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Abstract

In a number of interesting environments, dynamic screening involves positive selection:

in contrast with Coasian dynamics, only the most motivated remain over time. The paper

provides conditions under which the principal’s commitment optimum is time consistent and

uses this result to derive testable predictions under permanent or transient shocks. It also

identifies environments in which time consistency does not hold despite positive selection,

and yet simple equilibrium characterizations can be obtained.
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preferences, exit games.
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1 Introduction

The poll tax on non-Muslims that was levied from the Islamic conquest of then-Copt Egypt in

640 through 1856 led to the (irreversible) conversion of poor and least religious Copts to Islam

to avoid the tax and to the shrinking of Copts to a better-off minority. To the reader familiar

with Coasian dynamics, the fact that most conversions occurred during the first two centuries

raises the question of why Muslims did not raise the poll tax over time to reflect the increasing

average wealth and religiosity of the remaining Copt population.1

This paper studies a new and simple class of dynamic screening games. In the standard

intertemporal price discrimination (private values) model that has been the object of a volumi-

nous literature, the monopolist moves down the demand curve: most eager customers buy or

∗The research leading to these results has received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013) Grant Agreement no. 249429. The
author is grateful to five referees, Daron Acemoglu, Dirk Bergemann, Daniel Garrett, Johannes Hörner, Alessandro
Pavan, Di Pei, Jean-Charles Rochet, Mohamed Saleh and to participants at the 3rd CEPRWorkshop on Incentives,
Management and Organization (Frankfurt), the Jean-Jacques Laffont memorial seminar in Toulouse, the London
Business School, the University of Zurich, the Spring Meeting of Young Economists in Ghent, the Nemmers
lecture at Northwestern and the Mannheim European Economic Association meetings for helpful discussions and
comments and to Arda Gitmez for excellent research assistance.

†Toulouse School of Economics (TSE) and Institute for Advanced Study in Toulouse (IAST)
1A possible conjecture is that the Muslims wanted to preserve a tax base. However, they might also have

wanted immediate income and further were also aiming at maximizing conversions to Islam. See Saleh (2013)
for an analysis of the impact of the poll tax on the correlation of religious and socio-economic status over these
twelve centuries.
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consume first, resulting in a right-truncated distribution of valuations or “negative selection”.

Similarly, in the dynamic version of Akerlof’s lemons model (common values), the buyer first

deals with the most-eager-to-trade seller types –the owners of lemons– and thereafter raises price

to account for the information that the seller is less eager to trade than expected. Again there

is negative selection and the price setter moves down the demand curve (or rather up the supply

curve).

In the poll tax example by contrast, the monopolist (the state) moves up the demand curve:

Copts who most value their religion or are richer and therefore less sensitive to the pool tax

remain in the tax base, while converts and their descendants, under the threat of apostasy forever

disappear from that tax base. As we will later note, a number of interesting economic contexts

share with the conversion game “positive selection” and, at least approximately, “absorbing

exit”.

One might conjecture that the distinction between positive and negative selection is just

a matter of sign convention, but this is not the case. To start building some intuition about

why this is so, consider a demand curve D(p) = 1 − F (p) obtained by aggregating demands

from individual consumers with willingnesses to pay θ distributed according to some cumulative

distribution F (θ). Suppose that the distribution for some reason has been truncated at θ0 and

let D0 = 1−F (θ0); let ηR and ηL denote the elasticities of the right- and left-truncated residual

demands. Then ηR = [−D′(p)p]/[D(p) − D0] (for D(p) > D0) and ηL = [−D′(p)p]/[D(p)]

(for D(p) < D0). That is, right truncations increase the elasticity of demand, while left ones

leave it unchanged. This difference is illustrated in Figure 1, which emphasizes the reduction

(invariance) of the set of inframarginal consumers under negative (positive) selection.

This observation has a number of implications.2 The most obvious is that the monopoly price

2For instance, auctions of incentive contracts, which amount to a left truncation of the winner’s efficiency’s
probability distribution, deliver for the winner the same power of incentive scheme as if the winner were a
monopolist; optimal auctions thus only reduce the fixed component of rewards (Laffont and Tirole 1987). Another
application of this property of the hazard rate is Niedermayer and Shneyerov (2014), in which a platform matches
buyers and sellers. The mechanism that maximizes platform profit can as usual be derived by maximizing total
virtual surplus. An interesting result in that paper is that the platform monopoly profit is also attainable in
a decentralized manner, where the platform charges membership fees to the participants and then buyers and
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is invariant to (moderate) left-, but not to right-truncations of the distribution of willingnesses

to pay, a property whose implications for dynamic screening we will investigate. Indeed, this

paper focuses on the properties and time consistency of monopoly pricing under left truncations.

The dynamics first studied by Coase (1972) have the monopolist move down the demand curve

once the cream has been skimmed off and the remaining market is the bottom of the barrel;

the intuition is provided by the increasing elasticity of demand under right truncations. The

monopolist’s incentive to reduce price over time has been shown to result in the time inconsis-

tency of optimal monopoly pricing and therefore in an erosion of monopoly power. By contrast,

the invariance of the elasticity under left truncations suggests that the monopolist will not be

tempted to move up the demand curve and so optimal market segmentation is time-consistent.

Consider the following monopoly pricing example: agents – the consumers – have unit de-

mand in each of two periods, t = 0, 1, and willingnesses to pay (relative to the outside oppor-

tunity) θ distributed on R according to c.d.f. F (θ) and density f(θ) such that the static profit

function for marginal cost c and unit mass of consumers, (p − c)[1 − F (p)], is strictly quasi-

concave. Let pm denote the monopoly price (pm = c + [1 − F (pm)]/f(pm)). Consumers can

consume at date 1 only if they have consumed at date 0. If the principal (the monopolist) can

commit at date 0 to a sequence of prices, the optimal price sequence is p0 = p1 = pm. Because

the consumers are the same at the two dates, the absorbing-exit constraint is not binding. Sup-

pose now that the principal lacks commitment ability. Let the principal charge p0 = pm at date

0, and suppose that consumers expect that the date-1 price will not be any lower. Consumers

with type θ < pm then do not want to consume at date 0 and they exit at that date. Consumers

with type θ ≥ pm benefit from consuming at t = 0 regardless of their expectation of p1 and

therefore consume at date 0. Consider then date 1. The monopolist faces survival function

1−F1(θ) = 1 for θ ≤ pm, and = [1−F (θ)]/[1−F (pm)] for θ ≥ pm on its remaining goodwill and

so picks price p1 = arg max{p≥pm} {(p− c)[1−F (p)]/[1−F (pm)]} = pm, vindicating consumers’

expectations. So the monopolist’s ability to implement monopoly pricing is not hampered by

the lack of commitment.

This paper investigates several questions raised by this toy example. First, how general is the

“weak time consistency” result that there exists one equilibrium that delivers the commitment

payoff for the principal? Second, do all equilibria under non-commitment deliver the commit-

ment payoffs? That is, are the commitment payoffs “strongly time consistent”? Third, can one

characterize exit dynamics when the environment is uncertain and evolves over time (in the

example above, the seller’s cost and the consumers’ willingnesses to pay might follow stochastic

processes)? Fourth, does the analysis extend to heterogenous discount factors, to inflows of new

agents and to finite re-entry costs? Finally, can exit dynamics still be characterized when time

inconsistency prevails?

Section 2 describes the baseline model. Each period, the agent may remain in a relationship

sellers (independently of the platform) make take-it-or-leave-it offers to each other (random proposer model).
Buyers with low values and sellers with high values do not join the platform because of the membership fees.
For appropriate fees, the membership is the same as under centralization and decentralized trade is efficient: all
buyers and sellers who pay the membership fees trade.
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with the principal; exit is absorbing. Ignoring the transfers between the two parties, the agent’s

flow payoff from the relationship (net of her outside option payoff) is increasing in a privately

known type θ and may depend on the composition of the remaining installed base of peers as

well as on the current state of nature st. Again ignoring transfers, the principal’s flow payoff

depends on the state of nature, on the agent’s type and on the composition of the remaining

installed base; the model thus accommodates private and common values. At date t, provided

that the agent has remained in the installed base (the parties are still in a relationship), the

principal offers a (positive or negative) price pt which the agent accepts or refuses, in which case

the game is over.

The paper’s first contribution is to show that provided that types (although not necessarily

willingnesses to pay) are permanent, the optimal outcome is indeed time-consistent, and so

no commitment ability is required to implement it (Section 3). More precisely, weak time

consistency is always satisfied. Strong time consistency obtains if general mechanisms are allowed

and there is a continuum of agents; alternatively, it obtains when the principal sequentially sets

prices under the assumption of no strongly-positive network externalities, together with, for the

case of an infinite horizon, the added requirement that either the equilibrium be Markov perfect

or that the principal weakly benefit from a greater clientele at the optimal, non-frontloaded price

(we later derive a sufficient condition for this property to obtain). The overall picture is that

strong time consistency obtains very broadly with permanent types.3

When the agent’s and principal’s discount factors are allowed to differ, time consistency

obtains if and only if the agent is more impatient then the principal. Furthermore, the principal’s

payoff is always independent of the agent’s discount factor; this is in contrast with the bargaining

(negative selection) literature in which agent impatience benefits the principal, who can then

screen at a relatively low cost.

Time consistency transforms the search for a perfect Bayesian equilibrium of the no-commitment

game into a simple dynamic stochastic optimization problem. We use this fact in Section 4 to

compute the equilibrium in simple cases. One prominent case has an unambiguous aggregate

evolution: the consumption becomes either more or less attractive over time; alternatively, the

principal over time becomes more or less eager to retain agents. In the borderline case of an

invariant environment, equilibrium leads to all exits (“conversions” in the religious example)

taking place early on. More generally, when consumption deterministically becomes more at-

tractive, all exit occurs at the initial date. By contrast, when it becomes less attractive over

time (perhaps in a stochastic fashion), exit is spread over time and both the principal and the

agent in equilibrium behave myopically, i.e., as if this were the last period (Section 4.1). Section

4.2 looks at non-monotone attractiveness and shows that familiar ironing techniques provide the

3Returning to the initial conversion game, this result sheds additional light on why the Muslim rulers did not
sell non-expiring worshiping rights, instead of setting up a system with a recurring tax providing only a short-term
worshiping right. Two reasons are specific to the context and do not apply to other contexts: First, the payment
of an annual poll tax was dictated by an explicit verse in the Koran. Second, the principal in this context is
also the contract enforcer (this may also apply to the emigration application discussed below), and so long-term
contracts are not credible: A Copt could have paid this “once-and-for-all poll” tax, and the following year or
decade been asked to pay again. The third reason is more universal and results from time consistency: Short-term
contracting yields the principal’s optimum.
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characterization of screening dynamics.

When the economy is subject to transient aggregate shocks (Section 4.3), which in a sense is

the polar case of the permanent shocks studied in Section 4.1, shocks have long-lasting effects, the

exit volume decreases over time and this volume is serially negatively correlated. At each date

t, the participation depends only on the worst shock so far and is given by a simple condition.

Section 5 investigates the robustness of our results to finite re-entry costs and to inflows of

new agents under the assumption of monotone attractiveness. Section 5.1 extends the model to

finite re-entry costs in the context of monotone attractiveness and provides a lower bound on

re-entry costs (equal to 0 in the case of decreasing/constant attractiveness) for re-entry to be

irrelevant and therefore for the results obtained previously to apply.

The robustness of the insights to inflows of new agents is analyzed also for monotone-

attractiveness environments in Section 5.2. Following the literature on negative selection, we

look at whether the absence of price discrimination among identical cohorts impacts the out-

come under commitment and non-commitment. Under negative selection, uniform pricing has

the potential to restore some of the monopoly power that is eroded by the temptation to lower

the price as the principal moves down the demand curve. One may wonder whether, conversely,

the combination of the inflow of new cohorts and of uniform pricing might undermine the time

consistency of optimal policies and thereby destroy principal value under positive selection.

For the class of monotone-attractiveness games, we obtain two interesting results. First,

under commitment, uniform pricing does as well as discriminatory pricing. Second, time consis-

tency obtains for decreasing/constant attractiveness, but not for strictly increasing attractive-

ness. In the case of decreasing/constant attractiveness, these results stem from the observation

that the principal’s optimal behavior under price discrimination is myopic and so identical across

cohorts; therefore there is no cost for the principal of not being able to make use of cohort in-

formation. Neither is there any time consistency issue.

Under strictly increasing attractiveness, the optimal policy under price discrimination is

described by invariant, but cohort-specific cut-offs; all exit within a cohort occurs in the cohort’s

first period of existence, but new cohorts have a lower cut-off, i.e., higher membership, than older

ones. We show that under uniform pricing, a specific pattern of frontloaded payments is both

necessary and sufficient to achieve the price-discrimination/cohort-specific cut-offs. This front-

loading is what makes the optimal outcome time-inconsistent under uniform pricing (while it is

time consistent under discriminatory pricing).

Section 6 by contrast studies environments in which time consistency does not hold. Solving

for equilibria of principal-agent relationships in the absence of commitment is notoriously difficult

as it no longer boils down to solving an optimization problem. Interestingly, though, the simple

structure of games with positive selection allows us to provide equilibrium characterizations.

Section 6.1 looks at the possibility that the principal’s preferences, and not only the publicly

observable environment, change over time. It is well-known that optimal policies are not time

consistent in such environments. With a shifting principal type, both the principal and the
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agent must factor in the possibility that future principals be more or less eager to pursue the

relationship than the current one. We prove two simple propositions. First, if the environment is

invariant (except for the principal’s type), the date-t remaining installed base is determined by its

optimal level for the least eager principal so far. Second, whether attractiveness is monotonically

increasing or decreasing, the installed base at any date t is smaller than what the current

principal would induce if he and the agent anticipated that the principal’s type would no longer

change.

Section 6.2 studies the case of multiple principals. Under common agency, the agent’s exit

pattern is jointly determined by the principals. The analysis thus is a dynamic extension of the

standard commons (or moral-hazard-in-team) problem. Despite positive selection, time consis-

tency is invalidated by the principals’ desire to influence each other’s future policies. Nonetheless,

equilibrium in the dynamic retention game can be characterized and shown to have the same

qualitative properties as in the case of coordinated principals (i.e., the single-principal case).

We leave the study of environments in which time inconsistency arises on the agent’s side

for future research, and content ourselves with a few remarks. Section 6.3 allows the agent’s

type to shift over time. When the agent’s type moves in an iid fashion, the equilibrium hazard

rate for the termination of the relationship is constant and there is more exit than in the

commitment solution. Myerson and Satterthwaite (1983) partnerships, in which exit by one

member implies the dissolution of the partnership are briefly discussed in the conclusion and in

an on-line Appendix.

Section 7 concludes with suggestions for future research. Omitted proofs can be found in

the Appendix.

Economic environments with positive selection

Left truncations are closely related to the economics of incumbency; that is, they arise

whenever an authority, firm or technology has an installed base of “customers” that forms a

potential “tax base”, but may irremediably exit:

Emigration: In an illustration closely related to the conversion game, suppose that emigration

is an irrevocable decision (or at least one that is costly to reverse). Then an economically

privileged, ethnic or religious group may see some of its members leave as the government levies

more taxes or enacts adverse “non-price” policies toward the group. Over time, only the most

attached to the country or the least mobile members of the group remain in the country.

