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Abstract

We model the financing, cash holdings, and hedging policies of a firm facing fi-
nancing frictions and subject to permanent and transitory cash flow shocks. We show
that permanent and transitory shocks generate distinct, sometimes opposite, effects
on corporate policies and use the model to develop a rich set of empirical predictions.
In our model, correlated permanent and transitory shocks imply less risk, lower cash
savings, and a drop in the value of credit lines. The composition of cash-flow shocks
affects the cash-flow sensitivity of cash, which can be positive or negative. Optimal
hedging of permanent and transitory shocks may involve opposite positions.
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During the past two decades, dynamic corporate finance models have become part of the

mainstream literature in financial economics, providing insights and quantitative guidance

for investment, financing, cash management, or risk management decisions under uncertainty.

Two popular cash flow environments have been used extensively in this literature. In one,

shocks are of permanent nature and cash flows are governed by a geometric Brownian motion

(i.e. their growth rate is normally distributed). This environment has been a cornerstone of

real-options models (see e.g. McDonald and Siegel (1986) or Morellec and Schürhoff (2011))

and dynamic capital structure models (see e.g. Leland (1998) or Strebulaev (2007)). In the

other, shocks are purely transitory and short-term cash flows are modeled by the increments

of an arithmetic Brownian motion (i.e. cash flows are normally distributed). This has

proved useful in models of liquidity management (see e.g. Décamps, Mariotti, Rochet, and

Villeneuve (2011) or Bolton, Chen, and Wang (2011)) and in models of dynamic agency (see

e.g. DeMarzo and Sannikov (2006) or Biais, Mariotti, Plantin, and Rochet (2007)).1

Assuming that shocks are either permanent or transitory has the effect of dramatically

simplifying dynamic models. However, corporate cash flows cannot generally be fully de-

scribed using solely transitory or permanent shocks. Many types of firm or market shocks

are transitory and do not affect long-term prospects. Examples include temporary changes

in demand, delays in costumer payments, machine breakdowns, or supply chain disruptions.

But long-term cash flows also change over time due to various firm, industry, or macroe-

conomic shocks that are of permanent nature. Examples include changes in technology,

reductions of trade barriers, or changes in consumer preferences.

By definition, permanent shocks affect not only a firm’s immediate productivity and cash

flows but also its future productivity and cash flows. By contrast, while purely transitory

shocks affect immediate cash flows, they are uninformative about future expected profitabil-

ity. Consequently, corporate policies are likely to respond differently to transitory shocks

1See Strebulaev and Whited (2012) for a recent survey of models based on permanent shocks. See Moreno-
Bromberg and Rochet (2014) for a recent survey of liquidity models based on transitory shocks. See Biais,
Mariotti, and Rochet (2013) for a recent survey of dynamic contracting models. In a recent paper, He (2009)
develops a dynamic agency model with permanent shocks. Abel (2015) constitutes an example of a dynamic
capital structure model with purely transitory shocks only. Bolton, Wang, and Yang (2015) constitutes an
example of a real options model with permanent shocks only and financing frictions.
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than to permanent shocks, and corporate decisions are likely to vary with the relative im-

portance of firms’ exposure to these two sources of uncertainty.2 Our objective in this paper

is therefore twofold. First, we seek to develop a dynamic framework for the cash holdings,

external financing, payout, and risk management decisions of a “financially constrained” firm

subject to both permanent and transitory cash flow shocks. Second, we want to use this

model to shed light on existing empirical results and generate novel testable implications.

We begin our analysis by formulating a dynamic structural model in which a firm faces

financing frictions, in that raising outside funds is costly, and is subject to both permanent

and transitory cash flow shocks. To account for the fundamentally different nature of these

shocks, we model the firm cash flows in the following way. First, cash flows are subject to

profitability shocks that are permanent in nature and governed by a geometric Brownian

motion, as in real options and dynamic capital structure models. Second, for any given

level of profitability, cash flows are also subject to short-term shocks that expose the firm to

potential losses. These short-term cash flow shocks may be purely transitory but they may

also be correlated with permanent shocks. In the model, the losses due to short-term shocks

can be covered either using cash holdings or by raising outside funds at a cost. The firm

may also hedge its exposure to permanent and transitory shocks by investing in financial

derivatives or by changing its exposure to these shocks via asset substitution. When making

liquidity, financing, and hedging decisions, management maximizes shareholder value.

Using this model, we generate two sorts of implications. First, we show that a combina-

tion of transitory and permanent shocks can lead to policy choices that are in stark contrast

with those in models based on a single source of risk. Second, our analysis demonstrates

that transitory and permanent risks have different, often opposing, implications for corpo-

rate policies. Combining them produces implications that are consistent with a number of

stylized facts and allows us to generate a rich set of testable predictions.

2Consider for example a firm facing a positive demand shock. If the shock is purely transitory and the
marginal cost of production is increasing, the firm is likely to use its inventory to meet this increase in
demand and, therefore, the effect of this transitory increase in demand can be spread at the production
stage over several periods. This in turn implies that neither the output price nor the quantity produced will
adjust too much. If instead the shock is permanent in nature, a high demand today implies a high demand
in the future and the shock cannot be smoothed as much. In this case, both output and price (because the
marginal cost of production will be high in the future as well) will adjust more.
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We highlight the main empirical implications. As in standard liquidity management

models in which firms are solely exposed to transitory shocks, financing frictions generate a

precautionary demand for cash in our model, since raising external capital to absorb potential

losses and avoid inefficient closure is costly. A key difference with prior models, however, is

that the value of the firm depends not only on its cash holdings, but also on the value of the

permanent shock. Notably, a unique feature of our model is that the ratio of cash holdings

over profitability (firm size) is the state variable of the firm’s problem. This is consistent

with the approach taken in the empirical literature (see e.g. Opler, Pinkowitz, Stulz, and

Williamson (1999)), but it has not been clearly motivated by theory.

Given that the empirical literature uses a related proxy, it may not seem a notable

observation that “effective cash = cash/profitability”. However, this observation implies

that more profitable firms hold more cash. That is, as the long-term prospects of the firm

improve following positive permanent shocks, the firm becomes more valuable and finds

it optimal to hoard more cash. This observation also implies that a positive permanent

shock has two effects. First, it affects the denominator of the state variable. Future cash

flows go up in expectation so that, holding the cash balance fixed, the firm is now more

constrained. The second effect of a positive permanent shock is on the cash flow today as it

affects the numerator of the state variable, making the firm richer. Intuitively, the negative

effect is more important when the denominator is smaller, i.e. when the firm has more cash.

By contrast, a transitory shock only affects the numerator of the state variable, so that a

positive transitory shock makes the firm richer and less constrained.

We show in the paper that this relation between permanent shocks and target cash

holdings has numerous implications. A first implication is that target cash holdings should

decrease in correlation between short-term and permanent shocks. This is not immediately

expected because two correlated shocks of transitory nature would allow for diversification

if correlation decreased. So cash savings would increase in correlation between transitory

shocks. Intuitively, the firm benefits from increased correlation between short-term and

permanent shocks because it is then able to generate cash flows when they are needed to

maintain scaled cash holdings after positive permanent shocks. A related implication is that
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an increase in the volatility of permanent cash flow shocks can also decrease target cash

holdings. This effect is due to the fact that volatility in permanent cash flow shocks can help

manage liquidity when short-term shocks are positively correlated with permanent shocks.

Our model also predicts that when this correlation is negative, cash savings should increase

with the volatilities of both permanent and transitory cash flow shocks.

Another unique prediction of our model is that target cash holdings should decrease with

the growth rate of transitory shocks but increase with the growth rate of permanent shock,

as an increase in the latter (respectively former) makes it more (respectively less) likely that

the firm will be constrained in the future. We also find that permanent shocks have large

quantitative effects on firm value and optimal policies. With our baseline parameters for

example, permanent shocks increase both firm value and target cash holdings by 44%.

A second set of results concerns the cash-flow sensitivity of cash. In corporate-liquidity

models based solely on purely transitory shocks, the cash-flow sensitivity of cash is either

zero (at the target level of cash reserves) or one (away from the target). In contrast, our

model predicts that firms demonstrate a non-trivial and realistic cash-flow sensitivity of cash,

due to the effects of permanent shocks on target cash holdings. In our model, this sensitivity

increases with financing frictions, consistent with the available evidence. In addition, it is

positive when short-term and permanent shocks are positively correlated, consistent with

Almeida, Campello, and Weisbach (2004), but negative when this correlation is negative,

consistent with Riddick and Whited (2009).

Turning to risk management, we show that derivatives usage should depend on whether

the risk stems from transitory or permanent shocks. Specifically, if futures prices and the

firm’s risk are positively correlated, then hedging transitory shocks involves a short futures

position while hedging permanent shocks may involve a long futures position. That is,

hedging permanent shocks may involve a position not contrary but aligned to the exposure.

In these instances, the firm prefers to increase cash flow volatility to benefit from the increase

cash flow correlation to permanent profitability shocks.

We also show that managing risk either by derivatives or by directly selecting the riski-

ness of assets (i.e. asset substitution) leads to the same outcome if the risk is due to purely
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transitory shocks. However, hedging with derivatives and asset substitution are not equiv-

alent when managing the risk from permanent shocks. This is due to the fact that asset

substitution does not generate immediate cash flows whereas derivatives do. This may not

matter for an unconstrained firm, but it is a fundamental difference for a financially con-

strained firm. One prediction of the model is thus that a firm in distress would engage asset

substitution with respect to permanent shocks but not in derivatives hedging.

Another way for firms to manage their risks is to acquire financial flexibility via a credit

line. Our model shows that the availability of a credit line leads to both a significant decrease

in target cash holdings and a significant increase in firm value, but has little effect on equity

issues. Interestingly, because the correlation between permanent and short-term shocks

reduces firm risk, we also find that the firms or industries that benefit most from credit lines

are those in which permanent and short-term cash flow shocks are negatively correlated.

Lastly, we show that the relation between permanent shocks and target cash holdings

also implies that when firms raise outside funds, the size of equity issues is not constant, but

depends on the firm’s profitability. Notably, a unique prediction of our model is that more

profitable firms should raise more funds when accessing financial markets.

In the last section of the paper, we consider the option to invest in our constrained firm

and show that the combination of financing frictions and transitory shocks delays investment.

This delay is due to two separate effects. First, the cost of external finance increases the cost

of investment, making the investment opportunity less attractive and leading to an increase

in the profitability level required for investment. Second, the combination of transitory

shocks and financing frictions reduces the value of the firm after investment, further delaying

investment. That is, the threat of future cash shortfalls increases future financing costs and

reduces the value of the asset underlying the growth option, thereby leading to late exercise

of the investment opportunity. We show that the effect can be quantitatively important. In

our base case environment for example, investment is triggered for a profitability level that

is 10% higher than in models without transitory shocks and financing frictions.3

3See the early paper of McDonald and Siegel (1986) or the recent contributions of Carlson, Fisher, and
Giammarino (2004, 2010), Lambrecht (2004), Manso (2008), Grenadier and Malenko (2010), or Grenadier
and Malenko (2011). Dixit and Pindyck (1994) and Stokey (2009) provide excellent surveys of this literature.
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Our work advances the strand of research that incorporates financing frictions into dy-

namic models of corporate financial decisions. Recent contributions in this literature include

Bolton, Chen, and Wang (2011, 2013), Décamps, Mariotti, Rochet, and Villeneuve (2011),

Gryglewicz (2011), and Hugonnier, Malamud, and Morellec (2015). A key simplifying as-

sumption in these models is that cash flows are only subject to purely transitory shocks.

That is, none of these papers has permanent shocks together with transitory shocks. We

show in this paper that incorporating permanent shocks in models with financing frictions

leads to a richer set of empirical predictions and helps explain corporate behavior.

As relevant as it is to analyze an integrated framework combining both transitory and

permanent shocks, there are surprisingly only a few attempts in the literature addressing

this problem. Gorbenko and Strebulaev (2010) consider a dynamic model without financing

frictions, in which firm cash flows are subject to both permanent and transitory shocks.

Their study focuses on leverage choices. Our paper instead analyzes liquidity, refinancing,

risk management, and investment policies. Another important difference between the two

papers is that we model transitory shocks with a Brownian process instead of a Poisson

process, which allows us to get a lot of tractability. Grenadier and Malenko (2010) build a

real options model in which firms are uncertain about the permanence of past shocks and

have the option to learn before investing. In their model, there are no financing frictions

and, as a result, no role for cash holdings and no need to optimize financing decisions.

Lastly, our paper relates to the large literature that examines the distinct effects of per-

manent and transitory shocks on economic outcomes. While the decomposition of shocks

between transitory and permanent components has been used productively over the years

in many areas of economics, it has received little attention in corporate finance.4 In a re-

4A number of asset pricing papers (see e.g. Cochrane (1994), Cohen, Gompers, and Vuolteenaho (2002),
Bansal, Dittmar, and Kiku (2008), Garleanu, Kogan, and Panageas (2012a), or Garleanu, Panageas, and Yu
(2012b)) use such a decomposition to analyze stock returns and risk premia on stocks. This decomposition is
also used in market microstructure to analyze price efficiency (see e.g. Glosten and Harris (1988), Brennan
and Subrahmanyam (1996), or Boehmer and Wu (2013)). The literature on income processes also often seeks
to decompose shocks into permanent and transitory components; see e.g. Blundell, Pistaferri, and Preston
(2008), Meghir and Pistaferri (2004), or Gottschalk and Moffitt (2009). The decomposition of income shocks
between permanent and transitory components has found interesting applications in the life-cycle portfolio
choice literature; see e.g. Cocco, Gomes, and Maenhout (2005). In the time series literature, the permanent-
transitory model is known as the unobserved component decomposition, in which the permanent part is the
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cent empirical study, Chang, Dasgupta, Wong, and Yao (2014) decompose corporate cash

flows into a transitory and a permanent component and show that this decomposition helps

understand how firms allocate cash flows and whether financial constraints matter in this

allocation decision. Lee and Rui (2007) show that such a decomposition also allows de-

termining whether share repurchases are used to pay out cash flows that are potentially

transitory, thus preserving financial flexibility relative to dividends. Guiso, Pistaferri, and

Schivardi (2005) examine the allocation of risk between firms and their workers and show

that firms absorb transitory shocks fully but insure workers against permanent shocks only

partially. Lastly, Byun, Polkovnichenko, and Rebello (2016) examine the separate effects of

persistent and transitory shocks on corporate savings and investment decisions. Our anal-

ysis demonstrates that the distinction between transitory and permanent shocks is relevant

for the larger set of policies that are of interest to financial economists, namely investment,

financing, payout, cash holdings, and risk management policies.

