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Abstract

The cross-classified sampling design consists in drawing samples from a two-

dimension population, independently in each dimension. Such design is commonly

used in consumer price index surveys and has been recently applied to draw a

sample of babies in the French Longitudinal Survey on Childhood, by crossing a

sample of maternity units and a sample of days. We propose to derive a general

theory of estimation for this sampling design. We consider the Horvitz-Thompson

estimator for a total, and show that the cross-classified design will usually result in

a loss of efficiency as compared to the widespread two-stage design. We obtain the

asymptotic distribution of the Horvitz-Thompson estimator, and several unbiased

variance estimators. Facing the problem of possibly negative values, we propose

simplified non-negative variance estimators and study their bias under a super-

population model. The proposed estimators are compared for totals and ratios on
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simulated data. An application on real data from the French Longitudinal Survey on

Childhood is also presented, and we make some recommendations. Supplementary

materials are available online.

Some key words: analysis of variance, Horvitz-Thompson estimator, indepen-

dence, invariance, Sen-Yates-Grundy estimator, two-stage sampling.

Short title: Estimation under cross-classified sampling

1 Introduction

The 2011 French Longitudinal Survey on Childhood ELFE (Etude Longitudinale

Française depuis l’Enfance) comprises more than 18,000 children selected on the

basis of their place and date of birth. On the one hand, a sample of 320 maternity

units has been drawn. On the other hand, a sample of 25 days divided in four

time periods and spread across the four seasons of 2011 has been selected. The

babies born at the sampled locations and on the sampled days have been approached

through midwives. Data were collected on babies whose parents consented to their

inclusion during their stay at the maternity unit. ELFE is conducted by the National

Institute for Demographic Studies, the National Institute for Health and Medical

Research and the French Blood Agency. The objective of observing children born

within the same year is to analyze their physical and psychological health together

with their living and environmental conditions. This large-scale study of children’s

development and socialization is the first of its kind in France. The collected data are

now available to public and private research teams and many projects are underway

in areas such as health, health environment and social sciences. In order to derive

reliable confidence intervals for finite population parameters such as totals or ratios,

the ELFE sampling design has to be taken into account.

The ELFE sample is drawn according to a non-standard sampling design, called

Cross-Classified Sampling (CCS), following Ohlsson (1996). It consists in drawing
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independently two samples from each component of a two-dimensional population.

In the ELFE survey, a sample of maternity units and a sample of days are inde-

pendently selected. This sampling design appears in other contexts than the ELFE

survey. Some examples include consumer price index surveys, as detailed in Dalén

& Ohlsson (1995) for the Swedish survey, where outlets and items are sampled, and

business surveys (Skinner, 2015), where businesses and products are sampled. Due

to its particular properties, CCS deserves a specific attention. However, as noted

by Skinner (2015), ”the literature on the theory of cross-classified sampling is very

limited”. In particular, no general theory is derived under the finite population

framework. While the papers by Vos (1964) and Ohlsson (1996) focus on sim-

ple random sampling without replacement, Skinner (2015) gives some results under

stratified without replacement simple random sampling and under with replacement

unequal probability sampling. Dalén & Ohlsson (1995) provide some results under

probability proportional to size without-replacement sampling.

In the present paper, we develop a general theory for estimation and variance esti-

mation under CCS. The asymptotic normality of the Horvitz-Thompson estimator

is derived under some mild conditions. A comparison with a two-stage sampling

design is carried out in a general framework. We also raise an issue, not reported

before, of possible negative values for Horvitz-Thompson and Yates-Grundy variance

estimates. This problem occurs even in the simplest case of simple random sampling

without replacement. Non-negative simplified variance estimators are therefore in-

troduced. Conditions for their approximate unbiasedness are given under a design-

based and a model-based approach. The properties of our variance estimators are

evaluated through a small but realistic simulation study when estimating totals and

ratios. Finally, an application to the ELFE data is detailed.
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2 Cross-classified sampling design

2.1 Notations and Horvitz-Thompson estimation

Keeping in mind the ELFE survey, we consider a population UM of NM maternity

units and a population UD of ND days. However, the developments below are

completely general and may be applied to any populations UM and UD. We will use

the indexes i and j for the maternity units, and the indexes k and l for the days.

We consider a sampling design pM(·) on the population UM , leading to a sample

SM of (average) size nM , and a sampling design pD(·) on the population UD leading

to a sample SD of (average) size nD. We assume that the two samples are selected

independently. The cross-classified sampling design p(·) on the product population

U = UM × UD is therefore defined as

p(s) = pM(sM)× pD(sD) for any s = sM × sD ⊂ UM × UD.

Let πMi denote the probability that i is selected in SM , πMij denote the probability

that units i and j are selected jointly in SM , and let ∆M
ij = πMij − πMi π

M
j . The

quantities πDk , πDkl and ∆D
kl are similarly defined. We assume that the first and second-

order inclusion probabilities are non-negative in each population. The probability

for the pairs (i, k) to be selected in the product sample SM × SD is πMi π
D
k , and the

probability for the pairs (i, k) and (j, l) to be selected jointly in the product sample

SM × SD is πMij π
D
kl.

