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1. Introduction

Double auctions are among the most prevalent forms of economic transactions. They

also occupy a central place in economic theory, as the microfoundation of the idea of the

market in standard microeconomics.

Despite their importance, double auction markets are not easy to organize or analyze.

Most common mechanisms quote a price that equates supply and demand and let the

objects change hands at that price, but such mechanisms are not always incentive com-

patible. That is, participants sometimes have incentives to misreport their preferences.

The resulting misreporting can lead to inefficiency of equilibrium outcomes. The prob-

lem becomes even more difficult once we allow for traders with interdependent values or

multi-unit demand or supply, and yet these are common features for many double auction

environments.

The goal of our paper is to study whether desirable properties are mutually compatible

in double auction markets with interdependent values and multi-unit demand and supply.

To address this question, we construct a mechanism that, with an arbitrary number

of buyers and sellers, satisfies ex post incentive compatibility and ex post individual

rationality. These properties make truth-telling and voluntary participation an ex post

equilibrium under this mechanism. Moreover, we show that the mechanism never runs

deficit,1 and has the property that the number of objects sold by the sellers coincides with

the number of objects bought by the buyers.

As is the case for other mechanisms studied in the literature, our mechanisms are not

fully efficient. In fact, the celebrated impossibility result by Myerson and Satterthwaite

(1983) implies that it is impossible to achieve all those properties even under private

values and single-unit demand and supply. However, we establish asymptotic efficiency

of our mechanism. That is, our second main result shows that the trade outcome in the

mechanism converges to the efficient level as in a competitive equilibrium under certain

additional conditions, as the number of buyers and sellers go to infinity. This result

suggests that the outcome of our mechanism is close to a fully efficient, first-best outcome,

at least in large economies. In all, our analysis shows that incentive compatibility and

other desirable properties can be achieved while achieving asymptotic efficiency as well.

1While our mechanism can run surplus, it is easy to modify the mechanism to satisfy exact ex post

budget balance. See footnote 18 for detail.
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Our positive result is obtained by constructing a new class of double auction mecha-

nisms, which we call the groupwise-price double-auction mechanisms (or simply, groupwise-

price mechanisms). A groupwise-price mechanism divides the entire market into a num-

ber of submarkets. Each submarket is composed of a subset of buyers and sellers, and all

trades happen between buyers and sellers in the same submarket. For each submarket, we

set a reference price for that submarket which is independent of reported types of agents

in that submarket. Agents in the submarket trade based on the reference price, although

not necessarily at it.2 We show that these mechanisms satisfy all the aforementioned

desiderata such as ex post incentive compatibility and asymptotic efficiency.

Related Literature. Few existing studies have offered a double auction mechanism that

is ex post incentive compatible and asymptotically efficient. McAfee (1992) is an impor-

tant exception, who makes a seminal contribution to this problem. He considers buyers

and sellers with private values and single-unit supply and demand. In that setting, he

proposes a mechanism that is dominant-strategy incentive compatible (which is equiva-

lent to ex post incentive compatibility with private values) and asymptotically efficient.

Our marginal contribution over McAfee (1992) is that we allow for interdependent values

and multi-unit demand and supply. Both features are important for most double auction

markets in practice. McAfee’s mechanism handles neither of these features, and thus our

mechanism is based on a different idea. In fact, even in the case with private values and

single-unit demand and supply, our mechanism does not reduce to McAfee’s.

Independently from our study, an ongoing work by Loertscher and Mezzetti (2014)

considers an extension of McAfee (1992) to an environment with multi-unit demand and

supply. In a private-values environment, they present a dominant-strategy incentive com-

patible mechanism and its simple “clock” implementation. A main advantage of our paper

compared to theirs is that we allow for interdependent values. On the other hand, they

allow for multi-dimensional types while we only allow for one-dimensional types (see the

next paragraph for difficulties with multi-dimensional interdependent values known in the

literature).

Our paper is part of the literature of mechanism design with interdependent valuations,

where many existing studies have found impossibility results. For example, Jehiel and

Moldovanu (2001) and Jehiel et al. (2006) demonstrate the difficulties associated with

interdependent values and multidimensional signals under the transferable utility setup.

2The specific manner that the trading price is determined is important for incentive compatibility.

We will defer detail to the main body of the paper, because it is rather complicated and needs formal

definitions in order to describe it precisely.
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Che, Kim and Kojima (2015) show that, even with single-dimensional signals, similar

impossibility results are obtained in a non-transferable utility setup. In our paper, we

circumvent those impossibility results by considering an environment where each agent’s

signal is summarized by a one-dimensional statistic with the standard single-crossing

condition (Maskin, 1992; Dasgupta and Maskin, 2000), and the agents have quasi-linear

utilities.3

Our work was partly inspired by a recent work by Hashimoto (2013).4 In an object allo-

cation setting, he offers a general procedure to modify a given mechanism into an ex post

incentive compatible one, while approximating the original mechanism in large markets.

He applies his technique to construct a mechanism that is ex post incentive compatible

and asymptotically efficient. While inspired by his work, our result is independent of

his. The main difference is that his method presumes that no individual initially owns

an object, such as in (one-sided) auction environments. As such, his mechanism does

not necessarily guarantee individual rationality if applied to double auction, although

individual rationality is crucial in the double auction environment.5

Our groupwise-price mechanism defines prices for a subset of agents independently of

their own reports, thereby preventing some obvious price-manipulation incentives. Similar

ideas are used in several earlier contributions, such as Cordoba and Hammond (1998) and

Kovalenkov (2002) for exchange economies, Segal (2003) for optimal pricing, and Baliga

and Vohra (2003) for double auction markets.6 However, as opposed to their private-value

settings, with interdependent values, using groupwise prices does not immediately imply

that truth-telling is ex post incentive compatible. One issue is that, because an agent’s

signal can affect the other agents’ demands or supplies, even if she cannot affect her price

directly, she may have an incentive to manipulate her report to affect the quantities of

3Under these assumptions, Maskin (1992), Dasgupta and Maskin (2000), and Perry and Reny (2002)

show that exact efficiency can be achieved. However, note that they study one-sided auction, and the

results do not extend to our double auction setting. In fact, as mentioned below, exact efficiency is not

achievable.
4Azevedo and Budish (2012) provide mechanisms that are approximately, but not exactly, incentive

compatible. The main goal of the current study is different in that we obtain an exactly incentive

compatible mechanism, but the basic motivation is similar.
5Another paper related to ours is Matsushima (2008). Although he considers double auction with

interdependent values like us, his mechanism does not satisfy individual rationality because some agents

earn negative payoffs with a small, but positive, probability.
6The basic idea of defining personalized or groupwise prices appears to be well-known, and the authors

have been unable to locate the first to propose it. Jackson and Manelli (1997) call this type of mechanisms

“folk” mechanisms.
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trade.7 We overcome this issue by designing a mechanism such that an agent’s report

does not affect the demand or supply of the other agents in the same group. Because of

these features, our mechanism cannot use the agents’ information in a fully efficient way,

which necessitates extra care for showing asymptotic efficiency.

Our paper is part of the extensive literature on double auctions. Existing studies have

shown that behavior under Bayesian equilibria converges to truth-telling as the number

of traders increases (and the outcome achieves asymptotic, though not exact, efficiency)

in a broad class of double auction mechanisms. Important contributions in this tradition

include Gresik and Satterthwaite (1989), Rustichini, Satterthwaite and Williams (1994),

Fudenberg, Mobius and Szeidl (2007), and Cripps and Swinkels (2006) for the private

values case, and Reny and Perry (2006) for the interdependent values case.8 The main

difference between this line of research and ours is that these papers study Bayesian

equilibrium behavior of the participants in mechanisms that are not necessarily ex post

incentive compatible. Our motivation is to design a mechanism that is ex post incentive

compatible, which makes truthtelling a best response irrespective of the participants’

beliefs about others’ signals. As such, we believe that our paper complements the existing

studies of double auctions.

More broadly, our asymptotic analysis can be situated in a long tradition of economic

theory on large-market properties of mechanisms. In large exchange economies, Roberts

and Postlewaite (1976) demonstrate that the Walrasian mechanism is difficult to manipu-

late under some conditions. Jackson (1992), Jackson and Manelli (1997), and Andreyanov

and Sadzik (2016) investigate exchange economies from asymptotic perspectives as well.

More recently, Roth and Peranson (1999), Immorlica and Mahdian (2005), Kojima and

Pathak (2009), Lee (2011), and Ashlagi, Kanoria and Leshno (2013) show that the de-

ferred acceptance algorithm due to Gale and Shapley (1962) becomes increasingly hard

to manipulate in large markets. In the object allocation setting without transfers, as-

ymptotic incentive compatibility and asymptotic efficiency of various mechanisms have

been established by Kojima and Manea (2010), Che and Kojima (2010), Liu and Pycia

(2011), and Azevedo and Budish (2012). Our paper identifies another case in which both

incentive compatibility and efficiency become achievable in large economies, reinforcing

the insights from these existing studies.

7To satisfy the feasibility constraint, we use a rationing rule (through an auction mechanism of Ausubel

(1999)). Hence, manipulation of quantities by an agent (without affecting prices) is a relevant concern.
8See also Kazumori (2013) who shows that, under interdependent values, every trembling hand perfect

equilibrium asymptotically approximates ex post price taking behavior.
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2. Model

There are a set of buyers B and a set of sellers S. Let nB ∈ N be the number of buyers,

and nS ∈ N be the number of sellers. There is one type of indivisible object, as well as

divisible money.

Each agent can buy or sell at most m ∈ N units of the object. Each agent i ∈ B ∪ S

is endowed with a signal, which we refer to as her type, ti ∈ [0, 1]. Type ti is agent

i’s private information. Let t = (ti)i∈B∪S denote the profile of types. Given type profile

t, each agent i’s value profile is (vℓi (t))
m
ℓ=1. For each buyer b and index ℓ ∈ {1, . . . , m},

vℓb(t) ∈ [0, 1] is b’s valuation for the ℓ-th unit of the object. For each seller s and each

ℓ ∈ {1, . . . , m}, vℓs(t) ∈ [0, 1] is the cost of giving up the ℓ-th unit of the object for seller

s. We assume that each agent has a quasi-linear utility function. More precisely, for each

buyer b, her payoff from consuming ℓ ∈ {1, . . . , m} units of the object and paying money

τ ∈ R is given by

ℓ
∑

ℓ′=1

vℓ
′

b (t)− τ.

For each seller s, her payoff from giving up ℓ ∈ {1, . . . , m} units of the object and receiving

money τ ∈ R is given by

τ −
ℓ
∑

ℓ′=1

vℓ
′

s (t).

For each i and ℓ, we assume that vℓi (·) is continuous, non-decreasing in each argument,

and strictly increasing in ti. For each ℓ, we assume vℓb(t) > vℓ+1
b (t) for all b ∈ B and

vℓs(t) < vℓ+1
s (t) for all s ∈ S. That is, buyers have diminishing marginal utility and

sellers have increasing marginal cost. We also impose a single-crossing condition. More

specifically, for each i, j ∈ S ∪B, ℓ, ℓ′ ∈ {1, . . . , m}, and t = (ti, t−i), if v
ℓ
i (t) ≥ vℓ

′

j (t), then

for any t′i > ti, v
ℓ
i (t

′
i, t−i) > vℓ

′

j (t
′
i, t−i). For normalization, we assume that the highest

possible valuation is 1 and the lowest possible valuation is 0 (across buyers and sellers,

and across units of the object).

2.1. Mechanisms and Desirable Properties. A (double auction) mechanism is a

pair of functions ϕ = (ζ, τ) from the set of type profiles to the sets of object allocations

and transfers. More specifically, for each type profile t = (ti)i∈S∪B and agent i ∈ B ∪ S,

ζi(t) ∈ {1, . . . , m} is the number of objects that i trades (so, ζi(t) is the number of objects

received if i is a buyer and the number of objects sold if i is a seller), and τi(t) is the

transfer for i (so, τi(t) is the money that i pays if i is a buyer, and the payment that i

receives if i is a seller).
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In the remainder of this section, we introduce desirable properties of mechanisms. The

main goal of our study is to construct a mechanism that satisfies these properties, which

we will do in the rest of the paper.

First, we introduce our central incentive compatibility concept. A mechanism ϕ = (ζ, τ)

is ex post incentive compatible if, for each t, we have

ζb(t)
∑

ℓ=1

vℓb(t)− τb(t) ≥

ζb(t̃b,t−b)
∑

ℓ=1

vℓb(t)− τb(t̃b, t−b), for each b ∈ B and t̃b ∈ [0, 1], and

τs(t)−

ζs(t)
∑

ℓ=1

vℓs(t) ≥ τs(t̃s, t−s)−

ζs(t̃s ,t−s)
∑

ℓ=1

vℓs(t), for each s ∈ S and t̃s ∈ [0, 1].

This condition requires that, given that every other agent reports her true type, reporting

the true type is a best response even in the ex post sense, i.e., it is a best response

even after all true types are revealed to the agent. This property provides certain robust

incentives to report true types (see Bergemann and Morris (2005) for instance).9

A mechanism ϕ = (ζ, τ) is ex post individually rational (or individually rational

for short) if, for each t, we have

ζb(t)
∑

ℓ=1

vℓb(t)− τb(t) ≥ 0 for each b ∈ B, and

τs(t)−

ζs(t)
∑

ℓ=1

vℓs(t) ≥ 0 for each s ∈ S.

This is a standard condition in the literature and important for voluntary participation.

A mechanism ϕ = (ζ, τ) is feasible if, for each t, we have
∑

b∈B

ζb(t) ≤
∑

s∈S

ζs(t).

This condition requires that the number of the objects that are sold is weakly larger than

the number of the objects that are bought. This ensures that the trade is feasible, as the

set of the objects sold by the sellers offers enough supply to satisfy the demand by the

buyers who are prescribed to buy the objects.

A mechanism ϕ = (ζ, τ) is non-wasteful if, for each t, we have
∑

b∈B

ζb(t) ≥
∑

s∈S

ζs(t).