The paper is organized as follows. Section 1 describes the model. Section 2 solves for the

value and optimal policies of a financially constrained firm. Section 3 derives the model’s

empirical implications with respect to cash savings. Section 4 examines risk management.

Section 5 examines the effects of credit lines. Section 6 derives value of the option to invest

in the firm. Section 7 concludes. Technical developments are gathered in the Appendix.

1 Model

1.1 Assumptions

Throughout the paper, agents are risk neutral and discount cash flows at a constant rate

r > 0. Time is continuous and uncertainty is modeled by a probability space (Ω,F ,F, P )

with the filtration F = {Ft : t ≥ 0}, satisfying the usual conditions.

We consider a firm that owns an option to invest in a risky project. The firm has

full flexibility in the timing of investment but the decision to invest is irreversible. The

direct cost of investment is constant, denoted by I > 0. The project, once completed,

trend and the transitory component is named the cyclical innovation; see Hamilton (1994) chapter 17.
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produces a continuous stream of cash flows that are subject to both permanent and transitory

shocks. Permanent shocks change the long-term prospects of the firm and influence cash flows

permanently by affecting the productivity of assets and firm size. We denote the productivity

of assets by A = (At)t≥0 and assume that it is governed by a geometric Brownian motion:

dAt = µAtdt+ σAAtdW
P
t , (1)

where µ and σA > 0 are constant parameters and W P = (W P
t )t≥0 is a standard Brownian

motion. In addition to these permanent shocks, cash flows are subject to short-term shocks

that do not necessarily affect long-term prospects. Notably, we consider that operating cash

flows dXt after investment are proportional to At but uncertain and governed by:

dXt = αAtdt+ σXAtdW
X
t , (2)

where α and σX are strictly positive constants and WX = (WX
t )t≥0 is a standard Brownian

motion. WX is allowed to be correlated with W P with correlation coefficient ρ, in that

E[dW P
t dW

X
t ] = ρdt, with ρ ∈ [−1, 1]. (3)

The dynamics of cash flows can then be rewritten as

dXt = αAtdt+ σXAt(ρdW
P
t +

√
1− ρ2dW T

t ), (4)

where W T = (W T
t )t≥0 is a Brownian motion independent from W P . This decomposition

implies that short-term cash flow shocks dWX
t consist of transitory shocks dW T

t and perma-

nent shocks dW P
t .5 In what follows, we refer to σX as the volatility of short-term shocks or,

when it does not cause confusion, as the volatility of transitory cash flow shocks.

The permanent nature of innovations in A implies that a unit increase or decrease in A

increases or decreases the expected value of each future cash flow. To illustrate this property,

5One may also interpret WT as a shock to cash flow and WP as a shock to asset value. In our model,
a pure cash flow shock (cash windfall) makes the firm richer but does not make the firm’s assets better. A
pure shock to assets (e.g., discovery of oil reserves) improves the value of the firm’s assets but does not make
the firm richer today. We thank Andrey Malenko for suggesting this interpretation.
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it is useful to consider an environment in which the firm has a frictionless access to capital

markets, as in e.g. Leland (1998) or McDonald and Siegel (1986). In this case, the value of

the firm after investment V FB is simply the present value of all future cash flows:

V FB(a) = Ea
[∫ ∞

0

e−rtdXt

]
=

αa

r − µ
. (5)

Equation (5) shows that a shock that changes At via dW P
t is permanent in the sense that a

unit increase in At increases all future expected levels of profitability by that unit. A shock

to W T
t is transitory because, keeping everything else constant, it has no impact on future

cash flows. That is, when cash flow shocks are not correlated, i.e. when ρ = 0, short-term

cash flow shocks are purely transitory and do not affect future cash flows. When cash flows

shocks are perfectly correlated, i.e. when ρ = 1, any cash flow shock impact all future

cash flows. More generally, cash flow shocks are a combination of transitory and permanent

shocks and the long-run response of cash flows to a current shock depends on the relative

size of the two shocks.

The modeling of cash flows in (1) and (2) encompasses two popular frameworks as special

cases. If µ = σA = 0, we obtain the stationary framework of dynamic agency models (see

DeMarzo and Sannikov (2006) or DeMarzo, Fishman, He, and Wang (2012)) and liquidity

management models (see Décamps, Mariotti, Rochet, and Villeneuve (2011), Bolton, Chen,

and Wang (2011), or Hugonnier, Malamud, and Morellec (2015)). In these models, cash flow

shocks are purely transitory. Adding permanent shocks in these models gives rise to two

sources of dynamic uncertainty that makes corporate policies intrinsically richer.

If σX = 0, we obtain the model with time-varying profitability applied extensively in

dynamic capital structure models (see Goldstein, Ju, and Leland (2001), Hackbarth, Miao,

and Morellec (2006), or Strebulaev (2007)) and real-options models (see Abel and Eberly

(1994), Carlson, Fisher, and Giammarino (2006), or Morellec and Schürhoff (2011)). Our

model with transitory and permanent shocks differs from the latter in that earnings and

asset volatilities differ and innovations in current cash flows are imperfectly correlated with

those in asset values. As discussed in Gorbenko and Strebulaev (2010), these features are

consistent with empirical stylized facts. Another distinguishing feature is that while the
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return on invested capital is constant in these models, in that dXt
At

= αdt, this is not the case

in our model in which it is subject to uncertainty, in that dXt
At

= αdt+ σXdW
X
t .

Lastly, our model with permanent and transitory shocks is also related to the asset pric-

ing models of Schwartz and Smith (2000), Garleanu, Panageas, and Yu (2012b), Kogan and

Papanikolaou (2013), and Kogan and Papanikolaou (2014). Notably, Kogan and Papaniko-

laou (2013) and Kogan and Papanikolaou (2014) build models in which any firm’s output

flow is the product of an aggregate productivity shock that follows a geometric Brownian

motion and of firm specific shocks that are governed by (square root) stationary processes.

Garleanu, Panageas, and Yu (2012b) develop a general equilibrium model in which aggre-

gate consumption is the product of a geometric Brownian motion that captures aggregate

productivity growth (embodied technological progress) and a transitory shock that captures

recurrent cyclical components of technological innovations. Schwartz and Smith (2000) de-

velop a model for commodity prices in which the equilibrium commodity price level evolves

according to a geometric Brownian motion and in which short-term deviations from this

equilibrium price revert toward zero following a mean-reverting stationary process.6 Our

model differs from these studies in that cash flows can be negative in our setup (whereas

prices have to remain positive in their setups), consistent with the available evidence.

1.2 Shareholders’ optimization problem

In the absence of short-term shocks, the cash flows of an active firm are given by αAtdt

and are always positive because A is always positive. Short-term shocks expose the firm to

potential losses, that can be covered using cash reserves or by raising outside funds.

6As shown by Schwartz and Smith (2000), empirical models of commodity prices with transitory and per-
manent factors outperform single-factor models with only short-term or long-term effects. See also Mirantes,
Poblacion, and Serna (2015) for evidence on alternative exhaustible resource markets. Both Schwartz and
Smith (2000) and Mirantes, Poblacion, and Serna (2015) use Kalman filter techniques to estimate from the
time series of derivatives prices, the unobservable parameters entering the dynamics of the state variables or
factors. Because of the lower frequency of the data, the empirical corporate finance papers discussed in the
introduction do not rely on Kalman filter techniques. Both Chang, Dasgupta, Wong, and Yao (2014) and
Lee and Rui (2007) employ the approach of Beveridge and Nelson (1981) to decompose cash flows into a
transitory and a permanent component. Like the Kalman filter techniques, the Beveridge-Nelson decomposi-
tion allows evaluating the volatilities of permanent and transitory shocks as well as their correlation. Guiso,
Pistaferri, and Schivardi (2005) and Byun, Polkovnichenko, and Rebello (2016) use yet different empirical
frameworks that impose zero correlation between permanent and transitory shocks. Our paper demonstrates
that this correlation is a key driver of the corporate response to permanent and transitory shocks.
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Specifically, we allow management to retain earnings inside the firm and denote by Mt

the firm’s cash holdings at any time t > 0. We consider that cash reserves earn a rate of

return r − λ inside the firm, where λ > 0 is a cost of holding liquidity. We also allow the

firm to increase its cash holdings or cover operating losses by raising funds in the capital

markets. When raising outside funds at time t, the firm has to pay a proportional cost p > 1

and a fixed cost φAt > 0 so that if the firm raises some amount et from investors, it gets

et/p − φAt. As in Bolton, Chen, and Wang (2011), the fixed cost scales with firm size so

that the firm does not grow out from the fixed cost.7 The net proceeds from equity issues

are then stored in the cash reserve, whose dynamics evolve as:

dMt = (r − λ)Mtdt+ αAtdt+ σXAt(ρdW
P
t +

√
1− ρ2dW T

t ) +
dEt
p
− dΦt − dLt, (6)

where Lt, Et, and Φt are non-decreasing processes that respectively represent the cumulative

dividend paid to shareholders, the cumulative gross external financing raised from outside

investors, and the cumulative fixed cost of financing.

Equation (6) is an accounting identity that indicates that cash reserves increase with

the interest earned on cash holdings (first term on the right hand side), the firm’s earnings

(second and third terms), and outside financing (fourth term), and decrease with financing

costs (fifth term) and dividends (last term). In this equation, the cumulative gross financing

raised from investors Et and the cumulative fixed cost of financing Φt are defined as Et =∑∞
n=1 en1τn≤t and Φt =

∑∞
n=1 φAτn1τn≤t, for some increasing sequence of stopping times

(τn)∞n=1 that represent the dates at which the firm raises external funds and some sequence

of nonnegative random variables (en)∞n=1 that represent the gross financing amounts.8

The firm can abandon its assets at any time after investment by distributing all of

its cash to shareholders. Alternatively, it can be liquidated if its cash buffer reaches zero

7The scaling of the fixed refinancing cost can be motivated by modeling this cost as in Hugonnier,
Malamud, and Morellec (2015). Suppose that new investors have some bargaining power in the division of
the surplus created at refinancing. A Nash-bargaining solution would allocate a share of this surplus to new
investors. As will become clear in Section 2 below, the total surplus at refinancing is linear in profitability
At. This approach would generate a fixed refinancing cost φAt with an endogenous φ.

8Technically, ((τn)n≥1, (en)n≥1, L) belongs to the set A of admissible policies if and only if (τn)n≥1 is a
non-decreasing sequence of F-adapted stopping times, (en)n≥1 is a sequence of nonnegative (Fτn)n≥1-adapted
random variables, and L is a non-decreasing F-adapted and right-continuous process with L0 ≥ 0.
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following a series of negative shocks and raising outside funds to cover the shortfall is too

costly. We consider that the liquidation value of assets represents a fraction ω < 1 of their

unconstrained value V FB(a) plus current cash holdings. The liquidation time is then defined

by τ0 ≡ {t ≥ 0 |Mt = 0}. If τ0 =∞, the firm never chooses to liquidate.

The objective of management in an active firm is to choose the dividend, financing, and

default policies that maximize shareholder value. (We also analyze risk management in

section 4 and the initial investment decision in section 6.) There are two state variables for

shareholders’ optimization problem after investment: Profitability At and the cash balance

Mt. We can thus write this problem as:

V (a,m) = sup
(L,(τn)n≥0,(en)n≥1)

Ea,m
[∫ τ0

0

e−rt(dLt − dEt) + e−rτ0
(
ωαAτ0
r − µ

+Mτ0

)]
. (7)

The first term on the right hand side of equation (7) represents the present value of payments

to incumbent shareholders until the liquidation time τ0, net of the claim of new investors on

future cash flows. The second term represents the firm’s discounted liquidation value.

2 Model solution

In this section, we base our analysis of shareholders’ problem (7) on heuristic arguments.

These arguments are formalized in the Appendix.

To solve problem (7) and find the value of an active firm facing financing frictions, we

need to determine the financing, payout, and liquidation policies that maximize shareholder

value after investment. Consider first financing and liquidation decisions. Because of the

fixed cost of financing, it is natural to conjecture that it is optimal for shareholders to delay

equity issues as much as possible. That is, if any issuance activity takes place, this must be

when cash holdings drop down to zero, so as to avoid liquidation. At this point, the firm

either issues shares if the fixed cost of financing is not too high or it liquidates. Consider next

payout decisions. In the model, cash reserves allow the firm to reduce refinancing costs or

the risk of inefficient liquidation. As a result, the benefit of an additional dollar retained in

the firm is decreasing in cash reserves. Since keeping cash inside the firm entails a constant
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opportunity cost λ on any dollar saved, we conjecture that the optimal payout policy is

characterized by a profitability-dependent target cash level m∗(a) where the marginal cost

and benefit of cash holdings are equalized and it is optimal to start paying dividends.

To verify this conjecture and solve for firm value, we first consider the region (0,m∗(a))

over which it is optimal to retain earnings. In this region, the firm does not deliver any cash

flow to shareholders and equity value satisfies:

rV (a,m) = µaVa(a,m) + (αa+ (r − λ)m)Vm(a,m) (8)

+
1

2
a2
(
σ2
AVaa(a,m) + 2ρσAσXVam(a,m) + σ2

XVmm(a,m)
)
.

where Vx denote the first-order derivative of the function V with respect to x and Vxy

denotes the second-order partial derivative of V with respect to x and y. The left-hand side

of this equation represents the required rate of return for investing in the firm’s equity. The

right-hand side is the expected change in equity value in the region where the firm retains

earnings. The first two terms capture the effects of changes in profitability (µa) and cash

savings (αa+ (r − λ)m) on equity value. The last term captures the effects of volatility in

cash flows and productivity. In our model with permanent and transitory shocks, changes

in productivity affect not only the value of the firm but also the value of cash reserves to

shareholders in that Vam(a,m) 6= 0.

