̃5n (β − β0) with

W̃5n =
h−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) ġ(Zi;β0)ġ
′(Zj ;β0)fε (0 | Zj)Kh,ijψij = OP(1),

W6n(β) = (β − β0)
′ W̃6n with

W̃6n =
rnh

−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) δifε (0 | Zj) ġ(Xj ;β0)Kh,ijψij = OP(rn),

W7n =
r2nh

−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) δ(Xi)fε (0 | Zj) δ(Zj)Kh,ijψij = C1r
2
n + oP(r

2
n)

with C1 > 0 and Rn a reminder term that is negligible because of the properties of f ′
ε and ġ. Note that the

U−statistics W̃5n, W̃6n and W7n depend only on the Xi. Their orders are obtained from elementary calculations

of mean and variance. The fact that the mean of W7n/r
2
n tends to a positive constant C1 could be proved by

the same arguments as used in Lemma 2.1 to show that limh→0 I(h) > 0 when P (E [U | W,X] = 0) < 1 (see

the Supplementary Material).

Next, we can write W1n(β) = {W1n(β) −W1n(β0)} +W1n(β0). As W1n(β0) is centered, its order in proba-

bility is given by the variance. We have

Var(W1n(β0) | Z1, ..., Zn) =
1

n2(n− 1)2

∑

i6=j

Fε (−rnδi | Zi) [1 − Fε (−rnδi | Zi)]

×Fε (−rnδj | Zj) [1 − Fε (−rnδj | Zj)]h
−2K2

h,ijψij (µ)

≤ h−1

16n(n− 1)


 1

n(n− 1)

∑

i6=j

h−1K2
h,ijψij
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The expectation of the last U−statistic in the display converges to a constant while the variance tends to

zero. As W1n(β0) is of zero conditional mean given the Zi, deduce that the variance of W1n(β0) is bounded by

Cn−2h−1. By Chebyshev’s inequality, W1n(β0) = oP
(
r2n

)
, provided that r2nnh

1/2 → ∞. Next, let

H1n(Zi, Zj , β) = [I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0) − rnδi | Zi)]

× [I{εj ≤ Gj(β, β0) − rnδj} − Fε (Gj(β, β0) − rnδj | Zj)]Kh,ijψij , β ∈ B.

By the arguments used for Lemma 4.1 above, the class of functions {H1n(·, ·, β) : β ∈ B} is Euclidean(c,d) for

an envelope with a finite fourth moment, with c and d independent of n. Now, we can use equation (A.11) of

Zheng (1998) and his Lemma 1 with the condition (ii) replaced by E[H1n(·, β) −H1n(·, β0)]
2 ≤ Λ ‖β − β0‖. By

a close inspection of the proof of Zheng’s Lemma 1, see his equations (A.2) to (A.5), it is obvious to adapt his

conclusion and to deduce that in our setup for any 0 < α < 1

W1n(β) −W1n(β0) = OP
(
n−1h−1 ‖β − β0‖α/2

)
= OP

(
n−1h−1

{
rn + n−1/4

}α)

uniformly over OP(r
2
n + n−1/2) neighborhoods of β0. Thus, when n1/2r2n → ∞, we have

W1n(β̂) −W1n(β0) = OP
(
n−1h−1rα

n

)
= OP

(
n−1/2

)
= oP

(
r2n

)
,

whereas in the case where n1/2r2n is bounded, use nh1/2r2n → ∞ and take α sufficiently close to one to obtain

W1n(β̂) −W1n(β0) = OP
(
n−1−α/4h−1

)
= oP

(
r2n

)
.

The remaining terms W2n, W3n and W4n can be treated in the following way. By Hoeffding’s decomposition

r−1
n hW3n(β) = U2

n(β) + U1
n(β) with U1

n, U2
n degenerate U−processes or order 1 and 2, respectively. In view

of Assumption 2.2(d) and the fact that K (·) is bounded, apply Corollary 4 of Sherman (1994) to deduce that

U2
n(β) = OP

(
n−1

)
uniformly in β. If Kh,ij (θ) = Kh((Xi −Xj)

′θ) and

ξ (Zi) = E
[
E

{
fε (0 | Zj) δ (Zj) | Z′

jθ
}
h−3/4Kh,ijψij | Zi

]

we can write

U1
n(β) =

h3/4

n

∑

i

[I{εi ≤ Gi(β, β0) − rnδi} − Fε (Gi(β, β0)−rnδi | Zi)] ξ (Zi) .