This condition requires that the mechanism never wastes an object by buying up objects

from sellers while not assigning all of these objects to buyers.

9See also Wilson (1987).
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A mechanism ϕ = (ζ, τ) runs no ex post budget deficit (or no budget deficit for

short) if, for each t, we have

∑

b∈B

τb(t) ≥
∑

s∈S

τs(t).

This condition ensures that the auction organizer never runs deficit. We regard this

condition as important for the sustainability of a mechanism.

A stronger condition than no budget deficit is of some interest. A mechanism ϕ = (ζ, τ)

is ex post budget-balanced (or budget-balanced for short) if, for each t, we have

∑

b∈B

τb(t) =
∑

s∈S

τs(t).

While sometimes assumed in the literature, we do not regard budget balance to be indis-

pensable as far as the mechanism runs no budget deficit. For that reason, our group-wise

price mechanism never runs a budget deficit, but can run budget surplus, violating the

exact budget balance. However, we will later show that it is straightforward to modify

our groupwise-price mechanism into a mechanism that satisfies the exact budget balance.

See Section 4.1 for detail.

As the first-best benchmark, we consider a (complete information) competitive equilib-

rium. Formally, a mechanism ϕ = (ζ, τ) is said to be a competitive mechanism if it

satisfies the following condition: For any type profile t,

∑

b∈B

ζb(t) =
∑

s∈S

ζs(t),

and there exists p(t) such that

(1) For each buyer b ∈ B,

ζb(t) ∈ arg max
ℓ∈{0,...,m}

ℓ
∑

ℓ′=1

vℓ
′

b (t)− p(t)ℓ,

(2) For each seller s ∈ S,

ζs(t) ∈ arg max
ℓ∈{0,...,m}

p(t)ℓ−

ℓ
∑

ℓ′=1

vℓ
′

s (t),

(3) τi(t) = p(t)ζi(t) for every agent i ∈ B ∪ S.

In other words, a competitive mechanism lets each agent buy or sell optimally given

price p(t) where the price p(t) balances demand and supply.10 From the definition it is

10It is straightforward to see that there exists a competitive mechanism.
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obvious that any competitive mechanism satisfies individual rationality, feasibility, non-

wastefulness, budget balance and, perhaps most importantly, efficiency. The main draw-

back of a competitive mechanism is that it does not satisfy ex post incentive compatibility

(it fails even weaker conditions such as Bayesian incentive compatibility). In fact, there

exists no mechanism that satisfies all of these desirable properties including efficiency

in the exact sense (Myerson and Satterthwaite, 1983).11 The main goal of this paper

is to offer a mechanism that achieves an efficiency level arbitrarily close to a competi-

tive mechanism, while satisfying ex post incentive compatibility and the other desirable

properties.

2.2. The Groupwise-Price Double Auction Mechanism. The class of double auc-

tion mechanisms we examine is called the groupwise-price double auction mecha-

nisms, or the groupwise-price mechanisms for short. A groupwise-price mechanism

is defined as follows (because its formal definition is somewhat complicated, we provide

an informal description following the formal definition).

(1) Let B be (possibly randomly) partitioned into K sets B1, . . . , BK of equal size.

Let S be (possibly randomly) partitioned into K sets S1, . . . , SK of equal size.12

(2) Each agent i simultaneously reports type ti (not necessarily truthfully).

Now, for each k ∈ {1, . . . , K}, the submarket k is composed of the set of agents

Bk ∪ Sk. The trading procedure in this submarket is described as follows.

(1) Let pk = pk((ti)i/∈(Bk∪Sk)) be a real number that depends on (ti)i/∈(Bk∪Sk) while not

on (ti)i∈(Bk∪Sk). We call it the reference price for the submarket k in the sense

explained below.13

(2) Let t = ((ti)i/∈Sk
, (0)i∈Sk

) and t = ((ti)i/∈Bk
, (1)i∈Bk

).

(3) Define

B∗
k(t) = {(b, ℓ) ∈ Bk × {1, . . . , m}|vℓb(t) ≥ pk},

S∗
k(t) = {(s, ℓ) ∈ Sk × {1, . . . , m}|vℓs(t) < pk}.

11In the setting with multiple buyers and sellers, Williams (1999) finds conditions for the existence of

a mechanism that satisfies these desirable properties. His conditions are in general not satisfied in out

setting.
12If |B| is not a multiple of K, then find a largest integer z such that |B| ≥ zK, exclude |B| − zK

buyers, and redefine B in the description of the mechanism as the set of the remaining buyers (and apply

a similar redefinition to S as well). By modifying the mechanism in this way, all the results in the paper

hold. In the rest of the paper, we assume |B| and |S| are multiples of K without loss.
13The choice of the reference prices are crucial for asymptotic efficiency, as we will show in a subsequent

section, while all other results hold for an arbitrary choice of the reference prices.
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(4) Order the elements in B∗
k(t) in a decreasing manner in terms of the associated

valuations vℓb(t), and the elements in S∗
k(t) in an increasing manner in terms of the

associated valuations vℓs(t).
14 Let x = min{|B∗

k(t)|, |S
∗
k(t)|}, and let B∗∗

k (t) be the

set of the first x elements of B∗
k(t), and S∗∗

k (t) be the set of first x elements of S∗
k(t)

(so B∗∗
k (t) = B∗

k(t) if |B
∗
k(t)| ≤ |S∗

k(t)|, and similarly, S∗∗
k (t) = S∗

k(t) otherwise).

(5) For each b ∈ Bk and ℓ, define

t̃ℓb(t−b) = inf{t̃b|(b, ℓ) ∈ B∗∗
k (t̃b, t−b)},

if the set in the right hand side of this equation is nonempty, and let t̃ℓb(t−b) = 1

otherwise. Similarly, for each s ∈ Sk and ℓ, define

t̃ℓs(t−s) = sup{t̃s|(s, ℓ) ∈ S∗∗
k (t̃s, t−s)},

if the set in the right hand side of this equation is nonempty, and let t̃ℓs(t−s) = 0

otherwise.

Note that, by the single-crossing condition, once (b, ℓ) ∈ B∗∗
k (t′b, t−b) for some t′b,

then for any t′′b > t′b, (b, ℓ) ∈ B∗∗
k (t′′b , t−b). Also, note that t̃ℓb(t−b) is non-decreasing

in ℓ. Similar properties hold for the sellers.

(6) Buyer b receives the ℓ-th unit of the object if and only if (b, ℓ) ∈ B∗∗
k (t), and pays

the price vℓb(t̃
ℓ
b(t−b), t−b) for that unit.

15 Seller s sells the ℓ-th unit of the object if

and only if (s, ℓ) ∈ S∗∗
k (t), and receives the price vℓs(t̃

ℓ
s(t−s), t−s) for that unit.

As is clear in the description, the key parameters of each groupwise-price mechanism

comprise the number of submarkets (groups), K, and the reference price for each sub-

market k, pk((ti)i/∈(Bk∪Sk)). In Section 3 we show that all the desirable properties except

for asymptotic efficiency hold true for any choice of K and {pk(·)}
K
k=1. In Section 4, we

show asymptotic efficiency for a specific choice of them.

While the formal definition of this mechanism is somewhat involved, the basic idea is

simple: divide the market into a number of submarkets (groups), and use group-specific

prices (hence the name “groupwise-price mechanism”). Each submarket is composed of

a subset of buyers and sellers, and all trades happen only between buyers and sellers in

the same submarket. For each submarket, we set a reference price for that submarket

14When the valuations of multiple agents are identical, we order them in some fixed order (where that

order is independent of reported types).
15Note that, if b trades the ℓ-th unit, then she necessarily trades the ℓ′-th unit for every ℓ′ < ℓ as well.

If b receives ℓ units of the object in total, then her payment is
∑ℓ

ℓ′=1 v
ℓ′

b (t̃
ℓ′

b (t−b), t−b). A similar comment

applies to sellers.



DOUBLE AUCTION WITH INTERDEPENDENT VALUES 11

independently of reported types of agents in that submarket. In this way, we can prevent

some obvious price-manipulation incentives.

However, because the reference price in submarket k does not use any information

about the agents’ types in that submarket, it is possible that the reference price does

not “clear” the demand and supply of that submarket. For example, the reference price

may be so high that the number of units the sellers in Sk want to sell is greater than the

number of units the buyers in Bk want to buy. Then, the mechanism runs a generalized

VCG auction (Ausubel, 1999) separately for each side of the market to satisfy feasibility

and non-wastefulness.16

Another incentive issue we need to overcome is specific to interdependent-value double

auction environments. Because a seller’s type report can affect buyers’ willingness to pay,

the seller may have an incentive to overreport her type so that the buyers in the same

submarket would buy more. Similarly, a buyer may have an incentive to underreport her

type. Our mechanism eliminates such an incentive by defining B∗
k independent of any

report by the sellers in submarket k, and similarly, defining S∗
k independent of any report

by the buyers in submarket k.

By tailoring the detail in this manner, the mechanism satisfies a number of desirable

properties (namely, ex post incentive compatibility, individual rationality, feasibility, non-

wastefulness, and no budget deficit), but at a cost of efficiency through the following two

channels. First, because the reference price in submarket k does not use any informa-

tion about the agents’ types in that submarket, some efficiency-enhancing trades within

the submarket may be prevented. In Section 4, we will address this problem by increas-

ing the number of submarkets and thus diminishing the effect of lost information for

16To run a generalized VCG auction as in Ausubel (1999), the designer must know the valuation

function of each agent i, vℓi (·), for each ℓ. This may be considered to be too demanding as the designer’s

prior knowledge. Dasgupta and Maskin (2000) and Perry and Reny (2002) study implementation of

efficient allocations in auction environments as an equilibrium of a game whose form does not depend on

the functional forms of the agents’ valuation functions (“detail-free” mechanisms, in the spirit of Wilson

(1987)). For example, Dasgupta and Maskin (2000) consider an auction mechanism where each bidder

names not only a single bid but the entire valuation functions given his signal. Perry and Reny (2002)

consider an auction mechanism where (at most two rounds of) a second-price auction is run for each pair

of bidders. These mechanisms are detail-free in the sense that their auction mechanisms do not require

the designer’s knowledge about the bidders’ valuation functions. We use a generalized VCG auction

as in Ausubel (1999) for its simple description, even though it is not detail-free. However, given that

our model satisfies both single-crossing preferences as in Dasgupta and Maskin (2000) and decreasing-

marginal-values as in Perry and Reny (2002), we conjecture that similar detail-free mechanisms may work

too. We leave this question for future research.
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each submarket. Second, because we divide the market into (many) submarkets, some

efficiency-enhancing trades across different submarkets may be prevented. Our technical

contribution for analyzing efficiency is to find that there is an appropriate growth rate of

the number of submarkets that balances out this tradeoff.

To illustrate how the mechanism works, we consider the following example.

Example 1. Let m = 2. In a submarket k, there are one seller s and two buyers b = b1, b2,

each with two units of supply and demand. The type of seller s is ts = 0.2, buyer b2’s

type is tb2 = 0.3, and ti = 0 for any i /∈ Bk, Sk. The values of seller s are vℓs(t) = 5ts = 1

for ℓ = 1, 2.17 For each buyer b = b1, b2 and each ℓ = 1, 2, we have vℓb(t) =
4
ℓ
tb +

∑

i 6=b ti.

Assume pk = 1.9. For the seller’s side, we have |S∗
k(t)| = 2. We study how the trades

and prices change as tb1 ∈ [0, 1] varies. Given tb1 ,

vℓb1(t) =
4

ℓ
tb1 + 0.3,

vℓb1(t) =
4

ℓ
tb1 + 0.5,

vℓb2(t) =
1.2

ℓ
+ tb1 ,

vℓb2(t) =
1.2

ℓ
+ tb1 + 0.2.

If we gradually increase tb1 from 0, then at tb1 = 0.4, we have v1b1(t) = 1.9. Because

vℓb2(t) < 1.9 for ℓ = 1, 2, we have t̃1b1(t−b1) = 0.4. If we increase tb1 further, at tb1 = 0.7,

we have v1b2(t) = 1.9. Thus, for buyer b1 to buy the second unit, tb1 needs to be so high

that v2b1(t) ≥ v1b2(t), or equivalently, tb1 ≥ 0.9. Because v2b2(t) < 1.9 at tb1 = 0.9, we have

t̃2b1(t−b1
) = 0.9.

Therefore, the price of each unit for buyer b1 is the following: v
1
b1
(0.4, t−b1) = 2.1 for the

first unit, and v2b1(0.9, t−b1) = 2.3 for the second unit. In this example, one can verify that

this mechanism satisfies ex post incentive compatibility, individual rationality, feasibility,

non-wastefulness, and no budget deficit. In the next section, we show that these desirable

properties hold generally under groupwise-price mechanisms. �

3. Results with arbitrary number of buyers and sellers

In this section, we show that our groupwise-price mechanism has desirable properties

introduced in Section 2.1. In particular, this mechanism is ex post incentive compatible.

17Although this example violates our assumptions that all valuations must lie in the unit interval and

that vℓi 6= vℓ
′

i for each i and ℓ 6= ℓ′, this is just for notational simplicity. We can modify the example to

satisfy these assumptions without changing the conclusion.
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Theorem 1. The groupwise-price mechanism satisfies

(1) ex post incentive compatibility,

(2) individual rationality,

(3) feasibility,

(4) non-wastefulness, and

(5) no budget deficit.18

Recall that all of the above properties are satisfied in Example 1. Theorem 1 shows

that these properties hold generally under groupwise-price mechanisms.

Proof. Ex post incentive compatibility and individual rationality. We consider

only the case of buyers, but a similar argument applies to the case of sellers as well.

Suppose that tb ∈ [t̃ℓb(t−b), t̃
ℓ+1
b (t−b)], with the convention that t̃0b(t−b) = 0 and t̃m+1

b (t−b) =

1.