Employee retention: A firm or an academic department at any given point in time comprises the

subset of legacy employees who are the most committed or immobile. Organization-benefiting

policies asking for public service, personal sacrifices or wage moderation create a risk for the

organization of losing valuable employees.4

4Following Burdett and Mortensen (1998)’s work on the impact of on-the-job search on labor markets, a litera-
ture has developed that studies firms’ retention policies under the threat of incoming outside opportunities. This
literature in particular looks at how a steeply rising wage contract can approximate optimal “sell-out contracts”
that are enabled by entry (or quitting) fees (Burdett and Coles 2003, Stevens 2004). The focus is rather different
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Technology disadoption/licensing : A firm or group of intellectual property owners licensing key

patents enabling the implementation of an incumbent technology may be concerned that users

might defect for a new technological alternative. Again, the loyal tax base is composed of those

with the highest benefits from the incumbent technology or highest switching costs.

Entry of generics: In a closely related example that has been the focus of much empirical

literature, generic drugs that enter when a brand-name drug goes off-patent are typically far

less expansive (by a factor of 5 or 10) than the brand-name version. Interestingly, the US

retail prices of brand-name drugs tend to increase just prior to patent expiration and continue

to increase (a bit less) post-patent expiration. This phenomenon, dubbed “price rigidity”, is

consistent with the idea of positive selection. The brand-name drug manufacturer is left with

the most loyal consumers and has little incentive to lower the price despite a declining market.5

Dyad game: Two parties are involved in some relationship. One of the parties is uncertain about

the other party (friend, spouse, co-worker)’s commitment to the relationship and therefore does

not know how much effort is needed to keep the relationship going. Assuming that the dyad

once dissolved does not re-form, the dyad game is an illustration of our framework.6

Related literature

Following up on early work on dynamic “Myersonian” mechanism design (e.g., Baron and

Besanko 1984, Courty and Li 2000), remarkable progress has recently been made to character-

ize optimal mechanisms under commitment. The literature has derived generalizations of the

envelope characterization of the first-order condition and conditions under which attention can

be focused on single, rather than compound deviations (Esö and Szentes 2007, Boleslavsky and

Said 2013, and Pavan et al 2014). It has obtained necessary and sufficient conditions for the

attainment of the optimal allocation either asymptotically (Battaglini 2005) or overall (Berge-

mann and Välimäki 2010, Athey and Segal 2013, Skrzypacz and Toikka 2013). Kruse-Strack

(2014) studies the optimal commitment policy when the agent must choose a stopping time, the

analog of our absorbing exit condition. The agent’s type evolves over time (making the optimum

time inconsistent). Under a dynamic single crossing assumption, the paper provides an elegant

characterization of optimal stopping rules and their implementation.

The work cited in the previous paragraph presumes “double commitment”: commitment

to a long-term mechanism if the initial offer is accepted, and commitment by the principal

not to make further offers if the initial offer is rejected. However, commitment is often not

from that in the paper since there is no asymmetric information at the contracting date and thus no dynamic
screening issue; furthermore, commitment is assumed, while the present paper studies the time consistency of
optimal commitment policies.

5In this example, “re-entry” (going back to the brand-name drug after switching to the generic) is relatively
costless. However, as will be shown in Section 5.1, re-entry costs need not be large (and actually can be nil in
the case of constant/decreasing attractiveness, a reasonable assumption for this application) for the results to
hold. Note also that a more satisfactory study of the dynamics of generics entry would take into account specific
institutional features such as automatic substitution requirements. Still the considerations developed here would
be relevant in this richer model.

6For this to be the case, it is important that the informational asymmetry be one-sided. The case of two-sided
asymmetric information is discussed in the on-line Appendix.
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to be taken for granted. Public policies generally lack commitment, and so do a number of

policies in private-sector environments, especially when future policies are hard to describe,

let alone contract upon, in advance. More precisely, long-term commitment may be infeasible

(“no commitment”); or it may be feasible but renegotiable (i.e., it is renegotiated if the parties

involved in the long-term contract all find it advantageous to do so; this is the paradigm of

“commitment and renegotiation” studied e.g., in Dewatripont 1989 or Laffont and Tirole 1990);

finally, further offers cannot be precluded, as in Coase’s durable good model.

Much less is known for environments in which full commitment is impossible. In specific

environments (usually two permanent types), both the commitment-and-renegotiation model

and the no-commitment model (without agent anonymity) have been shown to exhibit Coasian

dynamics (Hart and Tirole 1988, Maestri 2013, Strulovici 2013). Similar Coasian dynamics

have been obtained in the common value counterpart of Coase’s model, the dynamic version of

Akerlof’s lemons model (e.g. Daley and Green 2012, Fuchs and Skrzypacz 2013, Gerardi and

Maestri 2013, Gerardi et al 2014).

Little is known either regarding general properties of sequential screening in such environ-

ments. Bester and Strausz (2001) demonstrate that the cardinality of messages can be confined

to that of types for a finite type space. Skreta (2006) looks at the standard risk-neutral seller-

buyer game, in which, say, the buyer’s invariant valuation θ is drawn from some distribution

with support the interval [0, 1], and the seller’s cost is 0. As long as the buyer is not served,

the seller keeps making offers at t = 0, · · · , T . These offers need not be prices pt. Rather they

can be full-fledged mechanisms, resulting in date-t probabilities of trade and expected trans-

fers. The central result is that an optimal mechanism is to simply post a price in each period,

generalizing the Riley and Zeckhauser (1983) classic result to sequential mechanism design and

thereby simplifying the search for equilibria in this class of games.

The literature so far has been concerned with a principal selling goods in a market. The

principal’s objective is then to attract consumers without lowering price too much. By contrast,

we consider a principal who is trying to retain a customer base while incurring a low cost or

charging a high price. In this sense, this model is a mirror image of existing screening models,

with the less motivated jumping off ship instead of the most motivating getting on board.

Board and Pycia (2014) study pricing by a durable-good monopolist when the consumers

can enjoy an alternative, outside option with positive value. In this framework it is easy to

show that the monopoly price (the price pm that maximizes [θ− c][1−F (θ)], where F (θ) is the

distribution of willingnesses to pay and c is the marginal cost) is time consistent: the monopolist

charges at date 0 the monopoly price, those consumers with θ ≥ pm purchase immediately and

the others opt for the outside option. The principal’s (out of equilibrium) beliefs from date 1

on are that remaining consumers have types above pm. Board and Pycia’s striking result is that

this is the only equilibrium.7 Our framework differs from theirs in three important and related

aspects. First, Board and Pycia’s principal can commit to a long-term contract as is implicit

7In Fudenberg et al (1987), the possibility for the seller to consume the good himself or to switch to bargaining
with another buyer can restore commitment power but there are multiple equilibria. In Board-Pycia, the outside
option is on the buyer side, commitment is fully restored and the equilibrium is unique.
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in the durable good framework (selling can be viewed as a commitment to long-term rental).

The principal’s commitment assumption implies that the agent’s discount factor affects the

principal’s welfare like in pure negative selection models and unlike the pure positive selection

model of this paper. Second, their model exhibits both left- and right-truncations (the more

motivated buy the durable good and the least motivated buy the outside option), whereas the

model studied in this paper has only left truncations and Coase’s traditional model has only right

truncations. Third, exit in our model is mechanically induced by the non-continuation/breakup

of the relationship, leading to an infinite or finite re-entry cost; in Board-Pycia, non-consumption

need not imply exit, and there is a third potential status (“neither in nor out”). This third status

is not observed on the equilibrium path of the deterministic world of Board-Pycia, but would

become relevant if, as in this paper, stochastic shocks were to affect the attractiveness of the

relationship or principal and agent’s intrinsic preferences were to change over time. It would

actually be interesting to extend the Board-Pycia analysis to stochastic environments.

2 Model

Time is discrete: t = 0, 1, · · · , T , where T is finite or infinite. At the beginning of each period,

a state of nature st is realized in some set St. Let st ≡
(
s0, · · · , st

)
∈ St ≡ S0 × · · · × St follow

a stochastic process with conditional distribution G
(
sτ |st

)
for τ > t. We will say that sτ ≻ st

for τ > t if there exists
(
st+1 , · · · , sτ

)
such that sτ =

(
st, st+1 , · · · , sτ

)
.

The players are a principal, who has the bargaining power, and either one agent or a contin-

uum of agents with mass 1, in both cases with a unit demand in each period. Unless otherwise

specified (i.e. in Proposition 1(i) and Proposition 6, all results apply to both a single and a

continuum of agents). All players have identical discount factor δ ∈ (0, 1).

The agent is characterized by a privately-known type θ ∈ [θ, θ̄], distributed according to

smooth c.d.f. F (θ) with density f(θ). Each period t, the agent consumes (xt = 1) or does not

consume (xt = 0); exit is absorbing and so her consumption decision however is relevant only if

she has kept consuming in the past. Let Xt ≡ Πz=t
z=0 xz.

In the non-commitment version of the game, the principal makes an offer in each period,

which, together with the agent’s response to the offer, determines the allocation in that period.

We will consider two versions, depending on the nature of the offer:

Price-offer version. At each date t, the principal offers a price pt, and the agent chooses whether

to consume (xt = 1) or not (xt = 0).

Mechanism-offer version. More generally, the principal at date t can, as in Skreta (2006), offer a

mechanism that determines the date-t allocation. With a single agent, a mechanism is a message

space Mt, and for each message mt ∈ Mt, a transfer pt(mt) and a probability xt(mt) of date-t

consumption. The mechanism also specifies what the principal learns at the end of the period

concerning the agent’s message.8 With a continuum agents, the allocation {pit, xit} of agent i

8That is, any coarsening of the message can be transmitted to the principal. To prove strong time consistency
below, it will actually suffice to consider mechanisms such that the principal only learns that the agent has
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may depend on her message mi
t, but also on the other agents’ date-t messages; in particular, in

the continuum-of-agents version of the model, we will allow the principal to make the allocation

contingent on the number of agents wanting to keep consuming in the period (this will be used

only in part (i) of Proposition 1).

As we will show, the principal gains little traction from using general mechanisms, and

so, in the following description of the full game, we will focus on the price-offer version. The

mechanism-offer version follows straightforwardly from this description.

Information, timing and strategies. At the beginning of each period t, the state st is realized and

publicly observed. In (the no-commitment version of) the game, the principal sets a price pt for

date-t membership/consumption, and previously loyal consumers (those for whom Xt−1 = 1)

decide whether to consume. Strategies {σP· , σA· } are price choices, pt = σPt (p
t−1, st) ∈ R

for the principal and consumption choices xt = σAt (p
t, st, θ) ∈ {0, 1} for the agent, where

pt ≡ (p0 , · · · , pt). We focus on pure strategies and the equilibrium concept is perfect Bayesian

equilibrium.

This description of strategies assumes that the price (or mechanism) offered by the principal

at date t depends only on the state st (and previous prices, and implicitly on the fact that

the agent is still in the relationship). This is a natural assumption in the private values case.

However, under common values, the principal’s flow payoff depends on the agent’s type. The

measurability assumption can then be justified in one of two ways: The principal may observe

only the aggregate performance of the agents; alternatively, the principal is prohibited from

discriminating among agents. If none of the three conditions holds (that is, if values are com-

mon, individual performance is observable and discrimination is feasible), the outcomes under

commitment and non-commitment differ from those described below.9

Agents’ preferences. Relative to the payoff obtained by not consuming10, the agent’s net surplus

from date-t consumption is linear in the date-t transfer pt ∈ R to the principal (a price, or more

generally the conditions demanded by the principal for belonging to the consuming group11);

his gross surplus from consumption depends on his type θ, on the date-t payoff relevant state st

and on the set Θt ⊆ [θ, θ] of types who consume at date t.

The dependence of preferences on Θt allows for social image/self views and (in the case

of a continuum of agents) network externalities to affect consumption decisions. For example,

the agent’s utility may depend, positively or negatively, on the mass µ(Θt) of agents in the

consumption group; more generally, network externalities may also depend on the identity of

members of that group. Allowing for externalities adds an argument in the surplus function,

consumed at date t (or learns nothing at all since absorbing exit implies that remaining agents have consumed in
the past).

9On the other hand, if θ is observable at the end of the period, the commitment outcome is still time consistent:
In the absence of commitment, the allocation from date 1 on is efficient conditionally on cutoff θ∗0 . So the issue
of time consistency does not arise.

10The agent’s utility is thus defined net of utility upon exit. This normalization of utility upon exit to 0 is
without loss of generality as it allows the value of exit to differ for different types.

11The quasi-linearity of preferences is assumed solely for expositional simplicity. Similarly, transfers more
generally can involve deadweight losses. The key assumption is positive selection.
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but given their relevance in a number of applications, it is worthwhile to investigate whether

the results hold when they are present. We will use the “network externalities” terminology

whether the dependence on Θt arises with a continuum of agents or with a single agent (image

concern interpretation).

Skimming property. We assume that higher types have a strictly higher gross surplus for all

(Θt , st). It is then straightforward12 to show that, conditionally on having consumed up to

date t, if type θ consumes at date t for history (pt, st) (i.e., xt(p
t, st, θ) = 1 ), then so does

type θ′ > θ (i.e., xt(p
t, st, θ′) = 1). Intuitively, this results from the fact that type θ′ obtains a

strictly higher utility from consumption at date t and that the agent’s continuation valuation

at date (t+1) is weakly increasing in type (as type θ′ can always mimic type θ’s behavior from

date (t+1) on). Thus, incentive compatibility implies the existence of a unique cut-off θ∗t (p
t, st)

such that Θt = [θ∗t (p
t, st), θ] and µ(Θt) = 1 − F

(
θ∗t (p

t, st)
)
. Absorbing exit then implies cutoff

monotonicity: θ∗t (p
t, st) ≥ θ∗t−1(p

t−1, st−1).

We can therefore write the agent’s net payoff function as a function of the cutoff:

ϕ(θ, θ∗t , st)− pt.

ϕ is assumed to be strictly increasing in its first argument and differentiable in its first two

arguments. The intertemporal utility of a type-θ agent is

EsT

[
Σt=T
t=0 δ

tXt(θ, st)
[
ϕ(θ, θ∗t , st)− pt

]]
.

Principal’s preferences. The principal also has quasi-linear preferences, with flow payoff

∫ θ

θ∗t

ψ
(
θ, θ∗t , st

)
f(θ)dθ + pt

[
1− F (θ∗t )

]
,

and intertemporal utility

EsT

[
Σt=T
t=0 δ

τ
[ ∫ θ

θ∗t

ψ
(
θ, θ∗t , st

)
f(θ)dθ + pt

[
1− F (θ∗t )

]]]
.

The principal’s objective function deserves some comment as well. Often, the economic model

defines the ψ function directly. For example, ψ
(
θ, θ∗t , st

)
could stand for the marginal produc-

tivity of worker θ enjoying (positive or negative) production externalities depending on the set

of coworkers
[
θ∗t , θ

]
in state st. Our formalism thus allows for common values: the principal

may care about the agent’s type. For example, loyal employees may be loyal because they are

enthusiastic about their job and then are highly productive; or they may stay because they are

unable to find another job and then are likely to have a low productivity for the firm. Similarly,

the principal in the dyad game may exhibit reciprocal altruism and then experience a welfare

that depends on (his perception of) θ. Both cases are illustrations of common values.