Equation (9) is solved subject to the following boundary conditions. First, when cash

holdings exceed the target level m∗(a), the firm places no premium on internal funds and it

is optimal to make a lump sum payment m−m∗(a) to shareholders. As a result, we have

V (a,m) = V (a,m∗(a)) +m−m∗(a), (9)

for all m ≥ m∗(a). Substracting V (a,m∗(a)) from both sides of this equation, dividing by

m−m∗(a), and taking the limit as m tends to m∗(a) yields the condition

Vm(a,m∗(a)) = 1. (10)

As V is assumed to be C2 across the boundary function m∗(a), condition (10) in turn implies
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the high-contact condition (see Dumas (1992)):

Vmm(a,m∗(a)) = 0, (11)

that determines the location of the optimal dividend boundary function.

When the fixed cost of external finance φ is not too large, the firm raises funds every

time its cash buffer is depleted. In this case, the value-matching condition at zero is

V (a, 0) = V (a,m(a))− pm(a)− pφa, (12)

so that the value of shareholders’ claim when raising outside financing is equal to the con-

tinuation value of equity (first term on the right-hand side) net of the claim of new investors

on future cash flows (second term) and issuance costs (third term). The value-maximizing

issue size m(a) is then determined by the first-order condition:

Vm(a,m(a)) = p, (13)

which ensures that the marginal cost of outside funds is equal to the marginal benefits of cash

holdings at the post-issuance level of cash reserves. An important implication of equation

(13) is that the optimal size of equity issues is not constant as in previous contributions, but

depends on the firm’s productivity. Lastly, when the fixed cost of financing makes an equity

issue unattractive, liquidation is optimal at m = 0 and we have:

V (a, 0) =
ωαa

r − µ
. (14)

While there are two state variables for shareholders’ optimization problem (9)-(14), this

problem is homogeneous of degree one in a and m. We can thus write:

V (a,m) = aV (1,m/a) ≡ aF (c), (15)

where c ≡ m
a

represents the scaled cash holdings of the firm and F (c) is the scaled value

function. Using this observation, the boundary conditions can be rewritten in terms of the
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scaled value function F as a standard free boundary problem with only one state variable,

the scaled cash holdings of the firm c that evolve between the liquidation/refinancing trigger

located at zero and the payout trigger c∗.

Importantly, this scaling feature of the model also permits a better understanding of

the distinct effects of permanent and transitory shocks on optimal policies and firm value.

Notably, an application of Girsanov’s theorem and Itô’s formula implies that the dynamics

of scaled cash holdings are given by (see the Appendix):

dCt = (α + Ct(r − λ− µ)) dt+σX
√

1− ρ2dW T
t +(ρσX−CtσA)dW̃ P

t +
dEt
pAt
−dΦt + dLt

At
. (16)

Consistent with equations (1), (2), and (6), equation (16) shows that the average scaled cash

flow per unit of time is α dt and that the rate of return earned on scaled cash reserves per

unit of time is (r − λ − µ) dt, where µ represents the expected growth rate of the scaling

factor. The term

Σ(c) = σ2
X(1− ρ2) + (ρσX − CtσA)2, (17)

represents the squared volatility of scaled cash holdings. The first term on the right hand

side of (17) is constant and reflects the impact of transitory shocks. The second term is a

function of c and reflects the impact of permanent shocks. In models with transitory shocks

only, the volatility of cash holdings is constant and coincides with the volatility σX of cash

flows (this corresponds to the case σA = µ = ρ = 0). Incorporating permanent shocks

in these models leads to an endogenous volatility that depends on the level of scaled cash

holdings c and the correlation coefficient ρ between short-term and permanent shocks.

The key observation is that a permanent shock has two, possibly opposing, effects on

scaled cash holdings. Specifically, a positive permanent shock (dW̃ P
t > 0) moves the firm’s

cash reserves closer to the target cash level c∗ when ρ > 0 (ρσXdW̃
P
t > 0) and away from

c∗ when ρ < 0 (ρσXdW̃
P
t < 0). At the same time, a positive permanent shock makes assets

more valuable, leading to an increase in the precautionary demand for cash and to a greater

distance between current cash reserves and the target level (−cσAdW̃ P
t < 0 ). This latter
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effect is the strongest when the positive permanent shock has little effect on the cash flow

today (low ρ) and if the firm is relatively cash rich (high c). The two effects of permanent

shocks imply a potentially non-monotonic behavior of the volatility of scaled cash holdings

with respect to the deep parameters of the model ρ, σX , and σA. As we show below, this

observation leads to new comparative statics results on target cash holdings (see section 3)

and has important consequences for risk management (see section 4) and the value of credit

lines (see section 5). Lastly, as in previous models with financing frictions, positive transitory

shocks (i.e. dW T
t > 0) have no effects on future cash flows and unambiguously bring the firm

closer to the target level of cash reserves c∗, making the firm richer and less constrained.

We can now follow the same steps as above to derive shareholders’ modified optimization

problem after investment. Using equation (15), we have that Vm(a,m) = F ′(c), Vmm(a,m) =

1
a
F ′′(c), Va(a,m) = F (c)− cF ′(c), Vaa(a,m) = c2

a
F ′′(c), and Vam(a,m) = − c

a
F ′′(c). Plugging

these expressions in equation (9) shows that the scaled value function F (c) satisfies

(r − µ)F (c) = (α + c(r − λ− µ))F ′(c) +
1

2
(σ2

Ac
2 − 2ρσAσXc+ σ2

X)F ′′(c), (18)

in the earnings retention region (0, c∗). The left hand side of this equation represents the rate

of return required by shareholders for investing in the firm. The right hand side represents

the expected change in the scaled value function in the region where the firm retains earnings.

Consistent with equation (16), the expression α+ c(r− µ− λ) in front of F ′(c) corresponds

to the sum of the mean cash flow rate α and the instantaneous return on cash holdings per

unit of invested capital c(r − µ − λ). The expression in front of F
′′
(c) corresponds to the

squared volatility Σ(c) of the scaled cash holdings process Ct, defined in equation (17).

Equation (18) is solved subject to the following boundary conditions. First, in the payout

region c > c∗, the firm pays out any cash in excess of c∗ and we have

F (c) = F (c∗) + c− c∗. (19)

Subtracting F (c∗) from both sides of this equation, dividing by c− c∗, and taking the limit

as c tends to c∗ shows that F (c) satisfies the following value-matching and high-contact
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conditions at the optimal payout trigger c∗:

F ′(c∗) = 1, (20)

F ′′(c∗) = 0. (21)

Additionally, when the firm runs out of cash, shareholders can either refinance or liquidate

assets. As a result, the scaled value function satisfies

F (0) = max

(
max
c∈[0,∞)

(F (c)− p (c+ φ)) ;
ωα

r − µ

)
. (22)

When refinancing at zero is optimal, scaled cash holdings after refinancing c are given by

the solution to the first-order condition:

F ′(c) = p. (23)

Before solving shareholders’ problem, we can plug the value-matching and high-contact

conditions (20)-(21) in equation (18) to determine the value of the firm at the target level

of scaled cash holdings c∗. This shows that equity value satisfies

V (a,m∗(a)) = aF (c∗) =
αa

r − µ
+

(
1− λ

r − µ

)
m∗(a). (24)

Together with equation (5), equation (24) implies that equity value in a constrained firm

holding m∗(a) units of cash is equal to the first best equity value minus the cost of holding

liquidity, which is the product of the target level of cash holdings m∗(a) and the present

value of the unit cost of holding cash λ
r−µ .

The following proposition summarizes these results and characterizes shareholders’ opti-

mal policies and value function after investment.

Proposition 1. Consider a firm facing financing frictions (φ > 0, p > 1), costs of carrying

cash (λ > 0), and imperfectly correlated permanent and short-term cash flow shocks (ρ < 1).

1. The value of the firm, V (m, a) solving problem (7), satisfies the relation V (m, a) =

aF (m
a

), where (F, c∗) is the unique solution to the system (18)-(23).
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2. The function F (c), where c ≡ m
a

, is increasing and concave over (0,∞). F ′(c) is greater

than one in the earnings retention region (0, c∗), where c∗ ≡ inf{c > 0 |F ′(c) = 1},

and equal to 1 in the payout region c ∈ [c∗,∞).

3. If financing frictions are large, it is never optimal to issue new shares after investment,

F (0) = ωα
r−µ , and the firm is liquidated as soon as it runs out of cash.

4. If financing frictions are low, F (0) > ωα
r−µ and it is optimal to raise a dollar amount

e∗n = p(c+φ)Aτn at each time τn at which the firm runs out of cash, where c ≡ (F ′)−1(p).

5. When m ∈ (0,m∗(a)), the marginal value of cash is increasing in profitability. Any cash

held in excess of the dividend boundary function m∗(a) = c∗a is paid out to shareholders.

Payments are made to shareholders at each time τ satisfying Mτ = c∗Aτ .

Proposition 1 delivers several results. First, as in previous dynamic models with financing

frictions (such as Bolton, Chen, and Wang (2011) or Décamps, Mariotti, Rochet, and Vil-

leneuve (2011)), firm value is concave in cash reserves. This implies that it is never optimal

for shareholders to increase the risk of (scaled) cash reserves. Indeed, if the firm incurs a

series of shocks that deplete its cash reserves, it incurs some cost to raising external funds.

To avoid these costs and preserve equity value, the firm behaves in a risk-averse fashion.

Second, Proposition 1 shows that when the cost of external funds is not too high, it is

optimal for shareholders to refinance when the firm’s cash reserves are depleted. In addition,

the optimal issue size depends on the profitability of assets at the time τn of the equity issue

and is given by e∗n = p(c + φ)Aτn . Thus, a unique feature of our model is that the size of

equity issues is not constant. Rather, more profitable firms make larger equity issues.

Third, prior research has shown that the marginal value of cash should be decreasing

in cash reserves and increasing in financing frictions (see e.g. Décamps, Mariotti, Rochet,

and Villeneuve (2011)). Proposition 1 shows that the marginal value of cash should also be

increasing in profitability (firm size), in that Vam > 0. We show below that this result has

important consequences for optimal cash holdings and risk management policies.

Fourth, Proposition 1 shows that cash reserves are optimally reflected down at m∗(a) =

c∗a. When cash reserves exceed m∗(a), the firm is fully capitalized and places no premium on
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internal funds, so that it is optimal to make a lump sum payment m−m∗(a) to shareholders.

As we show in section 3.1 below, the desired level of reserves results from the trade-off

between the cost of raising funds and the cost of holding liquid reserves and reflects the

firm’s exposure to permanent and transitory cash flow shocks.

3 Model analysis

3.1 Optimal cash holdings and the value of a constrained firm

Do transitory and permanent shocks have qualitatively the same effects on firm value and

optimal policies? To answer this question, we examine in this section the effects of the

parameters driving the dynamics of transitory and permanent shocks on the value of a

constrained firm F (c) and target cash holdings c∗.

The following lemma derives comparative statics with respect to an exogenous parameter

θ ∈ {σX , σA, ρ, φ, p, α, µ}, on which we will base our empirical predictions. To make the

dependence of F and c∗ on θ explicit, we write F = F (., θ) and c∗ = c∗(θ). Focusing on the

refinancing case (results for the liquidation case are in the Appendix), we have that:

Proposition 2. The following holds:

1. Firm value satisfies

∂F

∂p
(c, p) < 0,

∂F

∂φ
(c, φ) < 0,

∂F

∂µ
(c, µ) > 0,

∂F

∂α
(c, α) > 0, and

∂F

∂ρ
(c, ρ) > 0.

2. Target cash reserves satisfy

dc∗(p)

dp
> 0,

dc∗(φ)

dφ
> 0,

dc∗(µ)

dµ
> 0,

dc∗(α)

dα
< 0, and

dc∗(ρ)

dρ
< 0.

Several results follow from Proposition 2. First, firm value decreases and the target level of

cash reserves increases with financing frictions (p and φ), as in models with purely transitory

shocks only (see e.g. Décamps, Mariotti, Rochet, and Villeneuve (2011) or Hugonnier,

Malamud, and Morellec (2015)). Second, both the growth rate of profitability µ and the
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mean cash flow rate α increase firm value. Interestingly, however, while target cash reserves

increase with the growth rate of the permanent shock µ, they decrease with the mean cash

flow rate α. To understand these effects, it is important to recall that the trend in the

dynamics of scaled cash holdings (α+Ct(r−λ−µ)) is increasing α and decreasing µ. When

the mean cash flow rate α increases, it becomes less likely that scaled cash holdings fall to

zero and the firm optimally decreases its target cash level. However, when the growth rate

µ of permanent shocks increases, scaled cash holdings decrease and it becomes more likely

that they will reach zero, implying an increase of optimal scaled cash holdings. This in turn

implies that our model has opposite predictions for the effects of an increase in the mean of

transitory and permanent shocks on target cash holdings.

Third, Proposition 2 shows that the effect of correlation between short-term and perma-

nent shocks ρ on firm value is unambiguously positive. It is not immediately expected that

firm value increases in ρ. Indeed, if the firm faced two shocks of transitory nature, the result

would be opposite. Lower correlation of two transitory shocks would allow for diversification

and firm value would decrease in correlation between transitory shocks. Our result shows

that correlation between short-term and permanent shocks works differently.

To understand why firm value increases with the correlation between short-term and

permanent shocks ρ, think about a firm hit by a positive permanent shock. Its expected size

increases and, in order to maintain scaled cash holdings, the firm needs to increase (unscaled)

cash holdings. If short-term shocks are positively correlated with permanent shocks, in

expectation cash flows temporarily increase and the firm has the means to increase cash

holdings.9 If short-term shocks are not correlated with permanent shocks, the firm may not

be able to do so and its value will benefit less from the positive permanent shock. It is also

interesting to observe that an increase in the correlation between shocks decreases target

cash holdings. The intuition for the negative effect of the correlation between short-term

9In general, the correlation coefficient ρ between short-term and permanent cash flow shocks can be
positive or negative. Examples of a negative correlation include decisions to invest in R&D or to sell assets.
When the firm sells assets today, it experiences a positive cash flow shock. However, it also decreases
permanently future cash flows. Examples of positive correlation include price changes due to the exhaustion
of existing supply of a commodity or improving technology for the production and discovery of a commodity.
Chang, Dasgupta, Wong, and Yao (2014) estimate that for firms listed in the Compustat Industrial Annual
files between 1971 and 2011, the correlation between short-term and permanent cash flow shocks is negative.
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and permanent shocks is that with higher correlation the firm gets positive cash flows shocks

when they are needed to maintain scaled cash holdings, so that target cash holdings can be

lower. This prediction is unique to our model.

The effects of volatility on firm value and cash holdings are more difficult to characterize.

