
Identi�cation & Information
in Monotone Binary Models

Thierry Magnac� Eric Mauriny

First version: February 2003
This version: October 2004

Abstract

This paper considers binary response models where errors are uncorrelated with a
set of instrumental variables and are conditionally independent of a continuous regres-
sor v, conditional on all other variables. It is shown that these exclusion restrictions are
not su¢ cient for identi�cation and that additional identifying assumptions are needed.
Such an assumption, introduced by Lewbel (2000), is that the support of the contin-
uous regressor is large, but we show that it restricts signi�cantly the class of binary
phenomena which can be analyzed. We propose an alternative additional assumption
under which � remains just identi�ed and the estimation unchanged. This alternative
assumption does not impose speci�c restrictions on the data, which broaden the scope
of the estimation method in empirical work. The semiparametric e¢ ciency bound of
the model is also established and an existing estimator is shown to achieve that bound.
The e¢ cient estimator uses a plug-in density estimate. It is shown that plugging in
the true density rather than an estimate is ine¢ cient. Extensions to ordered choice
models are provided.
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1 Introduction1

Let y a binary outcome, x a vector of covariates and v a continuous covariate. This paper

considers the following binary response model,

y = 1(x� + v + � > 0): (LV)

where errors, �; are, �rst, uncorrelated with a set of instrumental variables z (i.e., E(z0") = 0),

and, second, conditionally independent of the continuous regressor, v, (i.e., partial indepen-

dence, F�(� j x; z; v) = F�(� j x; z)). As discussed below, these exclusion restrictions arise
naturally in many economic models and the purpose of the paper is to analyse the conditions

under which they can be used in empirical applications, as well as the conditions under which

they provide means for identifying the structural parameters of the latent model.

It is shown that the partial independence assumption does not impose very strong re-

strictions on the data and can be used in a wide range of cases. Speci�cally, it is shown that

any binary outcome can be analysed through a latent model satisfying partial independence

provided that it is monotone in v (i.e., Pr(y = 1 j v; x; z) is monotone in v). The problem
is that partial-independence is not su¢ cient for the identi�cation of the parameter of inter-

est, �; even when it is combined with the uncorrelated instrument assumption. Additional

restrictions are needed for identi�cation. Such an additional restriction is the assumption,

introduced by Lewbel (2000), that the support of the special regressor is large (Supp(v) �
Supp (�x� � �)). Our second result is that the combination of uncorrelated instruments,

partial-independence and large-support assumptions provides just identi�cation of �: Yet,

it is shown that the large support assumption restricts signi�cantly the class of binary phe-

nomena which can be analyzed through (LV ). Speci�cally, we show that the large-support

assumption can only be used when the conditional probability of success Pr(y = 1 j v; x; z)
increases from 0 to 1 over the support of v; which is admitedly restrictive. Large support

conditions are actually quite common in the litterature about semiparametric limited depen-

dent variable models (see e.g., Manski, 1975, 1985, Han, 1987, Horowitz, 1992, Cavanagh

and Sherman, 1998), but they represent a potential obstacle to empirical applications.
1We thank the editor, two anonymous referees, Magali Be¤y, Pierre Dubois, Guy Laroque, Oliver Linton,

Jean-Marc Robin, Bernard Salanié and particularly Arthur Lewbel for very helpful discussions. We thank
participants at the ESRC conference in Bristol (2003), at the (EC)2 conference in London (2003); ESEM
in Stockhom (2003), and at seminars of CREST, University of Toulouse, University of Concordia, Laval
University, University Carlos III, Princeton, Boston College and GREQAM for their helpful comments.
The paper was written when Thierry Magnac was at INRA-Paris Jourdan and CREST-INSEE. The usual
disclaimers apply.
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This is why we next propose an alternative to the large-support condition. Parameter

� remains just identi�ed and the estimation unchanged when a symmetry condition on the

tails of the errors " holds. This alternative to the large support assumption can be used

when the conditional probability of success does not vary from 0 to 1 over the support of v;

which increases the usefulness of the setting in empirical work.

Making identi�cation restrictions as weak as possible is not the only concern when es-

timating binary choice models. The simplicity of the approach and its e¢ ciency properties

should also be taken into account. It is where this paper presents two last contributions. We

establish the semi-parametric e¢ ciency bound for the parameter under partial independence

and uncorrelated instrument assumptions by using the framework proposed by Severini and

Tripathi (2001). It is noteworthy that the special-regressor estimator proposed by Lewbel

(2000) achieves this bound (under some regularity conditions). The e¢ cient estimator uses

a plug-in density. It is shown that plugging in the true density, when it is known, rather

than an estimate is ine¢ cient. This �nding was conjectured in Lewbel (2000).

Generally speaking, the set of identifying restrictions analysed in this paper provides

interesting means to overcome Manski�s fundamental impossibility result according to which

an uncorrelated-error restriction (i.e. E(x0") = E(v0") = 0) or even a mean-independence

restriction (i.e. E(� j x; v) = 0) is not su¢ cient for identifying � whatever conditions

on the support of (v; x) are adopted (see Manski, 1988). Also, the set-up used in this

paper imposes much weaker distributional assumptions on the error terms than standard

parametric models or than the semi-parametric methods that are based on the properties

of statistical independence (i.e., F�(� j x; v) = F�(�)) or of single-index su¢ ciency (i.e.,

F�(� j x; v) = F�(� j x� + v)) see e.g. Cosslett (1983), Ruud (1983), Han (1987), Powell,

Stock and Stoker (1989), Ichimura (1993), Klein and Spady (1993) who provide estimators

of � under statistical independence or index su¢ ciency.

The quantile-independence assumption does not provide just identi�cation of the para-

meter of interest, but permit slightly more general forms of conditional heteroskedasticity

than the exclusion restrictions used in this paper. Still, the fact remains that very few em-

pirical studies use the corresponding maximum score estimation method, as developed by

Manski (1975, 1985) or its smoothed version developed by Horowitz (1992). The numerical

methods needed for optimizing the score may be one cause of underutilization, the lower

than root-n rate of convergence might be another reason. Some advances have recently been
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proposed by Chen (2002) by stengthening the median-independence assumption into condi-

tional symmetry and a weak restriction on conditional heteroskedasticity. Estimation can

be proven to be root-n consistent though optimisation is still needed. Under the identifying

restrictions used in this paper, the special-regressor estimator developped by Lewbel (2000)

can be directly obtained without optimization and is root-n consistent. The implementation

of the estimation method is quite simple. It only requires the estimation of a conditional

density and a linear regression. Honoré and Lewbel (2002) extends this method to estimating

binary choice models using panel data and allowing for individual e¤ects. Recent empirical

applications of this estimation method include Anton, Fernandez-Sainz and Rodriguez-Poo

(2001), Lewbel, Linton and McFadden (2001), Maurin (2002), Lewbel (2003).

The paper is organized as follows.

Section 2 provides the equivalence result between the set of latent models satisfying

uncorrelated instruments, partial independence and large support conditions and the set of

random variables (y; x; v; z) such that the conditional probability of success Pr(y = 1 j v; x; z)
increases from 0 to 1 when v varies over its support.

Section 3 shows that uncorrelated instruments and partial independence alone are not

su¢ cient for identi�cation of �: We propose an alternative to the large support assumption

for obtaining just identi�cation of �. The only condition that Pr(y = 1 j v; x; z) should
satisfy is to be monotone in v.

In Section 4, we state the semi-parametric e¢ ciency bound and the e¢ ciency comparison

between two estimators using estimated or true density functions.

Section 5 provides extensions of the equivalence result to ordered choice models and

Section 6 concludes. All proofs are in Appendices.

2 The Set-up and the Equivalence Result

Let the �data� be given by the distribution of the following random variable where, for

simplicity, we only consider random samples and we do not subscript individual observations

by i:

! = (y; v; x; z)

Variable y is the binary variable, v is the continuous regressor, x are the �structural� ex-

planatory variables and z are the instruments. At this point, explanatory and instrumental

variables cannot be distinguished since no model has been written so far. Their respective
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role in the latent model will be clari�ed below. We �rst introduce some regularity conditions

on the distribution of !. They will be assumed valid in the rest of the text.

Assumption R(egularity):

R:i. (Binary model) The support of the distribution of y is f0; 1g
R:ii: (Covariates & Instruments) The support of the distribution of (x; z) is a compact

set Sx;z � Rp�Rq. The dimension of the set Sx;z is r � p+q where p+q�r are the potential
overlaps and functional dependencies.2 The probability measure, dFx;z; is supposed to be

absolutely continuous with respect to a product of Lebesgue and discrete measures so as to

allow continuous, discrete or mixed regressors. Finally, rank(E(z0x)) = p.

R:iii: (Special Regressor) The support of the conditional distribution of v conditional on

(x; z) is ]vL; vH [ almost everywhere (a.e.) Fx;z. Moreover, vL < 0 < vH and vL and vH can

be in�nite. The conditional distribution is denoted Fv(: j x; z) and is de�ned a.e. Fx;z. It
is absolutely continuous with respect to the Lebesgue measure and its density f(v j x; z) is
continuous and bounded away from zero except possibly on the boundary of the support of

v.