12The proof follows the standard lines (see, e.g., Fudenberg et al 1985).
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Sometimes, the economic model gives instead the principal’s overall (i.e. summed over

[θ∗, θ̄]) gross surplus directly; one must then define the ψ function accordingly. For example,

the cost function of serving a number 1 − F (θ∗t ) of agents might be C
(
1 − F (θ∗t ), st

)
. One can

then define ψ
(
θ, θ∗t , st

)
= −C1

(
1 − F (θ), st

)
for all θ, where C1 is the derivative with respect

to the first argument, and so

∫ θ

θ∗t

ψ
(
θ, θ∗t , st

)
f(θ)dθ ≡ C(0, st) − C

(
1 − F (θ∗t ), st

)
. This latter

example illustrates the possibility of “network externalities” arising on the principal/cost side.

The notion of “externality augmented virtual surplus” introduced below is therefore relevant

under non-constant returns even when there are no direct externalities among agents.

Examples. The model embodies the premises of dynamic screening with left truncations: the

absorbing-exit condition and non-commitment. Let us provide a few examples.

In the basic conversion game, ϕ(θ, θ∗t , st) = θ and ψ(θ, θ∗t , st) = −c. The agent has preferences
Xt[θ−pt] where θ is the ratio of the agent’s religiosity over her marginal utility of income; needless

to say, we could enrich this basic set up with in- and out-religious group externalities. The

principal is the Muslim rulers, with overall date-t instantaneous payoff c[1 − µ(Θt)] + ptµ(Θt);

the parameter c reflects the rulers’ intrinsic preference for conversion to Islam, leading to a

“markup” pt − c on poll-tax-paying Copts.

The same payoffs can be used to describe the dyad game, where pt represents (minus) the

effort exerted to keep the uncommitted party on board.

With only very slight modifications, the model also accommodates persecutions such as

those brought about by the inquisition (against the Albigensian heresy in the 13th century by

the Dominicans on behalf of the Pope or against Spanish Jews and Moslems in the late 15th

century Spain by Queen Isabella and the Tribunal of the Holy Office of the Inquisition). The

screening instrument employed is then purely wasteful, except perhaps for the confiscations, but

the results in this paper do not rely on the tax being a pure transfer between the principal and

the agent.13

In the technology-disadoption game, ϕ(θ, θ∗t , st) = θ+α[1−F (θ∗t )]+ st and ψ(θ, θ∗t , st) = −c,
where α is a network-externality coefficient and st might stand for shifts in the attractiveness

of the challenging technology. The agent has flow preferences Xt[θ + αµ(Θt) + st − pt]. The

principal’s flow profit is the (pt − c)µ(Θt).

13Let the Catholic rulers’ objective function at date t be

−c
[
1− F (θ∗t )

]
−K(it)

where c is their disutility of non-conversion, it is the intensity of inquisition (the probability of detecting non-
converts) and K is an increasing and convex cost function. Let the utility of a non-convert with religiosity θ be
θ − itd where d is the relative cost of being caught and tried. The remaining installed based at date t is

Y t−1[1− F (θ∗t−1)
]

where Y t−1 = (1− i0) · · · (1− it−1). Thus the elasticity at any θ remains the same under left truncations, and the
analysis carries over. In particular, varying the rulers’ religiosity (c) over time or the impact of the environment
(for example, through K), one can as in Sections 4 and 6.1 derive dynamics of inquisition intensity.
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3 Time consistency

3.1 Optimal mechanism under commitment

Suppose, first, that the principal can commit to an incentive compatible mechanism that specifies

for each θ a (present-discounted) payment P (θ) and a state-contingent consumption pattern

{xt(θ, st)}t ∈ {0, · · · , T}
st ∈ St

(such that xt(θ, s
t) = 0 ⇒ xt+1(θ, s

t+1) = 0 if st+1 ≻ st). Letting

U(θ) ≡ max
{θ̃∈[θ,θ̄]}

{
EsT

[
Σt=T
t=0 δ

tXt(θ̃, st)ϕ(θ, θ∗t , st)
]
− P (θ̃)

}
,

the participation and incentive constraints require that

U(θ) ≥ 0

and

dU

dθ
= EsT

[
Σt=T
t=0 δ

tXt(θ, st)
∂ϕ

∂θ
(θ, θ∗t , st)

]
.

Consider an optimal policy under commitment. Let U(θ) ≥ 0 denote the ex-ante rent of type

θ, and V denote the principal’s ex-ante payoff for an arbitrary mechanism. Using the standard

decomposition between efficiency and rent, the principal’s payoff can be written as:

V = EθEsT

[
Σt=T
t=0 δ

tXt(θ, st)
[
ϕ(θ, θ∗t (s

t), st) + ψ(θ, θ∗t (s
t), st)

]
− U(θ)

]
,

where (using U(θ) = 0)

Eθ[U(θ)] =

∫ θ

θ
U(θ)dF (θ) =

∫ θ

θ

dU(θ)

dθ
[1− F (θ)]dθ

= EsT

∫ θ

θ

[
Σt=T
t=0 δ

tXt
(
θ, st

)∂ϕ
∂θ

(
θ, θ∗t (s

t), st
)]
[1− F (θ)]dθ.

And so the principal’s payoff can be rewritten in the standard, expected virtual surplus fashion:

V =

∫ θ

θ
EsT

[
Σt=T
t=0 δ

tXt(θ, st)
[ [
ϕ(θ, θ∗t (s

t), st) + ψ(θ, θ∗t (s
t), st)

]
f(θ)

− ∂ϕ

∂θ

(
θ, θ∗t (s

t), st
)
[1− F (θ)]

]
dθ

]

=

∫ θ

θ
EsT

[
Σt=T
t=0 δ

tXt(θ, st)Γ(θ, θ∗t (s
t), st)

]
f(θ)dθ
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where

Γ(θ, θ∗, s) ≡ ϕ(θ, θ∗, s) + ψ(θ, θ∗, s)− ∂ϕ

∂θ
(θ, θ∗, s)

1− F (θ)

f(θ)

denotes the virtual surplus. Maximizing the principal’s payoff amounts to solving the following

program:

sup
{θ∗· (·)}

{
EsT

[
Σt=T
t=0 δ

tW
(
θ∗t (s

t), st
)] }

(I)

subject to

θ∗t (s
t) ≥ θ∗t−1(s

t−1)

where

W
(
θ∗t (s

t), st
)
≡

∫ θ

θ∗t (s
t)
Γ
(
θ, θ∗t (s

t), st
)
f(θ)dθ.

The optimization indeed must respect the feasibility constraints (F )14: For all (t, st),

Xt(θ, st) = 1 ⇐⇒ θ ≥ θ∗t (s
t),

or, equivalently, cutoff monotonicity :

θ∗t (s
t) ≥ θ∗t−1(s

t−1) if st ≻ st−1. (F)

As usual, the policy must be optimal for any subform; that is, for all (t, st), {Xτ (·, ·), θ∗τ (·)}τ≥t

must also maximize :

Vt(s
t) =

∫ θ

θ∗t−1(s
t−1)

EsT |st
[
Στ=T
τ=t δ

τ−tXτ (θ, sτ )Γ
(
θ, θ∗τ (s

τ ), sτ
)] [ f(θ)

1− F (θ∗t−1(s
t−1))

]
dθ

subject to the relevant set of feasibility constraints for all (τ, sτ ) such that τ ≥ t and sτ % st.

We let {θ̂t(st)}t = 0, . . . , T

st ∈ St

denote the optimal contingent cutoff sequence under commitment.15

Next, we show that there is no loss of generality (in the sense that the commitment payoff

can be attained–this says nothing about outcome uniqueness) in considering commitments to a

sequence of state-contingent prices that the agent accepts or turns down. This observation has

two implications: First, restricting the principal to price offers rather than general mechanisms

still allows us to compute the commitment welfare. Second, this commitment welfare can be

14Because the cutoffs are weakly increasing, this condition need only be checked for the last cutoff. Note
furthermore that the condition “if st ≻ st−1” in condition (F) can be dispensed with (it does not matter what
the cutoff is if st is unfeasible given st−1).

15We will assume but not investigate the existence of an optimal policy. The optimization boils down to a
search for a plan specifying state-contingent cutoffs {θ∗t (st)} so as to solve Program (I), The state of the system
at date t is (st, θ∗t−1(s

t−1)). One can then apply standard results in dynamic programming as stated, say, in Lucas
et al (1989).
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attained even if the agent is unable to commit. To show this, consider a contingent price sequence

p ≡
{
pt(s

t)
}
t ∈ {0, · · · , T}
st ∈ St

so as to implement an arbitrary sequence of contingent, weakly increasing cutoffs θ∗ ≡ {θ∗t (st)}t ∈ {0, · · · , T}
st ∈ St

.

Cutoffs must satisfy sequential incentive compatibility. Introducing the agent’s value function:

Ut(θ, s
t;p,θ∗) ≡ max

{
0, ϕ(θ, θ∗t (s

t), st)− pt(s
t) + δE

[
Ut+1(θ, s

t+1;p,θ∗)
]}
,

then

xt(s
t, θ;p,θ∗) = 1 if and only ifϕ(θ, θ∗t (s

t), st)− pt(s
t) + δE

[
Ut+1(θ, s

t+1;p,θ∗)
]
≥ 0. (IC)

The principal’s commitment payoff in the price-offer game is:

V̂ ≡ max
{p,θ∗ satisfying (IC)}

EsT

[
Σt=T
t=0 δ

t
[ ∫ θ̄

θ∗t (s
t)
ψ(θ, θ∗t (s

t), st)f(θ)dθ + pt[1− F (θ∗t )]
]]
.

Note that (for the sake of the definition of V̂ only), we let the principal maximize not only

over prices, but also over cutoffs. Indeed, there is no guarantee that a price strategy p leads

to a unique sequence of cutoffs θ∗. Our allowing for network externalities implies a possible

multiplicity of static equilibria if externalities are positive and strong; under Assumption 1

below, though, the principal can guarantee himself V̂ by choosing p only.

Assumption 1 (no strongly positive network externalities). For all s, the function

ϕ(θ∗, θ∗, s) is strictly increasing in θ∗ (i.e., ϕ1(θ
∗, θ∗, s) + ϕ2(θ

∗, θ∗, s) > 0).

Assumption 1 is satisfied whenever network externalities are negative or non-existent (ϕ2 ≥
0). It is also satisfied for positive network externalities (ϕ2 < 0) provided they are not too

large. For example, the technology-disadoption game (ϕ(θ∗, θ∗, s) = θ∗ + α[1 − F (θ∗)] + s)

satisfies Assumption 1 provided that 1 − α sup {f(θ)} > 0. Assumption 1 prevents multiple

equilibria in the static game; in its absence, a “wrong coordination” of agents by itself might

induce a payoff for the principal that lies below V̂ . Hence Assumption 1 is a necessary condition

for equilibrium uniqueness in the price-offer game; its necessity for the implementation of V̂

is therefore unrelated to the time-consistency issue. In the single-period case for instance, the

optimal mechanism {x(θ) = 1 iff θ ≥ θ∗, p(θ) = ϕ(θ∗, θ∗) if θ ≥ θ∗ and = 0 otherwise} gives rise

to multiple equilibria if there exists θ∗∗ such that ϕ(θ∗∗, θ∗∗) = ϕ(θ∗, θ∗).

Lemma 1 (irrelevance of agent commitment). Consider a commitment allocation {P (·), x·(·, ·)}
with associated (monotonic) cutoffs θ̂·(·) and satisfying U(θ) = 0. Then the sequence of short-

term prices p ≡ {pt(st)}t ∈ {0, · · · , T}
st ∈ St

defined by the “cutoff-myopia” property:

∀st : pt(s
t) = ϕ(θ̂t(s

t), θ̂t(s
t), st)
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is such that, if the principal commits to the sequence of state-contingent prices p, (i) there

is an equilibrium that yields the same payoff for the principal and (for all θ) the agent as

the commitment allocation; (ii) if Assumption 1 holds, the equilibrium is unique and therefore

delivers the commitment allocation.

In this sense, there is no need for commitment by the agent. And the principal does not lose

from offering prices.

As we noted in the introduction, while the optimal commitment outcome is time consistent,

not every optimal commitment policy is. Prices can be arbitrarily frontloaded,16 with the impact

of high initial prices being offset by the promise of low prices in the future; however, frontloaded

policies in general are time inconsistent as the principal would want to renege on this promise.

3.2 Non-commitment and time consistency

In practice principals may find it difficult to commit to a long-term, state-contingent policy.

The absence of commitment is particularly natural either when the principal is a government

or when specifying “non-price” dimensions of the future relationship in a contract is complex.

This raises the time-consistency issue.

Definition (time consistency). Weak time consistency holds if there exists a perfect Bayesian

equilibrium of the non-commitment game that delivers expected payoff V̂ for the principal.

Strong time consistency holds if all perfect Bayesian equilibria of the non-commitment game

deliver payoff V̂ for the principal.

For part (iii) of the proposition, we will further either focus on Markov perfect equilibria or

make the following assumption:

Assumption 2 (static benefits of a greater clientele). For all (t, st),

∂

∂θ∗

(∫ θ

θ∗
ψ
(
θ, θ∗, st

)
f(θ)dθ + pt[1− F (θ∗)]

)
≤ 0

at any θ∗ ≤ θ̂t(s
t) and for pt = ϕ

(
θ̂t(s

t), θ̂t(s
t), st

)
, where

{
θ̂t(s

t)
}
denotes the sequence of cutoffs

along some optimal commitment policy.

Assumption 2 says that the principal does not mind having a greater clientele provided that

the price is set at the valuation of the current cutoff’s surplus at the optimal program. In

Section 4, we will provide a sufficient condition for Assumption 2 to be satisfied. For instance,

16A commitment policy (p,θ∗) is frontloaded if there exists (t, st) such that

pt(s
t) > ϕ

(
θ∗t (s

t), θ∗t (s
t), st

)
.

That is, the cutoff type at date t in state st must expect some strictly positive surplus (i.e. a price below his
gross surplus) at some future date τ in some state sτ .
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it is satisfied by the conversion and technology disadoption games, provided that attractiveness

is constant or decreasing as defined in the next section.17

A Markov perfect equilibrium is an equilibrium in which the players’ strategies at date t

depends only on the previous cutoff θ∗t−1 and the part of the state that is a sufficient statistic

for the Markov process (i.e., st if s follows a first-order Markov process), and, for the agent, on

pt as well.

Proposition 1 (time consistency).

(i) In the mechanism-offer version and with a continuum of agents, strong time consistency

obtains.

(ii) In the price-offer version,

(a) Weak time consistency always obtains.

(b) If T < +∞ and Assumption 1 holds, strong time consistency obtains.

(c) If T = +∞ and Assumption 1 holds, strong time consistency obtains if either As-

sumption 2 holds or one focuses on Markov perfect equilibria.

Proof.