By Hölder inequality, Assumption 2.1(c) and a change of variables,

|ξ (Zi)| ≤ E1/4 [
δ4(Zj)

]
E3/4

[
h−1K

4/3
h,ij | Zi

]
≤ C,

for some C > 0. Now, by Corollary 4 of Sherman (1994), h−3/4U1
n(β) = OP

(
n−1/2

)
uniformly in β. As

nh1/2r2n → ∞, deduce that

sup
β

|W3n(β)| = OP
(
rnh

−1n−1 + rnh
−1/4n−1/2

)
= oP(r

2
n).

By similar arguments, supβ |W4n(β)| = oP(r
2
n) (here apply Hölder inequality with p = q = 2) and W3n,

supβ |W̃2n(β)| = OP
(
h−1n−1 + h−1/4n−1/2

)
, and thus

sup
β

|W2n(β)| = OP(r
2
n + n−1/2)OP

(
h−1n−1 + h−1/4n−1/2

)
= oP(r

2
n).

Collecting results, under H1n, Tn ≥ Cnh1/2r2n{1+oP(1)} or some constants C > 0. Now, the proof is complete.
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4.3 Proof of Theorem 2.4

Let W ∗
n(β) be the statistic obtained after replacing Ui (β) with U∗

i (β) = I{Y ∗
i ≤ g(Zi;β)} − τ in the formula

of Wn(β). The proof of the bootstrap procedure consistency follows the steps of the proof of Theorem 2.2,

but requires several specific ingredients: (a) the convergence in law of nh1/2W ∗
n(β̂)/vn conditionally upon the

original sample; and (b) the OP
(
n−1/2

)
rate for β̂∗ − β̂, and the negligibility of W ∗

n(β̂∗) − W ∗
n(β̂) given the

original sample. If S∗
1n and S∗

2n denote bootstrapped statistics, S∗
1n is bounded in probability given the sample

if

lim
M→∞

P[|S∗
1n| > M | Y1, Z1, · · · , Yn, Zn] = op(1).

while S∗
2n is asymptotically negligible given the sample if

∀ε > 0, P[|S∗
2n| > ε | Y1, Z1, · · · , Yn, Zn] = op(1).

The asymptotic normality of nh1/2W ∗
n(β̂)/vn given the sample is obtained below from a martingale central

limit theorem as stated in Hall and Heyde (1980).

Lemma 4.2. Under the assumptions of Theorem 2.4,

sup
t∈R

∣∣∣P
(
nh1/2W ∗

n(β̂)/vn ≤ t | Y1, Z1, ..., Yn, Zn

)
− Φ(t)

∣∣∣ → 0, in probability.

Proof. The proof is based on the Central limit Theorem (CLT) for martingale arrays, see Corollary

3.1 of Hall and Heyde (1980). Recall that U∗
i (β̂) = I{Y ∗

i ≤ g(Zi; β̂
∗)} − τ . Define the martingale array

{
S∗

n,m, F∗
n,m, 1 ≤ m ≤ n, n ≥ 1

}
where S∗

n,1 = 0 and S∗
n,m =

∑m
i=2G

∗
n,i with

G∗
n,i =

2h−1/2

n− 1
U∗

i (β̂)

i−1∑

j=1

U∗
j (β̂)Kh,ijψij ,

and F∗
n,m is the σ-field generated by

{
Z,w1, . . . , wm

}
where Z = {Y1, . . . , Yn, Z1, . . . , Zn} and w1, · · ·wn are

the bootstrap weights. Thus nh1/2W ∗
n(β̂) = S∗

n,n. Next define

V 2∗
n =

n∑

i=2

E
[
G2∗

n,i | F∗
n,i−1

]

=
4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

i−1∑

k=1

U∗
j (β̂)U∗

k (β̂)Kh,ijKh,ikψijψik

=
4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

U∗2
j (β̂)K2

h,ijψ
2
ij

+
8h−1τ(1 − τ)

(n− 1)2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

U∗
j (β̂)U∗

k (β̂)Kh,ijKh,ikψijψik

= A∗
n +B∗

n.