R:iv. (Functional independence of v and (x; z)) There is no subspace of ]vL; vH [�Sx;z of
dimension strictly less than r+1 which probability measure, (Fv(: j x; z):Fx;z), is equal to 1.

The �rst two assumptions de�ne a binary model where there are p explanatory variables

and q instrumental variables (assumption R:ii). According to assumption R:ii, we could

denote the functionally independent description of (x; z) as u and this notation could be

used interchangeably with (x; z). Denoting (x; z) as u may lead to less ambiguous arguments

below at the cost of an additional notation. We prefer to stick to the more parsimonious

notation (x; z). Assumption R:iii de�nes what the continuity of the special regressor v

means. The support of v might be made dependent on (x; z) with no loss of generality.

Assumption R:iv avoids the degenerate case where v and (x; z) are functionally dependent.

We now consider two possible formulations of the distribution of y conditional on v and

(x; z) and show that they are equivalent. The �rst formulation is a semi-parametric latent

index binary model as Lewbel (2000) and Honoré and Lewbel (2002) set it up. The second

2With no loss of generality, the p explanatory variables x can partially overlap with the q � p instrumental
variables z. Variables (x; z) may also be functionally dependent (for instance x, x2, log(x),...). A collection
(x1; :; xK) of real random variables is functionally independent if its support is of dimension K (i.e. there is
no set of dimension strictly lower than K which probability measure is equal to 1).
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one is a non-parametric binary model. Let us start with the latent binary model:

y = 1(x� + v + � > 0); (LV)

where 1(A) is the indicator function that equals one if A is true and zero otherwise and

� 2 Rp the vector of coe¢ cients of interest. The distribution of the random error � satis�es

the following properties as in Lewbel (2000):

Assumption L(atent)

(L:1) (Partial independence) The conditional distribution of � given covariates x and

variables z is independent of the special regressor v:

F"(: j v; x; z) = F"(: j x; z)

The support of " is denoted 
"(x; z) and its distribution function F"(: j x; z) is supposed to
be absolutely continuous. Denote f"(: j x; z) its density function.
(L:2) (Large support) The support of �x� � " is a subset of ]vL; vH [.

(L:3) (Uncorrelated instruments) The random shock " is uncorrelated with variables z:

E(z0") = 0:

Regarding (L.1), it should be noted that Powell (1994) discusses partial independence

assumptions (calling them exclusion restrictions) in the context of other semiparametric

models, i.e. without combining them with (L:2) or (L:3). Generally speaking, partial in-

dependence assumptions are akin to exogeneity assumptions and arise in many economic

models. For example, in a labor supply model where " represents unobserved ability, partial

independence is satis�ed by any variable that a¤ects or correlates with labor supply deci-

sions but not ability, such as government bene�ts. In consumer demand models where "

represents unobserved preference variation, prices satisfy the partial independence condition

when goods are homogenous and markets are competitive. In contingent valuation studies,

where " still stands for unobserved taste variations, v can be the bid that is determined by

experimental design, and so may be constructed by the researcher to satisfy the necessary

exclusion and support restrictions. Lewbel et al. (2001) provide an empirical application for

this case. Other empirical applications using the partial independence assumption include

Maurin (2002) who estimates an education production function using date of birth (within

the year) as special regressor v. Date of birth within the year signi�cantly in�uences chil-

dren�s outcomes in primary school. Given that this variable is plausibly independent from
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children�s unobserved ability, partial independence is plausible too. Cogneau and Maurin

(2003) study demand for education in primary schools in Madagascar, using the same special

regressor. Lewbel (2003) studies the probability of obtaining a university degree using the

cost of attending a local public college (relative to local unskilled wages) as special regressor.

Anton et al. (2001) use individual�s age as special regressor in a duration model.

As it turns out, the partial independence assumption provides an economically interesting

identifying exclusion restriction. In his recent contribution, Lewbel (2000) constructs an

estimator of � by combining partial independence, with uncorrelated instruments and large

support assumptions. The scope of this method and whether it provides (over) identi�cation

of � are unclear, however. The next section describes the class of binary phenomena that

may actually be analyzed through this set-up.

2.1 The Equivalence Result

Consider (�; F"(: j x; z)) a latent structure satisfying partial independence, support and
moment conditions (L:1 � L:3) and denote Pr(y = 1 j v; x; z) the conditional distribution
generated by (�; F"(: j x; z)) through the binary transformation (LV). The following lemma
shows that this conditional distribution necessarily increases from 0 to 1 when v varies over

its support.

Lemma 1 Under partial independence (L:1) and large support (L:2) conditions, we neces-

sarily have:

(NP:1) (Monotonicity) The conditional probability Pr(yi = 1 j v; x; z) is increasing and
absolutely continuous in v a.e. Fx;z.

(NP:2) (Support) There exist (a.e. Fx;z) two values vl(x; z) and vh(x; z) (possibly in�nite)

in [vL; vH ] such that:

Pr(yi = 1 j vl; x; z) = 0 Pr(yi = 1 j vh; x; z) = 1

Proof. See Appendix A.1.

Condition (NP:1) is a direct consequence of the fact that v is an exogenous regressor

a¤ecting positively the propensity of success (y = 1). As for condition (NP:2), it is a direct

consequence of the large support hypothesis, which implies that the propensity of success of

persons with the lowest (largest) v is always negative (positive) regardless of their unobserved

and observed characteristics.
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Summing up, if we denote:

MNP = fPr(y = 1 j v; x; z) satisfying monotonicity (NP:1); and support (NP:2) conditionsg

and,

ML = fPr(y = 1 j v; x; z) generated through (LV) by some (�; F"(: j x; z)) satisfying (L:1�L:3)g

we have just proved thatML � MNP . Let us analyse the condition under whichMNP �
ML.

Lemma 2 Let Pr(y = 1 j v; x; z) be a conditional probability satisfying monotonicity (NP:1)
and support (NP:2) conditions. Any latent model (�; F"(: j x; z)) satisfying (L:1� L:3) and

generating Pr(y = 1 j v; x; z) through transformation (LV) necessarily satis�es the following
moment conditions:

E(z0x):� = E(z0~y) (1)

where

~y =
y � 1(v > 0)
f(v j x; z) (2)

is the transform of y introduced by Lewbel (2000).

Proof. See Appendix A.2.

When there exist as many instruments as explanatory variables (q = p), condition (1)

de�nes a unique parameter �; andMNP � ML. In contrast, when there are more instru-

ments than explanatory variables (q > p), it can happen that condition (1) has no solution,

as in the usual linear model. To address this issue, we have to complete the setting by the

following regularity condition:

(R.v) The distribution of ! = (y; v; x; z) is such that condition (1) has a solution.

Under (R:v), this solution is unique,MNP �ML and, taken together, Lemmas 1 and 2

prove our �rst basic result:

Theorem 3 Under regularity conditions (Ri-Rv), the set of latent models de�ned by condi-

tions (L:1�L:3) and transformation (LV) is one-to-one with the set of conditional probabil-
ities satisfying (NP:1�NP:2):
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Put di¤erently, any statistical model inMNP is generated by a unique structural model

inML and reciprocally, any structural model inML generates a unique statistical distrib-

ution of the binary outcome satisfying (NP:1�NP:2): Conditional on (NP:1�NP:2); the

parameters of interest of the structural model are just identi�ed, in that they are de�ned by

a unique functional of the joint distribution of the data.3

2.2 Discussion

Theorem 3 sheds some light on the deep nature of the partial independence hypothesis

(L:1). This theorem shows that combining (L:1) with a large support assumption such as

(L:2) and an uncorrelated-error condition such as (L:3) is exactly what is needed to overcome

Manski�s underidenti�cation result, according to which an uncorrelated-error restriction (i.e.

E(x0") = E(v0") = 0) or even a mean-independence restriction (i.e. E(� j x; v) = 0) is

not su¢ cient for identifying � whatever conditions on the support of (v; x) are adopted

(see Manski, 1988). Adding (L:1) to (L:2) and (L:3) provides a framework where � is

just identi�ed. Adding (L:1) to (L:3) only would not be su¢ cient as shown in Section 3,

while adding more than (L:1) to (L:2) and (L:3) would generate testable overidentifying

constraints.4

It should be noted that the partial independence assumption is closely connected with

the control function assumption used by Blundell and Powell (2004). Transposing Blundell

and Powell�s model in our notations, split up regressors x = (z1; y2) into a set of exogenous

regressors, z1, and a set of endogenous regressors, y2. The complete list of instruments

comprises v and z = (z1; z2) and the model is y = 1(v + z1�1 + y2�2 + � > 0): Write also an

auxiliary �rst-stage regression de�ning the error term, u = y2 � E(y2 j v; z):
With these notations, Blundell and Powell �s identifying assumption can be written

F"(: j y2; z; v) � F"(: j u; z; v) = F"(: j u);
3Apart from over-identifying restrictions provided by surpernumerary instruments, Powell (1994) proposes

a de�nition of semi-parametric (versus non-parametric) modelling that exploits the distinction between just-
identi�cation and over-identi�cation. According to Powell (1994), a model can be said to be �non-parametric�
whenever the parameters are just identi�ed, i.e., de�ned by a unique functional of the joint distribution of
the data. In that speci�c sense, our model is non-parametric.