(i) and (ii)(a) The proofs of (i) and (ii)(a) will use very similar constructions. To prove weak

time consistency in the price-offer version, consider the following strategies on the equilibrium

path:

• The principal sets price pt(s
t) = ϕ(θ̂t(s

t), θ̂t(s
t), st) for all (t, s

t), where θ̂t(s
t) corresponds to

an optimal allocation cutoff.

• The agent consumes at date t in state st if and only if θ ≥ θ̂t(s
t).

Myopic agent behavior is indeed optimal given the principal’s strategy (the current cutoff

has zero continuation utility and so do a fortiori all types below the cutoff; higher types strictly

benefit from consuming during the period and so do not want to exit). Furthermore, the principal

obtains his highest feasible payoff V̂t(s
t) starting at any (t, st). And so the principal cannot

benefit from deviating from his strategy in any subform (t, st).

Because the principal’s strategy is a function of his beliefs, whenever his beliefs are well-

defined so is his strategy, which, as verified above, is optimal for any subform. Therefore it

remains to consider the subforms in which the principal’s beliefs are not uniquely pinned down.

There are two possible deviations by the agent that would lead to non-uniquely specified beliefs

for the principal. Suppose that F (θ̂t−1(s
t−1)) = 0, but the agent has failed to consume at t−1 (or

earlier). Then beliefs are irrelevant because the game is over due to the no-reentry constraint.

17Under increasing attractiveness, the principal may want to temporarily “price below marginal cost” so as to
keep the clientele. And so a lower cutoff may be (at least temporarily) costly to the principal.
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Second, it could be that F (θ̂t−1(s
t−1)) = 1, but the agent has always consumed up to t − 1

(included). Then, specify that the principal puts all weight on type θ for the rest of the game

and sets pτ (s
τ ) = ϕ(θ, θ, sτ ) for all (τ, sτ ) with τ ≥ t and sτ % st. The agent therefore cannot

obtain a strictly positive continuation utility by deviating. The specified strategies therefore

form a perfect Bayesian equilibrium.

Consider now the mechanism-offer version with a continuum of agents. Let the principal offer

again in each period price pt(s
t) = ϕ(θ̂t(s

t), θ̂t(s
t), st) for all (t, s

t), but as part of a larger two-

stage mechanism within each period: First, agents decide whether to accept. If the total demand,

call it qt, satisfies qt ≤ 1−F (θ̂t(st)), then all agents who have accepted are served at price pt(s
t).

Furthermore, if qt < 1 − F (θ̂t(s
t)), the agents who have accepted receive from the principal a

large sum of money, and so qt ≥ 1 − F (θ̂t(s
t)) necessarily (this participation-enhancing gift is

not needed if there are no network externalities, as it is than a dominant strategy for θ ≥ θ̂t(s
t)

to accept the offer, or if the externalities are negative). Second, if qt > 1−F (θ̂t(s
t)), the agents

who have accepted pay a small amount ε > 0 to the principal and play a second-period auction18

in which the best 1−F (θ̂t(st)) offers are accepted and pay the highest losing bid to the principal

(the principal only learns who has won). Importantly, losers do not recoup the payment ε. To

see that qt = 1 − F (θ̂t(s
t)), suppose “excess demand”: qt > 1 − F (θ̂t(s

t)). Then, the strict

monotonicity of ϕ and the weak monotonicity of the continuation valuation in θ imply that the

1− F (θ̂t(s
t)) highest types among those who have paid pt(s

t) win, while the others predictably

lose, and therefore would economize pt(s
t) by not expressing a demand in the first stage of the

mechanism. Hence, strong time consistency obtains.

Assumption 1 is unnecessary in the mechanism-offer game because the principal can organize

an auction in case of “excess demand” and offer a large sum of money in case of “excess supply”.

This ability to pump in money in such cases allows the principal to correct for miscoordination

issues. In the price-offer game, the principal is limited in this regard and miscoordination among

the agents could arise, vindicating the use of Assumption 1.

(ii) (b) Suppose that the principal cannot commit and rather sets a price pt(s
t) in each period.

To prove strong time consistency when T is finite and Assumption 1 holds, consider an arbitrary

perfect Bayesian equilibrium and let δ Ut+1(θ, h
t) denote the expected continuation payoff of a

type θ that has not yet exited at the end of date t given the entire public history ht (which

includes the realization of st and the price pt). Let θ∗t (h
t) < θ denote the equilibrium cutoff

given history ht (if θ∗t (h
t) = θ, the game is over anyway). Let us show by backward induction

that cutoff myopia prevails: Ut+1

(
θ∗t (h

t), ht
)
= 0. Consider date T , with previous cutoff θ∗T−1 =

θ∗T−1(h
T−1). Suppose that the cutoff enjoys a rent:

ϕ
(
θ∗T−1 , θ

∗
T−1 , sT

)
> pT

for some sT and some optimal price pT for the principal given θ∗T−1 and sT . The principal’s

18The exact nature of the auction is not crucial.
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date-T payoff is: ∫ θ

θ∗T−1

ψ
(
θ, θ∗T−1 , sT

)
f(θ)dθ + pT

[
1− F (θ∗T−1)

]
as all remaining types (θ ≥ θ∗T−1) accept offer pT . But let the principal offer instead

p′T = ϕ
(
θ∗T−1 , θ

∗
T−1 , sT

)
.

Then, p′T > pT and, from monotonicity and Assumption 1, all types θ ≥ θ∗T−1 accept; and so

the principal has increased his date-T payoff by

(
p′T − pT

)[
1− F (θ∗T−1)

]
> 0,

a contradiction.

Now consider date T − 1. The previous cutoff is θ∗t−2(h
T−2), the state is sT−1 and the

principal sets some price pT−1 ∈ support (σPT−1

(
pT−2, sT−1

)
). Either θ∗T−1 > θ∗T−2, and then

ϕ
(
θ∗T−2 , θ

∗
T−1 , sT−1

)
− pT−1 + δ UT

(
θ∗T−2 , h

T−1
)

< ϕ
(
θ∗T−1 , θ

∗
T−1 , sT−1

)
− pT−1 + δ UT

(
θ∗T−1 , h

T−1
)
≤ 0

where the weak inequality (which is an equality if θ∗T−1 < θ) results from the fact that θ∗T−1 is

the cutoff and that the continuation valuation is monotonic in type; and so θ∗T−2 exits at date

T − 1.

Or θ∗T−1 = θ∗T−2. From the induction hypothesis again, type θ∗T−2 has no continuation value

and net utility from T − 1 on therefore equal to:

ϕ
(
θ∗T−2 , θ

∗
T−2, sT−1

)
− pT−1.

Were this utility to be strictly positive (it cannot be strictly negative, otherwise θ∗T−2 and

nearby types would exit), the principal would raise price pT−1 to p′T−1 = ϕ
(
θ∗T−2 , θ

∗
T−2 , sT−1

)
,

still inducing no exit and raising payoff.

The same reasoning shows by backward induction that the cutoff type never has a strictly

positive continuation utility.

Finally, suppose that at date 0 the principal offers price p0 = ϕ
(
θ̂0(s

0), θ̂0(s
0), s0

)
that makes

the optimal cutoff type myopically indifferent between accepting and rejecting p0. The cutoff θ
†
0

must necessarily satisfy θ†0 ≤ θ̂0(s
0); for, if θ†0 > θ̂0(s

0), ϕ(θ†0 , θ
†
0 , s0) > p0 and so types θ†0 and

just below should accept p0. But if θ
†
0 < θ̂0(s

0), type θ†0 has negative date-0 payoff and has zero

continuation utility, a contradiction. Hence θ†0 = θ̂0(s
0). By the same reasoning, the principal

by setting p1(s
1) = ϕ

(
θ̂1(s

1), θ̂1(s
1), s1

)
uniquely induces cutoff θ†1 = θ̂1(s

1), and so forth by

induction.

(ii) (c) Allow now T = +∞ and make Assumption 2 as well. Suppose that the princi-

19



pal stubbornly sets a price equal to the flow valuation of the optimal cutoff type p̂t(s
t) =

ϕ
(
θ̂t(s

t), θ̂t(s
t), st

)
for all t, st. There is no commitment to the sequence, nor is this sequence

optimal for the principal in every subform. This is simply a strategy choice that reacts to the

state of nature, but not to the observed amount of exit.

At date 0, the cutoff type satisfies θ†0 ≤ θ̂0(s
0) from Assumption 1 and so types θ > θ̂0(s

0)

optimally accept offer p̂0(s
0) regardless of the expectation concerning the continuation behavior

of the principal. Assumption 2 then implies that the principal’s date-0 payoff weakly exceeds

∫ θ

θ̂0(s0)
ψ
(
θ, θ̂0(s

0), s0
)
f(θ)dθ + p̂0(s

0)
[
1− F (θ̂0(s

0))
]
.

Similarly, at date 1, the cutoff in state s1 will be some θ†1 ≤ θ̂1(s
1) and yield a weakly higher

payoff than

∫ θ

θ̂1(s1)
ψ
(
θ, θ̂1(s

1), s1
)
f(θ)dθ+ p̂1(s

1)
[
1−F (θ̂1(s1)

]
, and so forth. Thus the principal

can guarantee himself the commitment payoff.

Alternatively, we can focus on Markov perfect equilibria and mimic the proof of part (b).

Suppose that for some history pt < ϕ
(
θ∗t−1, θ

∗
t−1, st

)
. Then θ∗t = θ∗t−1. But then the principal

could charge p′t = ϕ
(
θ∗t−1, θ

∗
t−1, st

)
and still keep all θ ≥ θ∗t−1 on board; and so the cutoff would

remain θ∗t−1. The (random) payoff-relevant state in all future periods would be unchanged and

so would continuation payoffs in a Markov perfect equilibrium. The principal’s payoff would

therefore strictly increase, a contradiction. We thus conclude that pt ≥ ϕ
(
θ∗t−1, θ

∗
t−1, st

)
, which,

together with cutoff monotonicity, implies that the cutoff in a given period never enjoys a strictly

positive continuation valuation. In turn, agent myopic behavior implies that stubbornly setting

p̂t(s
t) = ϕ

(
θ̂t(s

t), θ̂t(s
t), st

)
delivers the commitment payoff. �

Later on, when we search for a characterization of the non-commitment game when time

consistency obtains (Section 4), we will assume that either strong time consistency obtains, or

that the equilibrium of the no-commitment game delivering the commitment outcome is selected.

As shown in Proposition 1, this is a rather weak requirement.

3.3 Unequal time preference

Suppose, only for the sake of this section, that the principal and the agent have different discount

factors (δA for the agent and, for comparison purposes, δ for the principal). We assume that the

agent cannot commit. Lemma 1 shows that this assumption is innocuous when the two parties

are equally patient; by contrast, it is not innocuous under heterogeneous discounting: when

the agent is impatient, the agent’s payments are optimally backloaded, but, as we will see, the

agent’s inability to commit prevents this backloading.

Proposition 2 (unequal discount factors). Suppose that δA and δ differ and that the agent

cannot commit. Make Assumptions 1 and 2 and assume a finite horizon. Keeping the prin-

cipal’s discount factor δ fixed and varying the agent’s discount factor δA, let V nc(δA) denote
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the principal’s (unique) non-commitment payoff that prevails when the principal cannot commit

either.

(i) The principal’s payoff does not depend on the agent’s discount factor: V nc(δA) = V̂ .

(ii) The outcome is time consistent if and only if δA ≤ δ (impatient or equally patient agent).

Intuitively, when the agent is impatient (δA < δ), the principal would like to backload the

agent’s payments. The agent’s lack of commitment however makes this impossible; and so the

best policy under commitment satisfies the cutoff myopia property (see Lemma 1). The agent’s

discount factor is then irrelevant since the current cutoff never has a positive continuation utility.

When the agent is patient (δA > δ) and under commitment, the principal would like to

frontload the agent’s payments. This policy however is infeasible when the principal cannot

commit; by backward induction, the principal never leaves any surplus to the previous cutoff

type and again cutoff myopia prevails, making the agent’s discount factor irrelevant.

4 Characterization of sequential screening outcomes

Proposition 1 transforms the search for a perfect Bayesian equilibrium of the no-commitment

game into a simple optimization problem. This section characterizes the sequential screening

outcome in three cases of interest.

Definition 1. Let st ∈ R. Define the externality-augmented virtual surplus as

Λ(θ∗, s) ≡ Γ(θ∗, θ∗, s)−

∫ θ

θ∗

∂Γ
[
θ, θ∗, s

]
∂θ∗

f(θ)dθ

f(θ∗)
.

Λ(θ∗, s)f(θ∗)dθ∗ is the loss of aggregate virtual surplus if we exclude the marginal types

[θ∗, θ∗ + dθ∗] from consumption.19

In the rest of the paper, we make the following regularity assumption:

Assumption 3 (externality augmented virtual surplus).

19For example, for the examples given above

Λ(θ∗, s) = θ∗ − c− 1− F (θ∗)

f(θ∗)

in the conversion game, and

Λ(θ∗, s) = θ∗ + 2α [1− F (θ∗)] + s− c− 1− F (θ∗)

f(θ∗)

in the technology disadoption game.
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(i) For all θ∗ and s,
∂Λ(θ∗, s)

∂θ∗
> 0.

(ii) Furthermore, states are ranked: s ∈ R, and for all θ∗ and s,
∂Λ(θ∗, s)

∂s
> 0.

Part (ii) of Assumption 3 simply defines higher states as better ones. Part (i), which guaran-

tees the strict quasi-concavity in θ∗ of the function
∫ θ̄
θ∗ Γ(θ, θ

∗, s)f(θ)dθ, is the generalization of

the standard assumption of monotonicity of the virtual surplus to allow for externalities. It is sat-

isfied in the conversion and disadoption games provided that the virtual type θ− [1−F (θ)]/f(θ)
is increasing (for this, it suffices that the Mills ratio (1 − F )/f be decreasing) and network

externalities are not too strong if they are positive.

When there are no network externalities and
∂ψ

∂θ
(θ, s) ≥ 0 (high types are valued weakly

more by the principal), a sufficient condition for part (i) to be satisfied is:

1−
(
1− F (θ∗)

f(θ∗)

)′

1− F (θ∗)

f(θ∗)

≥


∂2ϕ

∂θ2

∂ϕ

∂θ

 (θ∗, s)

for all (θ∗, s), where the left-hand side is positive for a log-concave distribution.

4.1 Monotone attractiveness

Let us first consider the case in which the consumption offered by the principal becomes (stochas-

tically) more or less attractive over time.

Definition 2 (monotone attractiveness). Suppose that states are ranked as in Assumption

3. Increasing (resp. decreasing) attractiveness holds when st+1 ≥ st (resp. st+1 ≤ st) for all

st+1 in the support of G conditionally on st.

Increasing attractiveness for example captures habit formation on the demand side and

learning by doing on the supply side. By contrast, decreasing attractiveness may result from a

decreasing interest in the incumbent consumption or gradual improvements in the alternative

option.20 Obviously, increasing and decreasing attractiveness include as a special case the case

of a constant demand.

Proposition 3 (monotone attractiveness). Let St ≡ S ⊆ R for all t.

(i) Under deterministic increasing attractiveness (sT is a singleton), exit occurs only in the

initial period: there exists θ̂ such that at the equilibrium outcome θ̂t(s
t) = θ̂ for all t.