Applying Proposition 7 in the Appendix, we can measure the effect of the volatility of short-

term shocks σX on the (scaled) value of an active firm. Keeping correlation ρ constant, σX

is also a measure of the volatility of transitory shocks. Notably, we have that:

∂F

∂σX
(c, σX) = Ec

[∫ τ0

0

e−(r−µ)t (−ρσACt− + σX)
∂2F

∂c2
(Ct− , σX)dt

]
. (25)

Given that the function F (c) is concave, we have that ∂F (c)
∂σX

< 0 if ρ ≤ 0. For ρ ∈ (0, 1),

the sign of ∂F (c)
∂σX

is not immediately clear. However, numerical simulations suggest that the

effect of increased volatility of short-term shocks on firm value is negative, consistent with

previous literature (see e.g. Décamps, Mariotti, Rochet, and Villeneuve (2011)).10

Consider next the effect of the volatility of permanent shocks on firm value. Applying

Proposition 7 in the Appendix, we have:

∂F

∂σA
(c, σA) = Ec

[∫ τ0

0

e−(r−µ)t (σACt− − ρσX)Ct−
∂2F

∂c2
(Ct− , σA)dt

]
. (26)

Clearly, this equation shows that ∂F (c)
∂σA

< 0 if ρ ≤ 0. When ρ ∈ (0, 1), the effect of an

increase in the volatility of permanent shocks on firm value is ambiguous. The reason is that

firm value decreases in the volatility of scaled cash holdings c, and σA may either increase

or decrease this volatility. Indeed, as shown by equation (16), the instantaneous variance

of c is σ2
Ac

2 − 2ρσAσXc + σ2
X . Its derivative with respect to σA is 2σAc

2 − 2ρσXc. This in

turn implies that the volatility of permanent shocks may increase or decrease the volatility

of scaled cash holdings, and hence target cash holdings, depending on the level of the cash

reserve c = m
a

relative to ρσX
σA

. That is, because liquidity management aims at reducing firm

risk, target cash holdings increase with σA when c ≥ ρσX
σA

.

10It is clear from equation (25) that c∗ ≤ σX

ρσA
is a sufficient condition for the negative derivative with

respect to σX when ρ > 0. The inequality c∗ ≤ σX

ρσA
always holds at our baseline parameter values. Despite

extensive simulation, we have not been able to find any instance of a positive effect of σX on F when ρ > 0.
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To examine the effects of volatility on target cash holdings, we can use the relation:

dc∗(θ)

dθ
= −r − µ

λ

(
∂F

∂θ
(c∗(θ), θ) + c∗(θ)

∂[ λ
r−µ ]

∂θ
−
∂[ α

r−µ ]

∂θ

)
. (27)

It follows from the previous discussion on the effects of σX and σA on F (c) that ∂c∗

∂σX
> 0

and ∂c∗

∂σA
> 0 if ρ ≤ 0, and ∂c∗

∂σX
> 0 and ∂c∗

∂σA
≷ 0 if ρ ∈ (0, 1). Interestingly, Chang,

Dasgupta, Wong, and Yao (2014) decompose corporate cash flows into a transitory and a

permanent component and show that for firms listed in the Compustat Industrial Annual

files between 1971 and 2011, the correlation between these shocks is negative. Using the

same date, Byun, Polkovnichenko, and Rebello (2016) find that “firms increase cash savings

in response to increased uncertainty arising from both persistent and transitory shocks.”

This empirical result is consistent with our prediction that cash holdings should increase

with σA and σX when ρ < 0. It is again interesting to observe that our model predicts that

if ρ was sufficiently positive in some industries, then the relation between cash savings and

the volatility of permanent shocks σA could become negative.

For completeness, Figure 1 plots target cash holdings c∗ and the optimal issue size c as

functions of the volatilities of short-term shocks σX and permanent shocks σA, the correlation

between shocks ρ, the fixed and proportional financing costs φ and p, and the carry cost of

cash λ. These panels confirm the above comparative statics results. They also show that

the size of equity issues should increase with the fixed cost of financing (since the benefit of

issuing equity must exceed φ) and decrease with the proportional cost of financing (since firm

value is concave and F ′(c) = p). As in prior models, the effects of the other parameters on

the optimal size of equity issues c mirror those of these parameters on target cash holdings.

The question we ask next is whether permanent shocks have non-trivial quantitative

effects.11 To answer this question, we examine the predictions of the model for the firm’s

financing and cash holdings policies. To do so, we select parameters that match previous

studies. Notably, following models with transitory shocks only (e.g. Bolton, Chen, and

Wang (2013)), we set the risk-free rate to r = 3%, the mean cash flow rate to α = 0.18,

11The analysis presented here is not intended to substitute for a more detailed quantitative study, but
serves to highlight the effects of including or omitting permanent shocks in dynamic corporate finance models.
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Figure 1: Optimal cash holdings and issue size.
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Notes. Figure 1 plots target cash holdings c∗ (solid curves) and the scaled issuance size c (dashed

curves) in the refinancing case. Input parameter values are given in Table 1.

the volatility of short-term shocks to σX = 0.12, and the carry cost of cash to λ = 0.02.

Financing costs are set equal to φ = 0.002 and p = 1.06, implying that the firm pays a

financing cost of 10.4% when issuing equity. The parameters of the permanent shocks are

set equal to µ = 0.01 and σA = 0.25, consistent with Morellec, Nikolov, and Schürhoff (2012).

The correlation between transitory and permanent shocks is set to ρ = −0.21, consistent

with Chang, Dasgupta, Wong, and Yao (2014).12 Lastly, we base the value of liquidation

12While the correlation coefficient ρ affects the persistence of cash flows, it should not be confused with
the cash flow autocorrelation. We have simulated daily cash flows for 100 firms over 1000 years using our
cash flow specification (4) and our base case parameters and run an AR(1) regression of annual cash flows
(CF (t+ 1) = α + βCF (t) + ε(t+ 1)). The coefficient β obtained in the AR(1) regression on our simulated
data is 0.6526, which matches the empirical estimates of 0.65 obtained by Frankel and Litov (2009) for the
autocorrelation of annual cash flows for COMPUSTAT firms between 1984 and 2004. In our model, changing
the correlation coefficient ρ changes autocorrelation, but autocorrelation of cash flows is mostly driven by
the scale of the permanent shock relative to the transitory shock.
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Table 1: Parameter values and variables

Variable Symbol Parameter Symbol Value

Cash holdings M Growth rate of asset productivity µ 0.01
Scaled cash holdings C Mean rate of cash flows α 0.18
Asset productivity/size A Volatility of permanent shocks σA 0.25
Cumulative cash flows X Volatility of short-term shocks σX 0.12
Cumulative payout L Correlation between shocks ρ -0.21
Cumulative external financing E Riskfree rate r 0.03
Cumulative fixed financing cost Φ Carry cost of liquidity λ 0.02
Active firm value V Proportional financing cost p 1.06
Scaled active firm value F Fixed financing cost φ 0.002
Investment option value G Asset liquidation-value ratio ω 0.55
Payout boundary c∗ Investment cost I 10
Financing target c Credit line spread ξ 0.015

costs on Glover (2016) and set 1− ω = 45%.

Figure 2 shows the effects of introducing time-varying profitability via permanent shocks

in a dynamic model with financing frictions. To better understand the sources of changes,

separate plots are shown in which we first introduce a positive drift only (Panel A with

µ = 0.01 and σA = 0), then a positive volatility only (Panel B with µ = 0 and σA = 0.25),

and finally in which we combine both drift and volatility effects (Panel C with µ = 0.01 and

σA = 0.25). Introducing a positive growth in cash flows is similar to introducing a capital

stock that appreciates deterministically at the rate µ. As a result of this drift in cash flows,

firm value is increased by 46% at the target level of cash reserves. However, target (scaled)

cash holdings are much less affected by the introduction of a permanent drift (an increase

by less than 5%) as risk does not change.

By contrast, Figure 2 shows that adding volatility in A changes the target level of scaled

cash holdings significantly without having a material effect on the value of the firm. In our

base case parametrization for example, optimal cash holdings rise by 34% since the volatility

of scaled cash holdings is increased by the introduction of volatility in A (in that we have√
σ2
Ac

2 − 2ρσAσXc+ σ2
X > σX over the relevant range). As shown by the figure, the joint

effect of µ and σA is substantial on both firm value (an increase by 44% at the target) and

target cash holdings (an increase by 44%).
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Figure 2: The effects of permanent shocks with liquidation
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Notes. Figure 2 plots firm value and target cash holdings in the liquidation case. The dashed curves

represent the case with only transitory shocks (σA = µ = 0) in all the panels. The solid curves are

with permanent shocks, with µ = 0.01 and σA = 0 in Panel A, µ = 0 and σA = 0.25 in Panel B,

and µ = 0.01 and σA = 0.25 in Panel C. In all the cases, the vertical lines depict the target scaled

cash holdings c∗. Input parameter values are given in Table 1.

Figure 3 shows that similar results obtain in the refinancing case. Again the drift µ of

permanent shocks affects mostly the value function and has little impact on optimal policies.

The volatility σA of permanent shocks significantly affects optimal policies but has almost

no impact on the value function.

3.2 Cash-flow sensitivity of cash

Corporate liquidity models featuring solely transitory shocks characterize optimal cash hold-

ings and dividend policies using a constant target level of cash holdings (see e.g. Bolton,

Chen, and Wang (2011), Décamps, Mariotti, Rochet, and Villeneuve (2011), or Hugonnier,

Malamud, and Morellec (2015)). This generates the prediction that firms at the target dis-

tribute all positive cash flows or, equivalently, that cash holdings are insensitive to cash

flows. As firms off the target retain all earnings, the predicted propensity to save from cash

flows is either one or zero. Our model generates a more realistic firm behavior at the target

cash level and provides an explicit measure of the cash-flow sensitivity of cash.
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Figure 3: The effects of permanent shocks with refinancing
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Notes. Figure 3 plots firm value and target cash holdings in the refinancing case. The dashed

curves represent the case with only transitory shocks (σA = µ = 0) in all panels. The solid curves

are with permanent shocks, with µ = 0.01 and σA = 0 in Panel A, µ = 0 and σA = 0.25 in Panel

B, and µ = 0.01 and σA = 0.25 in Panel C. The vertical lines depict the scaled issue size c and

target scaled cash holdings c∗. Input parameter values are as in Table 1.

To illustrate this feature, suppose that cash holdings are at the target level so that Mt =

c∗At. For our model, this is a most relevant assumption since the bulk of the probability mass

of the stationary distribution of cash holdings is at the target level.13 Upon the realization

of a cash flow shock dXt, profitability At changes in expectation by

E[dAt|dXt] = µAtdt+ σAAt
ρ

σXAt
(dXt − αAtdt). (28)

Target cash holdings then change to c∗(At + dAt) and this change conditional on dXt can be

expressed as

E[c∗dAt|dXt] = c∗
(
µ− αρσA

σX

)
Atdt+

ρσAc
∗

σX
dXt. (29)

13The concentration of cash holdings close to the target level arises because the optimal payout policy is
to reflect cash reserves at the target and the optimal financing policy is to go back to the target level of cash
reserves when accessing external capital markets. See also Figure 5 in Bolton, Chen, and Wang (2011). Note
that in these models we can only compute the stationary distribution of cash holdings for the refinancing
case since, in the liquidation case, the firm liquidates with probability 1.
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The sensitivity of target cash holdings to cash flow shocks is then captured by ε defined by

ε =
ρσAc

∗

σX
≶ 0. (30)

As the firm may not be able to stay at the target after a positive shock if this sensitivity

exceeds 1 and may have excess cash after a negative shock if the sensitivity is less than 1, the

sensitivity of actual cash holdings to positive shocks is ε+ = min{ε, 1} and to negative shocks

is ε− = max{ε, 1}. It should be stressed that ε measures the sensitivity in expectation, as one

would obtain by regressing cash flows on cash holdings. An advantage of our bi-dimensional

model is that individual realizations of cash flows are not tightly linked to changes in cash

holdings whenever ρ < 1, consistent with the observed behavior of firms.

When permanent and short-term shocks are positively related (i.e. ρ > 0), the sensitivity

of cash holdings to cash flow shocks is driven by the positive relation between profitability and

the marginal value of cash (i.e. Vam = − c
a
F ′′(c) ≥ 0), which implies that the firm optimally

retains a part of a positive cash flow shock if profitability increases. For this mechanism to

work, a cash flow shock needs to be related to changes in profitability in expectation. Without

permanent shocks (i.e. σA = 0) or without correlation between permanent and short-term

shocks (i.e. ρ = 0), the cash-flow sensitivity of cash ε is zero. As shown by equation (30),

the sensitivity ε depends directly on the parameters of transitory and permanent shocks,

ρ, σA, and σX , and indirectly on the other parameters of the model via the target level

of cash holdings c∗. In particular, since c∗ increases in the cost of refinancing, the cash-

flow sensitivity of cash increases in external financing frictions, consistent with Almeida,

Campello, and Weisbach (2004) and Riddick and Whited (2009).

For firms or industries in which permanent and short-term shocks are negatively related

(i.e. ρ < 0), our model predicts that the cash flow sensitivity of cash should be negative.

Interestingly, Chang, Dasgupta, Wong, and Yao (2014) find that for U.S. nonfinancial firms

listed in the Compustat Industrial Annual files between 1971 and 2011, this correlation is

on average negative. Using data on U.S. nonfinancial firms between 1972 to 2006, Riddick

and Whited (2009) find that the sensitivity of saving to cash flow is negative.
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3.3 Fixed issuance costs

We conclude this section with a discussion of the role of the scalability in a in our model.

Many firm variables scale up as the firm grows and becomes more productive and profitable.

We have used this observation to motivate our assumption that the fixed refinancing cost is

proportional to the firm’s profitability a. As shown in Section 2, the ratio of cash holdings

over profitability is the unique state variable for the firm’s problem in this case and the firm’s

optimal policies can be fully characterized; see Proposition 1.