4For instance, strengthening (L:3) into a mean-independence restriction E(" j z) = 0 generates additional
restrictions. It is a conjecture that most results derived in this paper, can be extended to this case in the
way they are in the usual linear model.
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while the partial independence assumption used in this paper is,

F"(: j y2; z; v) = F"(: j y2; z) � F"(: j u+ E(y2 j v; z); z):

Consequently, Blundell and Powell�s model requires a stronger exclusion restriction if E(y2 j
v; z) does not depend on v but the models are generally not nested.5 Other di¤erences are

that the control function approach requires the endogenous regressor y2 to be continuous,

but it requires neither that regressor v should be continuous nor a large support assumption.

Regarding the comparison with quantile independence assumptions, it should be noted

that the quantile independence assumes that one quantile of " is independent of all covariates,

whereas the partial independence assumption used in this paper is equivalent to assuming

that all quantiles of " are independent of one covariate. In this crude sense, both assumptions

seem comparably restrictive.

Another di¤erence is that partial independence yields just identi�cation of � while quan-

tile independence imposes testable overidentifying restrictions6. Also, the partial indepen-

dence hypothesis makes it possible to estimate the distribution of the unobserved residuals

while the quantile independence assumption does not. This property may be of particular

interest for evaluating the impact of the covariates on the probability of observing y = 1

(Lewbel, Linton and McFadden, 2001). The price to pay is that partial independence requires

conditions on the support of the covariates that are stronger than the conditions required

under quantile-independence. As shown by Horowitz (1998), a su¢ cient support condition

for estimating � under quantile-independence is that, for a set of x of positive mass, v + x�

takes both positive and negative values when v varies over its support. It is weaker (and in

some cases strictly weaker) than (L:2) which implies that v + x� takes both positive and

negative value for any x when v varies over its support. Lastly, it should be noted that the

endogeneity of covariates can be also accomodated in a quantile independence setting (Hong

and Tamer, 2003) so that the two methods are on par in this respect.

5Although as pointed out by a referee, the partial independence assumption could be rewritten so that
" and v are independent conditionnaly to y2, z1 and E(y2 j z; v) (instead of z2). It is then strictly weaker
than Blundell and Powell�s.

6Namely, the hypersurface in the space of covariates describing the conditional quantile of the dependent
variable is linear.
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3 Unrestricted Support and Identi�cation

Generally speaking, the main potential obstacle to empirical application of the latent model

under consideration is not so much the partial independence assumption as such, but the

accompanying large support assumption. As shown by the equivalence result, this assump-

tion restricts the domain of application of the latent model to binary phenomena such that

the probability of success varies from 0 to 1 when v varies over its support7.

The identi�cation of structural parameters in binary choice models can be lost when

the support of the regressors is not su¢ ciently rich. This is true when one uses the index

su¢ ciency but all regressors are discrete or when uses the quantile-independence models

(Horowitz, 1998) and it remains true under the partial independence hypothesis. Assuming

existence of large- support, continuous regressors is thus not uncommon in the literature

on semiparametric limited dependent variable models (see e.g., Han, 1987, Cavanagh and

Sherman, 1998, Manski, 1975, 1985, Horowitz, 1992).

In this section, we maintain (L:1) (and (L:3)), but we relax the large support assumption.

In such a case, the conditional distribution Pr(y = 1 j v; x; z) obtained through (LV ) still
satis�es (NP:1), but does not satisfy (NP:2) anymore. More speci�cally, in the absence of

any restrictions on the support of �; the only restriction on Pr(y = 1 j v; x; z) is that it should
be zero or one when v is �1: If vH = +1 and Pr(y = 1 j vH ; x; z) < 1 (or if vL = �1
and Pr(y = 1 j vL; x; z) > 0), no latent variable model in ML can lead to the conditional

probability function. It is the reason why we shall exclude this case by setting:

(NP:20) limv!+1 Pr(y = 1 j v; x; z) = 1 and limv!�1 Pr(y = 1 j v; x; z) = 0:

Observe also that when the support of v coincides with the real line (i.e., vH = +1
and vL = �1) (NP:20) implies (NP:2): Cases of interest are therefore vL > �1 or/and

vH < +1; conditions that we shall assume in this section.

In the remainder of the section, we consider statistical models satisfying (NP:1)�(NP:20)
and we seek the conditions under which the parameters of the latent model � are identi-

7The large support assumption is quite natural in many settings though. For instance, it seems a plausible
assumption for events that necessarily take place within a speci�c period of the life-cycle. When y describes
such phenomena as primary-school attendance, school-leaving, leaving parental home, the entry into (or the
exit from) the labor market (for male workers), age is the foremost candidate to be the special continuous
regressor, v, and the large support restriction is satis�ed. Young enough children have never attended
primary-school and old enough children have all attended primary school for instance (in developed countries
at least).
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�ed. We �rst show that the combination of assumptions of partial independence (L:1) and

uncorrelated-error (L:3) alone is not su¢ cient for identifying �: Secondly we present a set of

additional identifying restrictions leading to exact identi�cation. It is shown that it preserves

the validity of Lewbel�s estimation procedure.

3.1 The Necessity of Additional Identifying Restrictions

Consider a conditional distribution Pr(y = 1 j v; x; z) satisfying the monotonicity condition
(NP:1) and condition (NP:20). Assume that this conditional probability is the image of a

latent model (�; F"(: j x; z)) which satis�es partial independence (L:1). By de�nition, for
any v in ]vL; vH [, we have:

Pr(y = 1 j v; x; z) =
Z
v+x�+">0;"2
"(x;z)

f"(" j x; z)d"

and thus:

Pr(y = 1 j v; x; z)� Pr(y = 1 j vL; x; z) =

=

Z �(vL+x�)

�(v+x�)
f"(" j x; z)d" = F"(�(vL + x�) j x; z)� F"(�(v + x�) j x; z):

Thus, for any " in ]� (vH + x�);�(vL + x�)[, we have necessarily,

f"(" j x; z) =
@

@v
Pr(y = 1 j v; x; z)jv=�(x�+") : (3)

In contrast to the large support case, the support of " (conditional on x and z) is not

necessarily included in ] � (vH + x�);�(vL + x�)[ and f"(" j x; z) has no non-parametric
counterpart for " in

B(x) =]�1;�(vH + x�)[[]� (vL + x�);+1[:

The only restrictions on the distribution of " in B(x) are the following:8

Prf" � �(vH + x�) j x; zg = 1� Pr(y = 1 j vH ; x; z) (4)

Prf" > �(vL + x�) j x; zg = Pr(y = 1 j vL; x; z)

Hence, any latent model (�; F"(: j x; z)) satisfying (L:1) and generating function Pr(y =
1 j v; x; z) through (LV ) necessarily satis�es conditions (3) and (4). Conversely, any la-

tent model (�; F"(: j x; z)) satisfying (L:1) and conditions (3) and (4) generates function
8As the distribution of " is absolutely continuous, the use of large or strict inequalities is equivalent.
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Pr(y = 1 j v; x; z) through (LV ). From this, it follows clearly that the partial independence

hypothesis is not su¢ cient for complete identi�cation of F"(: j x; z); even when � is known.
Under (L:1), the only restrictions on F"(: j x; z) when " is in B(x) are given by condi-

tion (4), which means that the distribution of " conditional on " 2 B(x) is left completely

unidenti�ed.

In settings like index su¢ ciency models, the identi�cation of the distribution of error

terms is not a necessary condition for identifying parameter �. It is in the present setting

since condition (L:3) used as an identifying restriction is a moment condition that uses the

distribution of random shocks over its whole support. Speci�cally, if S represents the set of

observationally equivalent values of the parameter,

S = f� 2 Rp j 9F"(: j x; z) satisfying (L:1) and (L:3)

s.t. (�; F"(: j x; z)) generates Pr(y = 1 j v; x; z)g

the next proposition states that the size of S is unbounded. It contains an in�nite number

of elements which value may be chosen arbitrarily di¤erently from the value that � would

take if the large-support assumption was true.

Proposition 4 Consider Pr(y = 1 j v; x; z) satisfying (NP1), (NP2)0, but not (NP2). For
any �0 > 0; there exists a latent model (�; F"(: j x; z)) such that
(i) (�; F"(: j x; z)) satis�es (L1), (L3) and generates Pr(y = 1 j v; x; z) through (LV).
(ii) (� � �0)

0(� � �0) � �0;

where �0 is the value associated with the moment condition E(z
0x):�0 = E(z0~y):

Proof: See Appendix B.1.

To probe the meaning of Proposition 4, let us interpret x� + " as the willingness to pay

for an object, v as (minus) the unit price of this object and y as the decision to buy it.

When the support of v is not large, the most extreme values of the willingness to pay x�+ "

are such that we cannot observe prices (�v) which separate individuals whose willingness
to pay is larger than the price (they buy the object) from those whose willingness is smaller

(they do not buy). This is the reason why the tails of the distribution of x� + " are not

identi�ed and Proposition 4 shows that without additional assumptions on these tails, � is

not identi�ed.