We are interested in some variable of interest with value Yik for the maternity unit

i and the day k. The total tY =
∑

i∈UM

∑
k∈UD

Yik is then unbiasedly estimated by

the Horvitz-Thompson (HT) estimator

t̂Y =
∑
i∈SM

∑
k∈SD

Yik
πMi π

D
k

=
∑
i∈SM

∑
k∈SD

Y̌ik where Y̌ik =
Yik

πMi π
D
k

. (2.1)

Making use of the independence between SM and SD, the variance of the HT-
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estimator is

VCCS
(
t̂Y
)

=
∑

i,j∈UM

∑
k,l∈UD

Γijkl Y̌ikY̌jl (2.2)

where Γijkl = πMij π
D
kl − πMi πMj πDk πDl . The Sen(1953)-Yates-Grundy(1953) form

VCCS
(
t̂Y
)

= −1

2

∑
(i,k) 6=(j,l)∈UM×UD

Γijkl
(
Y̌ik − Y̌jl

)2
(2.3)

can be used alternatively when both sampling designs are of fixed size.

Our set-up can be compared to the usual two-stage framework, by considering UM

as a population of Primary Sampling Units (PSUs) and UD as a population of

Secondary Sampling Units (SSUs), each maternity unit i being associated to the

same population of days. In case of two-stage sampling, denoted by MD, a first-

stage sample SM is selected in UM , and some second-stage samples Si are selected

independently using pD(Si) for each i ∈ SM (see Särndal et al., 1992). The variance

of the HT-estimator is then

VMD

(
t̂Y
)

= V PSU
MD

(
t̂Y
)

+ V SSU
MD

(
t̂Y
)

(2.4)

where

V PSU
MD

(
t̂Y
)

=
∑

i,j∈UM

∑
k,l∈UD

∆M
ij π

D
k π

D
l Y̌ikY̌jl, (2.5)

V SSU
MD

(
t̂Y
)

=
∑
i∈UM

∑
k,l∈UD

πMi ∆D
klY̌ikY̌il. (2.6)

Alternatively, we could consider UD as a population of PSUs and UM as a population

of SSUs, each day k being associated to the same population of maternity units. In

this case, the variance of the HT-estimator under two-stage sampling is

VDM
(
t̂Y
)

= V PSU
DM

(
t̂Y
)

+ V SSU
DM

(
t̂Y
)

(2.7)

where

V PSU
DM

(
t̂Y
)

=
∑
k,l∈UD

∑
i,j∈UM

∆D
klπ

M
i π

M
j Y̌ikY̌jl, (2.8)

V SSU
DM

(
t̂Y
)

=
∑
k∈UD

∑
i,j∈UM

πDk ∆M
ij Y̌ikY̌il. (2.9)
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The different features of CCS and two-stage sampling on a two-dimension population

are illustrated on Figure 1.
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Figure 1: Cross-classified sampling (left panel), two-stage sampling DM with pri-
mary units in UD (central panel), two-stage sampling MD with primary units in
UM (right panel)

2.2 Variance decomposition for cross-classified sampling

The covariance Γijkl may be written in several ways, leading to alternative variance

decompositions. Plugging Γijkl = πDkl∆
M
ij + πMij ∆D

kl −∆M
ij ∆D

kl into (2.2) gives

VCCS
(
t̂Y
)

= V1
(
t̂Y
)

+ V2
(
t̂Y
)
− V3

(
t̂Y
)

(2.10)

where

V1
(
t̂Y
)

=
∑
k,l∈UD

∑
i,j∈UM

πDkl∆
M
ij Y̌ikY̌jl, (2.11)

V2
(
t̂Y
)

=
∑

i,j∈UM

∑
k,l∈UD

πMij ∆D
kl Y̌ikY̌jl, (2.12)

V3
(
t̂Y
)

=
∑

i,j∈UM

∑
k,l∈UD

∆M
ij ∆D

klY̌ikY̌jl. (2.13)

Plugging Γijkl = ∆M
ij π

D
k π

D
l + ∆D

klπ
M
i π

M
j + ∆M

ij ∆D
kl into (2.2) gives

VCCS
(
t̂Y
)

= V PSU
MD

(
t̂Y
)

+ V PSU
DM

(
t̂Y
)

+ V3
(
t̂Y
)

(2.14)

and we have V1
(
t̂Y
)

= V PSU
MD

(
t̂Y
)

+V3
(
t̂Y
)

and V2
(
t̂Y
)

= V PSU
DM

(
t̂Y
)

+V3
(
t̂Y
)
. This

second decomposition was originally derived by Dalén & Ohlsson (1995). It is also

given in Ohlsson (1996), and in equation (3) of Theorem 2.2 of Skinner (2015). Other

decompositions are possible, e.g. through an analysis of variance decomposition as

for two-stage sampling.
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2.3 Comparison with two-stage sampling

From expressions (2.7) and (2.14), we obtain after some algebra that

VCCS
(
t̂Y
)
− VDM

(
t̂Y
)

=
∑

i,j∈UM

∆M
ij

∑
k 6=l∈UD

πDklY̌ikY̌jl. (2.15)

In case of Poisson sampling (PO) inside UM and when Y is assumed to be non-

negative, the right-hand side in (2.15) is non-negative and CCS is thus less efficient

than two-stage sampling. In case of fixed-size sampling inside UM , equation (2.15)

may be alternatively written as

VCCS
(
t̂Y
)
− VDM

(
t̂Y
)