Suppose now that the fixed issuance cost is constant and does not depend on firm prof-

itability a, so that the average equity issuance cost is lower for larger firms. Shareholders’

optimization problem then involves a difficult mixed control and stopping problem with two

state variables, cash reserves m and profitability a. With a constant fixed cost φ, liquidation

should be optimal as profitability a and firm value approach 0. As profitability a increases,

the firm effectively outgrows the fixed issuance cost φ and its optimal policy should converge

to that of a firm with only proportional issuance costs. Our model gives the optimal policy

with only proportional costs (φ = 0 and p > 1), in which the optimal issue size is m(a) = 0

and target cash reserves are m∗(a) = c∗a for a constant c∗. Importantly, irrespective of the

modeling of the fixed financing cost, we expect that constrained firms with high profitability

will build up large liquid reserves to reduce the likelihood that a pure cash flow shock triggers

liquidation despite the high value of their assets. This suggests that, in this case too, target

cash holdings should be increasing in profitability, as established in Proposition 1.

4 Risk management

In our model, financing frictions imply that firm value is concave and that management may

wish to reduce risk by engaging in hedging strategies. In addition, because firm cash flows

are subject to permanent and transitory shocks that have different effects on the volatility of

scaled cash holdings, the management of these two sources of risk may imply substantially

different hedging strategies. To investigate these issues, we assume that the firm manages its

risk exposure using derivatives such as futures contracts as in Bolton, Chen, and Wang (2011)
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and Hugonnier, Malamud, and Morellec (2015). Notably, we consider futures contracts with

price Yt governed by:

dYt = σY YtdZt, (31)

where σY is a positive constant and Z = (Zt)t≥0 is a standard Brownian motion.

We denote by ht the firm’s position in the futures contracts (measured in dollar). The

dynamics of cash reserves with futures hedging are then given by:

dMt = (r − λ)Mtdt+ dXt +
dEt
p
− dΦt − dLt + htσY dZt. (32)

Equation (32) shows that an important aspect of hedging with derivatives contracts is that it

produces additional short-term cash flows (htσY dZt). Asset substitution does not have this

feature. As a result, cash holdings and financing frictions will be important in determining

whether firms manage their risks by using derivatives contracts or by changing asset exposure

to permanent and transitory shocks.

4.1 Risk management with derivatives

We start our analysis by considering an environment in which hedging is costless (or uncon-

strained) in that there are no requirements of maintaining a margin account. Suppose first

that the firm manages only transitory shocks using futures contracts (by the firm’s choice

or because only futures correlated with transitory shocks are available). Let χT denote the

correlation between Zt and W T
t (Zt and W P

t are uncorrelated here). Using the same steps

as above, it is immediate to show that the value of an active firm that engages in risk

management satisfies in the earnings retention region:

rV (a,m) = µaVa (a,m) + (αa+ (r − λ)m)Vm (a,m)) (33)

+
1

2
a2
(
σ2
AVaa (a,m) + 2ρσAσXVam (a,m) + σ2

XVmm (a,m)
)

+ max
h

1

2

{
h2σ2

Y Vmm (a,m) + 2χT
√

1− ρ2hσY σXaVmm (a,m)
}
.
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Defining shareholders’ scaled value function as F (c) ≡ V (a,m)
a

, we have that F satisfies:

(r − µ)F (c) = (α + c(r − λ− µ) )F ′(c) +
1

2
(σ2

Ac
2 − 2ρσAσXc+ σ2

X)F
′′
(c) (34)

+ max
g

{
1

2
(σ2

Y g
2 + 2χTσXσY

√
1− ρ2g)F

′′
(c)

}
,

where g = h
a

is the hedge ratio.14 The first-order condition associated with (34) yields

g∗T = −
(
χT
σY

)
σX
√

1− ρ2. (35)

Substituting (35) in (34) then yields

(r − µ)F (c) = (α + c(r − λ− µ))F ′(c) +
1

2
Σ(c)F

′′
(c), (36)

with Σ(c) = σ2
Ac

2 − 2ρσAσXc + σ2
X − χ2

Tσ
2
X(1 − ρ2) > 0 for ρ ∈ [−1, 1), which implies that

F is concave and, in turn, that equation (35) gives the optimal hedge ratio.

Suppose next that the firm manages only its exposure to permanent shocks. Let χP

denote the correlation with between Zt and W P
t (Zt and W T

t are uncorrelated here). In this

case, firm value satisfies in the earnings retention region:

rV (a,m) = µaVa (a,m) + (αa+ (r − λ)m)Vm (a,m)) (37)

+
1

2
a2
(
σ2
AVaa (a,m) + 2ρσAσXVam (a,m) + σ2

XVmm (a,m)
)

+ max
h

1

2

{
h2σ2

Y Vmm (a,m) + 2χPρhσY σXaVmm (a,m) + 2χPhσY σAaVam (a,m)
}
.

This in turn implies that the scaled value function F (c) satisfies

(r − µ)F (c) = (α +c(r − λ− µ))F ′(c) +
1

2
(σ2

Ac
2 − 2ρσAσXc+ σ2

X)F
′′
(c)

+ max
g

{
1

2
(σ2

Y g
2 + 2σXσY χPρg − 2cσAσY χPg)F

′′
(c)

}
. (38)

14The firm in our model hedges cash flows with expected profitability At so this denominator of a hedge
ratio follows the usual practice in risk management literature (see e.g. Tufano (1996)).
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The first-order condition with respect to the hedge ratio yields:

g∗P = −
(
χT
σY

)
(ρσX − cσA). (39)

Substituting the expression for g∗P in (38) yields

(r − µ)F (c) = (α + c(r − λ− µ))F ′(c) +
1

2
Σ(c)F

′′
(c),

where Σ(c) = σ2
Ac

2 − 2ρσAσXc + σ2
X − χ2

P (σAc − σXρ)2 > 0 for ρ ∈ [−1, 1), which implies

that F is concave and, in turn, that equation (39) defines the optimal dynamic hedging.

Equations (35) and (39) show that the signs of the hedge ratios are opposite to the signs of

the volatilities associated to transitory and permanent shocks in the dynamics of scaled cash

holdings (see equation (16)). The optimal hedging policy with respect to transitory shocks

is expected and known; see for example Bolton, Chen, and Wang (2011). The hedge ratio

with respect to transitory shocks is constant. The firm takes a position in future contracts

that is opposite to its core risk exposure and eliminates all the correlated risk.

The optimal hedging policy with respect to permanent shocks is new and more surprising.

Substituting the expression for h∗P ≡ ag∗P in (32) shows that optimal hedging of permanent

shocks adds two terms to the dynamics of cash reserves. The first one, −χPρσXAtdZt, serves

to remove the correlated risk from firm cash flows. The second one, χPσAMtdZt, is specific

to hedging of permanent shocks and has a double impact. First, it increases the volatility

of cash flows. Second, it increases the correlation of cash flow shocks. In other words, the

two opposing effects of a positive permanent shock discussed in section 2 are again at work.

Consequently, risk management of permanent shocks may imply long or short positions in

derivatives depending on the level of the cash reserve c = m
a

relative to ρσX
σA

. Specifically,

when χP > 0 the short position dominates for c < ρσX
σA

while the long position dominates for

c > ρσX
σA

. The long position dominates in particular if the correlation between short-term and

permanent cash flow shocks ρ is low and if the firm is relatively cash rich (high c). Therefore,

despite the concavity of the scaled value function, risk management of permanent shocks with

derivatives may imply a position that is not opposed but aligned with the exposure. This is
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due to the fact that hedging increases both cash flow volatility and the correlation of cash

flow shocks. As discussed above, the firm benefits from the correlation between shocks, i.e.

from generating liquidity when long-term prospects improve.15

In summary, hedging policies with respect to transitory and permanent shocks are markedly

different. The hedge ratio with respect to transitory shocks is constant while the hedge ratio

with respect to permanent shocks is linear in scaled cash holdings c. Furthermore, the signs

of the optimal hedge ratios g∗T and g∗P can be opposite. Our analysis has focused for clarity

on hedging positions with respect to one source of risk. If the futures price is correlated with

both W T and W P , as is likely to be the case, the optimal hedge ratio is simply g∗ = g∗T +g∗P .

Consider for example a primary commodity producer. The literature stresses that commod-

ity prices are subject to transitory and permanent shocks and emphasizes the importance

of precautionary savings and hedging in the primary commodity producing sector (see for

instance Reinhart and Wickham (1994)). Our study suggests that hedging policies in com-

modities markets should vary with the relative importance of firms’ exposure to permanent

and transitory shocks, i.e. with the nature of the shocks affecting these commodity prices.

How does hedging affect optimal policies? To answer this question, we solve our model

with and without hedging and compare optimal policies. If perfect hedging is possible, in

that χT = χP = 1, then the firm can decrease target cash holdings by as much as 89.1% with

hedging of transitory shocks and by 8.5% with hedging of permanent shocks. The optimal

size of equity issues decreases by 85.2% with hedging of transitory shocks and by 3.2% with

hedging of permanent risk. That is, if the availability of futures contracts is symmetric for

the two types of shocks, hedging of transitory shocks has a more significant effect on other

firm policies than hedging of permanent shocks. If futures are less perfectly correlated with

cash flows, the effects are naturally smaller but the pattern remains the same. Taking more

realistic correlations of χT = χP = 0.7, target cash holdings decrease by 34.2% (resp. 4.2%)

with hedging of transitory (resp. permanent) shocks. Equity issuance size decreases now by

28.7% (resp. 1.5%) with hedging of transitory (resp. permanent) shocks.

15The positive sign in g∗P stems from the positive sign of Vam = − c
aF
′′ as opposed to the negative signs of

Vaa and Vmm. This positive sign implies that the marginal value of cash increases in profitability. Note also
that it would be misleading to call the firm’s risk management policy to permanent shocks as “speculation,”
since taking a position that is not contrary to the exposure actually reduces risk.
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Lastly, suppose that hedging positions are not unbounded but are instead constrained

by the requirement of maintaining a margin account. Specifically, assume that the firm’s

net futures position cannot exceed the amount on the margin account by more than a

factor π. Assuming that the margin account earns the same interest as the common cash

account, all cash holdings can be moved to the margin account if needed, so that the margin-

account constraint is equivalent to limiting the futures position to a π multiple of cash

holdings, or |ht| ≤ πMt. In terms of hedge ratio, the constraint can then be written as

|gt| ≤ πCt. In such environments, constrained firms (i.e. firms with low c) hedge less due to

difficulties with meeting margin requirements, consistent with the evidence in Rampini, Sufi,

and Viswanathan (2014) that collateral constraints play a major role in risk management.

4.2 Hedging using derivatives versus asset substitution

An alternative to risk management using derivatives is to change the firm’s assets to achieve a

different exposure to transitory or permanent shocks. This is a version of asset substitution.

An important difference between asset substitution and hedging with derivatives is that the

former does not generate cash flows. Whether risk management generates cash flows or not

is not important in models with unconstrained financing (like Leland (1998)), but this is

relevant in a model with financing frictions like ours (see also Mello and Parsons (2000)).

Suppose that the firm can manage costlessly its asset risk via unconstrained selection of

volatilities of short-term or permanent shocks, σX and σA. Consider first short-term shocks.

The discussion below equation (25) suggests that the usual effect of σX on (scaled) firm

value is negative and so the optimal policy is to set σX = 0. This shows that the outcome

of derivative hedging and asset risk management are the same: The firm aims at removing

all exposure to short-term shocks and the two methods are equivalent.

Consider next permanent shocks. Using (26), we have that the first-order derivative of

firm value with respect to σA is always negative if ρ ≤ 0. In these instances, it is optimal to

set σA = 0. If instead ρ > 0, the optimal exposure σA to the permanent shock W P satisfies:

σA = ρσX/c. (40)
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Plugging the expression for σA in the volatility of scaled cash holdings, we get a resulting

volatility given by σX
√

1− ρ2. Two observations are in order. First, the firm is willing to

maintain a positive volatility of permanent shocks. In essence, this happens because volatility

of scaled cash holding c is not the lowest at σA = 0 but when σA is at a right proportion

to σX , ρ, and c such that (40) holds. Second, the optimal volatility of permanent shocks

is large when c is small. A high σA contributes to the volatility of c positively and directly

by changing the volatility of permanent shocks, via σ2
Ac

2, and indirectly via the covariance

term, 2ρσAσXc. If c is low, the direct volatility effect, being quadratic in c, is dwarfed by the

covariance term. By selecting a high exposure to permanent shocks σA, the firm can benefit

from the increased covariance with little cost of increased variance.

Managing permanent risk with either derivatives or asset substitution typically increases

beneficial correlation at the cost of an increased volatility. The difference between derivatives

and asset risk management is that the former manipulates short-term cash flow volatility and

the latter affects long-term asset-profitability volatility. This implies that the two strategies

have different incentives with varying c for a financially constrained firm. For example,

derivative hedging looses some of its potential when a firm is financially weaker, i.e. when

c is low. A firm with little cash, cannot afford to generate cash flow shocks to benefit from

an increased covariance between cash flow shocks, as this would put it at risk of running

out of cash quickly. By contrast, a distressed firm would have strong incentives to engage

in asset substitution to increase σA. That is, we predict that if a firm was mostly exposed

to permanent shocks, this firm should decrease its derivatives usage and potentially increase

its asset risk as it approaches distress, i.e. as its liquid reserves decrease.

5 Credit lines

Another way for firms to manage their risks is to acquire financial flexibility via a credit line.

Suppose that the firm has access to a credit line that allows it to borrow from creditors up

to some collateral constraint. In our model, the value of the firm’s assets at any time t > 0

is given by At. It is thus natural to consider a constraint of the type Mt ≥ −κAt for some

positive constant κ, as in Bolton, Chen, and Wang (2011). The logic behind this assumption
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is that the firm must be able to post collateral to secure a credit line. We may thus interpret

κAt as the firm’s short-term debt capacity. For simplicity, we treat κ as exogenous.

Introducing financial leverage and collateral constraints in the model implies an important

additional effect of permanent shocks. Notably, a positive permanent shock increases the

value of assets and therefore relaxes the collateral constraint, allowing the firm to cope with

larger transitory shocks. This effect works in the opposite direction from the effect described

in section 2 above, in which a permanent shock made the firm more constrained.16

Assuming that the firm pays a spread ξ > 0 over the risk-free rate to access credit, it

will optimally avoid using its credit line before exhausting internal funds. When running

out of cash, the firm will first use its credit line and, as long as the spread ξ is not too high,

it will exhaust the credit line before raising equity.17 Since the collateral constraint scales

with At, similar derivations as above show that when the credit line is the marginal source

of financing (i.e. when c < 0), the scaled value function F (c) satisfies:

(r − µ)F (c) = (α + c(r + ξ − µ))F ′(c) +
1

2
(σ2

Ac
2 − 2ρσAσXc+ σ2

X)F ′′(c), (41)

which is solved subject to

F (−κ) = max

(
max

c∈[−κ,∞)
(F (c)− p (c+ κ+ φ)) ;

ωα

r − µ
− κ
)
, (42)

when the firm exhausts the credit line. When refinancing at c = −κ is optimal, scaled

cash holdings after refinancing cL are given by the solution to F ′(cL) = p. In the earnings

16Note that if in addition to this credit line the firm had some debt outstanding, a positive permanent
shock would not only increase the firm’s debt capacity via the credit line but also make the firm less levered.
We thank an anonymous referee for making this point and encouraging us to write this section.