In the remainder of this section, we explore an alternative route for restoring identi�cation

by the way of an additional assumption on the tails of the distribution of " (i.e., " in B(x)):
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3.2 Generalizing the Special Regressor Estimator

It should be noted that the setB(x) is the union of two subsets, BF (x) = f" : "+vH+x� < 0g
and BS(x) = f" : " + vL + x� > 0g. An individual in BF (x) always responds y = 0; even
when �v is minimum (�vH). Symmetrically, an individual in BS(x) always responds y = 1;
even when �v is maximum (�vL). The set BF (x) may be interpreted as the subset of certain
failure and, BS(x); the subset of certain success. By construction, the data do not provide

any information on the distribution of the propensities of success in BF (x) and BS(x): The

next proposition shows that identi�cation is restored provided that some balance may be

assumed between these two distibutions:

Proposition 5 Assume vH < +1; vL > �1 and consider Pr(y = 1 j v; x; z) satisfying
(NP:1) and (NP:20): Let S � Rp be the set of parameters � such that there exists a latent
model (�; F"(: j x; z)) satisfying (L:1); (L:3) and generating G through (LV). S is reduced to

a singleton and E(z0x):� = E(z0~y) if and only if

E(z0y�vH1fy
�
vH
> 0g) = E(z0y�vL1fy

�
vL
> 0g) (5)

where y�vL = (x�+ vL+ ") is the propensity of success for individuals with the smallest v and

where y�vH = �(x� + vH + ") the propensity of failure for individuals with the largest v.

Under (L:1); (L:3) and (5) the moment condition (E(z0x):� = E(z0~y)) provides exact

identi�cation of �:

Proof. See appendix B.2.

One of the simplest assumption we can think of, that implies this condition, is that

propensities of success y�vL within the certain-success subset BS(x) and propensities of failure

y�vH within the certain-failure subset BF (x) are identically distributed. If this condition is

valid, the special regressor estimator is unbiased. Alternatively, it is always possible to

choose conditional distributions for y�vH and y
�
vL
when they are positive, such that equation

(5) is satis�ed. It is however impossible to tell from the data whether symmetry of the tails

or an alternative restriction verifying (5) is veri�ed. All restrictions on the distribution of "

satisfying (5) are observationally equivalent and all lead to the exact identi�cation of �.

If either vH or vL is in�nite9, condition (5) cannot be satis�ed. Let vH = +1 (say), then

the absence of bias means that E(z0y�vL1fy
�
vL
> 0g) should be set to zero which is impossible

9but not both. If both vH and vL are in�nite, we are back to the case described as restricted support (!),
condition (L:2). Theorem 3 applies.
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since Ey�vL1fy
�
vL
> 0g > 0. Nevertheless as shown in Appendix B.2, the bias may a¤ect the

intercept term only.

Proposition 6 Assume vH = +1, vL > �1 and consider Pr(y = 1 j v; x; z) satisfying
(NP:1) and (NP:20): Let S � Rp be the set of parameters � such that there exists a latent
model (�; F"(: j x; z)) satisfying (L:1); (L:3) and generating Pr(y = 1 j v; x; z) through (LV)
and let S1 = f(�2; :::; �p) 2 Rp�1 s:t �1 2 R, (�1; :::; �p) 2 B} where �1 is the intercept

coe¢ cient. S1 is reduced to a singleton if there exists a constant � independent from z such

that

E(y�vL1fy
�
vL
> 0g j z) = � (6)

where y�vL = (x�+ vL+ ") represents the propensity of success for individuals with the lowest

possible v: Under (L:1); (L:3) and (5) the moment condition (E(z0x):� = E(z0~y)) provides

exact identi�cation of � apart from the intercept coe¢ cient.

Proof. See appendix B.2.

The long version of this paper (Magnac and Maurin, 2003) reports Monte-Carlo experi-

ments which show that the estimator developed in this sub-section (i.e., when (L:2) is not

satis�ed) performs quite well in medium-sized samples.

4 Information and Asymptotic Properties

Identi�cation is not the only concern when choosing among di¤erent estimation methods,

information also is. In this section, we establish the semi-parametric e¢ ciency bound of

regular estimators of parameter � under partial-independence and uncorrelated instruments.

The bound is valid regardless of whether the support of v is large or not, provided the

regularity conditions (R) hold true.

Before moving on to the proof of these results, it should be noted that they correspond to

a di¤erent setting and are di¤erent from the seminal results in Cosslett (1987). Speci�cally,

he assumes that the error terms have a zero median and are independent of regressors. Under

these assumptions, he derives the semi-parametric e¢ ciency bound of the parameters, except

the intercept which cannot be estimated at a root-n rate. As we use a moment condition

instead of a median condition on the error term, a root-n consistency result for all estimators

can be obtained.
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In our set-up, the only identifying restriction is given by the moment condition (1) and

one possible source of di¢ culty comes from the relationship between the unknown non-

parametric component of ey (i.e., f(v j x; z) ) and the density function with respect to
which the moment restriction (i.e., E(z0 [~y � x�]) = 0) is de�ned. Given this relationship,

the general framework investigated by Chamberlain (1992) needs to be amended and the

semi-parametric e¢ ciency of estimators has to be checked by hand.

The special regressor estimator proposed by Lewbel (2000) is constructed by using the

empirical counterparts of the moments in equation (1). Under regularity conditions provided

by Lewbel (2000), this estimator is root-n consistent and asymptotically normal. Our deriva-

tion of the e¢ ciency bound shows that it is not possible to construct an estimator which

is more e¢ cient than the special regressor estimator under assumptions (L:1); (L:3) and a

large or restricted support assumption. The speci�c moment estimator of � proposed by

Lewbel is semi-parametrically e¢ cient.

In the large support case, the regularity conditions under which the special regressor

estimator is root-n consistent, and asymptotically normal, are given in Lewbel (2000), Ap-

pendix B, Conditions B1-B6 and Condition B7 or B7�depending on whether the support of

" is bounded. It is easy to check that Conditions B1-B6 and Condition B7�remain applica-

ble10 when the large-support assumption does not hold and that - under these conditions-

the proof of root-n consistency and asymptotic normality still holds true too. In particular,

Condition B7�imposes conditions either on the rate at which Pr(y = 1 j v; x; z) tends to 0
or 1 when j v j! 1 or on the support of v which are easy to satisfy when the large support

assumption does not hold true any more11.

In the remainder of this section, we �rst establish the e¢ ciency bound. Next, we show

that it is more e¢ cient to use an estimate of the conditional density function when con-

structing ~y rather than the true value of the density when the latter is known.

4.1 The Semiparametric E¢ ciency Bound

The estimate is based on the unconditional moment conditions:

E [m(y; v; x; z; �0)] = 0: (7)

10In contrast, condition (B7) is not applicable when (NP2) does not hold true. As a matter of fact, it
assumes that the support of v.is large.
11Condition B7�ensures that asymptotic trimming leads to an asymptotically equivalent estimator (see

also Lewbel, 1998, Appendix B). As the proof of asymptotic properties is only a little more than the original
we do not repeat it here.
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where the function of interest is:

m(y; v; x; z; �) = z0
�
y � 1(v > 0)
f(v j x; z) )� x�

�
= z0 [~y � x�] ;

From regularity conditions (R:i� v),

E [mm0] = 
0

is of full rank, q. It is becauseE [mm0] = E(z0z:E [(~y � x�)2 j z]) and becauseE [(~y � x�)2 j z] 6=
0 on a set of positive measure Fx;z.

Observe that the moment conditions are linear. If f(v j x; z) were known, the semi-
parametric e¢ ciency bound for estimating solutions of unconditional moment restrictions

would apply (Chamberlain, 1987). The GMM e¢ ciency bound would be:

(E(x0z)
�10 E(z0x))�1;

and the e¢ cient estimate would then be obtained as usual. In our case however, the density

f(v j x; z) is unknown. Results reported by Chamberlain (1992) cannot directly be applied
because the unknown non parametric component is also a density function with respect to

which the unconditional moment restriction is taken.

For simplicity, we shall consider an estimation in two steps. First, we begin with the

estimation of parameter �0 = E(z0x):�0. Second we estimate parameter �0 using minimum

distance and the �rst-step estimate of �0. In the �rst step, the unconditional moment

restriction that we consider is:

E(~g(y; v; x; z; �0)) = E(z0~y � �0) = 0: (8)

The e¢ ciency bound and variance-covariance matrices for �0 are derived next as in Newey

and McFadden (1994), for instance. Namely, if V� is the variance-covariance matrix of what-

ever estimate of �0 then, under the usual regularity conditions, the variance-covariance

matrix of the corresponding estimate of �0 is given by:

(E(x0z):V �1
� :E(z0x))�1

The bound for V� is described by the following result.

Proposition 7 The semiparametric e¢ ciency bound for estimating �0 is:

E(z0(~y � E (~y j v; x; z) + E (~y j x; z)� x�0)
2z):
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Proof. See Appendix C.1.

For the paper to be self-contained, Appendix C.2 provides the variance-covariance of

Lewbel�s estimator (as derived by Lewbel, 2000) and proves that it actually attains the

previous bound. Under (L.1-L.3), it is not possible to be more e¢ cient than Lewbel�s

estimator.