=
∑

i 6=j∈UM

(−∆M
ij )

2

∑
k 6=l∈UD

πDkl
πDk π

D
l

(
Yik
πMi
− Yjk
πMj

)(
Yil
πMi
− Yjl
πMj

)
.(2.16)

If the so-called Sen-Yates-Grundy conditions are respected for pM , the quantities

(−∆M
ij ) are non-negative. If Yik is roughly proportional to the size of the maternity

unit i, as can be expected for count variables, the quantities(
Yik
πMi
− Yjk
πMj

)(
Yil
πMi
− Yjl
πMj

)
will tend to be positive unless the inclusion probabilities πMi are defined propor-

tionally to some measure of size. CCS sampling would then be less efficient than

two-stage sampling. This result is illustrated in section 4.1 on some simulated pop-

ulations when both pM and pD are simple random sampling without replacement

(SI) designs, and for different sample sizes.

3 Variance estimation

3.1 Design-unbiased variance estimation

The HT variance estimator for VCCS
(
t̂Y
)

is

V̂HT
(
t̂Y
)

=
∑
i,j∈SM

∑
k,l∈SD

Γijkl
πMij π

D
kl

Y̌ikY̌jl. (3.1)
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It may be also derived from (2.10), leading to the alternative writing

V̂HT
(
t̂Y
)

= V̂1,HT
(
t̂Y
)

+ V̂2,HT
(
t̂Y
)
− V̂3,HT

(
t̂Y
)

(3.2)

where

V̂1,HT
(
t̂Y
)

=
∑
i,j∈SM

∑
k,l∈SD

∆M
ij

πMij
Y̌ikY̌jl, (3.3)

V̂2,HT
(
t̂Y
)

=
∑
i,j∈SM

∑
k,l∈SD

∆D
kl

πDkl
Y̌ikY̌jl, (3.4)

V̂3,HT
(
t̂Y
)

=
∑
i,j∈SM

∑
k,l∈SD

∆M
ij

πMij

∆D
kl

πDkl
Y̌ikY̌jl. (3.5)

If pM and pD are both Poisson sampling designs, this variance estimator is always

non-negative. Otherwise, it may take negative values even if pM and pD are both

SI designs (denoted by SI2) as illustrated in section 4.2. When pM and pD are both

fixed-size sampling designs, we may alternatively consider the Yates-Grundy like

variance estimator:

V̂Y G
(
t̂Y
)

= V̂1,Y G
(
t̂Y
)

+ V̂2,Y G
(
t̂Y
)
− V̂3,Y G

(
t̂Y
)

(3.6)

where

V̂1,Y G
(
t̂Y
)

= −1

2

∑
i 6=j∈SM

∆M
ij

πMij

(
Ŷi•
πMi
− Ŷj•
πMj

)2

(3.7)

V̂2,Y G
(
t̂Y
)

= −1

2

∑
k 6=l∈SD

∆D
kl

πDkl

(
Ŷ•k
πDk
− Ŷ•l
πDl

)2

(3.8)

V̂3,Y G
(
t̂Y
)

= −1

2

∑
(i,k)6=(j,l)∈SM×SD

∆M
ij ∆D

kl

πMij π
D
kl

(
Y̌ik − Y̌jl

)2
(3.9)

with Ŷ•k =
∑

i∈SM
Yik/π

M
i is the estimated sub-total for the day k and Ŷi• =∑

k∈SD
Yik/π

D
k is the estimated sub-total for the maternity unit i.

It can be proved that V̂HT
(
t̂Y
)

in (3.2) and V̂Y G
(
t̂Y
)

in (3.6) match term by term,

when pM and pD are stratified simple random sampling (STSI) designs. In the same

STSI context, another variance estimator is given in equation (4) of Theorem 2.2 in
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Skinner (2015). This variance estimator does not match V̂HT
(
t̂Y
)

or V̂Y G
(
t̂Y
)

term

by term, since Skinner’s variance estimator is based on the variance decomposition

in equation (2.14), while our variance estimator is based on the variance decomposi-

tion in equation (2.10). Nevertheless, both variance estimators are globally identical

in the STSI case.

Another variance estimator is obtained in Dalén & Ohlsson (1995), in case of a

probability proportional to size without-replacement sampling design in both di-

mensions. Summing the variance component estimators in equations (4.1)-(4.3) of

Dalén & Ohlsson (1995) leads to a similar variance estimator than in our equa-

tion (3.6), except that −V̂3,Y G
(
t̂Y
)

is replaced with +V̂3,Y G
(
t̂Y
)

which results in an

overestimation of the variance. This overestimation can be be neglected in cases

when V3
(
t̂Y
)

is small as compared to the other variance components (see Table 1

in Section 4.2).

If both sampling designs satisfy the Sen-Yates-Grundy conditions (SYG), the terms

V̂1,Y G
(
t̂Y
)

and V̂2,Y G
(
t̂Y
)

are non-negative. However, the term V̂3,Y G
(
t̂Y
)

is usually

non-negative, which may lead to negative values for V̂Y G
(
t̂Y
)

as illustrated in the

simulations of section 4.2. It is thus desirable to have access to non-negative variance

estimators with limited bias.