(ii) Under decreasing attractiveness, for any (t, st, st+1) such that st+1 ≻ st, then θ̂t+1(s
t+1) >

θ̂t(s
t) when st+1 < st. The cutoffs are then given by myopic principal optimization: Λ

(
θ̂t(s

t), st
)
=

0 for all (t, st).

20One may here have in mind a temporary recession or lack of attractiveness of employer (bad management,
scandal).
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Proof. For a given allocation (p,θ∗), the tree (with generic element (z, sz)) can be decomposed

into the union T of disjoint subtrees S of complete subpaths over which the cutoff is constant:

S ∈ T ⇐⇒ ∃ (t, st) such that

(i) Ut(θ
∗
t (s

t), st;p,θ∗) = 0

(ii) Ut−1(θ
∗
t (s

t), st−1;p,θ∗) > 0 (where st ≻ st−1)

(iii) ∀(z, sz) such that sz ≻ st, θ∗z(s
z) = θ∗t (s

t) if and only if (z, sz) ∈ S.

In this definition, (t, st) is the vertex of the subtree S. The cutoff, θ∗t (s
t), at the vertex obtains

a zero continuation utility (condition (i)), while it received a strictly positive continuation utility

(and therefore was not the cutoff) earlier (condition (ii)); so θ∗t (s
t) is an interior cutoff at date

t. The subtree is the set of (τ, sτ ) with sτ ≻ st that exhibit cutoff θ∗t (s
t) (condition (iii)).

The principal maximizes

V =

∫ θ

θ
EsT

[
Σt=T
t=0 δ

tXt(θ, st)Γ
(
θ, θ∗t (s

t), st
)]
f(θ)dθ,

subject to the feasibility constraint (F ) yielding first-order condition:21

• either the cutoff is constrained by the previous one: θ∗t (s
t) = θ∗t−1(s

t−1),

• or the expected discounted virtual surplus along a constant-cutoff sub-tree is equal to 0:

Λ̃
(
θ∗t (s

t), st
)
≡ Λ

(
θ∗t (s

t), st
)
+ E

[
Στ=T−t
τ=0 δτ I{θ∗t+τ (s

t+τ )=θ∗t (s
t)}Λ

(
θ∗t+τ (s

t+τ ), st+τ

)
|st

]
= 0,

• or θ∗t (s
t) = θ and Λ̃

(
θ, st

)
≥ 0,

• or θ∗t (s
t) = θ and Λ̃

(
θ, st

)
≤ 0.

When the optimal cutoff is not at one of the boundaries of the support of types, either

the cutoff monotonicity constraint binds or we have an interior optimum. We will show that

the constraint binds at all periods under deterministic increasing attractiveness, and that the

optimum is interior in all periods under decreasing attractiveness.

(i) With a deterministic state, we can subsume the dependence of variables on the state through

a time index: Λt(θ̂t). A constant-cutoff sub-tree S is formed by a set of periods {t, · · · , z} such

that θ̂t = · · · = θ̂z. Suppose that there are at least two such subtrees and so the cutoff is not

21To obtain this first-order condition, maximize V over {x·(·, ·), θ∗· (·)} subject to the constraints:∫ θ

θ

xt(θ, s
t)f(θ)dθ ≤ 1− F (θ∗t (s

t))

and θ∗t+1(s
t+1) ≥ θ∗t (s

t) if st+1 ≻ st.
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constant over time. Consider the first two, from 0 to t− 1 and from t to z say. One has θ̂0 < θ̂t

and from the previous characterization:

Σt−1
τ=0 δ

τΛτ (θ̂0) ≥ 0 ≥ Στ=z
τ=t δ

τ−tΛτ (θ̂t).

Because Λτ (θ
∗) is weakly increasing in τ for all θ∗, one necessarily has

Λt−1(θ̂0) ≥ 0 ≥ Λt(θ̂t),

which is inconsistent with θ̂0 < θ̂t and Λ·(·) being weakly increasing in time and strictly increasing

in the cutoff. Hence, the cutoff must be constant over time.

(ii) Under decreasing attractiveness (deterministic or stochastic), the principal-myopic optimum

given by (uniquely so from Assumption 3)

∀(t, st) : Λ(θ̂t(s
t), st) = 0,

satisfies the feasibility constraints as θ̂t+1(s
t+1) ≥ θ̂t(s

t) for st+1 ≻ st. It can be implemented

through prices

pt(s
t) = ϕ

(
θ̂t(s

t), st
)
. �

Remark 1. We need the assumption that the state’s evolution is deterministic in part (i) of

Proposition 3. That is, it does not suffice that st be stochastically increasing with time. To see

this, suppose there are only two periods and two states at date 1: s0 = sL1 < sH1 . In general,

the principal will want to keep the participation high (Λ0 < 0) so as to keep an option value

of setting θ̂1(s
H
1 ) = θ̂0 low in state sH1 . If “disappointing” news (sL1 ) accrue, then the principal

raises the cutoff to θ̂1(s
L
1 ) > θ̂0. Despite increasing attractiveness, exit is not clustered at date

0.

As pointed out by a referee, a weaker result then obtains. If st+1 ≻ st, then let s̄t+1 =

(st, s̄t+1) where s̄t+1 is the supremum in the support of st+1 conditional on s
t. Then for stochastic

increasing attractiveness,

θ̂t+1(s̄
t+1) = θ̂t(s

t).

Corollary 1 (sufficient condition for Assumption 2 to hold). Assumption 2 (the principal

benefits from a greater clientele at price pt = ϕ
(
θ̂t(s

t), θ̂t(s
t), st

)
) holds provided that:

(a)

∫ θ

θ∗
ψ
(
θ, θ∗, s

)
f(θ)dθ = −C(1− F (θ∗), s) with C11 ≤ 0 (constant or increasing returns),

(b) ϕ is separable in θ and θ∗: ϕ
(
θ, θ∗, s

)
= ξ(θ, s) + ν(θ∗, s) and Assumption 1 holds, and

(c) decreasing (including constant) attractiveness holds.
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4.2 Non-monotone attractiveness: ironing techniques

In general, attractiveness need not be monotonic. For example, a relationship may need to be

build up over time to become attractive, and is later threatened by new, external opportunities.

In this section, we will assume for simplicity that the evolution of attractiveness is deter-

ministic; so functions will be indexed only by time, and not by state st. Also for expositional

simplicity, we assume that time is continuous on [0, T ].22 Let r denote the interest rate.

With this notational simplification, the optimization program becomes:

sup
{θ∗t }

{∫ T

0
e−rtWt(θ

∗
t )dt

}
(II)

s.t.
dθ∗t
dt

≥ 0.

This program is highly reminiscent of that in static adverse selection models, in which a

one-dimensional allocation must be monotonic in type for incentive compatibility reasons. Here

“type” is replaced by “time” and “allocation” by “cutoff”. One can push the analogy further:

the decreasing attractiveness case of Section 4.1 corresponds to the “regular case” of Myerson

(1981) while the increasing attractiveness one is an extreme “non-regular case” of Myerson,

called “non-responsiveness” by Guesnerie and Laffont (1984) and giving rise to “full pooling”.

More generally, the optimal allocation can be obtained through the convex analysis used in

Myerson and Guesnerie-Laffont. Because the only contribution of this section is to identify

the formal analogy between the two problems and use it to characterize dynamic screening, we

content ourselves with stating the result.

Proposition 4 (ironing for non-monotone deterministic attractiveness). Assume that

attractiveness is deterministic; that Wt is strictly concave in θ∗t and is C2; that the C1 solution

θ̊t of dWt/dθ
∗
t = Λt(θ̊t) = 0 is such that dθ̊t/dt changes sign a finite number of times.

Then the solution to program (II) exists, is unique and exhibits a finite number of points of

discontinuity. θ̂t coincides with θ̊t except on a finite numbers of intervals (tk, tk+1) such that θ̂t

is constant on each of these intervals and∫ tk+1

tk

e−rtΛt(θ̂t)dt = 0.

The evolution of the cut-off is depicted in Figure 2(a), which is also familiar from static

incentive theory.

22See the beginning of the proof of Proposition 3 for the discrete-time version of the ironing condition.
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price discrimination

Figure 2

Under deterministic attractiveness, one would thus expect episodes of gradual exit alternating

with exit-less periods.

Remark (product life cycle). In some environments, attractiveness is likely to conform to a

simple U -shaped pattern. For example, a new product may face the following life cycle. At

introduction it may be relatively unattractive: bugs still need to be fixed, network externalities

are still limited by the small goodwill, etc. The firm must then offer very advantageous conditions

to attract customers. Then, the product becomes more and more attractive, until time t0, at

which a viable competition enters and slowly erodes the product’s installed base of consumers.

The prediction for such life cycles is that the clientele is built through very advantageous

conditions and remains steady until it declines over time. One implication is unpalatable for this

industrial organization example: the clientele is built overnight. To obtain a more gradual build-

up of clientele, though, one may generalize the model and assume that consumers are made aware

or arrive in the market in different, but similar cohorts, as in Section 4.3 below. Proposition 4

holds all the same as long as the firm can practice vintage-based price discrimination (Figure

2(b)), for which the aggregation of cohorts yields an increasing and then decreasing demand.

When vintage-based price discrimination is infeasible, things become more complex (see part

(ii) of Proposition 7), but backward induction techniques from the date t0 at which the product

becomes less attractive can still be employed to yield a similar pattern of demand evolution.

4.3 Transient shocks

Suppose now that the realizations of the shocks st are identically and independently distributed

over time. Let g(st) and G(st) denote the density and the cumulative distribution of the shock.

We assume that the horizon is infinite, so as to provide a simpler characterization of the equi-

librium outcome.23

23A similar characterization is available by backward induction for a finite T , but the strategy then depends on
the length of the remaining horizon.
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Proposition 5 (transient shocks). Suppose that shocks are identically and independently

distributed with density g(·) and that T = +∞. The optimal outcome is characterized by: for

all (t, st)

θ̂t(s
t) = θu

(
min
τ≤t

sτ
)
,

where θu(s), a decreasing function of s, is uniquely defined by H(θu(s)) = 0 where

H(θ∗, s) ≡ Λ(θ∗, s) +
δ

1− δ[1−G(s)]

∫ ∞

s
Λ(θ∗, s̃)g(s̃)ds̃,

if H(θ, s) ≤ 0 ≤ H(θ, s), and θu(s) = θ if H(θ, s) ≥ 0 and θu(s) = θ if H(θ, s) ≤ 0.

Proof. Maximizing V with respect to xt(θ, s
t) yields the first-order condition

xt(θ, s
t) = 1 ⇐⇒ Λ(θ, st) + Es∞|st

[
Σ∞
τ=t+1δ

τ−tXτ
t+1(θ, s

τ )Λ(θ, sτ )
]
≥ 0

where Xτ
t+1(θ, s

τ ) ≡ xt+1(θ, s
t+1) · · ·xτ (θ, sτ ). Note that if Xt−1(θ, st−1) = 0, then the first-

order condition is irrelevant, but one can still impose this date-t first-order condition without

loss of generality. Because Λ is strictly increasing in θ, there is a unique threshold θ̂t(s
t) in

[θ, θ] for each st such that this condition is satisfied if and only if θ ≥ θ̂t(s
t). The stationarity

of the problem then suggests looking for a strictly decreasing cutoff θ̂t(s
t) = θu(st) (where “u”

stands for “unconstrained by the previous exit pattern”). Noting that Xτ
t+1(θ

u(st), s
τ ) = 0 if

min {st+1 , · · · , sτ} < st, such a cutoff then satisfies (if interior, i.e., in (θ, θ)):

Λ(θu(s), s) + δ

[∫ ∞

s
Λ(θu(s), s̃)g(s̃)ds̃+ [1−G(s)]δ

[ ∫ ∞

s
Λ
(
θu(s), s̃

)
g(s̃)ds̃+ · · ·

]]
= 0

or

Λ(θu(s), s) +
δ

1− δ[1−G(s)]

∫ ∞

s
Λ(θu(s), s̃)g(s̃)ds̃ = 0.

Differentiating this condition and using it to eliminate two terms, one obtains:

∂Λ

∂s
+

[
∂Λ

∂θ
+

δ

1− δ[1−G(s)]

∫ ∞

s

∂Λ

∂θ
g(s̃)ds̃

]
dθu

ds
= 0

and so
dθu

ds
< 0.

The tentative solution

θ̂t(s
t) = max

τ≤t

{
θu(sτ )

}
= θu

(
min
τ≤t

sτ
)

indeed satisfies the first-order condition above. �

Corollary 2 (testable predictions for transient shocks). With transient shocks and an
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infinite horizon, let for all t, st−1

Vt = F
(
θu
(
min
τ≤t

sτ
))

− F
(
θu
(
min
τ≤t−1

sτ

))
denote the volume of exit at date t. Then the following properties hold for all τ > t:

(i) Decreasing exit: E
[
Vt|st−1

]
≥ E

[
Vτ |st−1

]
.

(ii) Negative serial correlation:
∂

∂Vt
Et

[
Vτ |st−1,Vt

]
< 0.

Proof. Let ŝ ≡ min
τ≤t−1

sτ ; and let gn(s) ≡ ng(s)[1−G(s)]n−1 denote the density of the distribution

of the minimum realization over n periods.

(i) Then

E
[
Vτ |st−1

]
=

∫ ∞

ŝ

[ ∫ ŝ

−∞

[
F
(
θu(s̃)

)
− F

(
θu(ŝ)

)]
g(s̃)ds̃

]
gτ−t(s)ds

+

∫ ŝ

−∞

[ ∫ s

−∞

[
F
(
θu(s̃)

)
− F

(
θu(s)

)]
g(s̃)ds̃

]
gτ−t(s)ds

≤
∫ ŝ

−∞

[
F
(
θu(s̃)

)
− F

(
θu(ŝ)

)]
g(s̃)ds̃ = E

[
Vt|st−1

]
.

(ii) Note that E
[
Vτ |st−1

]
depends only on, and is increasing with ŝ; and that E

[
Vτ |st−1,Vt

]
=

E
[
Vτ |min {ŝ, st}

]
. Because Vt is (weakly) decreasing in st, then E

[
Vτ |st−1,Vt

]
is weakly de-

creasing in Vt, and strictly so when Vt > 0. �

5 Robustness

The section provides several robustness results by allowing inflows of new agents and finite

re-entry costs.

5.1 Finite re-entry costs

We have assumed so far that re-entry costs were infinite. In practice, though, except in the

case of apostasy, reestablishing a relationship is costly, but not infinitely so. Although the

very reasons why the relationship broke up in the first place and the investments made in the

meantime in alternative relationships hinder such reintegration, we see customers returning to

brands they dropped, spouses remarrying their divorced partner or employees being reemployed

by their abandoned employer.
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Intuitively, our results should carry over for large re-entry costs. We may then wonder, how

large is “large”? This section sheds some light on this question. We generalize the model by

considering an unchanged flow payoff for the agent while the principal’s flow payoff is reduced

by the expected re-entry cost:

∫ θ

θ
max

{
0, (xt(θ)− xt−1(θ))r

}
f(θ)dθ,

where r ≥ 0 is the re-entry cost incurred at date t whenever xt = 1 and xt−1 = 0. For expositional

simplicity, we assume that r represents a cost that is borne by the principal (this assumption

also allows us to abstract from the possibility that the principal lowers the price substantially

in order to attract re-entrants, who might then fake re-entry – i.e., not spend r– and thereby

“take the money/surplus and run”). We assume that there is a continuum of agents, and that

the principal cannot price discriminate (i.e., he charges a uniform price pt in each period).24

Proposition 6 (re-entry). Suppose that exit is not necessarily definitive: re-entry involves

cost r ≥ 0.