It should be emphasized that the special regressor estimator remains e¢ cient when the

large support hypothesis (L:2) is replaced by a symmetry assumption such as condition

(5). As a matter of fact, the derivation of the semi-parametric e¢ ciency bound and of

the variance-covariance of estimator does not depend on the speci�c assumptions made on

bounds. Whether conditions (L:2) or (NP:2) are satis�ed or not, the same properties apply

to Lewbel�s estimate. It is consistent and semi-parametrically e¢ cient under the conditions

of Propositions 5 or 6.

If one is ready to lose some e¢ ciency then - in the asymmetric case described by Propo-

sition 6 - one can always use the symmetrical trimming proposed by Powell (1986).

4.2 Plugging-in the True or Estimated Conditional Density?

In this section, we assume that the conditional density f(v j x; z) is known. It may correspond
to the case where v is under experimental control or the case where one has access to

additional external information on the distribution of v (through census information for

instance). In such a case, we can consider two di¤erent transformations, ~y = (y � I(v >

0))=f(v j x; z) or (y � I(v > 0))=f̂(v j x; z) when constructing the linear regression that
leads to the estimation of �, where f(v j x; z) is the true distribution and bf(v j x; z) an
estimate of f(v j x; z): It was conjectured in Lewbel (2000) (and con�rmed by Monte-Carlo
experiments) that the estimate of � obtained with ey and the true value of the density actually
has a larger asymptotic variance than the estimate obtained with ŷ and the estimated value

of the density. We now o¤er a proof for this conjecture:

Theorem 8 The estimate of �0 de�ned by the unconditional moment condition (8) (i.e.

E(z0~y � �0) = 0) has a strictly smaller variance when the estimated bf(v j x; z) is used to
transform the dependent variable than when the true density is used.

Proof. See Appendix C.3.
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Replacing the nuisance parameter � the conditional density �by an estimate is more

e¢ cient than replacing it by its true value. Hirano, Imbens and Ridder (2003) report similar

results in the context of treatment models where the nuisance parameter is the inverse of a

propensity score, in a set of moment restrictions. They show that using an estimate of the

score leads to more e¢ cient estimation of treatment parameters than using the true score.

They interpret the estimator with the estimated score as an empirical likelihood estimator

where the information about the nuisance function has been e¢ ciently incorporated. The-

orem 5 can also be understood by using broadly similar arguments to the ones presented

by Crépon, Kramarz and Trognon (1998). Consider two sets of moment conditions. The

�rst set depends on parameters of interest and nuisance parameters while the second set of

moment conditions depend on the nuisance parameters only. The e¢ cient GMM estimates

can be derived from the �rst set of conditions when nuisance parameters are replaced by

their estimated values using the second set of conditions. In contrast, GMM estimates when

parameters are replaced by their true values are not generically e¢ cient.

5 Extensions

Lewbel (1998, 2000, 2003) use the special regressor hypothesis to estimate the structural

parameters of other linear latent variable models, y = L(x�+�); such as the ordered discrete

choice model with constant thresholds or the censored regression model. One obvious issue

is whether the equivalence results given by Theorem 3 can be extended to these models. In

some interesting cases the answer is positive. In other cases, the special regressor setting

imposes testable restrictions on the set of statistical phenomena that are generated by the

latent structure.

To illustrate the generalization of Theorem 3, we consider the most straighforward ex-

tension of binary responses which are ordered choice models. Assume that the support of

y is now Sy = f0; 1; :::; Kg (K � 1): The discussion will be split into two according to two
de�nitions of ordered choice models. In the �rst one, each individual is de�ned by an ordered

set of propensities (i.e., y�1; :; y
�
K) and his/her response (y 2 f0; 1; :::; Kg) depends on how

propensities compare with a given cost variable v. In the second model, each individual is

de�ned by one speci�c propensity y� and his/her response depends on how this propensity

compares with an ordered set of thresholds �k(v). A straightforward extension of theorem

3 only holds in the �rst case while structural parameters are overidenti�ed in the second
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model.

5.1 Ordered Choices: First Model

Consider the following de�nition for latent ordered choice models.

De�nition 9 Latent ordered discrete choice models are characterized by a set of ordered

latent random variables fy�1; :; y�Kg where y�k > y�k+1. By convention de�ne y
�
K+1 = �1. The

observable model is given by:

y =

KX
k=1

I(v + y�k > 0; v + y�k+1 � 0); (LV1)

=
KX
k=1

I(�y�k < v � �y�k+1):

We consider linear latent models such as:

8k = 1; :; K y�k = x�k + "k;

where every random shock "1; :; "K satisfy (L:1� L:3).

This model is a straighforward generalization of (LV ). When K = 1; the two models

coincide. Such an ordered choice model may typically be used for analyzing consumer be-

havior. Suppose that the observed variable y records the number of units of a good that is

bought by consumer i when the o¤ered unit price is (�v), the latent variables, y�k, stand for
the willingness to pay for an additional unit of this good when the number of units bought is

k � 1: If marginal utility is decreasing, then the marginal-unit willingness to pay is decreas-
ing which justi�es the ordered choice setting. The fact that an entire array of unobserved

components a¤ects willingness of pay is due to individual di¤erences in the relations between

marginal utility and quantity purchased.

One of the nice consequence of the setting given by (LV 1) is that it is equivalent to a

system of K binary latent models given by:

yk = I(�y�k < v); (LV1k)

For instance, y1, is the indicator of purchase (any quantity), y2 is the indicator of 2 or more

units purchased and so on yk is the indicator that more than k units were purchased:

yk = I(y � k):
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Reciprocally:

y =

KX
k=1

yk:

LetM�
OC be the set of latent ordered discrete choice models which elements f(�k; F"k(: j

x; z)); k = 1; :::; Kg satisfy partial independence, support and moment conditions (L:1�L:3)
and the additional inequality restrictions across alternatives:

y�k = x�k + "k > x�k+1 + "k+1 = y�k+1 (9)

Those inequalities translate into restrictions on the joint distribution of ("k; "k+1). Let


k(x; z) be the support of "k as de�ned in the �rst section. The support of ("1; :; "K) is

therefore:


(�; x; z) = f("1; :; "K) 2 
1 � ::� 
K j 8k;x�k + "k > x�k+1 + "k+1g

The consequences in terms of non-parametric predictions are now straightforward. They

consist in (NP:1) and (NP:2) for any choice k. Inequalities (9) in the latent model translate

into:

yk = 1f�(x�k + "k) < vg � 1f�(x�k+1 + "k+1) < vg = yk+1

with some strict inequalities for a positive mass of v. Thus:

E(yk j v; x; z) = Gk(v; x; z) > Gk+1(v; x; z) = E(yk+1 j v; x; z)

which is a sensible assumption in most cases. For instance, the probability of buying more

than k units is decreasing with k. Those inequalities do not translate into restrictions on the

marginal distributions of "k but only on the joint distribution of ("k; "k+1) and their joint

distribution is underidenti�ed. Only the marginals are.

We can now summarize these results. Let the setM�
LOC of latent ordered models be given

by parameters (�1; :; �K) 2 RK , distribution functions (f1("1 j x; z); :; fK("K j x; z)) 2 DK ; a
family of set 
(�; x; z) � RK , and the transformation (LV1) such that they verify (L:1�L:3).
Let the setMNPOC given by:

MNPOC =MNP (y1)� ::�MNP (yK)

that satisfy (NP:1) and (NP:2) and where 8k;Gk(v; x; z) > Gk+1(v; x; z): Then:

Theorem 10 M�
LOC is one-to-one withMNPOC.
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5.2 Ordered Choices: Second Model

Let us now consider the following semi-parametric latent model which is de�ned with respect

to the unobserved heterogeneity component:

y =

KX
k=1

I(�k(v) < x� + � � �k+1(v)); (LV2)

where the thresholds �k(v); k = 1; :::; K + 1; satisfy,

�1(v) = �v � �2(v) � ::: � �k(v) � �K+1(v) = +1; (10)

while � satis�es (L:1), (L:2) and (L:3):

This model also is a direct generalization of (LV ). WhenK = 1; the two models coincide.

The x� + � may be interpreted as a propensity to respond as in (LV), but the response has

now several possible levels of intensity. The �k(v) thresholds may be interpreted as the cost

of responding with intensity k. The only structural assumption about these costs is that

they increase with the intensity of the response.

Such a model may describe for instance the performance of young children when starting

school where y� represents their (latent) schooling ability (plausibly dependent on family

inputs) and the �k(v) the set of thresholds (plausibly dependent on v being the birthdate

within the year) imposed by the educational system for deciding who has to be held back

(y = 0), who has to be on time (y = 1) and who has to be ahead (y = 2) at school.12

LetM�
LOC2 be the set of latent ordered discrete choice models which elements (�; F"(: j

x; z); �k(v); k = 2; :::; K) satisfy independence, support and moment conditions (L:1� L:3).

Consider also a statistical model F (y j v; x; z) on Sy such that Pr(yi � 1 j v; x; z) satisfy
conditions (NP:1 � NP:2) and assume that there exists a latent ordered choice model (�;

F"(: j x; z); �k(v); k = 2; :::; K) inM�
LOC2 which image is F (y j v; x; z).