3.2 Non-negative variance estimators

We consider the variance decomposition in (2.10), and study the relative order of

magnitude of the components. We make the following assumptions:

H1: There exist some constants α1 and α2 such that

∀k ∈ UD,
1

NM

∑
i∈UM

Y 2
ik ≤ α1, and ∀i ∈ UM ,

1

ND

∑
k∈UD

Y 2
ik ≤ α2.
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H2: There exist some constants λ1 > 0 and λ2 > 0 such that

∀k ∈ UD, πDk ≥ λ1
nD
ND

, and ∀i ∈ UM , πMi ≥ λ2
nM
NM

.

H3: There exist some constants γ1 and γ2 such that

∀k 6= l ∈ UD,
N2
D

nD
sup

k 6=l∈UD

∣∣∆D
kl

∣∣ ≤ γ1, and ∀i 6= j ∈ UM ,
N2
M

nM
sup

i 6=j∈UM

∣∣∆M
ij

∣∣ ≤ γ2.

H4: There exists some constant δ > 0 such that

VCCS
(
t̂Y
)
≥ δN2

MN
2
D

(
1

nM
+

1

nD

)
.

It is assumed in (H1) that the variable y has bounded moments of order 2 for each

maternity unit i and for each day k. Assumptions (H2) and (H3) are classical in

survey sampling and are satisfied for many sampling designs, see for example Cardot

et al. (2013). It is assumed in (H4) that the variance of the HT-estimator under

CCS sampling has the order N2
MN

2
D(n−1M + n−1D ). From assumptions (H1-H4), there

exist some constants C1, C2 and C3 such that

V1
(
t̂Y
)

VCCS
(
t̂Y
) ≤ C1

1

1 + nMn
−1
D

, (3.10)

V2
(
t̂Y
)

VCCS
(
t̂Y
) ≤ C2

1

1 + nDn
−1
M

, (3.11)

V3
(
t̂Y
)

VCCS
(
t̂Y
) ≤ C3

1

nDn
−1
M + nMn

−1
D

(3.12)

The proof is given in Appendix 8. It follows from (3.10)-(3.12) that if nD is large and

nM is bounded, both V2
(
t̂Y
)

and V3
(
t̂Y
)

are negligible and a non-negative simplified

variance estimator can be derived by focusing on V1
(
t̂Y
)

only. This leads to

V̂SIMP1

(
t̂Y
)

= V̂1,Y G
(
t̂Y
)
. (3.13)

If the sampling design pD satisfies the SYG conditions, this simplified estimator is

always non-negative. In the particular SI2 case, we obtain

V̂SIMP1

(
t̂Y
)

= N2
M

(
1

nM
− 1

NM

)
s2
Ŷ◦•

(3.14)
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where

s2
Ŷ◦•

=
1

nM − 1

∑
i∈SM

(
Ŷi• −

1

nM

∑
j∈SM

Ŷj•

)2

. (3.15)

Symmetrically, both V1
(
t̂Y
)

and V3
(
t̂Y
)

may be seen as negligible if nM is large and

nD is bounded. Another simplified variance estimator is thus

V̂SIMP2

(
t̂Y
)

= V̂2,Y G
(
t̂Y
)
. (3.16)

If the sampling design pM satisfies the SYG conditions, this estimator is non-

negative. In the particular SI2 case, we have

V̂SIMP2

(
t̂Y
)

= N2
D

(
1

nD
− 1

ND

)
s2
Ŷ•◦

(3.17)

where

s2
Ŷ•◦

=
1

nD − 1

∑
k∈SD

(
Ŷ•k −

1

nD

∑
l∈SD

Ŷ•l

)2

. (3.18)

A third possible simplified variance estimator is

V̂SIMP3

(
t̂Y
)

= V̂SIMP1 + V̂SIMP2

= V̂1,Y G
(
t̂Y
)

+ V̂2,Y G
(
t̂Y
)
. (3.19)

This estimator is non-negative if both pD and pM satisfy the SYG conditions. It is

approximately unbiased for VCCS
(
t̂Y
)

if nD is large and nM is bounded, or if nM is

large and nD is bounded. In the particular SI2 case

V̂SIMP3

(
t̂Y
)

= N2
M

(
1

nM
− 1

NM

)
s2
Ŷ◦•

+N2
D

(
1

nD
− 1

ND

)
s2
Ŷ•◦
. (3.20)

Similar formula can be easily derived in the case of stratified simple random sampling

without replacement and will be used in Section 5.
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3.3 Relative bias under a superpopulation model

We consider the following superpopulation model

Yik = µ+ σMUi + σDVk + σEWik (3.21)

where Ui, Vk and Wik are independently generated according to a standard normal

distribution. This is a particular case for a single stratum of the stratified cross-

classified population model introduced in equation (8) of Skinner (2015), where the

fixed and random effects are allowed to depend on the strata. Model (3.21) is an

analysis of variance model with two crossed random factors and without repetition.