Then, for each ℓ′ ≤ ℓ,

vℓ
′

b (tb, t−b)− vℓ
′

b (t̃
ℓ′

b (t−b), t−b) ≥ 0,

and for each ℓ′ > ℓ,

vℓ
′

b (tb, t−b)− vℓ
′

b (t̃
ℓ′

b (t−b), t−b) ≤ 0.

If the buyer b reports truthfully, then her utility is

ℓ
∑

ℓ′=1

(

vℓ
′

b (tb, t−b)− vℓ
′

b (t̃
ℓ′

b (t−b), t−b)
)

,

which is nonnegative, showing individual rationality. Moreover, the inequalities above

imply that misreporting b’s type does not increase her utility, demonstrating ex post in-

centive compatibility.

Feasibility and Non-wastefulness. Suppose that |B∗
k(t)| ≥ |S∗

k(t)|. In this case, the

number of units sold is |S∗∗
k (t)| = |S∗

k(t)|, and the number of units bought is |B∗∗
k (t)| =

|S∗
k(t)|. Similarly, if |B∗

k(t)| ≤ |S∗
k(t)|, then the number of units sold is |S∗∗

k (t)| = |B∗
k(t)|,

while the number of units bought is |B∗∗
k (t)| = |B∗

k(t)|. Thus, we have shown both feasi-

bility and non-wastefulness.

18The mechanism can be easily modified to satisfy budget balance as well if we specify any agent

(possibly randomly) as a residual claimant of the budget surplus at the beginning of the mechanism. See

Section 4.1 for detail.
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No budget deficit. By construction, for any b, ℓ, t, if (b, ℓ) ∈ B∗∗
k (t) so that b trades her

ℓ-th unit, then the price she pays for that unit is

vℓb(t̃
ℓ
b(t−b), t−b) ≥ vℓb(t̃

ℓ
b(t−b), t−b) ≥ pk.

Similarly, for any s, ℓ, t, if (s, ℓ) ∈ S∗∗
k (t) so that s trades ℓ-th unit, then the price she

receives for that unit is

vℓs(t̃
ℓ
s(t−s), t−s) ≤ vℓs(t̃

ℓ
s(t−s), t−s) ≤ pk.

Therefore, given the feasibility and non-wastefulness established above, the total mone-

tary transfer from the buyers is no smaller than the total monetary transfer to the sellers,

implying that the groupwise-price mechanism runs no budget deficit. This completes the

proof. �

4. Approximate efficiency

Next, we show that the double-auction mechanism constructed in the previous section

approximates an efficient allocation as the number of market participants goes to infinity.

In this section we consider a sequence of markets, where each market is indexed by

a positive integer N which we refer to as the market size. The number of sellers nS

and the number of buyers nB depend (deterministically) on N and grow at the same

asymptotic speed as N : Formally, there exist constants γ, γ ∈ (0,∞) such that for each

N , γN < nS, nB < γN (here we are suppressing dependence of nS and nB on N for

notational simplicity only). The case in which nS = nB = N is a special case, but note

that the condition is more general and allows for the number of sellers and buyers to be

different from each other even asymptotically.

Buyers have the same valuation function to one another and similarly for sellers. For

each i ∈ B, vℓi (ti, (tj)j∈B\{i}, (tj)j∈S) = vℓi (ti, (t
′
j)j∈B\{i}, (t

′
j)j∈S) if (t′j)j∈B\{i} is a permu-

tation of (tj)j∈B\{i} and (tj)j∈S is a permutation of (t′j)j∈S. Thus, we are assuming that

buyers are ex ante homogeneous, although their valuations can be distinct to one another

ex post because of different type realizations. We impose a similar symmetry condition

for each seller as well.

Next, we introduce two assumptions that regulate how agent valuations are affected by

type profiles in large markets.

Assumption 1. There exists a constant α ≥ 0 such that, for every sufficiently large

market size N , any pair of agents i and j 6= i, any index ℓ ∈ {1, . . . , m}, and any
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tj , t
′
j, t−j, we have

|vℓi (t−j, tj)− vℓi (t−j , t
′
j)| ≤

α

nB
, if j ∈ B,(4.1)

|vℓi (t−j, tj)− vℓi (t−j , t
′
j)| ≤

α

nS

, if j ∈ S.

This assumption implies that the influence of any one agent’s type on another agent’s

utility becomes small in large markets.19

Assumption 2. There exist β and β ′ with β ′ ≥ β > 0 such that, for every sufficiently

large market size N , any pair of agents i and j 6= i on the same side of the market (i.e.,

both i and j are buyers, or both are sellers), any index ℓ ∈ {1, . . . , m}, and any t,

β|ti − tj | ≤ |vℓi (t)− vℓj(t)| ≤ β ′|ti − tj|.(4.2)

The part β|ti − tj | ≤ |vℓi (t) − vℓj(t)| in (4.2) requires that a difference in types has a

first-order effect on the values. The part |vℓi (t)− vℓj(t)| ≤ β ′|ti − tj | in (4.2) requires that

two persons with similar types have similar values. Throughout this section, we maintain

Assumptions 1 and 2.

Remark 1. If the valuation functions are differentiable, the following conditions (i) and

(ii) together imply (4.1) and (4.2): (i) for any N , and for any pair of agents i and j 6= i,

any index ℓ ∈ {1, . . . , m}, and all t,

∂vℓi (t)

∂tj
≤

α

nS
, if j ∈ S,(4.3)

∂vℓi (t)

∂tj
≤

α

nB

, if j ∈ B,

and (ii) there exist δ and δ′ with δ′ ≥ δ > 0 such that, for any N , any agent i, any index

ℓ ∈ {1, . . . , m}, and all t,

δ ≤
∂vℓi (t)

∂ti
≤ δ′.(4.4)

In this differentiable case, the part δ ≤
∂vℓi (t)

∂ti
in (4.4) can be interpreted as requiring that

an agent’s own type influences her own value in a non-negligible manner everywhere, and

the part
∂vℓi (t)

∂ti
≤ δ′ can be interpreted as excluding some pathological cases by assuming

19Of course, it does not mean that the interdependence vanishes away in large markets. Agent i’s

value can vary with t−i in a non-negligible manner even in a large market, even though the effect of each

single tj , j 6= i, is vanishing.
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that there is a bound on the change in an agent’s utility for a small change in her own

type.20 �

Remark 2. While excluding some cases, conditions (4.1) and (4.2) are satisfied by most

models in the literature. For example, let nB = nS = N ≥ 2, and for each buyer’s utility

function (and similarly for each seller’s), we may assume that there is a differentiable

function uℓ : [0, 1] → R for each ℓ = 1, . . . , m such that vℓb(t) = uℓ(tb + γ
∑

b′ 6=b tb′

N−1
) for some

constant γ ∈ (0, 1), and that, for some δ′ ≥ δ > 0, duℓ(x)
dx

∈ (δ, δ′) for all x. Then, (4.4) is

satisfied. Moreover, for any b′ 6= b,

∂vℓb(t)

∂tb′
=

duℓ(tb + γ
∑

b′′ 6=b tb′′

N−1
)

dx
×

γ

N − 1

≤
δ′γ

N − 1

=
δ′γ

N
×

N

N − 1

≤
2δ′γ

N
,

thus condition (4.3) is satisfied with respect to α = 2δ′γ. Recall, then, that (4.3) and

(4.4) imply (4.1) and (4.2).

Another example is an environment with “unobservable fundamentals”. Let nB = nS =

N , and let θ ∈ Θ be an unobservable variable that affects every agent’s valuation, and

assume that each agent i’s value for the ℓ-th unit of the trade is a function of only ti

and θ, which we denote by wℓ
i(ti, θ). We also assume that each type ti is identically and

independently distributed conditional on θ, where the conditional distribution of ti given

θ is assumed to be common knowledge. Then, vℓi (t) can be defined as the conditional

expectation of wℓ
i (ti, θ) given t, i.e., vℓi (t) = E(wℓ

i(ti, θ)|t). To be specific, let Θ = [0, 1],

assume that θ is distributed uniformly over [0, 1], and wℓ
i(ti, θ) =

1
ℓ
(ti + θ). Given θ, ti is

independently distributed with a density g(ti|θ) such that g(ti|θ) = 2 − 2θ for ti ∈ [0, 1
2
],

20It is straightforward that (4.3) implies (4.1). For (4.2), observe that

vℓi (t)− vℓj(t) = vℓi (t1, . . . , ti, . . . , tj , . . . , tnB+nS
)− vℓj(t1, . . . , ti, . . . , tj , . . . , tnB+nS

)

= vℓi (t1, . . . , ti, . . . , tj , . . . , tnB+nS
)− vℓi (t1, . . . , tj , . . . , tj , . . . , tnB+nS

)

+vℓi (t1, . . . , tj , . . . , tj , . . . , tnB+nS
)− vℓi (t1, . . . , tj , . . . , ti, . . . , tnB+nS

),

so vℓi (t) − vℓj(t) ∈
[

δ(ti − tj)−
α
nB

(ti − tj), δ
′(ti − tj)

]

for ti ≥ tj and vℓi (t) − vℓj(t) ∈
[

δ′(ti − tj), δ(ti − tj)−
α
nB

(ti − tj)
]

for ti < tj if i, j ∈ B (if i, j ∈ S, then analogous bounds replac-

ing nB with nS hold). Thus, (4.2) is satisfied for any sufficiently large N by taking β = δ
2 and β′ = δ′.
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and g(ti|θ) = 2θ for ti ∈ (1
2
, 1]. Then, letting N1 = |{j|tj >

1
2
}|, we have21

vℓi (t) =
1

ℓ
(ti + E(θ|t))

=
1

ℓ

(

ti +
N1 + 1

N + 2

)

.

Therefore, for each j 6= i, any t, and any ℓ = 1, . . . , m, we have |vℓi (t−j, tj)−vℓi (t−j , t
′
j)| ≤

1
N
, and vℓi (t)− vℓj(t) =

ti−tj
ℓ

, and thus, both of the conditions (4.1) and (4.2) are satisfied.

�

We assume that agent types are conditionally independent given a state variable. More

formally, there is a state variable σ that is drawn randomly from a finite distribution.

For each realization of σ, there is a pair of type distributions with cdfs Fσ and Gσ with

everywhere positive and continuous pdf’s, and buyer and seller types are independently

distributed from Fσ and Gσ, respectively, conditional on σ. Note that the case with i.i.d.

type distributions is a special case of this model in which the distribution of the state

variable is degenerate.

In this setting, we specialize our groupwise-price mechanism by providing a partic-

ular procedure to set the parameters, namely, the number of submarkets K and the

reference prices (p1, . . . , pK), as follows. We call the resulting mechanism the canonical

groupwise-price mechanism.

• Set K to be an integer depending on N such that K → ∞ and K5

N
→ 0 as N → ∞

and, for notational simplicity, such that nB and nS are multiples of K.22 The

agents are divided into K submarkets, each with aB = nB

K
buyers and aS = nS

K

sellers.

• Given reported t, let t̂k = ((ti)i/∈(Sk∪Bk), (1)i∈(Sk∪Bk)), and let v̂
(q)
B be the q-th highest

value among {vℓb(t̂k)}b∈B,ℓ, and v̂
(q)
S be the q-th lowest value among {vℓs(t̂k)}s∈S,ℓ.

21Note that

E(θ|t) =

∫ 1

0 θ
(

∏

j|tj≤
1

2

(1− θ)
)(

∏

j|tj>
1

2

θ
)

dθ

∫ 1

0

(

∏

j|tj≤
1

2

(1 − θ)
)(

∏

j|tj>
1

2

θ
)

dθ
=

∫ 1

0
(1 − θ)N−N1θN1+1dθ
∫ 1

0 (1 − θ)N−N1θN1dθ
,

where, for the denominator,
∫ 1

0

(1− θ)N−N1θN1dθ =
1

N1 + 1
(1− θ)N−N1θN1+1

∣

∣

∣

1

0
+

∫ 1

0

N −N1

N1 + 1
(1− θ)N−N1−1θN1+1

= ... =
(N −N1)!(N1)!

(N + 1)!
,

and similarly, for the numerator,
∫ 1

0
(1− θ)N−N1θN1+1dθ = (N−N1)!(N1+1)!

(N+2)! . Therefore, E(θ|t) = N1+1
N+2 .

22For example, K may be an integer of the order N c with c ∈ (0, 1
5 ) or of the order log(N).
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The reference price in submarket k, pk, is given by

pk = min
{

v̂
(q)
B , v̂

(q+1)
S

}

,

where q is an integer such that v̂
(q)
S ≤ v̂

(q)
B and v̂

(q+1)
S > v̂

(q+1)
B .23 Note that we

include all buyers and sellers in computing pk.

We define asymptotic efficiency in terms of trade outcomes. We say that a mechanism

is asymptotically efficient if the ex ante non-monetary payoff of each agent in that

mechanism approaches that in a competitive mechanism, i.e., as N goes to infinity, for

any agent i, E[|
∑ζi(t)

ℓ=1 vℓi (t) −
∑ζ∗i (t)

ℓ=1 vℓi (t)|] → 0, where ζ denotes the object allocation

rule of our mechanism, and ζ∗ denotes that of a competitive mechanism. In this sense,

the trade outcome in the mechanism becomes “arbitrarily close” to the first-best level in

large economies.24

Theorem 2. The canonical groupwise-price mechanism is asymptotically efficient.

Proof. See Appendix A. �

The formal proof of this result is involved, so we offer some intuition here while deferring

the proof to the Appendix. To get the first intuition, recall that our groupwise-price

mechanism sets a reference price pk for each submarket k. This suggests that most

mutually beneficial trades can be realized if the reference prices approximate the market

clearing price in large economies.