17To see why the firm always first relies on the credit line, assume for simplicity that there is no fixed cost
of raising equity so that φ = 0. Given a sufficiently deep credit line, when is it optimal to issue equity? The
firm issues equity only when c ≤ 0 and at the optimal threshold c, it holds that F ′(c) = p and F ′′(c) = 0.
Suppose now that it is optimal to issue equity at c = 0 rather than use the credit line so that c = 0. The
above two conditions then imply F (0) = pα/(r − µ) > FFB(0), which cannot be. Another question that
naturally arises is whether it is optimal for the firm to use all of its credit line before issuing equity. For
any set of parameters, we can find a (non-positive) threshold c such that the firm optimally issues equity
whenever c < c irrespective of the limit of the credit line. At the optimal c, firm value satisfies value-matching
and smooth-pasting conditions: F (c) = F (c) − p(c − c + φ) and F ′(c) = p, where we have assumed that
φ > 0. If the level of indebtedness that triggers optimal equity issuance (−c) exceeds the limit of the credit
line (κ), the firm uses all of its credit line before raising equity. Otherwise, it issues equity before exhausting
the credit line. For the parameter values used in this section, we find that −c > κ.
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Figure 4: Credit lines and cash flow correlation
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Notes. The left panel plots target cash holdings c∗L (solid curve) and the scaled issuance size cL+κ

(dashed curve) in the refinancing case. The right panel plots a change in firm value at c = 0 for

four values of the correlation between permanent and transitory shocks (ρ = 0.7 dashed-dotted,

ρ = 0.21 dashed, ρ = −0.21 solid, and ρ = −0.7 dotted). Parameter values are given in Table 1.

retention region (0, c∗L), the scaled value function satisfies (18), which is solved subject to

(20) and (21). Also, since cash flows are (piecewise) continuous, the scaled value function

F (c) is continuous and smooth everywhere, including at c = 0, implying that limc↓0 F (c) =

limc↑0 F (c), and limc↓0 F
′(c) = limc↑0 F

′(c). Lastly, in the region c ≥ c∗L, the firm pays out

any cash in excess of c∗L and we have F (c) = F (c∗L) + c− c∗L.

Figure 4 describes the effects of a credit line by varying κ in an environment characterized

by the same parameter values as in Table 1 and in which ξ = 1.5%, consistent with Sufi

(2009). The figure shows that an increase in the size of the credit line κ leads to a significant

decrease in the target level of cash holdings but has little effect on the optimal size of equity

issues. Figure 4 also shows that a credit line increases firm value by reducing refinancing

costs. Notably, even when the credit line is not drawn, an increase in the credit limit κ may

increase firm value by an amount close to that limit.

Interestingly, we also find that a firm with a credit line may respond differently to per-

manent shocks than a firm relying exclusively on cash reserves to absorb negative cash flow

shocks. This is due to the fact that the marginal value of cash increases in a if c > 0, in
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that Vam = − c
a
F ′′(c) > 0, but it decreases in a if c < 0, in that Vam = − c

a
F ′′(c) < 0.18

That is, cash-financed firms value additional cash more when asset productivity increases

while credit-financed firms value additional cash more when productivity decreases. This in

turn suggests that firms that benefit most from credit lines are those whose permanent and

transitory cash flow shocks are negatively correlated. The right panel of Figure 4 presents

an example in which we plot the benefit of a credit line (measured by the change in firm

value at c = 0 due to the credit line) for various values of ρ. The effects are large: a credit

line of 0.2 is worth 0.163 when ρ = −0.7 while the same credit line is worth only 0.106 when

ρ = 0.7. Thus our model predicts that credit lines should be more prevalent in firms and

industries in which permanent and transitory cash flow shocks are negatively correlated.

6 Investing in financially-constrained firms

Consider now the initial decision to invest in the firm. In the presence of transitory shocks

and financing frictions, the firm finds it optimal to hold cash after investment. Thus, solving

shareholders’ problem entails finding both the optimal time to invest τ as well as the optimal

initial level of cash reserves m0. Denote the value of the investment opportunity by G(a).

Shareholders’ optimization problem before investment can be written as:

G(a) = sup
τ,m0≥0

Ea
[
e−rτ (V (Aτ ,m0)− p(I +m0 + φAτ ))

]
. (43)

Following the literature on investment decisions under uncertainty (see Dixit and Pindyck

(1994)), it is natural to conjecture that the optimal investment strategy is to invest when

the value of the active firm exceeds the cost of investment by a sufficiently large margin. In

models without financing frictions, this margin reflects the value of postponing investment

until more information about asset productivity is available. In addition to this effect arising

from the irreversibility of the investment decision, our model incorporates a second friction:

Operating the asset may create temporary losses and financing these losses is costly.

Specifically, for any initial level of reserves, the investment policy takes a form of a barrier

policy whereby the firm invests as soon as asset productivity reaches some endogenous upper

18The scaled value function is concave for all c ∈ (κ, c∗) for the parameter values used in this section.
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barrier. Denote the optimal barrier by a∗. Investment is then undertaken the first time that

At is at or above a∗. For any investment time τ , the optimal initial level of cash reserves m0,

if positive, must satisfy the first-order condition in problem (43). That is, we must have:

Vm(Aτ ,m0) = p. (44)

This is the same condition as the one used in equation (13) for optimal cash reserves after

refinancing. Thus, the initial level of cash reserves, if positive, is given by m0 = ca∗.

Since the firm does not deliver any cash flow before investment, standard arguments

imply that the value of the investment opportunity G(a) satisfies for any a ∈ (0, a∗):

rG(a) = µaG′(a) +
1

2
σ2
Aa

2G′′(a). (45)

At the investment threshold, the value of the option to invest G(a) must equal the value of

an active firm minus the cost of acquiring the assets and the costs of raising the initial cash.

This requirement, together with m0 = m(a) = ca, yields the value-matching condition:

G(a∗) = a∗F (c)− pI − p(ca∗ + φa∗). (46)

Optimality of a∗ further requires that the slopes of the pre- and post-investment values are

equal when a = a∗. That is, G(a) satisfies the smooth-pasting condition:

G′(a∗) = F (c)− p(c+ φ). (47)

Solving shareholders’ optimization problem yields the following result.

Proposition 3. The following holds:

1. Suppose that the costs of external finance are low, in that F (0) > ωα/(r − µ). In this

case, the value of the option to invest is given by

G(a) =


(
a
a∗

)ξ
(a∗F (0)− pI), ∀a ∈ (0, a∗),

aF (0)− pI, ∀a ≥ a∗,
(48)
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where the value-maximizing investment threshold satisfies

a∗ =
ξ

ξ − 1

pI

F (0)
, (49)

with

ξ = g(σA, µ) +

√
[g(σA, µ)]2 + 2r/σ2

P > 1, (50)

where g(σA, µ) = 1
2σ2
A

(σ2
A − 2µ). Investment is undertaken the first time that At ≥ a∗

and the firm’s cash reserves at the time of investment are given by m0 = ca∗.

2. Suppose that the costs of external finance are high, in that F (0) = ωα/(r − µ).

(a) If ωα/(r − µ) > pφ, the value of the option to invest is given by

G(a) =


(
a
a∗

)ξ
(a∗(ωα/(r − µ)− pφ)− pI), ∀a ∈ (0, a∗),

a(ωα/(r − µ)− pφ)− pI, ∀a ≥ a∗,
(51)

where the value-maximizing investment threshold satisfies

a∗ =
ξ

ξ − 1

pI

ωα/(r − µ)− pφ
, (52)

and ξ is defined in (50). Investment is undertaken the first time that At ≥ a∗. No

cash is raised in addition to I and it is optimal to liquidate right after investment.

(b) If ωα/(r − µ) ≤ pφ, the firm never invests and G(a) = 0, ∀a > 0.

As in standard real options models, Proposition 3 shows that, the value of the option

to invest is the product of two terms: The net present value of the project at the time of

investment, given by a∗F (0)− pI or a∗(ωα/(r − µ)− pφ)− pI, and the present value of $1

to be obtained at the time of investment, given by
(
a
a∗

)ξ
. When issuance costs are high, it

is either optimal to liquidate right after investment or to refrain from investing altogether.

Focusing on the more interesting case in which the costs of external finance are low,

one can note that when p = 1 and the firm cash flows are not subject to transitory shocks
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Table 2: Financing constraints and investment delay

Delay in investment % of the delay due to
Parameters due to financing constraints at-investment

(as % of a∗FB) constraints

1. σX = 0.12, λ = 0.02 8.0% 75.9%
2. σX = 0.15, λ = 0.03 9.6% 63.7%
3. σX = 0.09, λ = 0.01 6.8% 88.7%

Notes. Table 2 presents the quantitative effects of financing constraints on the investment threshold

and their decomposition. Input parameter values are given in Table 1.

(σX = 0), the optimal investment threshold becomes

a∗FB =
ξ

ξ − 1

I

F FB
, (53)

where F FB = V FB(a)
a

= α
r−µ . Equation (53) recovers the well-known investment threshold of

real options models (see e.g. Dixit and Pindyck (1994)). Except for two special cases (p = 1

and σX = 0 or p = 1 and φ = 0), F (0) is strictly lower than F FB, so that the investment

threshold of Proposition 3 is strictly higher than the standard real options threshold. Our

results are therefore very different from those in prior studies, such as Boyle and Guthrie

(2003), in which firms face financing constraints when seeking to invest in new projects.

In such models, potential future financing constraints feed back in current policy choices

and encourage early investment. Our analysis highlights another way by which financing

frictions can distort investment behavior: The threat of future cash shortfalls increases

future financing costs and reduces the value of the asset underlying the firm’s growth option,

thereby leading to late exercise of the investment opportunity.

More generally, financing frictions have two separate effects on the timing of investment in

our model. First, they increase the cost of investment, thereby delaying investment. Second,

they reduce the value of an active firm, further delaying investment. Table 2 shows how

these two effects vary with input parameter values. In our base case environment, Case 1 in
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the table, financing frictions increase the investment threshold by 8.0% and three quarters

of the delay in investment is due to financing frictions at the time of investment. As shown

by the table, a firm with a higher volatility of transitory cash flow shocks (σX = 0.15) and

higher costs of holding cash (λ = 0.03) optimally invests at yet a higher threshold relative the

first-best, with more than one third of the delay coming from the post-investment financing

frictions. A firm with a relatively low cash flow volatility and low costs of holding cash (Case

3 in the table) invests at a lower threshold, but still much above the first-best threshold. In

this case, the bulk of the delay is due to financing frictions at investment.

7 Conclusion

Our paper contributes to the literature on the effects of financing frictions on corporate poli-

cies. Previous studies have focused on the uncertainty of cash flows as one of the important

determinants of liquidity and risk management policies. We demonstrate that these policies

can be better understood as arising from two separate types of shocks: permanent and tran-

sitory shocks to cash flows. The main distinction between permanent and transitory shocks

is that permanent shocks affect not only a firm’s immediate productivity and cash flows but

also its future productivity and cash flows. By contrast, while transitory shocks affect imme-

diate cash flows, they are uninformative about future expected profitability. To illustrate the

differential effects of these two types of shocks on corporate policies, we construct a dynamic

model of a firm facing financing frictions and subject to transitory and permanent cash flow

shocks. Using this model, we show that combining permanent and transitory shocks helps

explain corporate behavior and produces several novel implications about the level of cash

savings and optimal financing and risk management policies.

In our model, both permanent and transitory cash flow shocks induce the firm to save.

Optimal cash savings decrease with the correlation between permanent and transitory shocks.

This correlation is also a key driver of the cash-flow sensitivity of cash, which can be positive

or negative. In addition, when firms access capital markets to raise funds, the size of equity

issues is not constant as in prior models, but reflects the level and dynamics of permanent

shocks. We also show that introducing permanent shocks in models with financing frictions
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leads to richer risk management policies, that depend on the nature of the cash flow shocks.

In particular, we show that if the firm’s risk and futures prices are positively correlated, then

hedging transitory shocks involves a short futures position while hedging permanent shocks

may require a long futures position. We also show that managing risk either by derivatives or

by directly selecting the riskiness of assets via asset substitution leads to the same outcome

if the risk is due to transitory shocks. However, derivatives and asset substitution are

not equivalent when managing permanent shocks. Lastly, because the correlation between

permanent and transitory cash flow shocks reduces firm risk, we also find that the firms that

benefit most from credit lines are those in which these shocks are negatively correlated.
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Appendix

A. Proof of Proposition 1

The proof goes through three steps. Step 1 shows that problem (7) can be re-written as a
one-dimensional control problem. Step two solves the variational system (18), (19), (22).
Step 3 shows that the solution to (18), (19), (22) coincides with the solution of the one-
dimensional control problem and derives the optimal dividend and issuance policies. To
avoid confusion, throughout the proof, V ∗ and F ∗ denote the value functions of the control
problems while V and F denote the solution to the variational systems.