Let “Em” denote the expectation with respect to the model (3.21) and “Ep” de-

note the expectation with respect to the CCS design. For each simplified variance

estimator V̂SIMPi, i = 1, 2, 3, the relative bias RB under the model and under the

sampling design is defined by

RBm,p

[
V̂SIMPi

(
t̂Y
)]

=
Em

{
Ep

[
V̂SIMPi

(
t̂Y
)]
− VCCS

(
t̂Y
)}

Em
[
VCCS

(
t̂Y
)] . (3.22)

In the SI2 case, these relative biases are of the form

RBm,p

[
V̂SIMPi

(
t̂Y
)]

= −1/(1 + Ai) (3.23)

for i = 1 and 2 and

RBm,p

[
V̂SIMP3

(
t̂Y
)]

= 1/(1 + A3) (3.24)

for some positive constant Ai, i = 1, 2, 3, depending on σM , σD, σE and nM , NM ,

nD and ND, see equations (3.25)-(3.27). Equations (3.23) and (3.24) imply that the

two first simplified variance estimators are negatively biased while the third one is

positively biased. Using the notations rM = σ2
M/σ

2
E, rD = σ2

D/σ
2
E, fM = nM/NM

12



and fD = nD/ND, we have

A1 =
1− fM
1− fD

nDrM + 1

nMrD + fM
, (3.25)

A2 =
1− fD
1− fM

nMrD + 1

nDrM + fD
, (3.26)

A3 =
nDrM + fD

1− fD
+
nMrD + fM

1− fM
. (3.27)

The bias of V̂SIMP1 increases from −1 to 0 when A1 increases, which occurs in partic-

ular when the ratio rM or the sample size nD increases. In other words, V̂SIMP1 will

have a small bias under model (3.21) if the variable of interest contains some ma-

ternity unit effect or if the number of sampled days is large enough. Symmetrically,

V̂SIMP2 will have a small bias under model (3.21) if the variable of interest contains

some day effect or if the number of sampled maternity units is large enough. The

bias of V̂SIMP3 decreases from 1 to 0 when A3 increases, which occurs in particular

when rM or rD increases, or when nM or nD increases. In other words, V̂SIMP3 will

have a small bias under model (3.21) if the variable of interest contains some ma-

ternity unit or some day effect, or if the number of sampled days or the number of

sampled maternity units is large enough. The simulation study in section 4 supports

these results, and confirms that the variance tends to be underestimated with V̂SIMP1

or V̂SIMP2, and overestimated with V̂SIMP3.

3.4 A central-limit theorem

To produce confidence intervals with appropriate asymptotic coverage, it is of inter-

est to state a central-limit theorem (CLT) for CCS. Roughly speaking, Theorem 1

below states that if the HT-estimator follows a CLT under both sampling designs

pD and pM , then the HT-estimator also follows a CLT under CCS. It is derived

almost directly from Theorem 2 in Chen and Rao (2007), and the proof is therefore

omitted.

Theorem 1. Suppose that assumptions (H1)-(H4) hold. Suppose that
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H5: σ−11 V1 →L N (0, 1), where →L stands for the convergence in distribution under

the sampling-design, with

V1 =
1

N

(∑
i∈SM

Yi•
πMi
−
∑
i∈UM

Yi•

)
and σ2

1 = V (V1) (3.28)

where Yi• =
∑

k∈UD
Yik.

H6: supt |P (σ−12 U1 ≤ t|SM)−Φ(t)| = op(1), where Φ is the cumulative distribution

function of the standard normal distribution, and where

U1 =
1

N

∑
i∈SM

1

πMi
(Ŷi• − Yi•) and σ2

2 = V (U1|SM). (3.29)

H7: σ2
1/σ

2
2 →P γ2, where →P stands for the convergence in probability under the

sampling-design.

Then

N−1(t̂Y − tY )√
σ2
1 + σ2

2

→L N (0, 1). (3.30)

For illustration, we consider the particular case when pD and pM are both SI designs.

Suppose that (H2)-(H4) hold, and that (H1) is strengthened to

H1b: There exists δ > 0 and some constants α1 and α2 such that

∀k ∈ UD
1

NM

∑
i∈UM

Y 2+δ
ik ≤ α1, and ∀i ∈ UM

1

ND

∑
k∈UD

Y 2+δ
ik ≤ α2.

Then by using the CLT in Hajek (1961), the assumption (H5) can be shown to hold.

By mimicking the proof of Lemma 2 in Chen and Rao (1997), the assumption (H6)

can be shown to hold as well.

4 Simulations

In this Section, two artificial populations are first generated using the superpop-

ulation model (3.21). In Section 4.1, CCS is compared with two stage sampling
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in terms of variance, which illustrates the results in Section 2.3. A Monte Carlo

experiment is then presented in Section 4.2, and the variance estimators introduced

in Section 3 are compared for the estimation of a total. Some attention is paid to

the issue of negative values for the unbiased variance estimator. In Section 4.3, two

other populations with two variables of interest for each are generated. We focus on

variance estimation for a ratio, making use of the variance estimators introduced in

Section 3 with estimated linearized variables instead of the variable of interest. The

results from Tables 1 and 2 are readily reproducible using the R code provided in

the supplementary materials of the present paper.

4.1 Comparison with two-stage sampling

Two populations are generated according to model (3.21), with NM = 1000 mater-

nity units and ND = 1000 days for each population, and with µ = 200 and σE = 5.