However, whether this intuition goes through is far from obvious. More specifically,

there are at least two challenges. First, the reference price for a submarket must be

independent of reported types of agents in that submarket in order to keep ex post incentive

compatibility of the mechanism. This implies that the relevant information from agents in

a submarket should be ignored when setting that submarket’s reference price. This poses

a problem, because the reference price does not converge to the market-clearing price

even in a large market if private information from too many agents is ignored. Second,

even if the reference prices are close to the market-clearing prices, additional efficiency

loss can occur because agents in a submarket can trade only with those in the same

submarket. This can prevent some beneficial trades from happening between agents in

different submarkets.

23If v̂
(q)
S ≤ v̂

(q)
B for all q, then we set pk = v̂

(mnS)
B . If v̂

(q)
S > v̂

(q)
B for all q, then we set pk = v̂

(1)
S .

24Recall that our mechanism may generate budget surplus while a competitive mechanism balances

the budget. Hence the difference in the ex ante “total” (i.e., the sum of monetary and non-monetary)

payoffs may not vanish. Section 4.1 studies this issue and offers possible solutions to obtain stronger

convergence results.
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Our proof shows that inefficiencies from both of these sources can be appropriately

bounded. Regarding the first challenge, our approach is to divide the market into a

sufficiently large number of submarkets (i.e., K → ∞ as N → ∞). Doing so makes the

effect of ignoring types of one submarket for calculating reference prices negligible in large

markets, by which we show that the reference prices approximate a market-clearing price

in large economies (with high probability). Regarding the second challenge, our approach

is to keep the number of submarkets sufficiently small relative to N (i.e., K
N

→ 0 or

equivalently aB = nB

K
, aS = nS

K
→ ∞ as N → ∞), so that the number of beneficial trades

prevented from happening across different submarkets is sufficiently small. Clearly, there

is a potential conflict between these two approaches. Our formal proof shows that there is

an appropriate growth rate of the number of submarkets such that these conflicting forces

can be balanced in such a way that both challenges are addressed. Furthermore, given

such an appropriate choice of the growth rate, a lower bound of the convergence rate is

obtained as a polynomial function of the size of the economy, N (see Remark 3 in the

Appendix). The existence of such a growth rate is not obvious, and we refer interested

readers to the proof in Appendix A.

4.1. Asymptotic Budget Balance. In the preceding section, we have established that

the trading pattern of the objects converges to an efficient one under the canonical

groupwise-price mechanism. However, this does not imply that the expected payoff of each

agent converges to the efficient level in the competitive mechanism, because a groupwise-

price mechanism can run budget surplus. Unless the budget surplus is included in the

welfare, this implies that the welfare level including transfer in groupwise-price mecha-

nisms can be lower than that in a competitive equilibrium.

To present a formal analysis on this issue, we begin by defining asymptotic budget

balance. A mechanism ϕ = (ζ, τ) is asymptotically budget-balanced if

lim
N→∞

E

[
∑

b∈B τb(t)−
∑

s∈S τs(t)

nB + nS

]

= 0.

Note that nB and nS depend on N and γN < nB, nS < γN for some constants γ, γ ∈

(0,∞), so asymptotic budget balance is equivalent to

lim
N→∞

E

[
∑

b∈B τb(t)−
∑

s∈S τs(t)

N

]

= 0.

This condition ensures that the per-capita budget imbalance converges to zero in expec-

tation as the market size approaches infinity.

The following example shows that even the canonical groupwise-price mechanism can

violate asymptotic budget balance.
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Example 2. Suppose m = 2, nB = nS = N , the values for each seller s is given by

v1s(t) = ts and v2s(t) = ts + 2, and the values for each buyer b are given by vℓb(t) = tb + 1

for both ℓ = 1, 2 (thus, agents in this example have private values).25 Note that, for each

seller, the value of her first unit of the object is in [0, 1], and the value for the second unit

is in [2, 3]. Thus, for the sellers, there is a “gap” between possible values of the first and

second units of the object.

Consider the canonical groupwise-price mechanism. By the definition of the reference

price, with a large N , it is very likely that pk is close to 1.5 for each k. The probability

that |B∗
k(t)| < aB = N

K
is bounded away from zero even if N goes to infinity. On the

other hand, the probability that |S∗
k(t)| = aS = N

K
approaches one. Thus, the probability

that the sellers in submarket k are on the long side of the market, i.e., |S∗
k(t̄)| > |B∗

k(t)|,

is bounded away from zero. In such a case, each seller who trades earns at most 1, while

each buyer who trades pays pk. Since at least a fraction of agents bounded away from

zero trade in expectation, and pk is higher than 1.5 with probability bounded away from

zero, this implies that the expected budget surplus per capita does not converge to zero

as N → ∞. That is, the canonical groupwise-price mechanism is not asymptotically

budget-balanced. �

This example shows that the groupwise-price mechanism does not necessarily achieve as-

ymptotic budget balance. However, as we present below, there are at least two approaches

that enable us to have the mechanism achieve asymptotic budget balance, thereby en-

abling each agent to asymptotically enjoy the same level of ex ante expected utility as in

a competitive equilibrium.

One solution is to randomly choose one agent independently from agents’ reports and

give all the budget surplus to that agent while prohibiting her from trading. In other

words, we can achieve asymptotic efficiency by augmenting the canonical groupwise-price

mechanism by exogenously appointing one revenue absorber. By construction, this mod-

ified mechanism is budget-balanced. Moreover, it is easy to verify that the above modifi-

cation does not invalidate any of our preceding results so all other desirable properties of

the original mechanism continue to hold.

Nevertheless, it is conceivable that a social planner does not want to use a revenue

absorber.26 This concern motivates the second solution. Let us begin by imposing an

25Although this example violates our assumptions that all valuations must lie in the unit interval and

that vℓi 6= vℓ
′

i for each i and ℓ 6= ℓ′, this is just for notational simplicity. We can modify the example to

satisfy these assumptions without changing the conclusion.
26For instance, agents’ payoff functions may fail to be quasi-linear (which we assume throughout the

paper) because of income effect if the monetary transfer is large. Under income effect, agents’ payoffs
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additional assumption. We say that agent valuations allow no gaps if vℓs(1, t−s) ≥

vℓ+1
s (0, t−s) and vℓ+1

b (1, t−b) ≥ vℓb(0, t−b) for each b ∈ B, s ∈ S, ℓ ∈ {1, . . . , m − 1}, and

t ∈ [0, 1]B∪S. This assumption may be interpreted as imposing certain “smoothness”

of supply and demand functions. Note that the sellers’ valuations in Example 2 violate

this requirement. Note also that this condition is automatically satisfied if agents have

single-unit demand and supply, i.e., m = 1, as assumed in most existing studies.

Theorem 3. Suppose that agent valuations allow no gaps. Then, the canonical groupwise-

price mechanism is asymptotically budget-balanced.

Proof. See Appendix B. �

An immediate corollary of Theorems 2 and 3 is a stronger form of asymptotic efficiency.

More specifically, the ex-ante expected utility of each buyer and seller converges to the level

achieved with a competitive mechanism under truthtelling as the market size approaches

infinity.27

5. Conclusion

This paper investigated whether desirable properties can be achieved in double auc-

tion environments with value interdependence. We showed that there exists a mecha-

nism that satisfies ex post incentive compatibility, individual rationality, feasibility, non-

wastefulness, no budget deficit, and asymptotic efficiency. To our knowledge, our mech-

anism is the first double auction mechanism with these properties in the interdependent

values setting.

We do not necessarily regard our mechanism as an immediately applicable solution,

but rather as a step toward understanding what desirable properties can be achieved in

practice. In fact, there are still several important gaps between our current knowledge

and practical use. First, the social planner is assumed to know the functional form of

the agents’ payoff functions. Second, the trading prices can vary across agents under our

mechanism. Both features are shared by most mechanisms in the literature,28 but they

may exhibit risk aversion, and hence randomly awarding one agent with a large amount of money may

be inefficient.
27Strictly speaking, the statement of Theorem 3 merely states that the aggregate budget surplus per

capita vanishes, and is silent about the distribution of transfer across different agents. However, the

proof of the theorem reveals that each agent’s transfer converges to its competitive level. This fact and

Theorem 2 imply this corollary.
28Even in the one-sided auction under private values, VCG payments can vary across agents with

multi-unit demand. In the interdependent values setting, the mechanism by Ausubel (1999) shares this
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may pose challenges in some applications. We hope that our analysis stimulates future

studies aimed at practical applications.

In addition, there are a number of possible directions of future research. One possibility

is to examine the speed of convergence (i.e., how quickly efficiency is approximated) in

more detail, or the possibility of a stronger form of asymptotic efficiency (e.g., whether

efficiency in the “absolute term” is possible, rather than in the “per-capita term” as in

this paper). These issues appear to be technically challenging exercises.29 We leave them

as topics for future research.

Another direction is to consider more general environments, such as those with mul-

tidimensional signals,30 multiple types of objects, complementarity in agents’ valuations,

dispensing with the assumption that each agent is predetermined to be a buyer or a

seller (that is, allowing agents to buy or sell depending on signals and prices), and so on.

Generalizations in these directions are not straightforward, and we leave them for future

research. However, we believe that some intuitions obtained in our study may be useful

in designing desirable mechanisms in these more general environments.

feature, and it presumes the knowledge of the social planner about the payoff functions. Note, however,

important advance such as Perry and Reny (2002) who implement a desired outcome as an equilibrium

of a game whose form does not depend on the functional form of the payoff functions.
29Measuring efficiency in the per-capita term is standard in the literature, especially with interdepen-

dence. For example, see Reny and Perry (2006) for double auction, Vives (2002) for Cournot oligopoly,

and Lee and Yariv (2014) for matching.
30In the one-sided, object allocation setting, a recent contribution by Hashimoto (2013) obtains positive

results even with multi-dimensional signals. Although there does not appear to be an obvious way to

adapt his idea to our double-auction setting, studying multidimensional signals in double auction would

be an important future research.
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Appendix A. Proof of Theorem 2

We prove the theorem in three steps. In the first step, we prove the result under the

assumption that each agent’s type is drawn i.i.d. according to the uniform distribution.

In the second step, we build on this result to establish the desired result for the case

with more general type distributions while retaining the i.i.d. assumption. In the last

step, we use this result to obtain the desired result for the general case of conditionally

independent types.

A.1. Proof for the uniform distribution case. In this subsection, we prove the result

under the assumption that each agent’s type is drawn i.i.d. according to the uniform

distribution.

Lemma 1 shows that, by a law of large numbers, the sup-norm distance between the

empirical cdf of types and the true cdf of types in each submarket k is small in an event

that occurs with a high probability. Focusing on that event, Lemmas 2 to 5 evaluate

how many efficiency-enhancing trades are left unrealized. Building on these lemmas, we

complete the proof by bounding the overall expected efficiency loss.

We first look at each submarket k. Let Λ = K, and consider λ ∈ {1, . . . ,Λ}.

Let

xλ
k =

{

s ∈ Sk|ts ≤
λ

Λ
−

1

K

}

,

xλ
k =

{

s ∈ Sk|ts ≥
λ

Λ
+

1

K

}

,

yλ
k

=

{

b ∈ Bk|tb ≤
λ

Λ
−

1

K

}

,

yλk =

{

b ∈ Bk|tb ≥
λ

Λ
+

1

K

}

,

and

Xλ
k =

|xλ
k |

aS
,

X
λ

k =
|xλ

k |

aS
,

Y λ
k =

|yλ
k
|

aB
,

Y
λ

k =
|yλk|

aB
,
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where aS = nS

K
, aB = nB

K
. Each of Xλ

k , X
λ

k , Y
λ
k , and Y

λ

k is a binomially distributed variable,

with means and variances as follows.

E(Xλ
k) = E(Y λ

k) =
λ

Λ
−

1

K
,

E(X
λ

k) = E(Y
λ

k) = 1−
λ

Λ
−

1

K
,

V (Xλ
k), V (X

λ

k) ≤
1

4aS
,

V (Y λ
k), V (Y

λ

k) ≤
1

4aB
.

Let Ek be the event that all of the following four inequalities hold,
∣

∣

∣

∣

Xλ
k −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

X
λ

k −

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

Y λ
k −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

Y
λ

k −

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

for every λ ∈ {1, . . . ,Λ}. Note that, given event Ek, X
λ+1
k −Xλ

k > 0 by the assumption

Λ = K (and similarly for Xk, Y k, Y k).

By Chebyshev’s inequality, we obtain the following.

Lemma 1. Pr(Ek) > 1− 2ΛK2

aS
− 2ΛK2

aB
.

Proof. By Chebyshev’s inequality, for each λ,

Pr

(∣

∣

∣

∣

Xλ
k −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

> η

)

<
1

4aSη2
,

Pr

(∣

∣

∣

∣

X
λ

k −

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

> η

)

<
1

4aSη2
,

Pr

(∣

∣

∣

∣

Y λ
k −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

> η

)

<
1

4aBη2
,

Pr

(∣

∣

∣

∣

Y
λ

k −

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

> η

)

<
1

4aBη2
,

where η = 1
2K

. Because the probability of the union of events is weakly smaller than the

sum of the probabilities of those events by Boole’s inequality, these inequalities imply that

Pr(Ek) > 1− Λ
2aSη2

− Λ
2aBη2

. Substituting in η = 1
2K

, we obtain the desired conclusion. �
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Now, consider the event F that vℓi (t) 6= vℓ
′

j (t) for every ℓ, ℓ′, i, j such that ℓ 6= ℓ′ or

i 6= j. Because types are drawn i.i.d. from the uniform distribution on [0, 1], F is a

probability one event. From this and the fact that there are K submarkets, we have

Pr(E) > 1− 2ΛK3

aS
− 2ΛK3

aB
= 1− 2ΛK4

nS
− 2ΛK4

nB
, where E := (

⋂

k Ek) ∩ F . Thus, if ΛK4

nS
and

ΛK4

nB
converge to zero as N goes to infinity, this probability converges to one.