(i) Under decreasing/constant attractiveness, for all r ≥ 0, payoff V̂ without re-entry is still an

equilibrium payoff with re-entry, (the unique one if T is finite and Assumption 1 is satisfied).

(ii) Under deterministic,25 strictly increasing attractiveness, equilibrium payoff V̂ without re-

entry is still an equilibrium payoff with re-entry, provided that r ≥ r for some r computed in

Appendix D (again, the unique one if T is finite and Assumption 1 is satisfied).

Intuitively, the principal wants to shed goodwill when the relationship becomes less attrac-

tive, and so would not want to incur a re-entry cost, however small, to bring back agents who

have quit in the past. By contrast, under increasing attractiveness, the principal might want the

agent to re-enter later on. The re-entry cost must then be sufficiently large for the absorbing-exit

solution to prevail.

5.2 Inflow of new agents

We have so far assumed that all agents are present at date 0. Suppose by contrast that at each

date t, a new cohort of agents enters, that (as in Conlisk et al (1984) and Sobel (1991)’s durable

goods models with negative selection) has the same type distribution F (θ) as previous ones.26

Newcomers, who live from date t through date T , have a chance to interact with the principal

at date t. Non-membership at the entry date is, like exit, an absorbing state.

24With a single agent and, say, r small, a ratchet effect would arise: an early rejection by the agent would lead
to a price cut relative to an early acceptance. Similarly, ratcheting might occur with a continuum of agents and
price discrimination between the installed base and re-entrants.

25The analysis can be generalized to a stochastic environment, but at the expense of increased notational
complexity.

26We want to abstract from the standard issues associated with the impact of third-degree price discrimination
under heterogeneous submarkets (see, e.g., Aguirre et al 2010 for a recent entry on this topic).
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To abstract from direct interactions among cohorts, assume that there are no cross-cohorts

network externalities (there can be within-cohort network externalities) and that returns to

scale are constant; otherwise the virtual surplus for a given cohort would depend on the number

of retained agents in the other cohorts. To capture these requirements, we thus assume that

the function Λ is invariant to the presence of other cohorts, and so the only interaction among

cohorts is through pricing.27 If the principal is able to price discriminate among cohorts, each

cohort is then treated in isolation and the previous analysis, including that of time consistency,

applies. Rather, we ask whether time consistency still holds when the principal is constrained

to practise uniform pricing.28

Proposition 7 (inflow of new agents). Suppose that each period t = 0, 1, · · · , T , a new cohort

of arbitrary mass and type distribution F (θ) arrives. Suppose that Λ is invariant to the presence

of other cohorts (no cross-cohorts network externalities and no returns to scale). For the class

of monotone-attractiveness games considered in Proposition 3:

(i) Under commitment, uniform pricing does as well for the principal as discriminatory pricing.

(ii) Weak29 time consistency obtains for decreasing/constant attractiveness, but not for determin-

istic, strictly increasing attractiveness.

Proof. It will be convenient to consider sequentially the cases of decreasing/constant attractive-

ness and of strictly increasing attractiveness.

Under decreasing/constant attractiveness, the optimal policy for cohort t when price dis-

crimination is feasible (see Proposition 3) is given by myopic optimization:

Λ
(
θ̂t(s

t), θ̂t(s
t), st

)
= 0 for all (t, st).

Thus the cutoff θ̂t(s
t) is independent of the cohort and can be implemented by cohort indepen-

dent price

pt(s
t) = ϕ

(
θ̂t(s

t), θ̂t(s
t), st

)
.

Furthermore, the function Λ is left invariant by left truncations,30 and so the price path just

defined is time consistent.

27More precisely, we assume that the principal’s intertemporal payoff V is separable across cohorts. Let c ∈
{0, 1, · · · , T} denote a cohort, with mass αc. Let X

t
c(θ, s

t) denote the probability that type θ of cohort c has not
exited yet at t ≥ c in state st. Similarly, θ∗t,c(s

t) is the date-t cutoff for cohort c. Then

V = Σc=T
c=0 αc

∫ θ

θ

EsT

[
Σt=T

t=c δ
tXt

c(θ, s
t)Γ

(
θ, θ∗t,c(s

t), st
)]
f(θ)dθ,

28There has been substantial interest in the literature on negative selection regarding the impact of the arrival
of new cohorts under uniform pricing (Conlisk et al 1984 and Sobel 1991 are classic references here).

29Strong time consistency can be obtained through further assumptions as in Proposition 1. We focus on weak
time consistency for conciseness.

30For example, when cohorts have equal sizes, at date t, the posterior cumulative over the (t + 1) existing
cohorts is:

Ft(θ) =
F (θ)

1 + t
[
1− F

(
θ∗t−1

)] for θ ≤ θ∗t−1 and Ft(θ) = 1− (t+ 1)[1− F (θ)]

1 + t
[
1− F

(
θ∗t−1

)] for θ ≥ θ∗t−1.
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Next, we consider the case of deterministic, strictly increasing attractiveness. We first want

to show that uniform pricing does as well as discriminatory pricing. Given that attractiveness

increases over time, the generation t cutoff will enjoy future rents under uniform pricing. To

cancel these rents, the principal ought to frontload the payment pattern. More precisely, under

price discrimination, the optimal policy for each cohort t consists in a constant cutoff θ̂(t) defined

by (using the notation Λτ of the proof of Proposition 3):31

Στ=T
τ=t δ

τ−t Λτ

(
θ̂(t)

)
= 0.

Because st is strictly increasing, θ̂(t) is strictly decreasing.32

Let

Pt ≡ Στ=T
τ=t δ

τ−t ϕ
(
θ̂(t), θ̂(t), sτ

)
denote the present discounted value of the cohort-t marginal type’s surplus. Pt also represents

what cohort t will have to pay for membership from t through T . Let pt be defined by Pt =

pt + δPt+1. Then

pt ≡ ϕ
(
θ̂(t), θ̂(t), st

)
+Στ=T

τ=t+1 δ
τ−t

[
ϕ
(
θ̂(t), θ̂(t), sτ

)
− ϕ

(
θ̂(t+ 1), θ̂(t+ 1), sτ

)]
.

The second term on the right-hand side of this expression of pt is the present discounted rent

of the cohort-t marginal type and is strictly positive. The difference pt − ϕ
(
θ̂(t), θ̂(t), st

)
thus

measures the required frontloading of the payment that delivers cutoff θ̂(t) for generation t. The

price sequence {pt} generates cutoff sequence {θ̂(t)}.33

Finally, suppose that there is no commitment and that the principal charges uniform prices.

Is the sequence {pt} defined above an equilibrium of the non-commitment game? To see that

this is not the case, consider the two-period version of the model: t = 0, 1 and assume for

notational simplicity that there are no network externalities, even within a cohort. Necessarily,

for time consistency to obtain,

p1 = ϕ
(
θ̂(1), s1

)
and

p0 + δp1 = ϕ
(
θ̂(0), s0

)
+ δϕ

(
θ̂(0), s1

)
.

Furthermore (recalling the assumption of no network externalities and constant returns to scale,

so Λ = Γ)

ϕ
(
θ̂(1), s1

)
+ ψ

(
θ̂(1), s1

)
− ∂ϕ

∂θ

(
θ̂(1), s1

) 1− F (θ̂(1))

f(θ̂(1))
= 0

31For conciseness, we assume interior solutions (θ < θ̂(t) < θ). The result however does not hinge on this
assumption.

32Στ=T
τ=t δ

τ−t Λτ

(
θ̂(t)

)
= 0 =⇒ Στ=T

τ=t+1 δ
τ−(t+1) Λτ

(
θ̂(t)

)
> 0. Hence if θ̂(t+ 1) ≥ θ̂(t),

Στ=T
t=t+1 δ

τ−(t+1) Λτ

(
θ̂(t+ 1)

)
> 0,

a contradiction.
33It is unique if T is finite. We conjecture that it is also unique if T is infinite.
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and

Στ=1
τ=0 δ

τ
[
ϕ
(
θ̂(0), sτ

)
+ ψ

(
θ̂(0), sτ

)
− ∂ϕ

∂θ

(
θ̂(0), sτ

) 1− F (θ̂(0))

f(θ̂(0))

]
= 0.

Because θ̂(0) > θ̂(1), the principal’s date-1 payoff in the neighborhood of p1 = ϕ
(
θ̂(1), s1

)
is,

letting αt denote the weight of cohort t and θ∗1(p1) be defined by p1 = ϕ
(
θ∗1(p1), s1

)
:

p1

[
α1 [1− F (θ∗1(p1))] + α0

[
1− F (θ̂(0))

] ]

+ α1

∫ θ

θ∗1(p1)
ψ(θ, s1)f(θ)dθ + α0

∫ θ

θ̂(0)
ψ(θ, s1)f(θ)dθ.

The derivative at p1 = ϕ
(
θ̂(1), s1

)
is strictly positive, reflecting the fact that the demand of

cohort 0 is locally inelastic. Thus the principal cannot obtain the commitment payoff. �

6 Time inconsistency

This section is devoted to the analysis of dynamic screening with positive selection in environ-

ments that do not satisfy the conditions for time consistency.

For the remainder of the paper, we will alleviate notation by making

Assumption 4 (no network externalities).
∂Γ

∂θ∗
(θ, θ∗, s) = 0 for all (θ, s).

By an abuse of notation, we omit the variable θ∗ as an argument of ϕ and ψ. Note also that

Γ = Λ under Assumption 4. The absence of network externalities plays no major role in the

results to come.

6.1 Shifting principal type

Sometimes the principal’s preferences may change over time. Indeed, in the conversion game,

Muslim rulers exhibited varying degrees of piousness, altering the trade-off between tax receipts

and adherence to the Muslim faith. Let γt ∈ R denote the date-t principal’s type, which is

assumed to affect only the principal’s objective function ψ and not the agent’s utility ϕ. We

assume that ψ is strictly increasing in γ, which will imply that a high γ principal prefers a lower

cutoff compared with a low γ one.

We assume that the realizations of st and γt are public information at the beginning of

date t; otherwise the principal’s price might signal his type. The parameters st and γt follow

independent stochastic processes and differ in that the date-t principal’s payoff from date-τ

agent participation for τ > t is (under Assumption 4) ψ(θ, sτ , γt) as opposed to ψ(θ, sτ , γτ ) for

the date-τ principal. That is, temporal variations in γt capture the change in the principal’s

preferences over time and will be the source of conflict among principals; by contrast, st is the
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mere evolution of the part of the rest of the state. Thus, the date-t principal’s objective function

is:

Vt(s
t, γt) =

∫ θ

θ∗t−1(s
t−1,γt−1)

EsT ,γT

[
ΣT
τ=tδ

τ−tXτ (θ, sτ , γτ )Γ
(
θ, sτ , γt

) [ f(θ)

1− F
(
θ∗t−1(s

t−1, γt−1)
)] dθ]

Obviously, the principal’s commitment policy in general will not be time consistent. Nonethe-

less simple equilibrium solutions again are available. Let us assume that the state (s, γ) ∈ R2,

follows a first-order Markov process Gs(st+1|st) ×Gγ(γt+1|γt) with full support. Suppose that

∂ψ/∂s > 0 and that the virtual surplus

Γ(θ, s, γ) = ϕ(θ, s) + ψ(θ, s, γ)− ∂ϕ(θ, s)

∂θ

1− F (θ)

f(θ)

is strictly increasing in θ (this is Assumption 3 applied to this context). It is a also increasing

in γ because Γ is.

Suppose, first, that the “time-consistent” part of the state, st, is constant (only the principal’s

type varies over time). Intuitively, when inducing a cut-off at date t, type γt constrains, but

is not affected by future choices of types γ′ > γt. By contrast, he is affected by future choices

of types γ′ < γt, but cannot do anything about it (altering these choices would require making

future cutoffs even higher, while they are already too high). For example, a muslim ruler cares

about the exact religiousity of future rulers who will be more pious than he is, but not about

that of less religious ones.

Proposition 8 (shifting principal type, invariant environment). Suppose that only the

principal’s type changes over time: st = s for all t, that the virtual surplus Γ is strictly increasing

in θ, and make Assumption 4.

Let θ∗γ be defined by θ∗γ = θ if Γ(θ, s, γ) ≥ 0, θ∗γ = θ if Γ
(
θ, s, γ

)
≤ 0 and Γ

(
θ∗γ , s, γ

)
= 0

otherwise. That is, θ∗γ is the optimal cutoff for principal type γ. There exists a Markov perfect

equilibrium of the game such that on the equilibrium path the cutoff is at each point of time the

optimal cutoff for the least eager principal so far:

θ∗t = θ∗min
τ≤t

{γτ}

Proof. Note that

M(θ∗, γ) ≡
∫ θ

θ∗
Γ (θ, s, γ) f(θ)dθ

is strictly quasi-concave with maximum at θ∗γ . Furthermore θ∗γ is weakly decreasing in γ.

Consider an arbitrary date τ and history hτ−1 ≡ (γ0, · · · , γτ−1 , p0, · · · , pτ−1) at that date.

Let θ̂(p0, · · · , pτ−1) be defined by the solution to ϕ(θ, s) = max {p0, · · · , pτ−1} (if interior; oth-

erwise θ̂ = θ if ϕ(θ, s) ≥ max {p0, · · · , pτ−1} and θ̂ = θ if ϕ(θ, s) ≤ max {p0, · · · , pτ−1}) Suppose
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that at date τ , principal γτ sets

pτ = ϕ
(
max

{
θ∗γτ , θ̂

(
p0, · · · , pτ−1

)}
, s
)
,

and that the agent behaves myopically (xτ (θ, h
τ ) = 1 if and only if ϕ(θ, s) ≥ pτ ). Consider the

date-t principal, with type γt. Then

(i) either θ∗γt ≥ θ̂
(
p0, · · · , pt−1

)
and then for all τ such that min {γt+1 , · · · , γτ} ≥ γt ,M

(
θ∗γt , γt

)
≥

M (θ∗z , γt) for z ∈ {t + 1, · · · , τ} and so θ∗γt provides a higher utility for such realizations. By

contrast, consider (τ > t, γτ ) such that γτ < γt. Then any alternative cutoff θ∗t ≥ θ∗γτ would have

no impact on the date-τ cutoff. And if θ∗t < θ∗min{γt+1 ,··· ,γz} raising θ∗t at the margin improves

type γt’s welfare from the quasi-concavity of M .