Equal random effects standard deviations σM = σD = 5 are used for population

1, while we use σM = 0.5 and σD = 5 for population 2. For each population, the

SI2 sampling design is used, with sample sizes, nM and nD, equal to 5, 10, 100 and

500. The ratios VMD/VCCS between the variance under two-stage sampling and the

variance under CCS are computed, and plotted as a percentage on Figure 2. A ra-

tio smaller than 100 indicates that two-stage sampling is more accurate than CCS,

which holds true in all cases considered in our experiment.

The ratio increases with nD and decreases when nM increases. Also, it can be

observed that the ratio decreases with σM . This impact of the maternity unit effect

is noticeable, and illustrates the substantial loss in accuracy induced by using a CCS

instead of a two-stage sampling design if the maternity unit effect is small. Similar

conclusions could be derived when computing the ratio VDM/VCCS.
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Figure 2: VMD/VCCS ( % ) for population 1 (left panel) and population 2 (right
panel)

4.2 Variance estimation for a total

We consider the two artificial populations generated as described in Section 4.1.

For each population, the SI2 sampling design is used, with sample sizes equal to 5,

10, 100 and 500, and the sample selection is repeated B = 10, 000 times. For each

sample b = 1, . . . , B, we compute the estimate t̂
(b)
Y of the total tY . The unbiased

variance estimator V̂ (b) and the simplified variance estimators V̂
(b)
SIMP1, V̂

(b)
SIMP2, V̂

(b)
SIMP3

are also computed for t̂
(b)
Y .

For each variance estimator V̂ , we compute the Monte Carlo Percent Relative Bias

RBmc(V̂ ) = 100× B−1
∑B

b=1 V̂
(b) − V

V
,

where the true variance V was approximated through an independent set of 50, 000

simulations. The number (#NEG) of negative variance estimators V̂ (b) is also com-

puted.

The results are reported in Table 1. The variance estimator V̂ is almost unbiased

in all situations, as expected. However, this variance estimator is prone to negative

values with small sample sizes when the value of σM and/or the value of σD is small
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as compared to σE. The problem vanishes when the sample sizes increase. We now

turn to the simplified variance estimators. The relative bias of V̂SIMP1 decreases when

nD increases or when nM decreases, and when σM increases or when σD decreases.

This supports the findings in Section 3.3. Symmetrical conclusions are drawn for the

relative bias of V̂SIMP2. Turning to V̂SIMP3, we note that the relative bias decreases

when either σM or σD increases. This variance estimator is therefore advisable in

all cases but those where there is no maternity unit nor day effect.

nM 5 10 10 100 500 5 10 10 100 500
nD 5 10 100 100 500 5 10 100 100 500

σM 5 50
σD 5 5

RBmc

(
V̂
)

1 -1 2 0 -0 1 -1 1 0 0

#NEG 6 0 0 0 0 0 0 0 0 0

RBmc

(
V̂SIMP1

)
-43 -47 -6 -49 -49 - -2 1 -1 -1

RBmc

(
V̂SIMP2

)
-46 -50 -91 -51 -51 -99 -99 -100 -99 -99

RBmc

(
V̂SIMP3

)
11 3 2 1 -0 1 -0 1 0 0

σM 0.5 0.5
σD 5 0.5

RBmc

(
V̂
)

1 -1 0 1 -1 1 -1 2 -0 -0

#NEG 91 0 0 0 0 1393 298 0 0 0

RBmc

(
V̂SIMP1

)
-82 -90 -81 -98 -99 -4 -9 -3 -34 -47

RBmc

(
V̂SIMP2

)
-1 -2 -10 -0 -2 -5 -10 -52 -36 -49

RBmc

(
V̂SIMP3

)
18 8 9 2 -0 90 81 45 29 4

Table 1: Comparison between variance estimators for a total

4.3 Variance estimation for a ratio

We now consider variance estimation for a ratio. Two populations are generated

with NM = 1000 maternity units and ND = 1000 days. In each population, two

count variables are generated so as to mimic the data encountered in the ELFE

survey. More precisely, we first generate an auxiliary variable Zik according to

model (3.21) with µ = 200, σE = σD = 5, and σM = 5 or 50. The first variable

of interest Xik is generated according to a Poisson distribution with parameter Zik.

The second variable of interest Yik is generated according to a binomial distribution

with parameters Xik and pik. We consider two cases: (i) equal probabilities with
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pik = 0.3; (ii) unequal probabilities with logit(pik) = βZik, where β was chosen so

that the average probability is approximately 0.3. Note that Yik follows a Poisson

distribution with parameter pikZik.

The reason for this generating process is that some variable of interest Xik, like

the number of births in the ELFE survey, may contain some maternity unit and/or

day effect which is reflected in the way Zik is generated. On the other hand, some

maternity unit and/or day effect may also be contained in some other variable of

interest Yik, like the number of births per caesarean. Such effects may be either

similar to those for Xik like with pattern (i), or may occur differently like with

pattern (ii).

For each population, the SI2 sampling design is used, with sample sizes equal to 5,

10, 100 and 500, and the sample selection is repeated B = 10, 000 times. For each

sample b = 1, . . . , B, we compute the substitution estimator R̂(b) = t̂
(b)
Y /t̂

(b)
X of the

ratio R = tY /tX . The variance estimator V̂ (b) and the simplified variance estimators

V̂
(b)
SIMP1, V̂

(b)
SIMP2, V̂

(b)
SIMP3 are also computed for t̂

(b)
Y , where the variable of interest Yik

is replaced with the estimated linearized variable of the ratio.