We observe that the overall type distributions satisfy similar properties. Let

xλ =

{

s ∈ S|ts ≤
λ

Λ
−

1

K

}

,

xλ =

{

s ∈ S|ts ≥
λ

Λ
+

1

K

}

,

yλ =

{

b ∈ B|tb ≤
λ

Λ
−

1

K

}

,

yλ =

{

b ∈ B|tb ≥
λ

Λ
+

1

K

}

,

and

Xλ =
|xλ|

nS
,

X
λ

=
|xλ|

nS
,

Y λ =
|yλ|

nB
,

Y
λ

=
|yλ|

nB

.

Lemma 2. Given that E has occurred, we have
∣

∣

∣

∣

Xλ −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

X
λ
−

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

Y λ −

(

λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

∣

∣

∣

∣

Y
λ
−

(

1−
λ

Λ
−

1

K

)∣

∣

∣

∣

<
1

2K
,

for every λ ∈ {1, . . . ,Λ}.

Proof. Given that Ek has occurred,

Xλ
k ∈

(

λ

Λ
−

3

2K
,
λ

Λ
−

1

2K

)

.
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Thus, given that E =
⋂

k Ek has occurred,

Xλ =
1

nS

K
∑

k=1

(aSX
λ
k) ∈

(

λ

Λ
−

3

2K
,
λ

Λ
−

1

2K

)

.

We obtain the desired conclusions about X
λ
, Y λ, and Y

λ
by symmetric arguments. �

Given reported t, let v
(q)
B be the q-th highest value among {vℓb(t)}b∈B,ℓ, and v

(q)
S be the

q-th lowest value among {vℓs(t)}s∈S,ℓ. Let p
MC be a market-clearing price, defined as

pMC = min
{

v
(q)
B , v

(q+1)
S

}

,

where q is an integer such that v
(q)
S ≤ v

(q)
B and v

(q+1)
S > v

(q+1)
B .31

Let sℓ (bℓ) denote the seller (the buyer) who has the highest (lowest) type among those

trading at least ℓ units under pMC .32

By symmetry among sellers, each type of the seller with t < tsℓ sells at least ℓ units

under pMC , and similarly for the buyers (we set tsℓ = 0 (tbℓ = 1) if no seller type (buyer

type) trades at least ℓ units).33 Let λℓ
B and λℓ

S be integers such that tbℓ ∈
[

λℓ
B

Λ
,
λℓ
B+1

Λ

)

and

tsℓ ∈
[

λℓ
S−1

Λ
,
λℓ
S

Λ

)

.

In the remainder of the proof, we show that the level of trades approaches an efficient

level as N → ∞, implying that per-capita inefficiency caused by failed trades converges

to zero. By ex ante symmetry across buyers and across sellers, this suffices for the proof

of the theorem. We begin with the following lemma, which shows that the reference price

pk for each submarket k is close to the market clearing price pMC .

Lemma 3. Given that E has occurred, pk ∈
[

pMC , pMC + ( 2
K
+ 4

Λ
)β ′ + 2α

K

]

for each k.

Proof. Let D0 and S0 be the demand and supply under the true type profile at price pMC ,

and let D′(p) and S ′(p) be the demand and supply under the modified type profile (i.e.,

t̂k = ((ti)i/∈(Sk∪Bk), (1)i∈(Sk∪Bk))) at price p, respectively. Formally, define

D0 = #{(b, ℓ) ∈ B × {1, . . . , m}|vℓb(t) ≥ pMC},

S0 = #{(s, ℓ) ∈ S × {1, . . . , m}|vℓs(t) < pMC},

D′(p) = #{(b, ℓ) ∈ B × {1, . . . , m}|vℓb(t̂k) ≥ p},

S ′(p) = #{(s, ℓ) ∈ S × {1, . . . , m}|vℓs(t̂k) < p}.

31If v
(q)
S ≤ v

(q)
B for all q, then we set pMC = v

(mnB)
B . If v

(q)
S > v

(q)
B for all q, then we set pMC = v

(1)
S .

32Hence, for example, if there is no type of the seller who trades exactly two units, we have ts2 = ts3 .
33Recall that no two buyers or sellers have the same type with each other under event E.
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Because the demand under the modified type profile is weakly larger than the one under

the true type profile, we have D′(pMC) ≥ D0 at price p
MC . On the other hand, the supply

under the modified type profile is weakly smaller, and hence S ′(pMC) ≤ S0. Hence, we

have D′(pMC) ≥ D0 = S0 ≥ S ′(pMC), which implies that pk is no smaller than pMC .

In the rest of this proof, we shall show

pk ≤ p̄k := pMC +

(

2

K
+

4

Λ

)

β ′ +
2α

K
.(A.1)

In the following, we first show that S ′(p̃k) ≥ S0 = D0 ≥ D′(p̃k), where

p̃k = pMC +

(

2

K
+

3

Λ

)

β ′ +
2α

K

= p̄k −
β ′

Λ
.

Then, we show that this implies the desired inequality (A.1).

We first consider sellers. For each ℓ, define Sℓ(p̃k) = |{s ∈ S|vℓs(t̂k) < p̃k}| and Sℓ
0 =

|{s ∈ S|vℓs(t) < pMC}|. We shall show that Sℓ(p̃k) ≥ Sℓ
0. To show this, consider the

following cases.

(1) Suppose Sℓ
0 = 0. Then trivially Sℓ(p̃k) ≥ Sℓ

0.

(2) Suppose Sℓ(p̃k) = nS. Then trivially Sℓ(p̃k) ≥ Sℓ
0.

(3) Suppose Sℓ
0 > 0 and Sℓ(p̃k) < nS. We first show the following claim.

Claim 1. Suppose Sℓ
0 > 0 and Sℓ(p̃k) < nS. Then λℓ

S(p
MC) < Λ− 1− 2Λ

K
.

Proof. Suppose for contradiction that λℓ
S(p

MC) ≥ Λ − 1 − 2Λ
K
. Take s′ ∈ S as

the seller whose type is the highest among the sellers s with vℓs(t) < pMC . Then

ts′ ≥
λℓ
S
(pMC)−1

Λ
; Note that such a seller s′ exists because of the assumption Sℓ

0 > 0.

Consider the following cases.

(a) Suppose s′ /∈ Sk. In this case, for any s̃ ∈ Sk, we have

vℓs̃(t̂k) ≤ vℓs′(t̂k) + β ′(1− ts′)

≤ vℓs′(t) + β ′(1− ts′) +
2α

K

< pMC + β ′

(

1−
λℓ
S(p

MC)− 1

Λ

)

+
2α

K

≤ pMC + β ′

(

1−
Λ− 1− 2Λ

K
− 1

Λ

)

+
2α

K

= pMC + β ′

(

2

Λ
+

2

K

)

+
2α

K

≤ p̃k.
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Because the modified type for s̃ ∈ Sk at t̂k is the highest possible type by the

definition of t̂k, the above inequality implies Sℓ(p̃k) = nS, a contradiction.

(b) Suppose s′ ∈ Sk. In this case, we have34

vℓs′(t̂k) ≤ vℓs′(t) + β ′(1− ts′) +
2α

K

< pMC + β ′

(

1−
λℓ
S(p

MC)− 1

Λ

)

+
2α

K

≤ pMC + β ′

(

1−
Λ− 1− 2Λ

K
− 1

Λ

)

+
2α

K

= pMC + β ′

(

2

Λ
+

2

K

)

+
2α

K

≤ p̃k.

Thus, we obtain Sℓ(p̃k) = nS, a contradiction.

�

To prove the desired conclusion Sℓ(p̃k) ≥ Sℓ
0 for this case, let s ∈ S be the seller

whose type is the lowest among those with vℓs(t̂k) ≥ p̃k; Note that such a seller s

exists because Sℓ(p̃k) < nS. Consider the following cases.

(a) Suppose s /∈ Sk. Let λ̂
ℓ
S(p̃k) be an integer such that the interval

[

λ̂ℓ
S
(p̃k)−1

Λ
,
λ̂ℓ
S
(p̃k)

Λ

)

contains the type of the seller whose valuation at t̂k is the highest among those

whose value at t̂k is lower than p̃k. By event E, we have ts ∈
[

λ̂ℓ
S(p̃k)−1

Λ
,
λ̂ℓ
S(p̃k)+1

Λ

)

.

34The first inequality of the display inequalities below is obtained as follows: letting s /∈ Sk be an

arbitrary seller outside Sk,

vℓs′(t̂k) = vℓs′(1, (1)ŝ∈(Sk∪Bk)\{s′}, (tŝ)ŝ /∈(Sk∪Bk))

≤ vℓs′(1, ts′ , t−s,s′) +

(

aS − 1

nS
+

aB
nB

)

α

≤ vℓs(1, ts′ , t−s,s′) +

(

aS − 1

nS
+

aB
nB

)

α+ β′(1− ts′)

≤ vℓs(ts, ts′ , t−s,s′) +
2α

K
+ β′(1− ts′)

= vℓs′(ts′ , ts, t−s,s′) +
2α

K
+ β′(1− ts′)

= vℓs′(t) +
2α

K
+ β′(1− ts′).
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Then, we have

1

nS

(Sℓ(p̃k)− Sℓ
0) >

1

nS

((

λ̂ℓ
S(p̃k)− 1

Λ
−

1

2K

)

nS − aS −

(

λℓ
S(p

MC)

Λ
+

1

2K

)

nS

)

≥
λ̂ℓ
S(p̃k)− λℓ

S(p
MC)− 1

Λ
−

2

K

≥
vℓs(t̂k)− vℓs′(t)−

2α
K

β ′
−

3

Λ
−

2

K

>
p̃k − pMC − 2α

K

β ′
−

3

Λ
−

2

K

= 0.

(b) Suppose s ∈ Sk. In this case, Sℓ(p̃k) ≥ nS − aS = nS

(

1− 1
K

)

and Sℓ
0 <

(

λℓ
S(p

MC)

Λ
+ 1

2K

)

nS, and thus, Sℓ(p̃k) > Sℓ
0 if

1−
1

K
>

λℓ
S(p

MC)

Λ
+

1

2K
,

or 1−
λℓ
S(p

MC)

Λ
> 3

2K
. This inequality is satisfied because λℓ

S(p
MC) < Λ−1− 2Λ

K

by Claim 1, and hence 1−
λℓ
S(p

MC)

Λ
> 1

Λ
+ 2

K
> 3

2K
.

Hence we have shown that Sℓ(p̃k) ≥ Sℓ
0 for each ℓ. Therefore S ′(p̃k) =

∑m
ℓ=1 S

ℓ(p̃k) ≥
∑m

ℓ=1 S
ℓ
0 = S0. By an analogous argument, we obtain D′(p̃k) ≤ D0. Therefore S ′(p̃k) ≥

S0 = D0 ≥ D′(p̃k). To complete the proof, consider the following cases.

(1) Suppose D0 > 0. Then, because S ′(p̄k) ≥ S ′(p̃k) ≥ D0, it follows that S ′(p̄k) > 0.

If D′(p̃k) = 0, then because D′(p̃k) ≥ D′(p̄k), it follows that D
′(p̄k) = 0, and hence

S ′(p̄k) > D′(p̄k), as desired. If D′(p̃k) > 0, then since p̄k = p̃k +
β′

Λ
, under event

E, D′(p̃k) > D′(p̄k). Therefore we have S ′(p̄k) ≥ S ′(p̃k) ≥ D′(p̃k) > D′(p̄k), as

desired.

(2) Suppose D0 = 0. Then, by definition of pMC , it follows that pMC = v
(1)
S . Because

v̂
(1)
S ≤ v

(1)
S + 2α

K
, we obtain that p̄k > v̂

(1)
S , which implies S ′(p̄k) > 0. Because

D0 ≥ D′(p̃k) ≥ D′(p̄k) from an earlier argument, it follows that D′(p̄k) = 0.

Therefore S ′(p̄k) > 0 = D′(p̄k), as desired.

�

Lemma 4. Assume E holds. In the canonical groupwise-price mechanism, at least

min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

−max{nB, nS}m

[

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
+

2

Λ
+

1

2K

]

units of the object are traded.
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Proof. For each b ∈ Bk and ℓ ∈ {1, . . . , m}, let ṽℓb := vℓb(t) = vℓb((0)i∈Sk
, t−Sk

). If (b, ℓ)

satisfies ṽℓb ≥ pk, then (b, ℓ) ∈ B∗
k(t). Because

ṽℓb ≥ vℓb(t)− aS ·
α

nS
= vℓb(t)−

α

K
,

if

vℓb(t)−
α

K
≥ p̄k,(A.2)

then ṽℓb ≥ pk, and hence (b, ℓ) ∈ B∗
k(t).

Let λℓ be the smallest nonnegative integer that satisfies

λℓ ≥ Λ

[

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
+

λℓ
B + 1

Λ
−

1

K

]

.(A.3)

Then, by rearranging terms,

λℓ

Λ
+

1

K
−

λℓ
B + 1

Λ
≥

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
.

Consider an arbitrary buyer b ∈ yλ
ℓ

k . Using the above inequality, and noting that tb ≥ tbℓ

because tb ≥
λℓ

Λ
+ 1

K
≥

λℓ
B
+1

Λ
≥ tbℓ , we obtain that

vℓb(t)−
α

K
≥ vℓbℓ(t) + β(tb − tℓb)−

α

K

≥ pMC + β

(

λℓ

Λ
+

1

K
−

λℓ
B + 1

Λ

)

−
α

K

≥ pMC +

(

2

K
+

4

Λ

)

β ′ +
3α

K
−

α

K

= pMC +

(

2

K
+

4

Λ

)

β ′ +
2α

K

= p̄k,

thus (b, ℓ) ∈ B∗
k(t). So we obtain

|B∗
k(t)| ≥ aB

∑

ℓ

Y
λℓ

k ≥
∑

ℓ

aB

[

1−
λℓ

Λ
−

3

2K

]

.(A.4)

Because λℓ is defined as the smallest integer satisfying (A.3), we have

λℓ ≤ Λ

[

( 2
K
+ 4

Λ
)β ′ + 3α

K

β
+

λℓ
B + 1

Λ
−

1

K

]

+ 1.
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Substituting this inequality to inequality (A.4), we obtain

|B∗
k(t)| ≥

∑

ℓ

aB

[

1−

[

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
+

λℓ
B + 1

Λ
−

1

K

]

−
1

Λ
−

3

2K

]

=
∑

ℓ

aB

[

1−
λℓ
B

Λ
−

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
−

2

Λ
−

1

2K

]

.