Recall that

v2
n =

2h−1 τ2(1 − τ)2

n(n− 1)

∑

j 6=i

K2
h,ijψ

2
ij

and by standard calculations of the means and variance it could be shown to tend to a positive constant. Next,

note that

E
[
A∗

n | Z
]

=
4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

E
[
U∗2

j (β̂) | Z
]
K2

h,ijψ
2
ij =

n

n− 1
v2

n.
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Moreover,

E
[
Var

(
A∗

n | Z
)]

=
16τ2(1 − τ)2

h2(n− 1)4

×
n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

E
[
E

[
U∗4

j (β̂) − τ2(1 − τ)2|Z
]
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

=
16τ4(1 − τ)4{τ(1 − τ)(1 − 3τ(1 − τ)) − 1}

h2(n− 1)4

×
n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

E
[
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

=
32τ4(1 − τ)4(τ(1 − τ)(1 − 3τ(1 − τ)) − 1)

h2(n− 1)4

×
n∑

i=3

i−1∑

i′=2

i′−1∑

j=1

E
[
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

+
16τ4(1 − τ)4(τ(1 − τ)(1 − 3τ(1 − τ)) − 1)

h2(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
K4

h,ijψ
4
ij

]

= O(n−1) +O(n−2h−1)

because ψij , E
[
h−1K4

h,ij

]
and E

[
h−2K2

h,ijK
2
h,i′j

]
are bounded for all pairwise distinct indexes i, i′ and j.

Deduce that A∗
n/v

2
n → 1 in probability. On the other hand,

E
[
B∗2

n

]
=

8τ4(1 − τ)4

h2(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]
= O(n−1)

so that V 2∗
n /v2

n → 1 in probability. To use the CLT it remains to check the Lindeberg condition. For any ε > 0,

E

[
n∑

i=2

E
[
G∗2

n,iI(G∗2
n,i > ε) | F∗

n,i−1

]
]

≤ ε−4E

[
n∑

i=2

E
[
G∗4

n,i | F∗
n,i−1

]
]

≤ 16τ3(1 − τ)3{1 − 3τ(1 − τ)}
ε4h2(n− 1)4

n∑

i=2

i−1∑

j=1

i−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]

≤ 32τ3(1 − τ)3{1 − 3τ(1 − τ)}
ε4h2(n− 1)4

n∑

i=2

i−1∑

j=1

j−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]

+
16τ3(1 − τ)3{1 − 3τ(1 − τ)}

ε4h2(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
K4

h,ijψ
4
ij

]

= O(n−1) +O(n−2h).

Eventually, applying the CLT for martingale arrays along the subsequences of V 2∗
n that converge almost surely

to the limit of v2
n and subsequences for which the Lindeberg condition is satisfied almost surely, the result

follows.

To obtain the OP
(
n−1/2

)
rate for β̂∗ − β̂, and the negligibility of W ∗

n(β̂∗)−W ∗
n(β̂) given the original sample,

we use a conditional version of the moment inequality for U−processes proved by Sherman (1994). Before

stating this new result that has its own interest let us introduce some more notation: for k a positive integer
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let (n)k = n(n− 1)...(n− k+ 1) and let ink = (i1, ..., ik) be a k−tuple of distinct integers from the set {1, ..., n}.

Similarly, i2nk = (i1, ..., ik) denotes a k−tuples of distinct integers from {1, ..., 2n}. Moreover, a function g on Sk

is called degenerate if for each i = 1, ..., k, and all s1, ..., si−1, si+1, ..., sk ∈ S, E[g(s1, ..., si−1, S, si+1, ..., sk)] = 0.