(ii) or θ∗γt < θ̂
(
p0, · · · , pt−1

)
. If θ̂

(
p0, · · · , pt , pt+1, · · · , pτ

)
= θ̂

(
p0, · · · , pt

)
< θ∗γτ the quasi-

concavity of M and the fact that θ̂ is weakly increasing in pt implies that any increase in pt

above θ̂
(
p0, · · · , pt

)
would reduce profit not only at date t but also at dates t+ 1, · · · , τ . And if

θ̂
(
p0, · · · , pt , pt+1, · · · , pτ

)
= θ∗min {γt+1,··· ,γz}, we are back to case (i). We thus conclude that the

proposed strategies indeed form an equilibrium. �

The next result allows the non-principal-related part of the state, st , to evolve over time,

making the relationship either increasingly attractive or increasingly unattractive.

Let θ̂t,γt denote the optimal date-t cutoff for principal γt as characterized in Proposition

3. That is, the cutoff is that which would prevail in the thought experiment in which (a) the

principal’s type remains γt for the rest of the game and (b) this principal is unconstrained by

previous truncations of the distribution (θ∗t−1 = θ, say): Thus, θ̂t,γt is the cutoff that would

prevail in a different game in which both the principal and the agent both believed that γτ = γt

for all τ > t.

Proposition 9 (shifting principal type, deterministic monotone attractiveness). Sup-

pose that st ∈ R, ∂Γ/∂s > 0, ∂Γ/∂θ > 0 and Assumption 4 holds. Then there exists an

equilibrium and a sequence θ∗t,γt such that the cutoff θ∗t induced by principal γt at date t is

max
{
θ∗t−1, θ

∗
t,γt

}
where

θ∗t,γt ≥ θ̂t,γt under either increasing attractiveness (st increasing)

or decreasing attractiveness (st decreasing),

where θ̂t,γt is the cutoff that would be selected by a date-t principal with type γt, were the future

principals also to have type γt.

Proposition 9 says that there is too little retention going forward from the point of view of

all successive principals. Interestingly, the reason why this is so is not the same for increasing

and decreasing demand. Under increasing attractiveness the principal exerts cutoff moderation

when having a constant type as he expects that he will prefer wider participation in the future.
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Cutoff moderation is like an investment, but with changing type, the investment has a lower

value as the cutoff in future periods may be raised by less eager (lower γ) types. Under decreas-

ing attractiveness, the date-t principal would myopically raise the cutoff over time if he were

permanent (Proposition 3). Increasing the cutoff a bit above the myopic optimum is beneficial

as this commits future, more eager (higher γ) types.

6.2 Multiple principals: retention as a dynamically provided public good

The agent’s decision to exit often depends on the behavior of multiple principals rather than a

single one. Retention in a work, volunteering, sports or religious community relies on the joint

efforts by its members to make staying a comfortable option for the member. Immigration deci-

sions similarly may be guided by a mixture of policies enacted by local and national authorities,

workplace atmosphere, overall society openness, and so forth.

This section studies environments in which n principals each set a “price” every period for

that period, and the agent’s continuation decision is guided by the sum of those prices. Such

environments are not conducive to time consistency since under commitment each principal

might want to commit to relatively high prices in order to force other principals to bear the

brunt of the retention effort in the future.34

Suppose that there are n symmetrical principals with surplus ψ(θ, st)/n each (so as to keep

total surplus the same). At date t, the principals simultaneously set prices pit; principal i’s flow

payoff given resulting cutoff θit is then

pit
[
1− F (θ∗t )

]
+

∫ θ

θ∗t

ψ(θ, st)

n
f(θ)dθ.

Provided that he does not exit, the agent’s flow payoff is

ϕ(θ, st)− Σn
i=1 p

i
t.

We will be focusing on symmetric Markov perfect equilibria in which the agent behaves my-

opically :

θ∗t = θ∗t−1 if ϕ(θ∗t−1, st) ≥ Σn
i=1 p

i
t

θ∗t = θ if ϕ(θ, st) ≤ Σn
i=1 p

i
t

or, if the solution is interior:

ϕ(θ∗t , st) = Σn
i=1 p

i
t.

Markov behavior means that the vector of prices charged at date t, {pit}nt=1 depends only on

the previous cutoff θ∗t−1 and on the current state st (provided that the state follows a first-order

34This environment is different from that studied by Admati and Perry (1991) and the literature they initiated.
Admati and Perry consider a cumulative-contribution game in which n players make sequential commitments
toward assembling a fixed amount needed to implement a project. There is no strategic agent involved, and a
fortiori no screening of the agents’ information.
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Markov process, or more generally on a statistics for the history of states that is a sufficient

statistics for describing current and future payoffs). Furthermore, pit = pt for all i and all

histories of the game.

The following assumption is the counterpart of Assumption 3 in the common agency context:

Assumption 5. For all (θ, s)

∂

∂θ

(
ϕ(θ, s) + ψ(θ, s)− n

1− F (θ)

f(θ)

∂ϕ

∂θ
(θ, s)

)
> 0

We furthermore assume that states are ordered: s ∈ R and

∂

∂s

(
ϕ(θ, s) + ψ(θ, s)− n

1− F (θ)

f(θ)

∂ϕ

∂θ
(θ, s)

)
> 0.

Proposition 10 (common agency). Under Assumptions 4 and 5, a symmetric Markov perfect

equilibrium with myopic agent behavior exists and has the following properties:

(i) Under deterministic increasing attractiveness, exit occurs only in the initial period: there

exists θ∗ such that θ∗t (s
t) = θ∗ for all t. Furthermore

Σt=T
t=0 δ

t
[
ϕ(θ∗, st) + ψ(θ∗, st)− n

1− F (θ∗)

f(θ∗)

∂ϕ

∂θ
(θ∗, st)

]
= 0.

(ii) Under (possibly stochastic) decreasing attractiveness, the cutoffs θ∗t = θ∗t (st) are increasing

over time and satisfy for all (t, st):

ϕ(θ∗t , st) + ψ(θ∗t , st) = n
1− F (θ∗t )

f(θ∗t )

∂ϕ

∂θ
(θ∗t , st).

Proposition 10 can be viewed as a generalization of Cournot nth marginalization and more

generally the static common-agency-with-private-information literature35 to dynamic games of

exit/retention. When demand is increasing, all exit occurs in the first period, like in the single-

principal case; retention is a collective investment and free riding implies that there is less

retention than if the principals coordinated their price choices. When demand is decreasing by

contrast, exit occurs progressively and the remaining installed base is determined by the static

Cournot nth marginalization condition. It again involves insufficient retention.

Proof. Let us first consider the “unconstrained optimization” at date t; that is, one considers

the thought experiment in which no exit has yet occurred at date t (θ∗t−1 = θ). Of course, cutoff

monotonicity is imposed from date t on. Let θ̊t(s
t) be defined like in Proposition 10, but for the

game starting at t with no exit prior to date t; θ̊t(s
t) satisfies:

Στ=T
τ=t δ

τ
[
ϕ(θ̊t(s

t), sτ ) + ψ(θ̊t(s
t), sτ )− n

1− F (θ̊t(s
t))

f(θ̊t(st))

∂ϕ

∂θ
(θ̊t(s

t), sτ )
]
= 0,

35See Martimort and Stole (2015) for a state-of-the-art contribution to this literature (the retention game
roughly corresponds to a dynamic extension of their “congruent preferences” case).
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under deterministic increasing attractiveness, and

ϕ(θ̊t(s
t), st) + ψ(θ̊t(s

t), st)− n
1− F (θ̊t(s

t))

f(θ̊t(st))

∂ϕ

∂θ
(θ̊t(s

t), st) = 0

under decreasing attractiveness.

Consider the following Markov strategies. Principals all charge price pit = ϕ(θt , st)/n where

θt = max
{
θ∗t−1, θ̂t

}
. And the agent behaves myopically, as described just prior to the statement

of the Proposition. Assumption 5 guarantees that provided that other principals charge ϕ(θt , st),

each principal’s flow payoff is strictly quasi-concave in the cutoff.

Consider first decreasing attractiveness. The strict quasi-concavity of the instantaneous

payoff in the cutoff implies that a deviation from the presumed price reduces the principal’s

current payoff; the deviation has no impact at date τ > t in state sτ provided that the induced

cutoff θ∗t satisfies θ∗t ≤ θ̊τ (sτ ). Furthermore if θ̊τ (sτ ) < θ∗t , then the date-t deviation also reduces

the date-τ payoff. The proof for increasing attractiveness follows the same steps. �

6.3 Time inconsistency arising on agent side

Section 6.1 and 6.2 investigated environments in which time inconsistency originates on the

principal’s side: Either the principal’s preferences change over time or there are multiple prin-

cipals in each period. We leave the more complex cases of time inconsistency originating on the

agent side for future research; we point out, however that the simplicity of positive selection

environments makes us hopeful that interesting and tractable characterizations will be available.

The factors of time-inconsistency on the agent’s side mirror those on the principal’s side: the

agent’s tastes may change (here in an unobservable way) over time; and there may be multiple

agents forming a team that will be dissolved if any of them quits.

Let us start this discussion with the former. The framework so far rules out the case of

a “shifting type” for the agent (for which asymmetries of information may be reduced over

time), on which many of the recent advances on dynamic mechanisms design have focused.

Time consistency of the optimal commitment policy is then not to be expected. Intuitively, the

principal might want to promise low (and efficient) future prices in exchange of a higher price

today. However, price frontloading is not conducive to time consistency.36

One therefore can no longer rely on solving an optimal control problem to obtain a perfect

Bayesian equilibrium of the no-commitment environment. Nonetheless, explicit derivations may

be available. One simple such case arises when the agent’s type is redrawn in each period in an

i.i.d. manner from a known distribution. Both the principal and the agent then have (stationary

if T = +∞37) continuation option values. Appendix F shows that the derivation of the (unique)

36Pavan et al (2014) stress, “because of the serial correlation of types, it is optimal to distort allocations
not only in the initial period, but at every history at which the agent’s type is responsive to his initial type,
as measured by the impulse response function.” This memorization of past, now-payoff-irrelevant types in the
optimal commitment allocation makes the commitment solution time-inconsistent.

37Appendix F focuses on the case of a Markov perfect equilibrium.
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Markov perfect equilibrium is straightforward. Much work remains to be done, though, to study

the more likely case of imperfect, but non-zero correlation over time, which has been the focus

of the commitment literature.

Second, one can analyze the case of partnerships. A partnership dissolves if any of its

members quits. The “Myerson-Satterthwaite platform”, whether benevolent or for profit, that

arranges the conditions for the team of agents to operate, must then keep all members on board.

Membership, though, is no longer a 0/1 decision as in the rest of the paper. From Myerson

and Satterthwaite (1983), we know that efficient partnerships correspond to a set Θ of types

that is not rectangular: whether type θi should be in depends on the other agents’ types. And

therefore, each agent’s information about other agents’ types drawn from the mere continuation

of the relationship necessarily varies with the agent’s own type.

The on-line appendix proves a limited, but nonetheless interesting result: there is no efficient

and time-consistent allocation such that the agents learn at the end of each period only whether

the relationship continues or not. The analysis of repeated Myerson-Satterthwaite relationships

is a major item on the research agenda.

7 Alleys for future research

This paper provides first insights on repeated relationships with positive selection. The main

ones were summarized in the introduction. This conclusion therefore focuses on future research.

The first front is empirical: environments with positive selection are as untested as they are

theoretically investigated; yet, this paper and subsequent research provides (will provide) clear

empirical patterns that ought to guide empirical research in this area. Second, at least six broad

areas of research on the theoretical front seem worth pursuing.

First, we saw that shifting types, common agency and partnerships all disconnect the res-

olution of the dynamic screening game from the simple optimization problem associated with

commitment. While we showed that the simple structure of screening with positive selection

allows for interesting characterizations, much work remains to be done in order to obtain general

predictions for these environments. In particular, we have hardly scratched the surface when

discussing environments in which time inconsistency originates on the agent’s side.

Second, the model should be generalized to allow for competition among principals. Firms

compete for employees and consumers, department for professors, religions for followers, munic-

ipalities and countries for plants and headquarters, languages for speakers, and so forth, and

principals and their agents are engaged as in this paper in relationships of endogenous lengths. A

richer model would formalize not only the retention policies studied here (human resource man-

agement, customer relationship management, evolution of financial and non-financial terms),

but also how mobility affects the policies of competing principals and the agents’ reservation

utilities attached to splitting from their principal.

Third, the model could be enriched in several dimensions. It is hard to predict without
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further inquiry whether these extensions will deliver insights that go beyond a mere combination

of existing insights. But it seems for example worthwhile to add private information held by the

principal. The commitment case would involve mechanism design by an informed principal, and

the non-commitment case repeated signaling. One could then study the role of commitment in

this enlarged framework. Similarly, we assumed (finite or infinite) re-entry costs to be exogenous.

While this assumption may be reasonable in a number of contexts, one could also allow the

principal or the agent to impact this re-entry cost.

Fourth, our model captures the dynamics of relationships when exit is absorbing due to large

re-entry costs (as we have seen, “how large” re-entry costs must be depends on the evolution

of the relationship’s attractiveness). More generally, one might have in mind that relationships

must be cultivated; shared routines, a common history and understanding, learning by doing

make relationships that have been activated in the past more attractive, although not in a

discontinuous way as in this paper’s model. This could be captured by a state variable st that

would depend not only on exogenous events, but also on the discounted intensity of previous

relationships between the principal and the agent. This approach would yield an interesting

characterization of second-degree price-discrimination dynamics.

Fifth, the extension of the analysis to multi-sided markets would enhance our theoretical and

empirical understanding of platform dynamics. For example, platforms’ life-cycle (the two-sided

extension of Section 4.2) would be worth of investigation. I conjecture, but have not verified,

that as long as the platform can charge membership fees, the platform’s commitment outcome

is time consistent under conditions similar to those derived in Proposition 1. It would also be

interesting to analyse the case of pure usage fees and investigate whether cutoff myopia would

still prevail then.

Finally, the paradigm should be enlarged to accommodate political economy considerations.

In a number of environments (such as religions or firms), the principal’s preferences can be taken

as exogenous in a first approximation. However, as Dewatripont and Roland (1992) stress, the

principal’s preferences may result from a vote or power relationships, and therefore change

with the composition of the in- and out-groups; for instance, religious conversions may affect

the balance of political power and quits may have a long-lasting effect on the orientation of an

academic department. Political economy considerations add a new form of (positive or negative)

network externalities, which are intrinsically dynamic rather than contemporaneous.

39



References

Admati, A., and M. Perry (1991) “Joint Projects without Commitment,” Review of Economic

Studies, 58(2): 259–276.

Aguirre, I., Cowan, S. and J. Vickers (2010) “Monopoly Price Discrimination and Demand

Curvature,” American Economic Review 100(4): 1601–1615.

Athey, S., and I. Segal (2013) “An Efficient Dynamic Mechanism,” Econometrica, 81(6): 2463–

2485.

Baron, D., and D. Besanko (1984) “Regulation and Information in a Continuing Relationship,”

Information Economics and Policy, 1: 267–302.

Battaglini, M. (2005) “Long-Term Contracting with Markovian Consumers,” American Eco-

nomic Review, 95(3): 637–658.

Benoit, J.P., and V. Krishna (1985) “Finitely Repeated Games,” Econometrica, 53: 890–904.
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Appendix A. Proof of Lemma 1

Consider the price sequence p defined in the statement of the lemma.