For each s ∈ Sk and ℓ ∈ {1, . . . , m}, let ṽℓs := vℓs(t) = vℓs(ts, (1)i∈Bk
, t−Bk

). If (s, ℓ)

satisfies ṽℓs < pk, then (s, ℓ) ∈ S∗
k(t). Because

ṽℓs ≤ vℓs(t) + aB ·
α

nB

= vℓs(t) +
α

K
,

if

vℓs(t) +
α

K
< pMC ,(A.5)

then ṽℓs < pk, and hence (s, ℓ) ∈ S∗
k(t).

Let λℓ be defined as the largest integer such that

λℓ ≤ λℓ
S − 1−

αΛ

βK
+

Λ

K
.(A.6)

Then, by rearranging terms,

λℓ

Λ
−

1

K
−

λℓ
S

Λ
≤ −

1

Λ
−

α

βK
.

Consider an arbitrary seller s ∈ xλℓ

k . Using the above equality, and noting ts < tsℓ (because

ts <
λℓ

Λ
− 1

K
≤

λℓ
S−1

Λ
− α

βK
<

λℓ
S−1

Λ
≤ tsℓ), we obtain

vℓs(t) +
α

K
≤ vℓsℓ(t)− β(tsℓ − ts) +

α

K

≤ vℓsℓ(t)− β

(

λℓ
S − 1

Λ
−

(

λℓ

Λ
−

1

K

))

+
α

K

≤ vℓsℓ(t)−
α

K
+

α

K

< pMC ,

thus showing that relation (A.5) holds, and hence (s, ℓ) ∈ S∗
k(t). So we obtain

|S∗
k(t)| ≥ aS

∑

ℓ

Xλℓ

k ≥
∑

ℓ

aS

[

λℓ

Λ
−

3

2K

]

.(A.7)

Because λℓ is defined as the largest integer satisfying (A.6), we have

λℓ ≥ λℓ
S − 1−

αΛ

βK
+

Λ

K
− 1,(A.8)
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so

λℓ

Λ
≥

λℓ
S

Λ
−

α

βK
−

2

Λ
+

1

K
,(A.9)

Substituting this inequality into inequality (A.7), we obtain

|S∗
k(t)| ≥

∑

ℓ

aS

[

λℓ
S

Λ
−

α

βK
−

2

Λ
−

1

2K

]

.

Therefore, the number of trades in submarket k is at least

min

{

aB
∑

ℓ

[

1−
λℓ
B

Λ
−

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
−

2

Λ
−

1

2K

]

, aS
∑

ℓ

[

λℓ
S

Λ
−

α

βK
−

2

Λ
−

1

2K

]

}

.

Summing across all submarkets (and noting that this lower bound does not depend on

k), there are at least

min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ
−

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
−

2

Λ
−

1

2K

]

, nS

∑

ℓ

[

λℓ
S

Λ
−

α

βK
−

2

Λ
−

1

2K

]

}

≥ min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

+max{nB, nS}m

[

−

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
−

2

Λ
−

1

2K

]

,

trades under our double auction mechanism.35 �

Lemma 5. Assume E holds. In the efficient allocation, under pMC, at most

min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

+max{nB, nS}
3m

2K

units are traded.

Proof. First, consider the buyers. By definition, if buyer b satisfies

tb <
λℓ
B

Λ
=

(λℓ
B + Λ

K
)

Λ
−

1

K
,

or equivalently, if b ∈ yλ
ℓ
B+ Λ

K , then b does not trade her ℓ-th unit in the efficient trade. The

number of such buyers b is nBY
λℓ
B
+ Λ

K , which we know is no smaller than nB

(

λℓ
B

Λ
− 3

2K

)

.

Therefore the number of the buyers who buy their ℓ-th units of the object is bounded

from above by nB

(

1−
λℓ
B

Λ
+ 3

2K

)

.

Next, consider the sellers. By definition, if seller s satisfies

ts >
λℓ
S

Λ
=

(λℓ
S − Λ

K
)

Λ
+

1

K
,

35Note that
( 2

K
+ 4

Λ )β
′+ 3α

K

β ≥ 3α
βK ≥ α

βK .
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or equivalently, if s ∈ xλℓ
S−

Λ

K , then s does not trade her ℓ-th unit in the efficient trade. The

number of such sellers s is nSX
λℓ
S
− Λ

K , which we know is no smaller than nS

(

1−
λℓ
S

Λ
− 3

2K

)

.

Therefore the number of the sellers who buy their ℓ-th units of the object is bounded from

above by nS

(

λℓ
S

Λ
+ 3

2K

)

.

Therefore the number of trades is at most

min

{

nB

∑

ℓ

(

1−
λℓ
B

Λ
+

3

2K

)

, nS

∑

ℓ

(

λℓ
S

Λ
+

3

2K

)

}

≤ min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

+max{nB, nS}
3m

2K
,

which completes the proof.

�

Now we shall complete the proof of the Theorem. By Lemmata 4 and 5, the “per-capita”

welfare loss for buyers is bounded from above by

(A.10)

1

nB

[

Pr(E)

{[

min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

+max{nB, nS}
3m

2K

]

−

[

min

{

nB

∑

ℓ

[

1−
λℓ
B

Λ

]

, nS

∑

ℓ

λℓ
S

Λ

}

+max{nB, nS}m

[

−

(

2
K
+ 4

Λ

)

β ′ + 3α
K

β
−

2

Λ
−

1

2K

]]}

+(1− Pr(E))mnB

]

≤
1

nB

(

mmax{nB, nS}

[

3

2K
+

( 2
K
+ 4

Λ
)β ′ + 3α

K

β
+

2

Λ
+

1

2K

]

+

[

2ΛK4

nS

+
2ΛK4

nB

]

×mnB

)

≤
γm

γ

[

3

2K
+

( 2
K
+ 4

Λ
)β ′ + 3α

K

β
+

2

Λ
+

1

2K

]

+

[

2mΛK4

nS

+
2mΛK4

nB

]

,

where the first inequality follows because Pr(E) ≤ 1 (since Pr(E) is a probability) and (1−

Pr(E)) is bounded from above by replacing Pr(E) with its lower bound, 1− 2ΛK4

nS
− 2ΛK4

nB
,

while the second inequality comes from simplifying terms. Because Λ = K, K → ∞,
K5

N
→ 0 as N → ∞, and γN < nB, nS < γN for all N by assumption, the right-most

expression of inequality (A.10) approaches zero as N → ∞. This implies that the per-

capita inefficiency for buyers from failed trades also approaches zero as N → ∞. A

symmetric argument shows that the per-capita inefficiency for sellers from failed trades

approaches zero as N → ∞, completing the proof under the assumption that each agent’s

type is drawn i.i.d. according to the uniform distribution.
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A.2. Proof for the general independent type case. In this subsection, suppose that

all types are independently distributed, and each buyer’s type follows a distribution with

cdf F with an everywhere positive and continuous pdf f while each seller’s type follows a

distribution with cdf G with an everywhere positive and continuous pdf g. We shall show

that the conclusion of the theorem holds under these assumptions.

To show the result for this case, first note that F and G admit inverse functions F−1 and

G−1, and τb = F (tb) and τs = G(ts) follow the uniform distribution over [0, 1]. For each

τ = (τj)j∈B∪S, define ṽi(τ) = vi((F
−1(τb))b∈B, (G

−1(τs))s∈S) as the new valuation function

of agent i. Given that vi(·) satisfies conditions (4.1) and (4.2), the valuation function

ṽi(·) satisfies the same conditions too, as shown in the next paragraph. Therefore, the

conclusion of the theorem holds by the analysis in Subsection A.1.

It remains to show that ṽi(·) satisfies conditions (4.1) and (4.2). To see this, let f, f ∈

(0,∞) be such that f(τb) ∈ [f, f ] for all τb ∈ [0, 1] and g, g ∈ (0,∞) be such that

g(τs) ∈ [g, g] for all τs ∈ [0, 1] (note that f and g are strictly positive and continuous on

[0, 1], so such f, f, g, and g exist). Then, for each i and j 6= i,

|ṽℓi (τ−j, τj)− ṽℓi (τ−j , τ
′
j)| ≤

f−1α

nB
, if j ∈ B,

|ṽℓi (τ−j , τj)− ṽℓi (τ−j , τ
′
j)| ≤

g−1α

nS
, if j ∈ S,

thus condition (4.1) is satisfied, and

|ṽℓi (τ)− ṽℓj(τ)| ∈ [βf
−1
|τi − τj |, β

′f−1|τi − τj |] if i, j ∈ B,

|ṽℓi (τ)− ṽℓj(τ)| ∈ [βg−1|τi − τj |, β
′g−1|τi − τj|] if i, j ∈ S,

thus condition (4.2) is satisfied.

A.3. Proof for the general conditional independence case. Finally, we will com-

plete the proof for the general conditionally independent type as assumed in the main text

of the paper. To do so, recall that there is a state variable σ that is drawn randomly from

a certain finite distribution. For each realization of σ, there is a pair of type distributions,

one for the buyers and another for the sellers, and types are independently distributed

conditional on σ. It is clear that the expected efficiency loss in this model is simply a

weighted average of expected inefficiencies conditional on σ. Because the proof in Subsec-

tion A.2 shows that expected inefficiency goes to zero for any fixed σ, we conclude that

the expected inefficiency that is averaged over the state variables also converges to zero.

This completes the proof of the theorem.
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Remark 3. While the rate of convergence to efficiency is not our main focus, our proof

sheds light on this issue. For that purpose, first recall that Λ = K. This and the last

inequality imply that the expected per-capita inefficiency in the canonical groupwise-price

mechanism is O
(

1
K
+ K5

N

)

. By taking K = N
1

6 , this is O
(

N− 1

6

)

. In particular, a canon-

ical groupwise-price mechanism can diminish the per-capita inefficiency at a polynomial

rate in N . Whether a mechanism with a better convergence rate exists is an open question.

Appendix B. Proof of Theorem 3

In this section, we prove Theorem 3 under the assumption that each agent’s type is

drawn i.i.d. according to the uniform distribution. Extension to the general case of

conditionally independent types is omitted because the argument is analogous to the one

for Theorem 2, which is presented in Subsections A.2 and A.3.

In the following, we fix one realization of type profile t under event E. Let
[

λℓ
S
(p)−1

Λ
,
λℓ
S
(p)

Λ

)

be the interval that contains the highest type of the sellers in S whose ℓ-th unit value

given t is smaller than or equal to p. Similarly, let
[

λℓ
B
(p)

Λ
,
λℓ
B
(p)+1

Λ

)

be the interval that

contains the lowest type of the buyers in B whose ℓ-th unit value given t is higher than

or equal to p.

Also, we use the following notation.

Aλ
S =

1

nS

∣

∣

∣

∣

{

s ∈ S|ts ≤
λ

Λ

}∣

∣

∣

∣

,

Aλ
B =

1

nB

∣

∣

∣

∣

{

b ∈ B|tb ≤
λ

Λ

}∣

∣

∣

∣

.

Under event E, Aλ
S, A

λ
B ∈

(

λ
Λ
− 1

2K
, λ
Λ
+ 1

2K

)

.

At a fixed submarket k, we introduce analogous notation. Let

[

λℓ
Sk

(p)−1

Λ
,
λℓ
Sk

(p)

Λ

)

be the

interval that contains the highest type of the sellers in Sk whose ℓ-th unit value given t̄

is smaller than or equal to p. Similarly, let

[

λℓ
Bk

(p)

Λ
,
λℓ
B
(p)+1

Λ

)

be the interval that contains

the lowest type of the buyers in Bk whose ℓ-th unit value given t is higher than or equal

to p. Also, let

Aλ
Sk

=
1

aS

∣

∣

∣

∣

{

s ∈ Sk|ts ≤
λ

Λ

}∣

∣

∣

∣

,

Aλ
Bk

=
1

aB

∣

∣

∣

∣

{

b ∈ Bk|tb ≤
λ

Λ

}∣

∣

∣

∣

.

Under event E, Aλ
Sk
, Aλ

Bk
∈
(

λ
Λ
− 1

2K
, λ
Λ
+ 1

2K

)

. Let Sk(p) and Dk(p) denote the supply

and demand functions in submarket k, i.e., Sk(p) = |{(s, ℓ)|vℓs(t̄) < p}|, and Dk(p) =

|{(b, ℓ)|vℓb(t) ≥ p}|.
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Lemma 6. Let

qk = pMC + β ′

(

3

Λ
+

1

K

)

+
α

K
,

q
k

= pMC − β ′

(

3

Λ
+

1

K

)

−
α

K
.

Then, Sk(qk) > Dk(qk) and Dk(qk) > Sk(qk).

Proof. We first show Sk(qk) > Dk(qk). To do so, for any ℓ, let Sk
ℓ(qk) be the number of

the sellers who supply their ℓ’th unit at qk, corresponding to Sk(qk). Similarly, let Sℓ
0 be

the number of the sellers who supply their ℓ’th unit at pMC , corresponding to S0. Then,

for any given ℓ,

(1) Suppose that vℓs(t) ≤ qk for all s. Then every seller in Sk supplies her ℓ’th unit at

price q̄k. So

1

aS
Sℓ
k(qk)−

1

nS
Sℓ
0 = 1−

1

nS
Sℓ
0 ≥ 0.

(2) Suppose that vℓs(t) ≥ pMC for all s. Then no seller in S supplies her ℓ’th unit at

price pMC . So

1

aS
Sℓ
k(qk)−

1

nS

Sℓ
0 =

1

aS
Sℓ
k(qk)− 0 ≥ 0.