We state the following Lemma. The proof is provided in the Supplementary Materials.

Lemma 4.3. Let k be a positive integer and G a degenerate class of real-valued functions on R1+q × ...× R1+q.

Suppose G is Euclidean(c,d) for a squared integrable envelope and some c, d > 0. Fix z1, ..., zn ∈ Rq and let

u1, ..., un, un+1, ..., u2n be independent copies of the random variable u. For i = 1, ..., n, let vi = (ui, zi) and

vn+i = (un+i, zi). Define gin
k
(ui1 , . . . , uik) = g(vi1 , . . . , vik ) and define gi2n

k
similarly. Suppose that for any

k−tuple ink, the function gin
k

is degenerate as a function of ui variables (necessarily the same property holds also

for any k−tuple i2nk ). Let

Uk
n,z1,...,zn

(g) = (n)−1
k

∑

in
k

gin
k
(ui1 , . . . , uik), Uk

2n,z1,...,zn
(g) = (2n)−1

k

∑

i2n
k

gi2n
k

(ui1 , . . . , uik).

Then for any α ∈ (0, 1), there exists a constant Λ depending only on α and k (and independent of n and the

sequence z1, ..., zn) such that

E
[
sup

G
|nk/2Uk

n,z1,...,zn
(g)|

]
≤ ΛE1/2

[
sup

G
{Uk

2n,z1,...,zn
(g2)}α

]
.

To establish the rate of β̂∗ − β̂ given the sample, it suffices to consider a simplified version of our Lemma

4.1. By Lemma 4.3, supβ

∣∣n−1Γ∗
n (β) − E

[
ρτ (Y − g(Z;β)) | Z

]∣∣ is asymptotically negligible given the sample

Z = {Y1, . . . , Yn, Z1, . . . , Zn}. Reconsidering the arguments for the consistency of argmax estimators along

almost surely convergent subsequences depending on Z, deduce that β̂∗ − β̂ is a asymptotically negligible given

the sample Z. Next, define the empirical process

ν∗
n (β) =

1√
n

n∑

i=1

{
ψτ (Y ∗

i − g(Zi;β)) − E[ψτ (Yi − g(Zi;β)) | Z]
}
ġ(Zi;β)

indexed by β. Lemma 4.3 guarantees that supβ |ν∗
n (β) |, and in particular ν∗

n(β̂∗) − ν∗
n(β̂), are bounded in

probability given the sample. Proceeding like in equation (S.5) of the Supplementary Materials, that is using

the directional derivative of Γ∗
n (β) at β̂∗ along any direction γ, deduce

1√
n

n∑

i=1

ψτ

(
Y ∗

i − g(Zi; β̂
∗)

)
ġ(Zi; β̂

∗)

is bounded in probability given the sample (conditional negligibility could be also derived but boundedness

given the sample suffices for the present purpose). Since for all i,

E
[
ψτ

(
Y ∗

i − g(Zi; β̂
∗)

)
| Z

]
= Fε∗

(
g(Zi; β̂

∗) − g(Zi; β̂) | Z
)

− τ,

and for any sample Z, the distribution function Fε∗(· | Z) is that of the uniform law on [−τ, 1 − τ ], the

boundedness of
√
n(β̂∗ − β̂) follows by a Taylor expansion of Fε∗(· | Z) around the origin, exactly like in the

proof of Lemma 4.1 in the case rn = 0. The case of the wild bootstrap and linear quantile regression follows as

a consequence of Theorem 1 of Feng et al. (2011). The arguments of Theorem 1 of Feng et al. (2011) could be

adapted to nonlinear models using a linearization like in the proof of Lemma 4.1. The details are omitted.