Step 1. Let P̃ be the probability defined by(
dP
dP̃

)
|Ft

= Zt ≡ exp{−1

2
σ2
At+ σAW

P
t }, ∀ t ≥ 0, (A1)

on (Ω,F). By Girsanov’s Theorem, (W̃ P
t ,W

T
t )t≥0 with W̃ P

t = −σAt+W P
t , is a bi-dimensional

Brownian motion under the probability P̃. We have:

Proposition 4. The value function V ∗ of problem (7) satisfies

V ∗(a,m) = aF ∗
(m
a

)
. (A2)

The function F ∗ is defined on [0,∞) by

F ∗(c) = sup
((τn)n≥1,(en)n≥1,L)∈A

f(c; (τn)n≥1, (en)n≥1, L), (A3)

with

f(c; (τn)n≥1, (en)n≥1, L) = EP̃
c

[∫ τ0

0

e−(r−µ)t(dL̃t − dẼt) + e−(r−µ)τ0
ωα

r − µ

]
(A4)

and C0 = c with

dCt = (α + Ct(r − λ− µ)) dt+
√
σ2
AC

2
t − 2ρσXσACt + σ2

X dW
C
t +

dẼt
p
−dΦ̃t−dL̃t, (A5)

where WC = (WC
t )t≥0 is a standard Brownian motion under P̃,

Φ̃t =
∑
n≥1

φ11{τn≤t}, (A6)

Ẽt =
∑
n≥1

ẽn11{τn<t} with ẽn = enAτn , (A7)

L̃t =

∫ t

0

1

As
dLs (A8)
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and the liquidation time τ0 is defined by

τ0 = inf{t ≥ 0 |Ct = 0}. (A9)

Proof of Proposition 4. Applying Itô’s formula to
(
e−r(t∧τ0)Mt∧τ0

)
t≥0 and letting t go to

∞ yields

E
[∫ τ0

0

e−rt(dLt − dEt)
]

= m+E
[∫ τ0

0

e−rt(−λMt + αAt)dt

]
−E

[∫ τ0

0

e−rt(
p− 1

p
dEt + dΦt)

]
,

which we re-write under the form

1

a
E
[∫ τ0

0

e−rt(dLt − dEt)
]

=
m

a
+ E

[∫ τ0

0

e−(r−µ)tZt(−λ
Mt

At
+ α)dt

]
−E

[∫ τ0

0

e−(r−µ)tZt(
p− 1

p

dEt
At

+
dΦt

At
)

]
.

The change of probability measure (A1) yields

1

a
E
[∫ τ0

0

e−rt(dLt − dEt)
]

=
m

a
+ EP̃

[∫ τ0

0

e−(r−µ)t(−λMt

At
+ α)dt

]
−EP̃

[∫ τ0

0

e−(r−µ)t(
p− 1

p

dEt
At

+
dΦt

At
)

]
. (A10)

Then, applying Itô’s formula to (Mt

At
)t≥0 yields

M0

A0

=
m

a
, d

(
Mt

At

)
=

(
α +

Mt

At
(r − λ− µ)

)
dt+

(
σXρ−

Mt

At
σA

)
dW̃ P

t

+σX
√

1− ρ2dW T
t +

1

At

(
dEt
p
− dΦt − dLt

)
, (A11)

or equivalently,

M0

A0

=
m

a
, d

(
Mt

At

)
=

(
α +

Mt

At
(r − λ− µ)

)
dt+

√
σ2
A

(
Mt

At

)2

− 2ρσXσA
Mt

At
+ σ2

X dWC
t

+
1

At

(
dEt
p
− dLt

)
− dΦ̃t,

where (WC
t )t≥0 is a Brownian motion under P̃. Applying Itô’s formula to

(
e−r(t∧τ0)

Mt∧τ0
At∧τ0

)
t≥0

,

letting t go to ∞, and rearranging terms, we get

EP̃
[∫ τ0

0

e−(r−µ)t
1

At
(dLt − dEt)

]
=

m

a
+ EP̃

[∫ τ0

0

e−(r−µ)t
(
−λMt

At
+ α

)
dt

]
−EP̃

[∫ τ0

0

e−(r−µ)t
(
p− 1

p

dEt
At

+ dΦ̃t

)]
.
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Noting that E[e−rτ0 ωα
r−µAτ0 ] = aEP̃[ ωα

r−µe
−(r−µ)τ0 ], we deduce then from (A10)

E
[∫ τ0

0

e−rt(dLt − dEt) + e−rτ0
ωαAτ0
r − µ

]
= aEP̃

[∫ τ0

0

e−(r−µ)t
1

At
(dLt − dEt) + e−(r−µ)τ0

ωα

r − µ

]
.

To conclude the proof, note that problem

sup
((τn)n≥1,(en)n≥1,L)∈A

EP̃
[∫ τ0

0

e−(r−µ)t
1

At
(dLt − dEt) + e−(r−µ)τ0

ωα

r − µ

]
,

where the admissible policies (τn)n≥1, (en)n≥1, L are related by

C0 = c, dCt = (α + Ct(r − λ− µ)) dt+
√
σ2
AC

2
t − 2ρσXσACt + σ2

X dWC
t

+
1

At

(
dẼt
p
− dL̃t

)
− dΦt,

together with (A7), (A8) is equivalent to problem (A3)-(A8). �

The two next steps solve problem (A3). To this end, we solve first the variational system
(18), (19), (22) (step 2). Then, we show that its solution coincides with the solution of
problem (A3) (step 3).

Step 2 The following holds.

Proposition 5. There exists a unique solution (F, c∗) to the variational system (18), (19),
(22) that is concave and twice continuously differentiable over (0,∞).

The proof mimics the proof of Proposition A1 in Décamps, Mariotti, Rochet and Vil-
leneuve (DMRV) (2011). The arguments must be slightly adapted because, in the ordi-
nary differential equation (18), the drift (α + c(r − λ − µ)) can take negative values and
Σ(c) ≡ σ2

Ac
2 − 2ρσXσAc+ σ2

X is non-constant. For completness, we develop below the main
steps of the proof with a particular focus on the arguments that require a slight adaptation.
We refer to DMRV (2011) for more details.

Proof of Proposition 5: We start by considering the family of ordinary differential equa-
tions parametrized by c1 > 0,

−(r − µ)F (c) + (α + c(r − λ− µ))F ′(c) +
1

2
(σ2

Ac
2 − 2ρσXσAc+ σ2

X)F
′′
(c) = 0,

0 < c < c1; (A12)

F ′(c1) = 1; (A13)

F
′′
(c1) = 0. (A14)

Because ρ ∈ [−1, 1), Σ(c) ≡ σ2
Ac

2 − 2ρσXσAc + σ2
X > 0 and (A12)-(A14) admits a unique

solution Fc1 over [0, c1] for any c1 > 0. The next lemma establishes the monotonicity and
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concavity of Fc1 .

Lemma 1. The following holds:

(i) If 0 < λ ≤ r − µ then, for any c1 > 0, F ′c1 > 1 and F
′′
c1
< 0 over [0, c1).

(ii) If λ > r − µ then, for any 0 < c1 <
α

λ+µ−r , F ′c1 > 1 and F
′′
c1
< 0 over [0, c1).

Proof of Lemma 1: Differentiating (A12) yields 1
2
Σ(c1)F

′′′
c1

(c1)−λF ′c1(c1) = 0, which implies

F
′′′
c1

(c1) > 0 because λ > 0. Since F ′′c1(c1) = 0 and F ′c1(c1) = 1, it follows that F ′′c1 < 0 and thus
F ′c1 > 1 over some interval (c1 − ε, c1) where ε > 0. Now, suppose by way of contradiction
that F ′c1(c) ≤ 1 for some c ∈ [0, c1 − ε], and let c̃ = sup{c ∈ [0, c1 − ε] | F ′c1(c) ≤ 1} < c1.
Then, F ′c1(c̃) = 1 and F ′c1 > 1 over (c̃, c1), so that Fc1(c1)− Fc1(c) > c1 − c for all c ∈ (c̃, c1).

Since Fc1(c1) = α
r−µ + r−λ−µ

r−µ c1, this implies that for any such c,

F ′′c1(c) =
2

Σ(c)

{
(r − µ)Fc1(c)− (α + c(r − λ− µ))F ′c1(c)

}
<

2

Σ(c)
{(r − µ)(c− c1 + Fc1(c1))− (α + (r − λ− µ)c)} (A15)

=
2

Σ(c)
λ(c− c1)

< 0. (A16)

To get (A15), remark that, by assumption, in each case (i) and (ii), we have α+(r−λ−µ)c > 0
for any c ∈ (c̃, c1). To conclude, note that (A16) contradicts the fact that F ′c1(c̃) = F ′c1(c1) =
1. Therefore F ′c1 > 1 over [0, c1), from which it follows that F ′′c1 < 0 over [0, c1). �

If there exists a solution F to (18), (19), (22) that is twice continuously differentiable over
(0,∞), then, by construction, F must coincide over [0, c1] with some Fc1 , for an appropraite
choice of c1. This choice is dictated by the boundary condition (22) that F must satisfy at
zero. The next lemma studies the behavior of Fc1 and F ′c1 at zero as c1 varies.

Lemma 2. In each of the two cases of Lemma 1, Fc1(0) is a strictly decreasing and concave
function of c1, whereas F ′c1(0) is a strictly increasing and convex function of c1.

Proof of Lemma 2: consider H0 and H1 the solutions to ODE

−(r − µ)H(c) + (α + c(r − λ− µ))H ′(c) +
1

2
(σ2

Ac
2 − 2ρσXσAc+ σ2

X)H
′′
(c) = 0

over [0,∞) characterized by the initial conditions H0(0) = 1, H ′0(0) = 0, H1(0) = 0, and
H ′1(0) = 1. H ′0 and H ′1 are strictly positive over (0,∞). The Wronskian WH0H1 ≡ H0H

′
1 −

H1H
′
0 of H0 and H1 satisfies WH0H1(0) = 1 and

W ′
H0H1

(c) = − 2

Σ2(c)
(α + c(r − λ− µ))WH0H1 ,
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so that WH0H1 > 0 which implies that for each c1 > 0, Fc1 = Fc1(0)H0 +F ′c1(0)H1 over [0, c1].

Using the boundary condition Fc1(c1) = α+c1(r−λ−µ)
r−µ and F ′c1(c1) = 1, we obtain that

dFc1(0)

dc1
= − 1

WH0H1(c1)

λ

r − µ
H ′1(c1) < 0,

d2Fc1(0)

d2c1
= − 1

WH0H1(c1)

2λ

Σ(c1)
H1(c1) < 0,

and

dF ′c1(0)

dc1
=

1

WH0H1(c1)

λ

r − µ
H ′0(c1) > 0,

d2F ′c1(0)

d2c1
=

1

WH0H1(c1)

2λ

Σ(c1)
H0(c1) > 0.

�
Since limc1↓0 Fc1(0) = α

r−µ > ωα
r−µ and limc1↓0 F

′
c1

(0) = 1 < p, it follows from Lemma 2

that there exists a unique ĉ1 > 0 such that Fĉ1(0) = ωα
r−µ , and that there exists a unique

c̃1 > 0 such that F ′c̃1(0) = p. Note that:

1. ĉ1 satisfies ĉ1 <
α
λ
(1−ω). Indeed, the concavity property implies Fc1(0) < Fc1(c1)− c1.

A computation yields Fc1(c1) − c1 ≤ ωα
r−µ iff c1 ≥ α

λ
(1 − ω), (in the case λ > r − µ,

we have α
λ
(1 − ω) < α

λ+µ−r , and thus the assumption of assertion (ii) of lemma 1 is

satisfied).

2. ĉ1 > c̃1 if and only if F ′ĉ1(0) > p. Furthermore, Lemma 1 along with the fact that
F ′c1(c1) = 1 implies that if c1 ≥ c̃1, there exists a unique cp(c1) ∈ [0, c1) such that
F ′c1(cp(c1)) = p. This corresponds to the unique maximum over [0,∞) in case (i) of
Lemma 1, (resp. over [0, c1) in case (ii) of Lemma 1) of the function c 7→ Fc1(c)−p(c+φ).
By construction, we have that cp(c̃1) = 0.

The remaining of the proof of Proposition 5 coincides with the proof of Proposition A1 in
DMRV (2011). This leads to the two cases:

1. If F ′ĉ1(0) ≤ p, then (F, c∗) = (Fĉ1 , ĉ1) solves the variational system (18), (19), (22).
Note that by construction F (0) = ωα

r−µ . We will say that issuance costs are high.

2. If F ′ĉ1(0) > p, then there exists a unique c′1 ∈ (c̃1, ĉ1) such that Fc′1(0) = Fc′1(cp(c
′
1)) −

p(cp(c
′
1) + φ). The pair (F, c∗) = (Fc′1 , c

′
1) solves the variational system (18), (19), (22).

Lemma 2 along with c′1 < ĉ1 implies that F (0) > ωα
r−µ . Furthermore, as c′1 > c̃1, the

function c 7→ F (c)− p(c + φ) reaches its maximum over [0,∞) at c̄ ≡ cp(c
′
1). We will

say that issuance costs are low.

�
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Step 3 We now show that the functions F ∗ and F coincide. The next Lemma states
that F is an upper bound for F ∗

Lemma 3. For any admissible policy ((τn)n≥1, (en)n≥1, L), the solution F to (18), (19), (22)
satisfies

F (c) ≥ f(c; (τn)n≥1, (en)n≥1, L); c > 0.

The proof of Lemma 3 is standard and follows from Lemma A4 in DMRV (2011). To
prove that F = F ∗, it thus remains to construct an admissible policy, the value of which
coincides with the function F . To this end, we consider the scaled cash reserve process C∗

defined as the solution to the Skorokhod problem

C∗t = m+

∫ t

0

(α + C∗s (r − λ− µ)) ds+
√
σ2
AC
∗2
s − 2ρσXσAC∗s + σ2

X dW
C
s

+
∑
n≥1

c1{τ∗n≤t} − L
∗
t , (A17)

C∗t ≤ c∗, (A18)

L∗t =

∫ t

0

1{C∗s=c∗} dL
∗
s, (A19)

where the sequence of stopping times (τ ∗n)n≥1 is recursively defined by

τ ∗0 ≡ 0, τ ∗n ≡ inf {t > τ ∗n−1 |C∗t− = 0 and C∗t = c̄ > 0}; n ≥ 1, (A20)

with inf ∅ ≡ ∞ by convention. Standard results on the Skorokhod problem imply that there
exists a unique solution (C∗, L∗) to (A17)-(A20). Condition (A19) requires that cumulative
scaled dividends increase only when the scaled cash reserves reach the boundary c∗. Condi-
tions (A17)–(A18) show that this causes the scaled cash reserves to be reflected back at c∗.
Two cases can arise. If issuance costs are high, c̄ = 0 and the project is liquidated as soon
as C∗ drops to zero, so that τ ∗0 = inf {t ≥ 0 |C∗t− = 0} < ∞, P̃–almost surely. If issuance
costs are low, then c̄ = cp(c

∗) > 0, and the process C∗ discontinuously jumps to c̄ each time
it drops down to zero, so that τ ∗0 =∞, P̃–almost surely. This corresponds to a situation in
which, for any n ≥ 1, e∗ = F ∗(c̄)− F ∗(0) = p(c̄+ φ). Drawing on DMRV (2011), we obtain

Proposition 6. The value function F ∗ for problem (A3) coincides with the function F
solution to (18), (19), (22) that is twice continuously differentiable over (0,∞). The optimal
issuance and dividend policies are given by ((τ ∗n)n≥1, (e

∗
n)n≥1, L

∗), where

τ ∗n =∞, i∗n = 0; n ≥ 1

if issuance costs are high, and

τ ∗n = inf{t > τn−1 |C∗t− = 0}, e∗n = p(c̄+ φ); n ≥ 1

if issuance costs are low.