(3) Suppose that neither of the above cases holds. Let s be the seller whose type is

the lowest among those in submarket k with vℓs(t) > qk, and s′ ∈ S be the seller

whose type is the highest among those in the entire market with vℓs′(t) < pMC

(such s and s′ exist by the assumption of this case). Then,

ts′ ≥
λℓ
S(p

MC)− 1

Λ
.(B.1)

Depending on the realization t, ts is either in

[

λℓ
Sk

(qk)−1

Λ
,
λℓ
Sk

(qk)

Λ

)

or

[

λℓ
Sk

(qk)

Λ
,
λℓ
Sk

(qk)+1

Λ

)

.

Hence, ts ≤
λℓ
Sk

(qk)+1

Λ
. Thus,

qk − pMC < vℓs(t)− vℓs′(t)

≤ vℓs(t)− vℓs′(t) +
α

K

≤ β ′
λℓ
Sk
(qk)− λℓ

S(p
MC) + 2

Λ
+

α

K
,

which implies

β ′

(

3

Λ
+

1

K

)

+
α

K
≤ β ′

λℓ
Sk
(qk)− λℓ

S(p
MC) + 2

Λ
+

α

K
,
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or equivalently

λℓ
Sk
(qk)− λℓ

S(p
MC)− 1

Λ
≥

1

K
.

This implies

1

aS
Sℓ
k(qk)−

1

nS

Sℓ
0 ≥

1

K
> 0.

By the conclusions of the above cases,

1

aS
Sk(qk)−

1

nS

S0 =
∑

ℓ

1

aS
Sℓ
k(qk)−

1

nS

Sℓ
0 > 0,

thus we obtain 1
aS
Sk(qk) > 1

nS
S0. With an analogous argument, we can show 1

nS
D0 >

1
aS
Dk(qk) as well. These inequalities, together with the relation S0 = D0, imply the

desired conclusion, Sk(qk) > Dk(qk).

The proof for Dk(qk) > Sk(qk) is analogous and hence omitted. �

The following lemma is useful for the rest of the proof.

Lemma 7. Let p′ ≥ p be prices such that there exist two buyers b, b′ ∈ Bk where v1b (t) > p′

and vmb′ (t) < p, and moreover, there exist two sellers s, s′ ∈ Sk where v1s(t) < p and

vms′ (t) > p′. Then,

Sk(p
′)− Sk(p) ∈

(

aS

(

p′ − p

β ′
−

3 + 2m

Λ
−

1

K
−

3αm

β ′nS

)

, aSm

(

p′ − p

β
+

3

Λ
+

1

K

))

,

Dk(p)−Dk(p
′) ∈

(

aB

(

p′ − p

β ′
−

3 + 2m

Λ
−

1

K
−

3αm

β ′nB

)

, aBm

(

p′ − p

β
+

3

Λ
+

1

K

))

.

Proof. Let s ∈ Sk be the seller who has the lowest type in Sk, and s ∈ Sk be the seller

who has the highest type in Sk.

Proof for a lower bound for Sk(·). We consider the following two cases. First, suppose

that there exists ℓ ∈ {1, . . . , m} such that vℓs(t) < p ≤ p′ ≤ vℓs(t). Let s ∈ Sk be the seller

in submarket k whose type is the highest among those with vℓs(t) < p. Then,

ts ≥
λℓ
Sk
(p)− 1

Λ
.(B.2)

Similarly, let s′ ∈ Sk be the seller in submarket k whose type is the lowest among those

with vℓs′(t) ≥ p′. s′ has the next lowest type above the type of the seller, say s′′, who is

the highest type with value less than p′, and ts′′ is at most
λℓ
Sk

(p′)

Λ
by definition of λℓ

Sk
(p′).

Therefore, by event E, there should be at least one seller within each interval of length
1
Λ
, which implies

ts′ ≤
λℓ
Sk
(p′) + 1

Λ
.(B.3)
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Therefore,

Sk(p
′)− Sk(p) > aS

(

λℓ
Sk
(p′)− 1

Λ
−

1

2K
−

λℓ
Sk
(p)

Λ
−

1

2K

)

= aS

(

λℓ
Sk
(p′) + 1

Λ
−

1

2K
−

λℓ
Sk
(p)− 1

Λ
−

3

Λ
−

1

2K

)

≥ aS

(

ts′ − ts −
3

Λ
−

1

K

)

≥ aS

(

p′ − p

β ′
−

3

Λ
−

1

K

)

,

where the first inequality follows from the definition of λℓ
Sk
(p′) and event E, the equality

follows from calculation, the second inequality follows from inequalities (B.2) and (B.3),

and the last inequality follows because ts′ − ts ≥
vℓ
s′
(t̄)−vℓs(t̄)

β′ ≥ p′−p
β′ by assumption on

p, p′, s, and s′ as well as condition (4.2) in the main text.

Next, suppose that there exists no ℓ ∈ {1, . . . , m} such that vℓs(t) < p ≤ p′ ≤ vℓs(t). Let

ℓ′ and s′ be defined by:

ℓ′ = min{ℓ̃ ∈ {1, . . . , m}|vℓ̃s̄(t) ≥ p′},

s′ = argmin
s̃∈Sk

{ts̃|v
ℓ′

s̃ (t) ≥ p′}.

That is, ℓ′ and s′ satisfy vℓ
′

s′(t) ≥ p′ and the pair (ℓ′, s′) is the smallest of such pairs with

respect to the lexicographic order that relies first on the index and then on the agent’s

type. Similarly, let ℓ and s be

ℓ = max{ℓ̃ ∈ {1, . . . , m}|vℓ̃s(t) < p},

s = argmax
s̃∈Sk

{ts̃|v
ℓ
s̃(t) < p}.

That is, (ℓ, s) is the largest index-seller pair satisfying vℓs(t) < p with respect to the

lexicographic oder described above. The relation ℓ ≥ ℓ′ contradicts the assumption that

there exists no ℓ ∈ {1, . . . , m} such that vℓs(t) < p ≤ p′ ≤ vℓs(t), so ℓ′ > ℓ. Hence,

p′ − p < vℓ
′

s′(t)− vℓs(t)

≤ [vℓ
′

s′(t)− vℓ
′

s (0, t−s)] + [vℓ
′−1
s (1, t−s)− vℓ

′−1
s (0, t−s)] + ... + [vℓ+1

s (1, t−s)− vℓ+1
s (0, t−s)]

+[vℓs(1, t−s)− vℓs(t)] + (ℓ′ − ℓ)
α

nS

≤ [vℓ
′

s′(t)− vℓ
′

s (t)] + [vℓs(t)− vℓs(t)] +
2β ′

Λ
+

2α

nS

+ (ℓ′ − ℓ− 1)[β ′ + 2(
β ′

Λ
+

α

nS

)] + (ℓ′ − ℓ)
α

nS

≤
λℓ′

Sk
(p′) + 1

Λ
β ′ + (1−

λℓ
Sk
(p)− 1

Λ
)β ′ +

2β ′

Λ
+

2α

nS
+ (ℓ′ − ℓ− 1)[β ′ + 2(

β ′

Λ
+

α

nS
)] + (ℓ′ − ℓ)

α

nS
,
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where the first inequality follows from the definitions of p, p′, s′, ℓ′, s, and ℓ, the second

inequality follows because the “no gap” condition implies

vℓ̃s(1, t−s)− vℓ̃+1
s (0, t−s) ≥ vℓ̃s(1, t−s)− vℓ̃+1

s (0, t−s)−
α

nS
≥ −

α

nS
,

for each ℓ̃ ∈ {ℓ, ℓ + 1, . . . , ℓ′ − 1}, the third inequality follows because, under event E,

ts ≤
1
Λ
and ts ≥

Λ−1
Λ

, and hence,

vℓ
′

s (t)− vℓ
′

s (0, t−s) ≤
β ′

Λ
+

α

nS
,

vℓs(1, t−s)− vℓs(t) ≤
β ′

Λ
+

α

nS
,

by assumption (4.2) in the main text,36 and for each ℓ̃ ∈ {ℓ+ 1, . . . , ℓ′ − 1},

vℓ̃s(1, t−s)− vℓ̃s(0, t−s) ≤ β ′ + 2

[

β ′

Λ
+

α

nS

]

,

and the last inequality follows by definitions of p, p′, ℓ, s, ℓ′, s′, and by assumption (4.2) in

the main text. Rearranging terms, we obtain

λℓ′

Sk
(p′)+1

Λ
+ 1−

λℓ
Sk

(p)−1

Λ
+ (ℓ′ − ℓ− 1)(B.4)

>
p′−p− 2β′

Λ
− 2α

nS
−2(ℓ′−ℓ−1)

(

β′

Λ
+ α

nS

)

−(ℓ′−ℓ) α
nS

β′ .

36We obtain those inequalities as follows.

vℓ
′

s (t) = vℓ
′

s (ts, ts, t−s,s)

≤ vℓ
′

s (ts, 0, t−s,s) +
α

nS

≤ vℓ
′

s (ts, 0, t−s,s) +
α

nS
+

β′

Λ

≤ vℓ
′

s (ts, 0, t−s,s) +
α

nS
+

β′

Λ

= vℓ
′

s (0, ts, t−s,s) +
α

nS
+

β′

Λ

= vℓ
′

s (0, t−s) +
α

nS
+

β′

Λ
,

where, for example, vℓ
′

s (ts, 0, t−s,s) represents the value of s for ℓ′-th unit when her own type is 0, the

type of s is ts, and the types of the others are t−s,s, and similarly for the other expressions. Similarly,

we obtain

vℓs(1, t−s)− vℓs(t) ≤
β′

Λ
+

α

nS
.
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Therefore,

Sk(p
′)− Sk(p) > aS

(

λℓ′

Sk
(p′)− 1

Λ
−

1

2K
− 0

)

+ aS

(

1−
λℓ
Sk
(p)

Λ
−

1

2K

)

+ aS(ℓ
′ − ℓ− 1)

≥ aS

(

λℓ′

Sk
(p′) + 1

Λ
+ 1−

λℓ
Sk
(p)− 1

Λ
−

3

Λ
−

1

K
+ (ℓ′ − ℓ− 1)

)

≥ aS





p′ − p− 2β′

Λ
− 2α

nS
− 2(ℓ′ − ℓ− 1)

(

β′

Λ
+ α

nS

)

− (ℓ′ − ℓ) α
nS

β ′
−

3

Λ
−

1

K





= aS

(

p′ − p

β ′
−

5

Λ
−

1

K
− (ℓ′ − ℓ)

α

β ′nS

− 2(ℓ′ − ℓ)
α

β ′nS

− 2
ℓ′ − ℓ− 1

Λ

)

,

≥ aS

(

p′ − p

β ′
−

3 + 2m

Λ
−

1

K
−

3αm

β ′nS

)

,

where the term aS(ℓ
′−ℓ−1) in the first line corresponds to the supply of the objects from

all agents in submarket K for the (ℓ+1)th, ..., (ℓ′−1)th units, the first inequality follows

from the definition of λℓ
Sk
(p′) and event E, the second inequality follows from calculation,

the third inequality follows from inequality (B.4), the equality follows from calculation,

and the fourth inequality follows from the fact ℓ′ − ℓ ≤ m.

Proof for an upper bound for Sk(·). To obtain an upper bound on the difference in

supplies, let L := {ℓ ∈ {1, . . . , m}|vℓs(t) < p′ and vℓs̄(t) ≥ p}. We shall first show

λℓ
Sk
(p′)− λℓ

Sk
(p)− 2

Λ
β ≤ p′ − p,(B.5)

for each ℓ ∈ L. To show this, let s′ ∈ Sk be the seller in submarket k whose type is the

highest among those with vℓs′(t) ≤ p′, and s ∈ Sk be the seller in submarket k whose type

is the lowest among those with vℓs(t) > p; Note that such s′ and s exist since ℓ ∈ L. Then,

ts′ ≥
λℓ
Sk

(p′)−1

Λ
. By event E, ts is either in

[

λℓ
Sk

(p)−1

Λ
,
λℓ
Sk

(p)

Λ

)

or

[

λℓ
Sk

(p)

Λ
,
λℓ
Sk

(p)+1

Λ

)

. Hence,

ts ≤
λℓ
Sk

(p)+1

Λ
. Thus,

p′ − p > vℓs′(t)− vℓs(t) ≥ β

(

λℓ
Sk
(p′)− λℓ

Sk
(p)− 2

Λ

)

,

as desired.

Consider ℓ /∈ L. Suppose first that vℓs(t) ≥ p′. Then by assumption p′ ≥ p it follows

that vℓs(t) ≥ p, and hence no seller in Sk supplies the ℓ-th unit of the object under either p

or p′. Suppose next that vℓs̄(t) < p. Then by assumption p′ ≥ p it follows that vℓs̄(t) < p′,

and hence every seller in Sk supplies the ℓ-th unit of the object under both p and p′.
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We now show Sk(p
′)−Sk(p) < aSm

(

p′−p
β

+ 3
Λ
+ 1

K

)

. To show this, applying inequality

(B.5) and the above argument we obtain

Sk(p
′)− Sk(p) < aS

∑

ℓ∈L

(

λℓ
Sk
(p′)

Λ
+

1

2K
−

(

λℓ
Sk
(p)− 1

Λ
−

1

2K

))

= aS
∑

ℓ∈L

(

λℓ
Sk
(p′)− λℓ

Sk
(p)− 2

Λ
+

3

Λ
+

1

K

)

≤ aSm

(

p′ − p

β
+

3

Λ
+

1

K

)

.

Proof for a lower bound for Dk(·). Let b ∈ Bk be the seller who has the lowest type

in Bk, and b ∈ Bk be the seller who has the highest type in Bk. We consider the following

two cases.

First, suppose that there exists ℓ ∈ {1, . . . , m} such that vℓb(t) < p ≤ p′ ≤ vℓ
b
(t). Let

b′ ∈ Bk be the seller in submarket k whose type is the lowest among those with vℓb′(t) ≥ p′.