Let us denote G0(v; x; z) = P (y = 0 j v; x; z): By de�nition, �G0 belongs toM�
NP : Thus,

using Theorem 3, we can exactly identify the parameter of interest � and the distribution of

errors ". In particular, we necessarily have f"(: j x; z) = @G0
@v
(�(x� + "); x; z):For any k � 1,

de�ne now Gk(v; x; z) = P (y � k j v; x; z): We have,
12Maurin (2002) uses the binary approach to estimate the probability to be held back using v = day-of-

birth within the year as a special regressor and interpreting x� + � as schooling abilities. ��2(v) can be
interpreted as the ability threshold (de�ned by the educational system) above which children can be ahead
at school.
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Gk(v; x; z) =

Z �x�+�k(v)

�1
dF (" j x; z) =

Z �x�+�k(v)

�1

�@G0
@v

(�(x� + "); x; z)d"

= G0(��k(v); x; z):

It therefore yields:

�k(v) = �G�10 (:; x; z) �Gk(v; x; z):

Thus F (y j v; x; z) is the image of an element ofM�
LOC2 only if G

�1
0 (:; x; z)�Gk(v; x; z) do not

depend on x and z. Put di¤erently, a monotone ordered discrete phenomena can be analyzed

as a structural ordered choice model that satis�es the partial independence hypothesis only

under the testable assumption that G�10 �Gk does not depend on x and z. Note �nally that
inequalities described by (10) translate into the same inequalities on functions Gk that we

had in the previous subsection and which are adapted to the present setting. They do not

a¤ect our argument.

Therefore, the ordered discrete choice models with �xed thesholds (i.e., �k(v)� �0(v) =

k) are not one-to-one with the monotone discrete models. The partial independence hy-

pothesis makes it possible to identify very easily the structural parameters that characterize

these ordered choice models, but this assumption also implies (testable) restrictions on the

set of discrete monotone phenomena that can be analyzed with such models.

6 Conclusion

The �rst contribution of this paper is to characterize the conditions on binary data under

which the identifying assumptions proposed by Lewbel (2000) are justi�ed: E(y j v; x) is
monotone in v and vary from 0 to 1 when v varies over its support. Second, it is shown

that the uncorrelated-error, partial independence and large-support assumptions lead to the

exact identi�cation of the structural parameters of the binary response model. We also prove

that the large support assumption �which might be unadapted in some instances �can be

replaced by an alternative credible restriction which is the conditional symmetry of the tails

of the error distribution. Furthermore, we show that Lewbel�s moment estimator attains the

semi-parametric e¢ ciency bound in the corresponding class of latent models. We propose

an extension to ordered choice models. All in all, Lewbel�s moment estimator is shown to

be consistent in a fairly wide class of binary choice models. This class includes all monotone
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binary data where the probability of success varies in an interval which is strictly included

in [0; 1].

It would be interesting to extend our results to other settings, such as the analyses of

truncated regressions (Khan and Lewbel, 2003), treatment e¤ects (Lewbel, 2003) or panel

data (Honoré and Lewbel, 2002). We are currently exploring another route by relaxing the

assumption that partial independence holds with respect to a regressor which is continuous

(Magnac and Maurin, 2004). We consider that v is discrete or has been discretized and show

that bounds of a convex set containing � are identi�ed.
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Appendices

A Proofs of Section 2

A.1 Proof of Lemma 1

Write:

Pr(yi = 1 j v; x; z) =
Z
x�+v+�>0;"2
"(x;z)

dF"(� j x; z)

As dF"(� j x; z) � 0 and F" is absolutely continuous, the �rst conclusion follows.
Second, for almost any (x; z); the support of �x��" is a subset of ]vL; vH [ that we denote

]vl(x; z); vh(x; z)[: Suppose �rst that both bounds are �nite. We have for all " 2 
"(x; z):

vL � vl(x; z) < �(x� + ") < vh(x; z) � vH

and therefore for all " 2 
"(x; z):

vl(x; z) + x� + " < 0 vh(x; z) + x� + " > 0

The second conclusion follows. If bounds are in�nite then the expressions in the Lemma
should be replaced by suitable limits.

A.2 Proof of Lemma 2

Consider G(v; x; z) = Pr(y = 1 j v; x; z) satisfying (NP:1) and (NP:2): According to the
support condition (NP:2), there exists (a.e. Fx;z) two values vl(x; z) and vh(x; z) in ]vL; vH [
such that G(vl(x; z); x; z) = 0 and G(vh(x; z); x; z) = 1. Assume that there exists (�; F"(: j
x; z)) inM�

L such that G(v; x; z) is its image throught the transformation (LV): De�ne the
support of the random variable " as:


"(x; z) =]� (vh(x; z) + x�);�(vl(x; z) + x�)[ (A.1)

which is a subset of ]� (vH +x�);�(vL+x�)[ By de�nition of (LV), (�; F"(: j x; z)) satis�es,

G(v; x; z) =

Z
v+x�+">0;"2
"(x;z)

f"(" j x; z)d" =
Z �(vl+x�)

�(v+x�)
f"(" j x; z)d"

= 1� F"(�(v + x�) j x; z):

which implies for any " 2 
"(x; z) that:

f"(" j x; z) =
@G

@v
(�(x� + "); x; z): (A.2)
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The @G
@v
function is de�ned almost everywhere (Fv) since (a) by the monotonicity assumption

(NP1); G(v; x; z) is absolutely continuous in v 2]vL; vH [ (Billingsley, 1995) and (b) v varies
continuously (R:iii; R:iv).
Furthermore, condition (L:3) implies:

0 = E(z0")

= Ex;z(z
0
Z
"f"(" j x; z)d")

= �Ex;z(z0
Z
(x� + v)

@G

@v
dv

= �E(z0x)� � Ex;z(z
0
Z
v
@G

@v
dv) (A.3)

where the notation Ex;z means that the expectation is taken with respect to the subscript
variables only (if there is some ambiguity) and the integrals are taken on the support of
each variable. Because of R:iii, E(z0x) is of rank equal to the dimension of �. The previous
equation therefore uniquely de�nes � in the usual sense when some linear restrictions are
overidentifying (rigorously de�ned in R:v).
Thus if (�; F"(: j x; z)) exists, it is de�ned by (A.1), (A.2) and (A.3). Reciprocally,

consider (�; F"(: j x; z)) in M�
L which satis�es (A.1), (A.2) and (A.3). Its image through

(LV) is G(v; x; z).
Finally, we have:

Z
v
@G

@v
dv =

Z vH

0

v
@G

@v
dv +

Z 0

vL

v
@G

@v
dv

= [v(G(v; x; z)� 1)]vH0 �
Z vH

0

(G(v; x; z)� 1)dv

+ [vG(v; x; z)]0vL �
Z 0

vL

G(v; x; z)dv

= �
Z vH

vL

(G(v; x; z)� 1(v > 0))dv

= �
Z vH

vL

(E(y j v; x; z)� 1(v > 0))dv

= �
Z vH

vL

E(~y j v; x; z):dFv(v j x; z) = �E(~y j x; z)

and therefore (also Lewbel, 2000, page 115):

Ex;z(z
0
Z
v
@G

@v
dv) = �E(z0ey)

which completes the proof.�
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B Proofs of Section 3

B.1 Proposition 4

Consider G(v; x; z) = Pr(y = 1 j v; x; z) satisfying NP1, NP20, but not NP2: The purpose
is to show that G may be generated by a latent model with an arbitrarily large � .
Fix �. Chose F"(: j x; z) satisfying partial independence and conditions (3) and (4). By

construction, the latent model (�; F"(: j x; z)) satis�es (L:1) and generates G(v; x; z) through
(LV ). The only remaining restriction on � is given by the moment condition (L:3):

0 = E(z0") = Ex;z(z
0
Z
"dF (" j x; z)) (B.4)

= E(z0
Z
"2B(x)

"dF (" j x; z)) + E(z0
Z �(vL+x�)

�(vH+x�)
"dF (" j x; z))

Thus, using the fact that f"(" j x; z) = @G
@v
(�" � x�) for " 2] � (vH + x�);�(vL + x�)[ we

have,

0 = E(z0
Z
"2B(x)

"dF (" j x; z))� E(z0
Z vH

vL

(x� + v)
@G

@v
dv)

= E(z0"1f" 2 B(x)g)� E(z0x�

Z vH

vL

@G

@v
dv)� E(z0

Z vH

vL

v
@G

@v
dv) (B.5)

The last term can be expressed as in the proof of Lemma A.2:Z vH

vL

v
@G

@v
dv =

Z vH

0

v
@G

@v
dv +

Z 0

vL

v
@G

@v
dv

= [v(G(v; x; z)� 1)]vH0 �
Z vH

0

(G(v; x; z)� 1)dv

+ [vG(v; x; z)]0vL �
Z 0

vL

G(v; x; z)dv

= �
�
b(vH ; vL; x; z) +

Z vH

vL

(G(v; x; z)� 1(v > 0))dv
�

= � (b(vH ; vL; x; z) + E(~y j x; z))

where:

b(vH ; vL; x; z) = �([v(G(v; x; z)� 1)]vH0 ++ [vG(v; x; z)]
0
vL
) = vH(1�G(vH ; x; z))+vLG(vL; x; z)

is a function of conditional probabilities at the bounds (and can be in�nite). Note that it is
equal to zero when G(vH ; x; z) = 1 and G(vL; x; z) = 0 (i.e., under NP:2).
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The moment condition given by equation (B.4) can be written as:

0 = E(z0"1f" 2 B(x)g)� E(z0xfG(vH ; x; z)�G(vL; x; z)g)� (B.6)

+E(z0b(vH ; vL; x; z)) + E(z
0~y)

= E(z0"1f" 2 B(x)g) + E(z0xf1�G(vH ; x; z) +G(vL; x; z)g)�
+E(z0b(vH ; vL; x; z))

�E(z0x)� + E(z0~y)

It should be noted that if the support condition (NP:2) was true, we would haveG(vH ; x; z) =
1, G(vL; x; z) = 0 (therefore b(:) = 0) and B(x) = ;. The last line of condition (B.6) would
give Lewbel�s moment condition back (i.e:; E(z0x)� = E(z0~y)).
Given that (NP:2) does not hold, either vL or vH are �nite. Suppose that vH < 1 so

that �(vH + x�) � t0(x; z) belongs to B(x) for any measurable function t0(x; z) � � > 0:

Choose the conditional distribution of " in B(x) such that there is a mass 1�G(vH ; x; z)
in a small neighboorhood of �(vH + x�) � t0(x; z) and a mass 1�G(vL; x; z) in a small
neighboorhood of �(vL+x�) included in B(x) (possibly a mass 0 at �1 because of (NP:20)).
As these neighboorhoods can be chosen arbitrarily small, we can consider that all the mass
is concentrated at two points in B(x), �(vH + x�) � t0(x; z) and �(vL + x�). Using this
speci�c distribution of ", condition (B.6) may be rewritten, after some manipulation,

E(z0x)(� � �0) = �E(z0t0(x; z))

where �0 is the value of the parameter associated with the moment condition E(z
0x):�0 =

E(z0~y):

As E(z0x) is full rank (R:ii) then, for all �0, there exists t0(x; z) such that (� � �0)0(� �
�0) � �0 which concludes the proof.

B.2 Proposition 5 and 6

Equation (B.6) proves that the special-regressor estimator is biased except if:

E(z0"1f" 2 B(x)g) + E(z0xf1�G(vH ; x; z) +G(vL; x; z)g)�
+E(z0b(vH ; vL; x; z)) = 0

()

E(z0"1f" < �(vH + x�)g) + E(z0"1f" > �(vL + x�)g)
E(z0(x� + vH)f1�G(vH ; x; z)g+ E(z0(x� + vL)fG(vL; x; z)g = 0

()

E(z0(x� + vH + ")1f" < �(vH + x�)g) + E(z0(x� + vL + ")1f" > �(vL + x�)g) = 0
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which is equivalent to:

�E(z0y�vH1fy
�
vH
> 0g) + E(z0y�vL1fy

�
vL
> 0g) = 0

where y�vL = �(x� + vH + ") and y�vL = x� + vL + ". It proves Proposition 5.
If vH = +1 and using the support condition (NP:20), the bias is characterized by the

quantity:
E(z0y�vL1fy

�
vL
> 0g)

If the conditional mean is independent of z :

E(y�vL1fy
�
vL
> 0g j z) = �

then the constant only in � is biased. �

C Proofs of Section 4

C.1 Proof of Proposition 7

C.1.1 Preliminaries

We begin by introducing some notations and by presenting the main result of Severini and
Tripathi (2001). In the following, we will apply this result to derive the e¢ ciency bound for
estimating �0:
Firstly, the density function (with respect to products of Lebesgue and counting mea-

sures) of the random vector w = (y; v; x; z); as de�ned by regularity conditions R, is rewritten
as:

f(y; v; x; z) = f(y j v; x; z):f(v j x; z):f(x; z)
= �21(y j v; x; z): 2(v j x; z):�22(x; z)

The �structural�parameter of interest is �(�1; �2;  ) = E(z0~y): The �reduced form�func-
tionals describing the random variable are �1, �2,  which are assumed to belong to the
following sets:

�1 = f�1 : f0; 1g�]vL; vH [�Sx;z ! R;
X
y=0;1

�21(y j v; x; z) = 1; �21(y j v; x; z) � 0g

�2 = f�2 2 L2(Sx;z);
Z
Sx;z

�22(x; z)dxdz = 1; �
2
2(x; z) > 0;

�22(x; z) is boundedg

	 = f 2 L2(]vL; vH [);
Z
]vL;vH [

 2(v j x; z)dv = 1;  2(v j x; z) > 0 ;

 2(v j x; z) is bounded and continuousg
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where all assumptions are derived from the regularity conditions (R:ii and iii).
In the remainder, E will denote �1��2�	 and linT (E; (�01; �02;  0)) the space tangent

to E at the true value (�01; �
0
2;  

0). This tangent space is the smallest linear space which is
closed in the L2�norm and which contains all ( _�1; _�2; _ ) 2 L2(Fyjv;x;z:Fvjx;z:Fx;z) that are
tangent to E at (�01; �

0
2;  

0). A vector
:
' is said to be tangent to E at '0 = (�01; �

0
2;  

0) if
there exists a t0 > 0 and a curve t �! 't from [0; t0] into E which reaches (�01; �

0
2;  

0) at
t = 0 and such that

:
' is the slope of 't at t = 0 (i.e. lim

t#0



't�'0
t

� :
'



L2
= 0)

As shown in Severini and Tripathi (2001), linT (E; (�01; �
0
2;  

0)) is the product of the
following subspaces:

linT (�1; �
0
1) = f _�1 2 L2(f0; 1g�]vL; vH [�Sx;z);

X
y=0;1

�01(y j v; x; z): _�1 = 0 a.e. ]vL; vH [�Sx;zg

linT (�2; �
0
2) = f _�2 2 L2(Sx;z),

Z
Sx;z

�02
_�2dxdz = 0g

linT (	;  0) = f
:

 2 L2(]vL; vH [�Sx;z);
Z
]vL;vH [

  0dv = 0 a.e. Sx;zg

Following Severini and Tripathi (2001), for any ( _�1; _�2; _ ) and ( _�
0
1;
_�
0
2;
_ 
0
) elements of the

tangent space, the Fisher information inner product on the tangent space will be denoted
< :; : >F (and the corresponding norm k:kF ) with,

< ( _�1; _�2; _ ); ( _�
0
1;
_�
0
2;
_ 
0
) >F= 4

X
y=0;1

Ex;z;v( _�1
_�
0
1) + 4Ex;z

�Z
]vL;vH [

_ _ 
0
dv

�
+ 4

Z
Sx;z

_�2
_�
0
2dxdz




( _�1; _�2; _ )


2
F
=< ( _�1; _�2; _ ); ( _�1; _�2; _ ) >F :

Since the tangent space is a closed subspace of L2(Fyjv;x;z:Fvjx;z:Fx;z); the tangent space with
this inner product is a Hilbert space. Hence, the Riesz-Frechet theorem implies that for any
continuous linear functional L on (linT (E; (�01; �

0
2;  

0)); < :; : >F ) there exists a unique l� in
linT (E; (�01; �

0
2;  

0)) such that for any
:

l in linT (E; (�01; �
0
2;  

0)); we have L(
:

l) =<
:

l; l� >F :

The l� vector is called the representer of L .
For any arbitrary c 2 Rq;we will consider � : E ! R,

�(�1; �2;  ) = c0�(�1; �2;  ) = c0:
X
y=0;1

Z
]vL;vH [�Sx;z

z0(y � 1(v > 0))�21�22dvdxdz (C.7)

To simplify the problem, the usual strategy is to compute �rst the e¢ ciency bound for
estimators of the scalar �(�01; �

0
2;  

0): As c is arbitrary, it is straightforward to deduce the
e¢ ciency bound for estimators of �0:
To implement this technique, the issue is to prove that � is pathwise di¤erentiable at

(�01; �
0
2;  

0), to prove that the pathwise derivative of �(�1; �2;  ) at (�
0
1; �

0
2;  

0) (denoted
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r�0) is a continuous linear functional, to �nd �� = (��1; ��2;  �) the representer of r�0 and to
compute k��kF : Severini and Tipathi (2001) show that the lower bound for the asymptotic
variance of root-n consistent regular estimators of �(�01; �

0
2;  

0) is actually k(��1; ��2;  �)kF ;i.e.,
the Fisher information norm of (��1; �

�
2;  

�) the representer of r�0:

C.1.2 The representer of r�0 and the e¢ ciency bound

For some t0 > 0 let '(t) : t �! (�1t; �2t;  t) be a curve from [0; t0] into E such that '(t)
reaches (�01; �

0
2;  

0) when t = 0; and has a tangent vector
:
' = ( _�1;

_�2;
_ ) at (t = 0). By

de�nition
:
' corresponds to the slope of '(t) at t = 0 (i.e.,




'(t)�'(0)t
� :
'




L2
�! 0 when t # 0

):