(i) Note first that this sequence leaves no rent to the lowest type: U(θ) = 0. We must show

that if the cutoff delivered by the sequence of short-term prices are exactly the cutoffs θ̂ that

obtain under commitment it is indeed in individual agents’ interest to behave in a way that

gives rise to cutoffs θ̂. Note first that for types θ > θ̂t(s
t), not exiting at date t in state st is

a dominant strategy as they enjoy a strictly positive instantaneous surplus and can always exit

later on. Now consider a type θ < θ̂t(s
t). Because the cutoff sequence is necessarily monotonic,

pτ > ϕ(θ, θ̂τ (s
τ ), sτ ) for all τ ≥ t and so not exiting delivers a strictly negative payoff.

(ii) To demonstrate uniqueness under Assumption 1, suppose that there exists (t, st) such that

θ∗t (s
t) ̸= θ̂t(s

t) (the equilibrium cutoff differs from the optimal cutoff). If θ∗t (s
t) < θ̂t(s

t), then

from Assumption 1, ϕ(θ∗t (s
t), θ∗t (s

t), st) − pt(s
t) < 0. Hence there must exist (τ > t, sτ ≻ st)

such that xτ (θ
∗
t (s

t), sτ ) = 1 (and so θ∗t (s
t) is still the cutoff at (τ, sτ )) and

ϕ
(
θ∗t (s

t), θ∗t (s
t), sτ

)
− pτ (s

τ ) > 0;

and so (from Assumption 1), θ∗t (s
t) > θ̂τ (s

τ ), contradicting the monotonicity of the optimal

cutoff sequence. If θ∗t (s
t) > θ̂t(s

t), then from Assumption 1,

ϕ
(
θ∗t (s

t), θ∗t (s
t), st

)
− pt(s

t) > 0.

Then there must exist (τ ≤ t, sτ - st) such that θ∗τ−1(s
τ−1) < θ∗t (s

t) and θ∗τ (s
τ ) = θ∗τ+1(s

τ+1) =

· · · = θ∗t (s
t). Furthermore,

ϕ
(
θ∗τ (s

τ ), θ∗τ (s
τ ), sτ

)
− pτ (s

τ ) > 0

from Assumption 1 and the monotonicity of the sequence θ̂·(·). But then θ∗τ (s
τ ) cannot be the

cutoff at (τ, sτ ) since it is a strictly dominant strategy for θ∗τ (s
τ )− ε (for ε small and positive)

to stay at (τ, sτ ). �

Appendix B. Proof of Proposition 2

For notational simplicity only we will assume that the path of the state st is deterministic.

(i) Impatient agent (δA ≤ δ). Consider the optimal allocation when the principal can commit

and the agent cannot. Let {θ∗t }t=0,...,T denote the sequence of optimal cutoffs and {pt}t=0,...,T

the contributions. Because the agent cannot commit, these cutoffs must satisfy

ϕ (θ∗T , θ
∗
T , sT )− pT ≥ 0,

ϕ
(
θ∗T−1, θ

∗
T−1, sT−1

)
− pT−1 + δAmax

{
0, ϕ

(
θ∗T−1, θ

∗
T , sT

)
− pT

}
≥ 0

. . .
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Fix the cutoffs and optimize the principal’s payoff (whose expression is the same as earlier,

because we have taken δ to be the principal’s discount factor) with respect to payments. Suppose

that ϕ (θ∗T , θ
∗
T , sT ) > pT . Then, consider new payments (p̂T−1, p̂T ) such that

p̂T−1 + δAp̂T = pT−1 + δApT

and

p̂T = ϕ (θ∗T , θ
∗
T , sT ) .

The new cutoffs satisfy θ̂∗T = θ∗T and θ̂∗T−1 ≤ θ∗T−1. From Assumption 2 and δA ≤ δ, the

principal’s payoff is increased. Repeat this reasoning; backward induction then shows that at

the optimal allocation, the contributions satisfy:

pt = ϕ (θ∗t , θ
∗
t , st) for all t.

Finally, the agent’s discount factor is irrelevant under cutoff myopia as the cutoff’s continuation

valuation is always equal to 0. Hence V nc(δA) = V̂ .

(ii) Patient agent (δA > δ). Suppose that the principal cannot commit. Then any price pT <

ϕ (θ∗T , θ
∗
T , sT ) is strictly suboptimal; hence pT = ϕ (θ∗T , θ

∗
T , sT ). By backward induction, cutoff

myopia prevails on the equilibrium path, and so again δA is irrelevant. But the commitment

solution is not time-consistent: The principal would like to frontload payments, which requires

commitment, as already noted in the text. �

Appendix C. Proof of Corollary 1

Suppose that ψ
(
θ, θ∗, s

)
= −C1(1− F (θ), s) and so:∫ θ

θ∗
ψ
(
θ, θ∗, s

)
f(θ)dθ = −C(1− F (θ∗), s) + C(0, s). Then Assumption 2 is equivalent to

ϕ
(
θ̂t(s

t), θ̂t(s
t), st

)
≥ C1

(
1− F (θ∗), st

)
for all θ∗ ≤ θ̂t(s

t). Now if C11 ≤ 0, this is satisfied provided that

ϕ
(
θ̂t(s

t), θ̂t(s
t), st

)
≥ C1

(
1− F (θ̂t(s

t)), st
)
.
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When ϕ is separable (ϕ
(
θ, θ∗, s

)
≡ ξ(θ, s) + ν(θ∗, s)), the condition Λ

(
θ̂t(s

t), θ̂t(s
t), st

)
= 0 (see

part (ii) of Proposition 2) takes the following form at θ∗ = θ̂t(s
t) and s = st:

ϕ
(
θ∗, θ∗, s

)
− C1

(
1− F (θ∗), s

)
=

1− F (θ∗)

f(θ∗)
ξ1(θ

∗, s) +

∫ θ

θ∗
ν1(θ

∗, s)f(θ)dθ

f(θ∗)

=
1− F (θ∗)

f(θ∗)

[
ξ1(θ

∗, s) + ν1(θ
∗, s)

]
≥ 0

under (a) and (b). �

Appendix D. Proof of Proposition 6

Let θ̂t(s
t) denote the optimal cutoff for infinite re-entry costs.

(i) Under decreasing/constant attractiveness, when the principal charges pt = ϕ
(
θ̂t(st), θ̂t(st), st

)
for all (t, st) with Λ(θ̂t(st), st) = 0 (θ̂t here depends on s

t only through st) and so θ̂t(st) ≥ θ̂t(st−1),

the agent has no incentive to exit to later re-enter. The principal cannot obtain more than V̂ ,

because even for r = 0 the commitment outcome is {θ̂t(st)}t,st . To show uniqueness when T is fi-

nite and Assumption 1 is satisfied, note that the strict quasi-concavity of the instantaneous profit

function (Assumption 3) and backward induction from the end of the horizon imply that for any

finite re-entry cost, for all (t, st), the principal induces cutoff θ∗t (s
t) = max

{
θ̂t(s

t), θ∗t−1(s
t−1)

}
and charges pt = ϕ(θ∗t (s

t), θ∗t (s
t), st).

(ii) By contrast, with increasing attractiveness, for r small, the principal might want the agent

to exit and re-enter later on. The solution takes the following form (we write it for simplicity in

the case of no network externalities; and as earlier we omit the state in the deterministic case

and just index functions by time). Let T (θ) be defined by (if not equal to 0 or +∞):

ΓT (θ)(θ) ≥ (1− δ)r > ΓT (θ)−1(θ).

In words, T (θ) is type θ’s optimal re-entry date, if any. Re-entry however can be strictly optimal

only if two conditions hold. First re-entry must be profitable relative to exit at date 0 and no

re-entry:

Σt=T
t=T (θ) δ

t Γt(θ) > δT (θ)r.

Second, it must be profitable relative to no exit at date 0:

−Σ
t=T (θ)−1
t=0 δt Γt(θ) > δT (θ)r.

So if

r ≥ max
{θ}

[
min

{
Σt=T
t=T (θ) δ

t−T (θ)Γt(θ) , −Σ
t=T (θ)−1
t=0 δt−T (θ)Γt(θ)

}]
≡ r,

the optimum involves no re-entry. The first term in the min is increasing in θ and the second
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term decreasing.38 Thus r ≡ Σt=T
t=T (θ̂)

δt−T (θ̂)Γt(θ̂) where θ̂ is uniquely defined by Σt=T
t=0 δ

tΓt(θ̂) = 0.

Note finally that even if r < r, the commitment solution still resembles that of the absorbing

exit paradigm: Types θ ≥ θ∗ never exit (for some θ∗); types θ < θ∗ exit at date 0, and may

re-enter, with higher types re-entering earlier. We assume that the discounted virtual surplus is

uniformly bounded, otherwise the commitment payoff V̂ may not exist. And so r is well defined.

�

Appendix E. Proof of Proposition 9 (sketch)

(i) Decreasing attractiveness. Recall that the time-consistent cutoffs under decreasing attrac-

tiveness are given by myopic optimization, i.e., θ̂t,γt is given by

Γ
(
θ̂t,γt , st , γt

)
= 0;

and that the sequence θ̂t,γt is monotonically increasing in t for a given γt.

Let the agent behave myopically: xt = 1 iff pt ≤ ϕ(θ, st). Then setting prices is equivalent

to setting cutoffs (subject to the cutoff being no smaller than the previous one). We look for an

equilibrium in which for all (t, γt)

θ∗t,γt ≥ max
{
θ∗t−1 , θ̂t,γt

}
.

Given this, type γt setting cutoff θ∗t < θ̂t,γt at date t (assuming this is allowed by previous

cutoffs) reduces the principal’s date-t payoff from the strict concavity of M (the fact that Γ is

increasing in θ). At a future date τ > t, either θ∗t is locally irrelevant
(
θ∗t < θ∗τ

)
or θ∗t = θ∗τ .

Because θ̂τ,γt ≥ θ̂t,γt and by strict quasi-concavity, raising θ∗t slightly would also raise type γt’s

payoff at date τ in such events.

The existence of cutoff {θ∗·,·} is obtained through a fixed-point argument.

(ii) Increasing attractiveness. The strategy of proof is identical to that of case (i). Again, let

the agent behave myopically, and the principal set a cutoff

θ∗t,γt ≥ max
{
θ∗t−1 , θ̂t,γt

}
where the time-consistent cutoff θ̂t,γt is no longer given by a myopic optimization (see Proposition

3). The strategy of proof again consists in using the strict monotonicity of the Γ function to

show that setting a cutoff θ∗t < θ̂t,γt is strictly suboptimal for type γt at date t. �
38For the first term and using the envelope theorem, we know that Σt=T

t=T (θ) δ
t−T (θ)Γ(θ, st)− rδT (θ) is increasing

in θ and that T (θ) is decreasing in θ. Similarly, for the second term, T (θ) can be seen as the time minimizing

Σ
t=T (θ)−1
t=0 δt−T (θ)Γ(θ, st) + rδT (θ).
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Appendix F. Transient agent type

Proposition 11 (transient agent types). Assume that ϕ(θ, s) = θ and ψ(θ, s) = 0. Suppose

that at t = 0, 1, · · · ,∞, the agent’s type is drawn in an i.i.d. manner from density f(θ) and c.d.f.

F (θ) on [θ, θ] where θ ≥ 0 and the virtual surplus θ −
[
(1 − F (θ))/f(θ)

]
is strictly increasing.

Any Markov Perfect Equilibrium is characterized by a (uniquely defined and increasing in δ)

threshold θ∗ given by the following generalized virtual surplus:

J(θ∗) ≡ θ∗ − 1− F (θ∗)

f(θ∗)
+

δ

∫ θ

θ∗
θdF (θ)

1− δ[1− F (θ∗)]
= 0 (1)

(if interior; θ∗ = θ if J(θ) ≥ 0 and θ∗ = θ if J(θ) ≤ 0)

The principal in each period sets price pt = θ∗+ δ

∫ θ

θ∗
(θ− θ∗)dF (θ) conditional on the agent

not having exited yet. Letting θm denote the monopoly price (i.e., θm = [1 − F (θm)]/f(θm)),

then θ∗ ∈ [0, θm).

Proof. Let U , V andW denote the continuation payoffs (U for the agent, V for the principal and

W ≡ U+V ). These are constant in a Markov Perfect Equilibrium, since the only payoff-relevant

state variable is that the agent has not exited yet.

We treat only the case of an interior solution (the treatment of the corner solutions θ∗ = θ

or θ is analogous). Price p∗ at date t induces a cutoff θ∗ given by

θ∗ − p∗ + δU = 0.

The principal solves

max
θ∗

{[1− F (θ∗)] [(θ∗ + δU) + δV ]}

which yields

θ∗ − 1− F (θ∗)

f(θ∗)
+ δW = 0

with the continuation welfare given by

W =

∫ θ

θ∗
θdF (θ) +

[
1− F (θ∗)

]
δW.

Simple computations show that J ′(θ∗) > 0 whenever J(θ∗) = 0. Hence the solution θ∗ is unique.

The price p∗ is given by

p∗ = θ∗ + δU

where

U =

∫ θ

θ∗
[θ − p∗ + δU ] f(θ)dθ =

∫ θ

θ∗
(θ − θ∗)f(θ)dθ.
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�

The commitment solution for the environment described in Proposition 11 can be imple-

mented by a commitment to a sequence of prices:

pct = 0 for all t ≥ 1 and pc0 = θc +
δE[θ]

1− δ
,

where either

θc − 1− F (θc)

f(θc)
+
δE[θ]

1− δ
= 0 or θc = θ and

δE[θ]

1− δ
≥ 1

f(θ)
− θ.

Note that

θc ≤ θ∗

(with equality only when θ∗ = θ) and that for each t ≥ 1

pct ≤ p∗ ≤ pc0

with strict inequalities whenever θ∗ > θ.

Relatedly, it is important for the analysis in Sections 3 and 4 that, in each period t, the

state of nature be public knowledge prior to price setting (or, if not, that the principal be able

to offer a state-contingent price pt). Suppose by contrast that at each date t the principal first

learns the realization of st−1 (either directly or through the date-(t − 1) realized demand); the

principal sets a price pt; the agents then observe st and decide whether to consume. The date-t

shock then plays a role similar to that of a transient shock to the agent’s type, in that it confers

an informational advantage to the agent for exactly one period.39

39To make the basic point in the simplest manner, suppose that t = 0, 1; that st ∈ R ; that ϕ = st (homogeneous
preferences and no network externality); that ψ = 0 (costless production); and that st is i.i.d. with distribution
G.

At date t = 1, the principal sets pm = arg max p[1−G(p)] ≡ π(p). Let S(p) ≡
∫ ∞

p

(s− p)dG(s).

In the absence of commitment, the principal chooses p0 so as to solve:

max
{p0}

{
[1−G(p0 − δS(pm))] [p0 + δπ(pm)]

}
= max

{s∗0}

{
[1−G(s∗0)] [s

∗
0 + δ [π(pm) + S(pm)]]

}
.

By contrast, the commitment outcome corresponds to the solution of

max
{s∗0}

{
[1−G(s∗0)] [s

∗
0 + δS(0)]

}
since S(0) = max

{p}
[π(p) + S(p)]. Under commitment, the principal charges a higher date-0 price and has a larger

date-0 clientele.
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