The results are reported in Table 2. The variance estimator V̂ is almost unbiased in

all situations, as expected, but is prone to negative values even when the maternity

unit or day effect is small. We now turn to the relative bias for the simplified variance

estimators. With pattern (i), the situation is much different from that when a total

is estimated, since the relative bias of V̂SIMP3 is much larger than for the other two

simplified estimators. This can be explained as follows: when the probabilities pik

are uniform, both Yik and Xik contain the same maternity unit and day effect, but

these effects wear off in the linearized variable. Whatever the values of σM and

σD are, the situation is therefore comparable to that observed in the bottom right

cell of Table 1. With pattern (ii), the probabilities pik depend on i and k, leading

potentially to some remaining maternity unit and/or day effect in the linearized
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variable. In such situation, which seems more realistic in practice, the relative bias

of V̂SIMP1 and V̂SIMP2 increase when σM or σD increase, while the relative bias of

V̂SIMP3 decreases.

nM 5 10 10 100 500 5 10 10 100 500
nD 5 10 100 100 500 5 10 100 100 500

σM 5 50
σD 5 5

Case (i) RBmc

(
V̂
)

-0 -1 -1 0 -0 -2 -1 -1 0 1

pik = 0.3

#NEG 1645 484 14 0 0 1656 499 12 0 0

RBmc

(
V̂SIMP1

)
-1 -1 -2 -10 -37 -1 -1 -1 -8 -32

RBmc

(
V̂SIMP2

)
0 -2 -10 -8 -30 -2 -1 -9 -8 -31

RBmc

(
V̂SIMP3

)
99 96 89 82 33 97 98 90 84 37

Case (ii) RBmc

(
V̂
)

0 -1 2 0 -0 -4 -3 -1 -0 0

pik = eβZik

1+eβZik

#NEG 1351 235 0 0 0 67 0 0 0 0

RBmc

(
V̂SIMP1

)
-7 -13 -4 -39 -48 -5 -4 -1 -1 -1

RBmc

(
V̂SIMP2

)
-6 -14 -61 -40 -49 -87 -93 -99 -98 -99

RBmc

(
V̂SIMP3

)
87 73 35 22 3 8 3 -0 0 0

Table 2: Comparison between variance estimators for a ratio

5 Application to the ELFE survey

ELFE is the first longitudinal study of its kind in France, tracking children from birth

to adulthood (Pirus et al., 2010). This cohort comprises more than 18,000 children

whose parents consented to their inclusion. The population of inference consists

of babies born during 2011 in French maternity units, excluding very premature

infants. This is a two-dimensional population with 544 maternity units as spatial

units and 365 days as time units. The crossing of one day and one maternity unit

represents a cluster of infants.

The sample is obtained by CCS, where days and maternity units are selected in-

dependently with selected families surveyed shortly after birth in 320 metropolitan

maternity units and during 25 days for one year. The population of maternity units

is divided into five strata of equal size. The allocation per stratum is proportional to

the number of deliveries recorded in 2008. The sample selection for maternity units

is stratified systematic sampling, which can be approximated by stratified simple
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random sampling (STSI). The sample selection of days is not actually random, due

to logistic constraints. A number of nD = 25 days is selected during 4 waves, each

wave covering a season. It may be approximated by STSI, with four strata asso-

ciated to the four seasons of 2011. The sample sizes inside strata are provided in

Tables 3 and 4.

Strata Strata size Sample size
g NMg nMg

1 108 21
2 108 41
3 109 55
4 108 80
5 111 90
Total 544 287

Table 3: Population and sample strata sizes for the maternity units design pM .

Strata Strata size Sample size
h NDh nDh

1 91 4
2 91 6
3 91 7
4 92 8
Total 365 25

Table 4: Population and sample strata sizes for the days design pD.

In this Section, we aim at illustrating the results previously obtained on a real data

set. Some aspects of the ELFE survey, like the non-response issue or the calibration

step, deserve a specific attention but are beyond the scope of the present paper

and are therefore not considered. In particular, the ELFE survey is prone to several

levels of non-response, since some sampled maternity units and some families refused

to participate either for some specific days or for the whole period. In the present

study, the sample of respondents is viewed as the original sample and in particular,

we consider only the 287 maternity units that participate during the 25 days of

survey. The calibration step is not taken into account. The results below are meant

20



to illustrate our theoretical results, but are not intended for use in other contexts.

We consider seven count variables from the ELFE survey. Some of them depend

on the characteristics of the maternity units (e.g., the spatial location), like the

variable indicating whether the mother is followed by a midwife. Others are related

to the days of the survey, like the variable indicating whether the birth occurred

by caesarean. For each variable, the estimated total t̂Y from equation (2.1), the

estimated variance V̂
(
t̂Y
)

from equation (3.2) and the three simplified estimators

are given in the upper part of Table 5. Similar indicators are given in the bottom

part of Table 5 for ratios, when the totals of the variables of interest are divided by

the total number of births.