Finally, using Lemma 4.3, derive conditional versions of Lemma 1 of Zheng (1998) and of Corollary 4 of

Sherman (1994). Here, we only need conditional versions of such results for families of functions having the
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Euclidian property for a constant envelope. Combine these results with the fact that
√
n(β̂∗ − β̂) is bounded

in probability given the sample and follow the lines of the proof of Theorem 2.2 above to deduce that for any

ε > 0

P
(
nh1/2

∣∣∣W ∗
n(β̂∗) −W ∗

n(β̂)
∣∣∣ > ε | Y1, Z1, ..., Yn, Zn

)
→ 0, in probability.
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Supplementary Material to “Powerful nonparametric

checks for quantile regression”
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Lemma 2.1. Let (W1, X1, U1) and (W2, X2, U2) be two independent draws of (W, X, U).

Let K(·) and ψ(·) be bounded, even, integrable functions with (almost everywhere) positive,

integrable Fourier transforms, and assume
∫

RK(v)dv > 0. Assume E(|U |2) < ∞, and define

I (h) = E
[
U1U2h

−1K ((W1 −W2) /h)ψ (X1 −X2)
]
.

Then for any h > 0,

E [U | W,X] = 0 a.s. ⇔ I(h) = 0.

Moreover, if P (E [U | W,X] = 0) < 1, then infh∈(0,1] I(h) > 0.

Proof. Let 〈·, ·〉 denote the standard inner product and F [K] be the Fourier transform

of K(·). Using Fourier Inversion Theorem, change of variables, and elementary properties of

conditional expectation,

I(h) = E
[
U1U2

∫

R
e2πit(W1−W2)F [K] (th) dt

∫

Rq−1

e2πi〈s, X1−X2〉F [ψ] (s) ds

]

=

∫

Rq−1

∫

R

∣∣E
[
E [U | W,X] e2πi{tW+〈s,X〉}]∣∣2 F [K] (th) F [ψ] (s) dtds .
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Since the Fourier transforms F [K] and F [ψ] are strictly positive, I(h) = 0 if and only if

E
[
E [U | W,X] e2πi{tW+〈s,X〉}] = 0 ∀t, s ⇔ E [U | W,X] = 0 a.s.

Next, we consider the case P (E [U | W,X] = 0) < 1. Let us notice that, by the condition

E [E2 [U | W,X]] < ∞ and Plancherel’s Theorem, the map

(t, s) 7→
∣∣E

[
E [U | W,X] e2πi{tW+〈s,X〉}]∣∣ , (t, s) ∈ R × Rq−1, (S.1)

is squared integrable. Moreover, the Fourier Transforms F [K](·) and F [ψ](·) are bounded,

and ∀t ∈ R, limh→0 F [K](ht) =
∫

RK(v)dv. Then the Lebesgue Dominated Convergence

Theorem implies that the map h 7→ I(h) is continuous on (0, 1] and

lim
h→0

I(h) =

∫

Rq−1

∫

R

∣∣E
[
E [U | W,X] e2πi{tW+〈s,X〉}]∣∣2 F [ψ] (s) dtds

∫

R
K(v)dv .

Thus I(·) could be extended by continuity on [0, 1]. Finally, since the map defined in Equa-

tion (S.1) is also nonnegative and non identically equal to 0 whenever E [U | W,X] 6= 0, and

F [ψ] (·) and K [ψ] (·) are almost everywhere positive, limh→0 I(h) is necessarily positive, and

so is I(h) for any h ∈ (0, 1].

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 hold, let δ(·) be a function such that Con-

dition (2.6) holds, and let rn, n ≥ 1 be a sequence of real numbers such that rn → 0. If

β̂ = arg minβ∈BΓn (β) with Γn (β) =
∑n

i=1 ρτ (Yi −g(Zi; β)), then underH0, β̂−β0 =OP(n
−1/2)

and under H1n defined in (2.5), β̂ − βn = OP(n
−1/2) where

βn = β0 − r2
n [E [fε(0 | Z )ġ(Z; β0)ġ

′(Z; β0)]]
−1 E

[
f ′

ε (0 | Z)δ2(Z)ġ(Z; β0)
]
.