Consider r�0 : linT (E; (�01; �02;  0))! R with

r�0( _�1; _�2; _ ) = c0
X
y=0;1

Z
]vL;vH [�Sx;z

z0(y � 1(v > 0))2( _�1�02 + _�2�
0
1)�

0
1�
0
2dvdxdz (C.8)

By construction r�0 is clearly such that
����('(t))��('(0))t

�r�0(
:
')
��� �! 0 when t # 0 for

any '(t): Hence, � is pathwise di¤erentiable at (�01; �
0
2;  

0) and its derivative is the linear
functional r�0:
We now search for the Riesz-representer of r�0; i.e. the vector (��1; ��2;  �) in the tangent

space such that, for any ( _�1; _�2; _ ) in the tangent space.

r�0( _�1; _�2; _ ) =< ( _�1; _�2; _ ); (��1; ��2;  �) >F

First, notice that r�0( _�1; _�2; _ ) can be rewritten:

r�0( _�1; _�2; _ ) = 2c0
X
y=0;1

Z
]vL;vH [�Sx;z

z0[
(y � 1(v > 0))

 2
 2(�02)

2] _�1�
0
1dvdxdz

+2c0
Z
Sx;z

_�2�
0
2

X
y=0;1

Z
]vL;vH [

[
(y � 1(v > 0))

 2
 2(�01)

2]dvdxdz

Hence, we have,

r�0( _�1; _�2; _ ) = 2c0
X
y=0;1

(

Z
]vL;vH [�Sx;z

z0[ey 2(�02)2]dvdxdz) _�1�01
+2c0

Z
Sx;z

(
X
y=0;1

Z
]vL;vH [

z0[ey 2(�01)2]dv) _�2�02dxdz
Comparing this expression with the expression of < ( _�1; _�2; _ ); (�

�
1; �

�
2;  

�) >F and using the
fact that

R
Sx;z

�02
_�2dxdz = 0 and

P
y=0;1 �

0
1
_�1 = 0 for any _�1 and _�2 in the tangent space; we

can see that any (��1; �
�
2;  

�) such that,
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��1(y j v; x; z) =
1

2
c0z0~y�01 + A1(x; v; z)�

0
1

��2(x; z) =
1

2
c0:(z0E (~y j x; z)�02 + A2�

0
2

 �(v j x; z) = 0

for some function A1(x; v; z) and some intercept A2; is such that

< ( _�1; _�2; _ ); (�
�
1; �

�
2;  

�) >F= r�0( _�1; _�2; _ ):

To determine A1(x; v; z) and A2; we impose that (�
�
1; �

�
2;  

�) belongs to the tangent space,
i.e.,

R
Sx;z

�02�
�
2dxdz = 0 and

P
y=0;1 �

0
1(y j v; x; z):��1 = 0: These two conditions imply,

A1(x; v; z) = �
1

2
c0E (z0~y j v; x; z) and A2 = �

1

2
c0:E (z0~y) = �1

2
c0:�0:

Thus, we necessarily have,

��1(y j v; x; z) =
1

2
c0z0(~y � E (~y j v; x; z))�01

��2(x; z) =
1

2
c0:(z0E (~y j x; z)� �0)�

0
2

 �(v j x; z) = 0

We have just found a vector (��1; �
�
2;  

�) in the tangent space which satis�esr�0( _�1; _�2; _ ) =<
( _�1; _�2; _ ); (�

�
1; �

�
2;  

�) >F for any ( _�1; _�2; _ ) in the tangent space. Using again the Riesz-
Frechet theorem, this result proves that the linear operator r�0 is continuous and that
(��1; �

�
2;  

�) is its representer.
As shown in Severini and Tripathi (2001), the e¢ ciency bound is thus:

��21 

F + 

��22 

F = c0E

�
z0(~y � E (~y j v; x; z))2z

�
c

+c0:E((z0E (~y j x; z)� �0)(z
0E (~y j x; z)� �0)

0):c

= c0E
�
z0(~y � E (~y j v; x; z))2z

�
c

+c0:E(z0(E (~y j x; z)� x�0)
2z):c

= c0E(z0(~y � E (~y j v; x; z) + E (~y j x; z)� x�0)
2z):c

where we used that �0 = E(z0x):�0. Thus, the semi parametric e¢ ciency bound at �0 is:

E(z0(~y � E (~y j v; x; z) + E (~y j x; z)� x�0)
2z):
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C.2 The variance-covariance of Lewbel estimate

As in Newey (1994), consider the estimation of the parameter of interest �t = E(z0~y) on any
di¤erentiable path indexed by t and where t = 0 gives �0: For simplicity, denote u is the
functionally independent representation of (x; z):

�t =

Z
z0
y � 1fv > 0g
ft(v j u)

ft("; v; u)d"dvdu

Therefore:

�t =

Z
z0(y � 1fv > 0g)ft(" j v; u)ft(u)d"dvdu

Under regularity conditions given by Newey (1994), formal di¤erentiation with respect to t
yields:

@�t
@t

����
t=0

=

Z
z0(y � 1fv > 0g) @

@t
(ft(" j v; x; z)ft(x; z))d"dvdu

=

Z
z0(y � 1fv > 0g)

�
@

@t
ln ft(" j v; u) +

@

@t
ln ft(u)

�
f0(" j v; u)f0(u)d"dvdu

@�t
@t

����
t=0

= E

�
z0
y � 1fv > 0g
f0(v j u)

:

�
@

@t
ln ft(" j v; u) +

@

@t
ln ft(u)

��
= E

�
z0~y:

�
@

@t
ln ft("; v; u)�

@

@t
ln ft(v; u) +

@

@t
ln ft(u)

��
= E [z0~y:S("; v; u)]� E

�
z0~y:

@

@t
ln ft(v; u)

�
+ E

�
z0~y:

@

@t
ln ft(u)

�
= E [z0~y:S("; v; u)]� E [z0E(~y j v; u):S(v; u)] + E [z0E(~y j u):S(u)]

where S("; v; u) = @
@t
ln ft("; v; u) is the score of the model evaluated at the true value (re-

spectively S(v; u) = @
@t
ln ft(v; u) and S(u) = @

@t
ln ft(u). As for any function �(v; u) :

E(�(v; u)S(v; u)) = E(�(v; u)S("; v; u))

we therefore have:

@�t
@t

����
t=0

= E [z0(~y � E(~y j v; u) + E(~y j u)):S("; v; u)]

and the variance covariance of �̂ is the variance of q:

q = z0(~y � E(~y j v; u) + E(~y j u)� x�0)

since Eq = 0 and where we used that �0 = E(z0x)�0 �
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C.3 Theorem 8

When f(v j x; z) is unknown and estimated, Lewbel (2000) and Appendix C.2 shows that the
variance-covariance matrix of the estimator of �0 is the variance-covariance of the random
variable:

q = z0(~y � E(~y j v; x; z) + E(~y j x; z)� x�0)

When f(v j x; z) is known, the variance is the usual GMM variance-covariance matrix of:

q0 = z0(~y � x�0)

Note that it is the same variable ~y which is used here since we deal with asymptotics andbf(v j x; z) is consistent for f(v j x; z). Denote:
�0 = ~y � x�0

and write:
q = z0(�0 � E(�0 j v; x; z) + E(�0 j x; z))

Consider:
� = �0 � E(�0 j v; x; z) + E(�0 j x; z)

so that we can write:
V q0 = E(z0:E((�0)

2 j v; x; z):z)

V q = E(z0:E((�)2 j v; x; z):z)

Some algebra yields:

E((�)2 j x; z; v) = E
�
(�0 � E(�0 j v; x; z) + E(�0 j x; z))

2 j v; x; z
�

= E
�
(�0)

2 + (E(�0 j v; x; z))2 + (E(�0 j x; z))2 j v; x; z
�

�2E [�0E(�0 j v; x; z) j v; x; z] + 2E [�0E(�0 j x; z) j v; x; z]
�2E(�0 j v; x; z)E(�0 j x; z)

= E
�
(�0)

2 j v; x; z
�
� (E(�0 j v; x; z))2 + (E(�0 j x; z))2

Therefore:
� = V q0 � V q = E(z0:

�
(E(�0 j x; z; v))2 � (E(�0 j x; z))2

�
:z)

As we can write:
E(�0 j x; z; v) = E(�0 j x; z) + �1

where E(�1 j x; z) = 0, we have:

E(�0 j x; z; v)2 = E(�0 j x; z)2 + (�1)2 + 2E(�0 j x; z)�1
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and therefore:

� = V q0 � V q = E(z0:
�
(�1)

2 + 2�1E(�0 j x; z)
�
:z)

= E(z0:(�1)
2:z) + 2E(z0:�1E(�0 j x; z):z)

= E(z0:(�1)
2:z) + 2E(z0:E(�1 j x; z)E(�0 j x; z):z)

= E(z0:(�1)
2:z)

is a semi-de�nite positive matrix.
Finally observe that:

E((�1)
2 j z) = V

�
G(v; x; z)� 1fv > 0g

f(v j x; z) j z)
�

is strictly positive if v varies over its support and G is continuous. If E(z0z) has full rank,
� is de�nite positive.
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