Birth Born by Twins Born Mother Mother aged Primiparous Immigrant
Caesarean within followed by between 18 mother mother

marriage a midwife and 25 years

t̂Y 362924 33873 10187 160283 42337 43238 162316 44169

V̂
(
t̂Y

)
7.6E+07 1.5E+07 5.3E+05 2.0E+07 3.9E+06 2.6E+06 1.5E+07 3.6E+06

RD
(
V̂SIMP1

)
-63.7 % -95.5 % -63.5 % -64.6 % -13.2 % -49.7 % -46.5 % -58.2 %

RD
(
V̂SIMP2

)
-31.1 % -1.9 % -13.3 % -29.7 % -76.3 % -35.2 % -41.4 % -33.4 %

RD
(
V̂SIMP3

)
5.2 % 2.6 % 23.2 % 5.7 % 10.5 % 15.1 % 12.2 % 8.4 %

R̂ 1.00 0.09 0.03 0.44 0.12 0.12 0.45 0.12

V̂
(
R̂
)

7.9E-05 2.8E-06 2.4E-05 2.5E-05 1.2E-05 3.0E-05 1.6E-05

RD
(
V̂SIMP1

)
-96.2 % -51.0 % -31.0 % -7.9 % -40.2 % -69.3 % -49.2 %

RD
(
V̂SIMP2

)
-0.4 % -17.0 % -44.7 % -80.5 % -35.5 % -5.0 % -37.5 %

RD
(
V̂SIMP3

)
3.4 % 31.9 % 24.3 % 11.5 % 24.3 % 25.7 % 13.3 %

Table 5: Variance estimates of estimated total and ratio on some ELFE variables

The relative difference RD between V̂SIMP and the unbiased estimator V̂ is

RD =
V̂SIMP

(
t̂Y ?
)
− V̂

(
t̂Y ?
)

V̂
(
t̂Y ?
) .

Different behaviours may be observed for the variables of interest, depending on the

maternity unit/day effect. For instance, the variable indicating whether the birth

occurred by caesarean contains an important day effect, and the RD of V̂SIMP2 is

therefore small while that of V̂SIMP1 is large. Symmetrically, the variable indicating

whether the mother is followed by a midwife contains a small day effect as compared

to the maternity unit effect, and the RD of V̂SIMP2 is therefore large while that of

V̂SIMP1 is small. Also, we note that the RD of V̂SIMP3 is relatively stable for all

variables when estimating a total, which is an important feature in favour of this
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third simplified estimator. We note however that the absolute RD of V̂SIMP3 can be

large when estimating a ratio, which confirms the simulation results.

6 Conclusion

The present paper derives some general estimation theory for the cross-classified

sampling design which was used in the recent ELFE survey on childhood. The issue

of possibly negative variance estimates may arise even in case of simple random sam-

pling without replacement. Alternative estimators to the usual Horvitz-Thompson

and Yates-Grundy variance estimators are thus proposed, and proved to be non-

negative under the usual Sen-Yates-Grundy conditions. The relative bias of the

proposed variance estimators is derived for a superpopulation model. The behavior

of these estimators is also investigated for totals and ratios on simulated data and on

data extracted from the ELFE survey. Among the proposals, one variance estimator

that leads to a slight overestimation of the variance in many cases, appears to be

advisable.

Despite the present results and the recent paper by Skinner (2015), the cross-

classified sampling design still deserves some attention. In particular, the treatment

of non-response and the calibration problem should also be taken into account, and

is currently under investigation.
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8 Appendix

Proof of equations (3.10)-(3.12)

We can rewrite

V1
(
t̂Y
)

=
∑
k∈UD

V (Ŷ•k)

πDk
+

∑
k 6=l∈UD

πDkl
πDk π

D
l

Cov(Ŷ•k, Ŷ•l). (8.1)

We have

V (Ŷ•k) =
∑
i∈UM

(1− πMi )
(Yik)

2

πMi
+

∑
i 6=j∈UM

πMij − πMi πMj
πMi π

M
j

YikYjk. (8.2)

From assumptions (H1), (H2) (H3) and Cauchy-Schwarz inequality, there exists

some constant C such that for any k ∈ UD,

V (Ŷ•k) ≤ C
N2
M

nM
. (8.3)

Also, from the Cauchy-Schwarz inequality, there exists some constant C such that

for any k 6= l ∈ UD:

Cov(Ŷ•k, Ŷ•l) ≤ C
N2
M

nM
. (8.4)

From equation (8.3) and assumption (H2), the first term in the right hand sum of

(8.1) is O(N2
DN

2
Mn
−1
M n−1D ). From equation (8.4) and assumptions (H2) and (H3), the

absolute value of the second term in the RHS of (8.1) is O(N2
DN

2
Mn
−1
M ). Therefore,

there exists some constant C such that

V1
(
t̂Y
)
≤ C

N2
DN

2
M

nM
. (8.5)

We can prove similarly that there exists some constant C such that

V2
(
t̂Y
)
≤ C

N2
DN

2
M

nD
. (8.6)
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From equation (2.13), the term V3
(
t̂Y
)

may be split into four terms according to

the intersection of {i, j} and {k, l}. From assumptions (H1)-(H3), it is easily shown

that the absolute value of each of these four terms is O(N2
DN

2
Mn
−1
M n−1D ). Therefore,

there exists some constant C such that

V3
(
t̂Y
)
≤ C

N2
DN

2
M

nMnD
. (8.7)

Equations (3.10)-(3.12) follow immediately from equations (8.5)-(8.7) and assump-

tion (H4).
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