Proof. It is easy to check that

|ρτ (a− b) − ρτ (a)| ≤ |b| max (τ, 1 − τ) ≤ |b| . (S.2)

Combine this with the Mean Value Theorem and Assumption 2.2(c) to check the conditions

of Lemma 2.13 of Pakes and Pollard (1989) and to derive the Euclidean property for an

integrable envelope for the family of functions {(y, z) 7→ρτ (y −g(z; β)) : β ∈ B} .
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Next, we study the consistency of β̂ under H0. By the uniform law of large numbers,

supβ |n−1Γn (β) − E [ρτ (Y − g(Z; β))]| → 0, in probability (use for instance Lemma 2.8 of

Pakes and Pollard 1989). This uniform convergence, the identification condition in Assump-

tion 2.2(a), the continuity of g (z; ·) for any z, and usual arguments used for proving consis-

tency of argmax estimators, allow to deduce β̂−β0 = oP(1). To obtain the consistency under

the local alternatives approaching H0, it suffices to prove supβ∈B |∆n (β)| → 0 in probability,

where

∆n (β) =
1

n

n∑

i=1

{ρτ (l(εi, Zi; β) + rnδ(Zi)) − ρτ (l(εi, Zi; β))}

and l(u, z; β) = u+ g(z; β0) − g(z; β). By inequality (S.2),

|∆n (β)| ≤ |rn|
n

n∑

i=1

|δ(Zi)| .

Consequently, ∆n (β) = oP(1) uniformly over β ∈ B, and thus the consistency follows.

Define ψτ (e) = τ − I(e < 0) as the derivative of ρτ . To obtain the rate of convergence of

β̂ under H1n (in particular under H0 by taking rn ≡ 0) consider the empirical process

νn (β) =
1√
n

n∑

i=1

{ψτ (Yi − g(Zi; β)) − E[ψτ (Yi − g(Zi; β)) | Zi]} ġ(Zi; β)

=
1√
n

n∑

i=1

{ψτ (l(εi, Zi; β) + rnδ(Zi)) − E [ψτ (l(εi, Zi; β) + rnδ(Zi)) | Zi]} ġ(Zi; β)

indexed by β. First, let us notice that

νn (β) − νn (β0) = oP (1) (S.3)

uniformly over oP (1) neighborhoods of β0, as a consequence of Corollary 8 of Sherman (1994).

Indeed, by Lemma 2.13 of Pakes and Pollard (1989), the class of functions {ġ(·; β) : β ∈ B} is

Euclidean for a squared integrable envelope. Next, by the VC-class property of the regression

functions {g(·; β), β ∈ B}, the class of functions {(u, z) 7→ ψτ (l(u, z; β) + rnδ(z)) : β ∈ B}

is Euclidean(c,d) for a constant envelope. See Lemma 2.12 of Pakes and Pollard (1989).

Moreover, the constants c and d can be taken independent of n, see, for instance, the proof

3



of Lemma 2.6.18(v) of van der Vaart and Wellner (1996). Finally, by repeated applications

of the Mean Value Theorem and Assumptions 2.1(c) and 2.2(c), for any z, β1, β2 we have

| E [ψτ (l(ε, z; β1) + rnδ(z))] − E [ψτ (l(ε, z; β2) + rnδ(z))] | (S.4)

≤ |Fε (g(z; β1) − g(z; β0) − rnδ(z) | z) − Fε (g(z; β2) − g(z; β0) − rnδ(z) | z)|

≤ fε(vn | z) |g(z; β1) − g(z; β2)|

≤ CA (z) ‖β1 − β2‖

for some vn between g(z; β1)−g(z; β0)−rnδ(z) and g(z; β2)−g(z; β0)−rnδ(z). By Pakes and

Pollard (1989, Lemma 2.13), the class of functions {z 7→ E [ψτ (l(ε, z; β) + rnδ(z))] : β ∈ B}

is Euclidean(c,d) for an envelope with a finite fourth moment, with c and d independent of

n. Deduce that the empirical process νn (β), β ∈ B, is indexed by a class of functions that is

Euclidean for a squared integrable envelope. Finally, condition (ii) of Corollary 8 of Sherman

(1994), can be checked from inequalities like in (S.4) and conditions on |ġ(z; β) − ġ(z; β0)|.