Finally, Proposition 6 together with Proposition 4 leads to Proposition 1.
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B. Comparative statics

To make the dependence of F , c, and c∗ on θ explicit, we write F = F (., θ), c = c(θ), and
c∗ = c∗(θ). Proposition 7 below and its corollaries establish Proposition 2.

Proposition 7. Let θ be one of the deep parameters of the model.

1. If issuance costs are high (liquidation case), then firm value satisfies

∂F

∂θ
(c, θ) = Ec

[∫ τ0

0

e−(r−µ)t
(
−∂[r − µ]

∂θ
F (C∗t , θ) +

∂[α + (r − λ− µ)C∗t ]

∂θ

∂F

∂c
(C∗t , θ)

+
1

2

∂[σ2
AC
∗2
t − 2ρσAσXC

∗
t + σ2

X ]

∂θ

∂2F

∂c2
(C∗t , θ)

)
dt+ e−(r−µ)τ

∂[ωα/(r − µ)]

∂θ

]
.

2. If issuance costs are low (refinancing case), then firm value satisfies

∂F

∂θ
(c, θ) = Ec

[∫ ∞
0

e−(r−µ)t
(
−∂[r − µ]

∂θ
F (C∗t−) +

∂[α + (r − λ− µ)C∗t− ]

∂θ

∂F

∂c
(C∗t− , θ)

+
1

2

∂[σ2
AC
∗2
t− − 2ρσAσXC

∗
t− + σ2

X ]

∂θ

∂2F

∂c2
(C∗t− , θ)

)
dt

−
(
∂F

∂θ
(c(θ), θ)− ∂F

∂θ
(0, θ)

)∑
n≥1

e−rτ
∗
n

]
.

3. In both the liquidation and refinancing cases, the target level of cash holdings satisfies

dc∗(θ)

dθ
= −r − µ

λ

(
∂F

∂θ
(c∗(θ), θ) + c∗(θ)

∂[ λ
r−µ ]

∂θ
−
∂[ α

r−µ ]

∂θ

)
. (A21)

Using Proposition 7, we can measure the effects of the model parameters on the (scaled)
value of an active firm and the target level of liquid reserves.

Proof of Proposition 7: We prove case 2 (refinancing case). The proof of case 1 is similar.
Applying Itô’s lemma, we get

e−(r−µ)T
∂F

∂θ
(C∗T , θ) =

∂F

∂θ
(c, θ) +

∫ T

0

e−(r−µ)t
[
−(r − µ)

∂F

∂θ
(C∗t− , θ) + L∂F

∂θ
(C∗t− , θ)

]
dt

+

∫ T

0

e−(r−µ)t
∂2F

∂c∂θ
(C∗t− , θ)((σXρ− C∗t−σA)dW̃ P

t + σX
√

1− ρ2dW T
t )

−
∫ T

0

e−(r−µ)t
∂2F

∂c∂θ
(C∗t− , θ)dL

∗
t

+
∑
t∈[0,T ]

e−(r−µ)t
(
∂F

∂θ
(C∗t , θ)−

∂F

∂θ
(C∗t− , θ)

)
(A22)
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for all T ≥ 0 and where the operator L is defined by

Lu(c) = (α + c(r − λ− µ))u′(c) +
1

2
(σ2

P c
2 − 2ρσAσXc+ σ2

X)u′′(c).

Let us consider each term of the right hand side of (A22). We deduce from (18) that the
first term of the right hand side (RHS) of (A22) satisfies

−(r − µ)
∂F

∂θ
(C∗t− , θ) + L∂F

∂θ
(C∗t− , θ)

= −(r − µ)
∂F

∂θ
(C∗t− , θ) + (α + C∗t−(r − λ− µ))

∂2F

∂θ∂c
(C∗t− , θ)

+
1

2
(σ2

AC
∗2
t− − 2ρσAσTC

∗
t− + σ2

X)
∂3F

∂θ∂c2
(C∗t− , θ)

=
∂[r − µ]

∂θ
F (C∗t− , θ)−

∂[α + C∗t−(r − λ− µ)]

∂θ

∂F

∂c
(C∗t− , θ)

−1

2

∂[σ2
AC
∗2
t− − 2ρσAσXC

∗
t− + σ2

X ]

∂θ

∂2F

∂c2
(C∗t− , θ).

Because ∂2F
∂c∂θ

(., θ) is bounded over (0, c∗(θ)], the third term of the RHS of (A22) is a
square integrable martingale. The fourth term is identically zero. Indeed, differentiat-
ing ∂F

∂c
(c∗(θ), θ) = 1 with respect to θ and using the fact that ∂F 2

∂c2
(c∗(θ), θ) = 0 yields

∂F 2

∂c∂θ
(c∗(θ), θ) = 0 which, together with (A19) implies the result. Lastly, because C∗ has

paths that are continuous except at the issuance dates (τ ∗n)n≥0, one has∑
t∈[0,T ]

e−(r−µ)t
(
∂F

∂θ
(C∗t , θ)−

∂F

∂θ
(C∗t− , θ)

)
=

(
∂F

∂θ
(c(θ), θ)− ∂F

∂θ
(0, θ)

)∑
n≥1

e−rτ
∗
n11τ∗n≤T .

Taking expectations in (A22) yields

∂F

∂θ
(c, θ) = Ec

[∫ T

0

e−(r−µ)t(−∂[r − µ]

∂θ
F (C∗t− , θ) +

∂[α + C∗t−(r − λ− µ)]

∂θ

∂F

∂c
(C∗t− , θ)

+
1

2

∂[σ2
AC
∗2
t− − 2ρσAσXC

∗
t− + σ2

X ]

∂θ

∂2F

∂c2
(C∗t− , θ)) dt

]
−
(
∂F

∂θ
(c(θ), θ)− ∂F

∂θ
(0, θ)

)∑
n≥1

e−rτ
∗
n + E

[
e−(r−µ)T

∂F

∂θ
(C∗T , θ)

]
.

To conclude, we show that limT→∞ E
[
e−(r−µ)T ∂F

∂θ
(C∗T , θ)

]
= 0. Because, ∂2F

∂c∂θ
(., θ) is bounded

over (0, c∗(θ)], we have

e−(r−µ)T
∂F

∂θ
(C∗T , θ) ≤ e−(r−µ)TK(1 + C∗T ) ≤ e−(r−µ)TK(1 + c∗(θ))

for all T , where K is a positive constant, and the third inequality follows from the fact that
C∗T ≤ c∗(θ) P almost surely, thus the result.
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Differentiating equation (24) of the main text with respect to θ yields (A21). �

B.1. Comparative statics: parameters σX, σA, ρ

Proposition 7 yields:

Corollary 1. For any p > 1 and φ > 0, for any c ∈ (0, c∗),

∂F

∂σX
(c, σX) = Ec

[∫ τ0

0

e−(r−µ)t (−ρσAC∗t− + σX)
∂2F

∂c2
(C∗t− , σX)dt

]
, (A23)

∂F

∂σA
(c, σA) = Ec

[∫ τ0

0

e−(r−µ)t (σAC
∗
t− − ρσX)C∗t−

∂2F

∂c2
(C∗t− , σA)dt

]
, (A24)

∂F

∂ρ
(c, ρ) = Ec

[∫ τ0

0

e−(r−µ)t (−σAσX)C∗t−
∂2F

∂c2
(C∗t− , ρ)dt

]
> 0, (A25)

and

dc∗(θ)

dθ
= −r − µ

λ

∂F

∂θ
(c∗(θ), θ) for θ ∈ {σX , σA, ρ}. (A26)

Equations (A23)-(A26) hold in the liquidation case and the refinancing case.

Proof of Corollary 1. We recall that, in the refinancing case τ0 = ∞ a.e. The proof
follows directly from Proposition 7. It remains simply to remark that, for θ ∈ {σX , σA, ρ},
we have

∂F

∂θ
(c(θ), θ)− ∂F

∂θ
(0, θ) = 0. (A27)

Equation (A27) results from differentiating F (0, θ) = F (c̄(θ), θ) − p(c̄(θ) + φ) with respect
to θ and using the fact that ∂F

∂c
(c̄(θ), θ) = p. �

B.2. Comparative statics: parameters p, φ

Corollary 2. The following holds (refinancing case):

1.

∂F

∂p
(c, p) = −(c̄(p) + φ)Ec

[∑
n≥1

e−rτ
∗
n

]
< 0,

dc∗(p)

dp
= −r − µ

λ

∂F

∂p
(c∗(p), p) > 0.

2.
∂F

∂φ
(c, φ) = −p

∑
n≥1

Ec
[
e−rτ

∗
n
]
< 0,

dc∗(φ)

dφ
= −r − µ

λ

∂F

∂φ
(c∗(φ), φ) > 0.

Proof of Corollary 2. Direct implication of Proposition 7. �
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B.3. Comparative statics: parameters α, µ

Corollary 3. The following holds, in the refinancing case, for all c ∈ [0, c∗):

1.

∂F

∂α
(c, α) = Ec

[∫ ∞
0

e−(r−µ)t
∂F

∂c
(C∗t− , α) dt

]
> 0,

dc∗(α)

dα
= −r − µ

λ

(
∂F

∂α
(c∗(α), α)− 1

r − µ

)
< 0.

2.

∂F

∂µ
(c, µ) = Ec

[∫ ∞
0

e−(r−µ)t
(
F (C∗t− , µ)− C∗t−

∂F

∂c
(C∗t− , µ)

)
dt

]
> 0,

dc∗(µ)

dµ
= −r − µ

λ

(
∂F

∂µ
(c∗(µ), µ)− λ

(r − µ)2
(
α

λ
− c∗(µ))

)
> 0.

Proof of Corollary 3. Note that equation (A27) holds for θ ∈ {α, µ}. Then formulas for
∂F
∂θ

(c, θ) and dc∗(θ)
dθ

with θ ∈ {α, µ} follow from Proposition 7. Let us recall that ∂F
∂c

(c, θ) > 1
over [0, c∗) and C∗t ≤ c∗ P almost surely. Thus, ∂F

∂α
(c, α) > 0 and, for c ∈ [0, c∗), we have

∂F

∂α
(c, α) = Ec

[∫ ∞
0

e−(r−µ)t
∂F

∂c
(C∗t− , α) dt

]
> E

[∫ ∞
0

e−(r−µ)t dt

]
=

1

r − µ
,

which implies dc∗(α)
dα

< 0. Together with the concavity of F with respect to c, it follows also
that, for all c ∈ [0, c∗),

F (c, µ)− c∂F
∂c

(c, µ) > F (c, µ)− c > 0,

which leads to ∂F
∂µ

(c, µ) > 0. Noting that c −→ F (c, µ)− c∂F
∂c

(c, µ) is increasing over [0, c∗],
we get

∂F

∂µ
(c, µ) = Ec

[∫ ∞
0

e−(r−µ)t
(
F (C∗t− , µ)− C∗t−

∂F

∂c
(C∗t− , µ)

)
dt

]
< E

[∫ ∞
0

e−(r−µ)t (F (c∗, µ)− c∗)) dt
]

= E
[∫ ∞

0

e−(r−µ)t
(

α

r − µ
+ (1− λ

r − µ
)c∗ − c∗)

)
dt

]
=

λ

(r − µ)2
(
α

λ
− c∗),

which implies that dc∗(µ)
dµ

> 0. �.
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Corollary 4. The following holds, in the liquidation case, for all c ∈ [0, c∗):

1.

∂F

∂α
(c, α) = Ec

[∫ τ0

0

e−(r−µ)t
∂F

∂c
(C∗t , α) dt

]
+ Ec

[
e−(r−µ)τ0

ω

r − µ

]
> 0.

The sign of
dc∗(α)

dα
is indeterminate.

2.

∂F

∂µ
(c, µ) = Ec

[∫ τ0

0

e−(r−µ)t
(
F (C∗t− , µ)− C∗t−

∂F

∂c
(C∗t− , µ)

)
dt

]
+Ec

[
e−(r−µ)τ0

ωα

(r − µ)2

]
> 0.

The sign of
dc∗(µ)

dµ
is indeterminate.

Proof of Corollary 4. Direct application of Proposition 7. �

C. Proof of Proposition 3

Note that,

sup
m0≥0,τ∈T

E
[
e−rτ (V (Aτ ,m0)− p(m0 + I)− pφAτ )

]
(A28)

= sup
τ∈T

E
[

max
m0≥0

E
[
e−rτ (V (Aτ ,m0)− p(m0 + I)− pφAτ )|Fτ

]]
.

If issuance costs are low, then F (0) = maxc∈[0,∞)(F (c)−p(c+φ)) = F (c̄)−p(c̄+φ) > ωα
r−µ

and the mapping m −→ V (At,m) − p(m + I) − pφAt reaches its maximum at m0 = c̄At.
Thus, (A28) can be written in the form

sup
τ∈T

E
[
e−rτ (V (Aτ , c̄Aτ )− p(c̄Aτ + I)− pφAτ )

]
= sup

τ∈T
E
[
e−rτ (F (c̄)− p(c̄+ φ))Aτ − pI)

]
= sup

τ∈T
E
[
e−rτ (F (0)Aτ − pI)

]
.

Standard computations yield the result.

If issuance costs are high, then F (0) = ωα
r−µ and the mapping m −→ V (At,m) − p(m +

I) − pφAt is decreasing. Thus, no cash is raised at the time of investment (in addition to
the investment cost I) and (A28) can be written in the form

sup
τ∈T

E
[
e−rτ (V (Aτ , 0)− pI − pφAτ )

]
= sup

τ∈T
E
[
e−rτ (F (0)− pφ)Aτ − pI)

]
.

If F (0) > pφ, then standard computations leads to (51). Clearly, if F (0) ≤ pφ, the option
value to invest is worthless �
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