Then we obtain the following inequality:37

tb′ <
λℓ
Bk
(p′) + 1

Λ
.(B.6)

Similarly, let b ∈ Bk be the seller in submarket k whose type is the highest among those

with vℓb(t) < p. Then, the following inequality follows:38

tb ≥
λℓ
Bk
(p)− 1

Λ
.(B.7)

37This inequality follows because

[

λℓ
Bk

(p′)

Λ ,
λℓ
B(p′)+1

Λ

)

is defined as the interval that contains the lowest

type of the buyers in Bk whose ℓ-th unit value given t is higher than or equal to p′.
38To obtain this inequality, recall that tb is the type just below the lowest type of the buyers in

Bk whose ℓ-th unit value given t is higher than or equal to p, and the latter type is in the interval
[

λℓ
Bk

(p)

Λ ,
λℓ
B(p)+1

Λ

)

by definition. By event E, tb can be smaller than
λℓ
Bk

(p)

Λ at most by 1
Λ , so we obtain

inequality (B.7).
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Therefore,

Dk(p)−Dk(p
′) > aB

[(

1−
λℓ
Bk
(p) + 1

Λ
−

1

2K

)

−

(

1−
λℓ
Bk
(p′)

Λ
+

1

2K

)]

= aB

(

λℓ
Bk
(p′) + 1

Λ
−

1

2K
−

λℓ
Bk
(p)− 1

Λ
−

1

2K
−

3

Λ

)

≥ aB

(

tb′ − tb −
3

Λ
−

1

K

)

≥ aB

(

p′ − p

β ′
−

3

Λ
−

1

K

)

,

where the first inequality follows from the definition of λℓ
Bk
(p′), the equality follows from

calculation, the second inequality follows from inequalities (B.6) and (B.7), and the last

inequality follows because tb′ − tb ≥
vℓ
b′
(t̄)−vℓ

b
(t̄)

β′ > p′−p
β′ by assumption on p, p′, b, and b′ as

well as condition (4.2) in the main text.

Next, suppose that there exists no ℓ ∈ {1, . . . , m} such that vℓb(t) < p ≤ p′ ≤ vℓ
b
(t). Let

ℓ′ and b′ be defined by:

ℓ′ = min{ℓ̃ ∈ {1, . . . , m}|vℓ̃b̄(t) ≥ p′},

b′ = arg min
b̃∈Bk

{tb̃|v
ℓ′

b̃
(t) ≥ p′}.

That is, ℓ′ and b′ satisfy vℓ
′

b′(t) ≥ p′ and the pair (ℓ′, b′) is the smallest of such pairs with

respect to the lexicographic order that relies first on the index and then on the agent’s

type. Similarly, let ℓ and b be

ℓ = max{ℓ̃ ∈ {1, . . . , m}|vℓ̃b(t) < p},

b = argmax
b̃∈Bk

{ts̃|v
ℓ
b̃
(t) < p}.

That is, (ℓ, b) is the largest index-seller pair satisfying vℓb(t) < p with respect to the

lexicographic oder described above. The relation ℓ ≥ ℓ′ contradicts the assumption that
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there exists no ℓ ∈ {1, . . . , m} such that vℓb(t) < p ≤ p′ ≤ vℓ
b
(t), so ℓ′ > ℓ. Hence,

p′ − p < vℓ
′

b′(t)− vℓb(t)

≤ [vℓ
′

b′(t)− vℓ
′

b (0, t−b)] + [vℓ
′−1
b

(1, t−b)− vℓ
′−1
b (0, t−b)] + ...+ [vℓ+1

b
(1, t−b)− vℓ+1

b (0, t−b)]

+[vℓ
b
(1, t−b)− vℓb(t)] + (ℓ′ − ℓ)

α

nB

≤ [vℓ
′

b′(t)− vℓ
′

b (t)] + [vℓ
b
(t)− vℓb(t)] +

2β ′

Λ
+

2α

nB
+ (ℓ′ − ℓ− 1)[β ′ + 2(

β ′

Λ
+

α

nB
)] + (ℓ′ − ℓ)

α

nB

≤
λℓ′

Bk
(p′) + 1

Λ
β ′ + (1−

λℓ
Bk
(p)− 1

Λ
)β ′ +

2β ′

Λ
+

2α

nB
+ (ℓ′ − ℓ− 1)[β ′ + 2(

β ′

Λ
+

α

nB
)] + (ℓ′ − ℓ)

α

nB
,

where the first inequality follows from the definitions of p, p′, b′, ℓ′, b, and ℓ, the second

inequality follows because the “no gap” assumption implies

vℓ̃
b
(1, t−b)− vℓ̃+1

b (0, t−b) ≥ vℓ̃
b
(1, t−b)− vℓ̃+1

b (0, t−b)−
α

nB
≥ −

α

nB
,

for each ℓ̃ ∈ {ℓ, ℓ + 1, . . . , ℓ′ − 1}, the third inequality follows because, under event E,

tb ≤
1
Λ
and tb ≥

Λ−1
Λ

, and hence,

vℓ
′

b (t)− vℓ
′

b (0, t−b) ≤
β ′

Λ
+

α

nB
,

vℓ
b
(1, t−b)− vℓ

b
(t) ≤

β ′

Λ
+

α

nB

,

by assumption (4.2) in the main text, for each ℓ̃ ∈ {ℓ+ 1, . . . , ℓ′ − 1},

vℓ̃
b
(1, t−b)− vℓ̃b(0, t−b) ≤ β ′ + 2

[

β ′

Λ
+

α

nB

r

]

,

and the last inequality follows by definitions of p, p′, ℓ, b, ℓ′, b′, and by assumption (4.2) in

the main text. Rearranging terms, we obtain

λℓ′

Bk
(p′)+1

Λ
+ 1−

λℓ
Bk

(p)−1

Λ
+ (ℓ′ − ℓ− 1)(B.8)

>
p′−p− 2β′

Λ
− 2α

nB
−2(ℓ′−ℓ−1)(β

′

Λ
+ α

nB
)−(ℓ′−ℓ) α

nB

β′ .
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Therefore,

Dk(p)−Dk(p
′) > aB

(

1−
λℓ
Bk
(p) + 1

Λ
−

1

2K

)

+ aB

(

λℓ′

Bk
(p′)

Λ
−

1

2K

)

+ aB(ℓ
′ − ℓ− 1)

≥ aB

(

λℓ′

Bk
(p′) + 1

Λ
+ 1−

λℓ
Bk
(p)− 1

Λ
−

3

Λ
−

1

K
+ (ℓ′ − ℓ− 1)

)

≥ aB

(

p′ − p− 2β′

Λ
− 2α

nB
− 2(ℓ′ − ℓ− 1)(β

′

Λ
+ α

nB
)− (ℓ′ − ℓ) α

nB

β ′
−

3

Λ
−

1

K

)

= aB

(

p′ − p

β ′
−

5

Λ
−

1

K
− (ℓ′ − ℓ)

α

β ′nB
− 2(ℓ′ − ℓ)

α

β ′nB
− 2

ℓ′ − ℓ− 1

Λ

)

,

≥ aB

(

p′ − p

β ′
−

3 + 2m

Λ
−

1

K
−

3αm

β ′nB

)

,

where the term aB(ℓ
′ − ℓ − 1) in the first line corresponds to the supply of the objects

from all agents in submarket K for the (ℓ + 1)th, ..., (ℓ′ − 1)th units, the first inequality

follows from the definition of λℓ
Bk
(p′), the second inequality follows from calculation, the

third inequality follows from inequality (B.8), the equality follows from calculation, and

the fourth inequality follows from the fact ℓ′ − ℓ ≤ m.

Proof for an upper bound for Dk(·). To obtain an upper bound on the difference in

demands, let L := {ℓ ∈ {1, . . . , m}|vℓb(t) < p′ and vℓ
b̄
(t) ≥ p}. We shall first show

λℓ
Bk
(p′)− λℓ

Bk
(p)− 2

Λ
β ≤ p′ − p,(B.9)

for each ℓ ∈ L. To show this, let b′ ∈ Bk be the seller in submarket k whose type is the

highest among those with vℓb′(t) < p′, and b ∈ Bk be the seller in submarket k whose type

is the lowest among those with vℓb(t) ≥ p; Note that such b′ and b exist since ℓ ∈ L. Then,

tb′ ≥
λℓ
Bk

(p′)−1

Λ
and tb ≤

λℓ
Bk

(p)+1

Λ
. Thus,

p′ − p > vℓb′(t)− vℓb(t) ≥ β

(

λℓ
Bk
(p′)− λℓ

Bk
(p)− 2

Λ

)

,

as desired.

Consider ℓ /∈ L. Suppose first that vℓb(t) ≥ p′. Then by assumption p′ ≥ p it follows

that vℓb(t) ≥ p, and hence every buyer in Bk demands the ℓ-th unit of the object under

both p and p′. Suppose next that vℓ
b̄
(t) < p. Then by assumption p′ ≥ p it follows that

vℓ
b̄
(t) < p′, and hence no buyer in Bk demands the ℓ-th unit of the object under either p

or p′.

We now show Dk(p)−Dk(p
′) < aBm

(

p′−p
β

+ 3
Λ
+ 1

K

)

. To show this, applying inequality

(B.9) and the above argument we obtain
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Dk(p)−Dk(p
′) < aB

∑

ℓ∈L

((

1−
λℓ
Bk
(p)

Λ
+

1

2K

)

−

(

1−
λℓ
Bk
(p′)− 1

Λ
−

1

2K

))

= aB
∑

ℓ∈L

(

λℓ
Bk
(p′)− λℓ

Bk
(p)− 2

Λ
+

3

Λ
+

1

K

)

≤ aBm

(

p′ − p

β
+

3

Λ
+

1

K

)

.

�

Lemma 7 has an implication for the shape of the inverse demand and supply functions.

Lemma 8. Let x′ > x. Let D−1
k (x′) denote an arbitrary price p′ such that Dk(p

′) = x′.

Similarly, define D−1
k (x), S−1

k (x′), S−1
k (x). Then,

S−1
k (x′)− S−1

k (x) ∈

((

x′ − x

aSm
−

3

Λ
−

1

K

)

β,

(

x′ − x

aS
+

3 + 2m

Λ
+

1

K
+

3αm

β ′nS

)

β ′

)

,

D−1
k (x)−D−1

k (x′) ∈

((

x′ − x

aBm
−

3

Λ
−

1

K

)

β,

(

x′ − x

aB
+

3 + 2m

Λ
+

1

K
+

3αm

β ′nB

)

β ′

)

.

Proof. We first show the bounds for the supply. Let p′ = S−1
k (x′) and p = S−1

k (x). Observe

that p′ ≥ p, x′ = Sk(p
′) and x = Sk(p). By Lemma 7,

x′ − x ∈

(

aS

(

p′ − p

β ′
−

3 + 2m

Λ
−

1

K
−

3αm

β ′nS

)

, aSm

(

p′ − p

β
+

3

Λ
+

1

K

))

,

or equivalently,

p′ − p ∈

((

x′ − x

aSm
−

3

Λ
−

1

K

)

β,

(

x′ − x

aS
+

3 + 2m

Λ
+

1

K
+

3αm

β ′nS

)

β ′

)

.

The proof for D−1(·) is symmetric and hence omitted. �

Now we shall prove the theorem. Recall that Sk(qk) > Dk(qk) and Dk(qk) > Sk(qk).

These imply D−1
k (Sk(qk)), S

−1
k (Dk(qk)) ≥ q

k
, and D−1

k (Sk(qk)), S
−1
k (Dk(qk)) ≤ qk. The

per-capita budget surplus in the submarket k is at most max{D−1
k (Sk(qk)) − q

k
, qk −
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S−1
k (Dk(qk))}. We observe that this converges to zero as the market size grows. First,

D−1
k (Sk(qk))− q

k
≤ D−1

k (Sk(qk))− q
k
+

[

Sk(qk)− Sk(qk)

aB
+

3 + 2m

Λ
+

1

K
+

3αm

β ′nB

]

β ′

≤ qk − q
k
+

[

aSm

aB

(

qk − q
k

β
+

3

Λ
+

1

K

)

+
3 + 2m

Λ
+

1

K
+

3αm

β ′nB

]

β ′

≤ (qk − q
k
)

(

1 +
β ′aSm

βaB

)

+

[

3 + 2m+ 3aSm
aB

Λ
+

aSm
aB

+ 1

K
+

3αm

β ′nB

]

β ′

≤

(

β ′

(

2

K
+

6

Λ

)

+
2α

K

)(

1 +
β ′aSm

βaB

)

+

[

3 + 2m+ 3aSm
aB

Λ
+

aSm
aB

+ 1

K
+

3αm

β ′nB

]

β ′,

where the first inequality follows from Lemma 8, the second inequality follows from Lemma

7, and the last inequality follows from the definitions of q̄k and q
k
. Therefore, it converges

to zero as the market size grows.

Similarly,

qk − S−1
k (Dk(qk)) ≤ qk − S−1

k (Dk(qk)) +

[

Dk(qk)−Dk(qk)

aS
+

3 + 2m

Λ
+

1

K
+

3αm

β ′nS

]

β ′

≤ qk − q
k
+

[

aBm

aS

(

qk − q
k

β
+

3

Λ
+

1

K

)

+
3 + 2m

Λ
+

1

K
+

3αm

β ′nS

]

β ′

≤ (qk − q
k
)

(

1 +
β ′aBm

βaS

)

+

[

3 + 2m+ 3aBm
aS

Λ
+

aBm
aS

+ 1

K
+

3αm

β ′nS

]

β ′

≤

(

β ′

(

2

K
+

6

Λ

)

+
2α

K

)(

1 +
β ′aBm

βaS

)

+

[

3 + 2m+ 3aBm
aS

Λ
+

aBm
aS

+ 1

K
+

3αm

β ′nS

]

β ′,

where the first inequality follows from Lemma 8, the second inequality follows from Lemma

7, and the last inequality follows from the definitions of q̄k and q
k
. Therefore, it converges

to zero as the market size grows. These show the desired conclusion.
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