On the other hand, because β̂ minimizes Γn (β) defined in (2.3) over β, the directional

derivative of Γn (β) at β̂ along any direction γ (with ‖γ‖ = 1) is nonnegative. That is

0 ≤ lim
t→0

t−1
[
Γn(β̂ + tγ) − Γn(β̂)

]
(S.5)

= −
∑

{Yi 6=g(Zi;β̂)}
ψτ

(
Yi − g(Zi; β̂)

)
γ ′ġ(Zi; β̂)

+ lim
t→0

∑

{Yi=g(Zi;β̂)}
t−1ρτ

(
g(Zi; β̂) − g(Zi; β̂ + tγ)

)

= −
∑

{Yi 6=g(Zi;β̂)}
ψτ

(
Yi − g(Zi; β̂)

)
γ ′ġ(Zi; β̂)

−
∑

{Yi=g(Zi;β̂)}
ψτ

(
−γ ′ġ(Zi; β̂)

)
γ ′ġ(Zi; β̂)

= −D1n(β̂) −D2n(β̂).

By Assumption 2.2, |D2n(β̂)| is bounded by
∑

{Yi=g(Zi;β̂)}A(Zi). As, for any x, the error

term u has a continuous law given Z = z, the number of observations with Yi = g(Zi; β̂) is

bounded in probability as the sample size tends to infinity. On the other hand, the moment

4



condition on A (·) implies that max1≤i≤nA(Zi) = oP
(
n1/2

)
. As γ is an arbitrary direction,

it follows that

1√
n

n∑

i=1

ψτ

(
Yi − g(Zi; β̂)

)
ġ(Zi; β̂) = oP (1) . (S.6)

Finally, since β̂ − β0 = oP (1) and τ = Fε(0 | Zi), deduce that

νn (β0) = νn(β̂) + oP (1) [by (S.3)]

= − 1√
n

n∑

i=1

E
[
ψτ

(
Yi − g(Zi; β̂)

)
| Zi

]
ġ(Zi; β̂) + oP (1) [by (S.6)]

=
1√
n

n∑

i=1

[
Fε

(
g(Zi; β̂ ) − g(Zi; β0) − rnδ(Zi ) | Zi

)
− τ

]
ġ(Zi; β̂) + oP (1)

=

{
1

n

n∑

i=1

fε(0 | Zi)ġ(Zi; β0)ġ
′(Zi; β0)

}
√
n

(
β̂ − β0

)

−rn

{
1√
n

n∑

i=1

fε(0 | Zi)δ(Zi )ġ(Zi; β0)

}

+r2
n

√
n

{
1

n

n∑

i=1

f ′
ε (0 | Zi)δ

2(Zi )ġ(Zi; β0)

}

+oP

(√
n‖β̂ − β0‖

)
+ oP

(
r2
n

√
n
)
,

where the last equality is based on a local expansions of Fε (· | z) and g(z; ·). By the law of

large numbers, the central limit theorem and the fact that νn (β0) = OP (1) and the random

vector fu(0 | Z)δ(Z )ġ(Z; β0) has zero mean, we obtain

E[fε(0 | Z)ġ(Z; β0)ġ
′(Z; β0)]

√
n

(
β̂ − β0

)
+ r2

n

√
nE[f ′

ε (0 | Z)δ2(Z)ġ(Z; β0)] = OP(1)

from which the result follows.

Lemma 4.3. Let k be a positive integer and G a degenerate class of real-valued functions

on R1+q × ... × R1+q. Suppose G is Euclidean(c,d) for a squared integrable envelope and

some c, d > 0. Fix z1, ..., zn ∈ Rq and let u1, ..., un, un+1, ..., u2n be independent copies of

the random variable u. For i = 1, ..., n, let vi = (ui, zi) and vn+i = (un+i, zi). Define

gink(ui1 , . . . , uik) = g(vi1 , . . . , vik) and define gi2nk similarly. Suppose that for any k−tuple ink,

the function gink is degenerate as a function of ui variables (necessarily the same property

5



holds also for any k−tuple i2n
k ). Let

Uk
n,z1,...,zn

(g) = (n)−1
k

∑

ink

gink(ui1 , . . . , uik), Uk
2n,z1,...,zn

(g) = (2n)−1
k

∑

i2nk

gi2nk (ui1 , . . . , uik).

Then for any α ∈ (0, 1), there exists a constant Λ depending only on α and k (and indepen-

dent of n and the sequence z1, ..., zn) such that

E
[
sup

G
|nk/2Uk

n,z1,...,zn
(g)|

]
≤ ΛE1/2

[
sup

G
{Uk

2n,z1,...,zn
(g2)}α

]
.

Proof. We sketch the steps of the proof that follows the lines of the proof of the

Main Corollary in Sherman (1994). For the sake of simplicity, we only consider the case of

Euclidean families for a constant envelope. Fix n and z1, ..., zn arbitrarily.

i) Symmetrization inequality. For each g ∈ G define g̃(ink) as a sum of 2k terms, each

having the form

(−1)rgink(u∗
i1
, . . . , u∗

ik
)

with u∗
ij

equal to either uij or un+ij where ij ranges over the set {1, ..., n}, and r is the number

of elements u∗
i1
, ..., u∗

ik
belonging to {un+1, ..., u2n}. Independently, take a sample σ1, ..., σn

of Rademacher random variables, that is symmetric variables on the two points set {−1, 1}.

Let Φ be a convex function on [0,∞). Then

EΦ


sup

G

∣∣∣∣∣∣
∑

ink

gink(ui1 , . . . , uik)

∣∣∣∣∣∣


 ≤ EΦ


sup

G

∣∣∣∣∣∣
∑

ink

σi1 . . . σik g̃(i
n
k)

∣∣∣∣∣∣


 . (S.7)

The proof of this inequality is omitted as it can be derived with only formal changes from

the proof of Sherman (1994)’s symmetrization inequality. It can be also be derived from the

lines of de la Peña and Giné (1999), Theorem 3.5.3 (see also Remark 3.5.4 of de la Peña and

Giné).

ii) Maximal inequality. The following arguments are similar to those in Sherman (1994),

section 5. Define the stochastic process

Z(g) = nk/2
∑

ink

σi1 . . . σik g̃(i
n
k), g ∈ G

6



and the pseudo-metric dUk
2n

(g1, g2) = [Uk
2n,z1,...,zn

(|g1 − g2|2)]1/2. Finally, let us remark that

for each g, by Cauchy-Schwarz inequality and the definitions of g̃(ink) and gi2nk we have

∑

ink

g̃(ink)2 ≤ 2k
∑

i2nk

g2
i2nk

(ui1 , ..., uik) = 2k(2n)kU
k
2n,z1,...,zn

(g2)

which is the counterpart of inequality (5) of Sherman (1994). Now, we have all the ingredients

to continue exactly as in the proof of Sherman’s maximal inequality and to deduce that for

any positive integer m

E
[
sup

G
|nk/2Uk

n,z1,...,zn
(g)|

]
≤ ΓE

[∫ δk
n

0

[D(x, dUk
2n
,G)]1/2mdx

]

where D(ε, dUk
2n
,G) are the packing numbers of the set G with respect to the pseudometric

dUk
2n

, δk
n = supG

√
Uk

2n,z1,...,zn
(g2) and Γ is a constant depending only on m and k.

iii) Moment inequality for Euclidean families. If G is Euclidean(c,d) for a constant

envelope equal to one, then the packing number D(ε, dUk
2n
,G) is bounded by cε−d. To check

this, apply the definition of an Euclidean family for G with µ the measure that places mass

(2n)−1
k at each of the (2n)k pairs (vi, vj), 1 ≤ i 6= j ≤ 2n. Finally, our result follows using

the arguments of the Main Corollary of Sherman (1994).
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Figure 1: Power curves for model (3.1) with h = cn−1/5 for Zheng’s statistic.
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