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1 Introduction

Binary dependent data are a common feature in many areas of empirical eco-
nomics as, for example, in transportation choice, the analysis of unemployment,
labour supply, schooling decisions, fertility decisions, innovation behaviour of
�rms, etc. As panel data is increasingly available, the demand for panel data
models coping with binary dependent variables is also increasing. Also, dramatic
increases in computer capacity have greatly enhanced our ability to estimate a
new generation of models. The second volume of this handbook contains several
applications based on this type of dependent variable and we will therefore limit
this chapter to the exposition of econometric models and methods.
There is a long history of binary choice models applied to panel data which

can for example be found in Arellano and Honore (2001), Baltagi (2000), Hsiao
(1992, 1995, 2003), Lee (2002) or Sevestre (2002) as well as in chapters of econo-
metrics textbooks as for instance Greene (2003) or Wooldridge (2000). Some of
these books and chapters do not devote much space to the binary choice model.
Here, in view of other chapters in this handbook that address related nonlinear
models (qualitative, truncated or censored variables, nonparametric models, etc.
) we focus on the parametric binary choice model and some of its semipara-
metric extensions. The binary choice model provides a convenient benchmark
case, from which many results can be generalised to limited dependent variable
models such as multinomial discrete choices (Train, 2002), transition models
in continuous time (Kamionka, 1998) or to structural dynamic discrete choice
models that are not studied here.
We tried to be more comprehensive than the papers and chapters mentioned

and we provide an introduction into the many issues that arise in such models.
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We also try not only to provide an overview of di¤erent models and estimators
but also to make sure that the technical level of this chapter is such that it can
easily be understood by the applied econometrician. For all technical details,
the reader is referred to the speci�c papers.
Before we discuss di¤erent versions of the binary choice panel data models,

de�ne �rst the notation for the data generating process underlying the proto-
typical binary choice panel model:

yit = 1fy�it > 0g for any i = 1; : : : ; N and t = 1; : : : ; T;

where 1f:g is the indicator of the event between bracket and where the latent
dependent variables y�it are written as:

y�it = Xit� + "it

where � denotes a vector of parameters, Xit is a 1�K vector of explanatory
variables and error terms "it stand for other unobserved variables. Stacking the
T observations of individual i,

Y �i = Xi� + "i;

where Y �i = (y
�
i1; :; y

�
iT ) is the vector of latent variables, Xi = (Xi1; :; XiT ) is the

T�K matrix of explanatory variables and "i = ("i1; :; "iT ) is the T � 1 vector
of errors.
We focus on the estimation of parameter � and of parameters entering the

distribution function of "it. We do not discuss assumptions under which such
parameters can be used to compute other parameters, such as causal e¤ects
(Angrist, 2001). We also consider balanced panel data for ease of notation al-
though the general case of unbalanced panel is generally not much more di¢ cult
if the data is missing at random (see chapter XXX).
As usual in econometrics we impose particular assumptions at the level of

the latent model to generate the di¤erent versions of the observable model to be
discussed in the sections of this chapter. These assumptions concern the corre-
lation of the error terms over time as well as the correlation between the error
terms and the explanatory variables. The properties for various conditional ex-
pectations of the observable binary dependent variable are then derived. We
assume that the observations are obtained by independent draws in the pop-
ulation of statistical units �i�, also called individuals in this chapter. Working
samples that we have in mind are much larger in dimension N than in dimension
T and in most cases we consider asymptotics in N holding T �xed although we
report on some recent work on large T approximations. Time e¤ects can then
be treated in a determistic way. In this chapter we frequently state our results
for an important special case, the panel probit model where error terms "i are
assumed to be normally distributed.
In Section 2 of this chapter we discuss di¤erent versions of the static random

e¤ects model when the explanatory variables are strictly exogenous. Depending
on the autocorrelation structure of the errors di¤erent estimators are available
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and we detail their attractiveness in each situation by trading-o¤ their e¢ ciency
and robustness with respect to misspeci�cation. Section 3 considers the static
model when a time invariant unobservable variable is correlated with the time
varying explanatory variables. The non linearity of binary choice models makes
it pretty hard to eliminate individual �xed e¤ects in likelihood functions and
moment conditions, because the usual �di¤erencing out trick�of the linear model
does not work except in special cases. Imposing quite restrictive assumptions
is the price to pay to estimate consistently parameters of interest. Finally,
section 4 addresses the important issue of structural dynamics for �xed and
random e¤ects, in other words cases when the explanatory variables include
lagged endogenous variables or are weakly exogenous only.

2 Random e¤ects models under strict exogene-
ity

In this section we set up the simplest models and notations that will be used in
the rest of the chapter. We consider in this chapter that random e¤ects models
de�ned as in Arellano and Honoré (2001) as models where errors in the latent
model are independent of the explanatory variables.1 This assumption does
not hold with respect to the explanatory variables in the current period only
but also in all past and future periods so that explanatory variables are also
considered in this section to be strictly exogenous in the sense that:

F"t("itjXi) = F"t("it); (1)

where F"t("it) denotes the marginal distribution function of the error term in
period t: When errors are not independent over time, it will also at times be
useful to impose a stronger condition on the joint distribution of the T errors
terms over time, denoted F (T )" (�):

F (T )" ("ijXi) = F (T )" ("i): (2)

Note that as in binary choice models in cross-sections, marginal choice proba-
bilities can be expressed in terms of the parameters of the latent model:

P (yit = 1jXi) = E(yit = 1jXi)
= E(yit = 1jXit = xit) = 1� F"t(�Xit�): (3)

It also emphasizes that the expectation of a Bernoulli variable completely de-
scribes its distribution.

1One needs to assume independence between errors and regressors instead of assuming
that correlations are equal to zero because of the non-linearity of the conditional expectation
of the dependent variable with respect to individual e¤ects.
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We already said that we would consider random samples only. Individual
observations are independent and if � generically denote all unknown parame-
ters including those of the distribution function of errors, the sample likelihood
function is the product of individual likelihood functions:

L(�) =
NY
i=1

Li(YijXi; �)

where Yi = (yi1; :; yiT ) is the vector of binary observations.

2.1 Errors are independent over time

When errors are independent over time, the panel model collapses to a cross-
sectional model with NT independent observations and the maximum likelihood
estimator is the standard estimator of choice. The likelihood function for one
observation is given by:

Li(YijXi; �) =
TY
t=1

[1� F"t(�Xit�)]yitF"t(�Xit�)(1�yit): (4)

Later it will be pointed out that even if true errors are not independent over
time, nevertheless the pseudo-maximum likelihood estimator (incorrectly) based
on independence �the so called �pooled estimator�- has attractive properties
(Robinson, 1982).
Let �(�) denote the cumulative distribution function (cdf) of the univari-

ate zero mean unit variance normal distribution, we obtain the following log-
likelihood function for the probit model :

Li(YijXi;�; �2; :::; �T ;�1 = 1) =
TX
t=1

yit ln�(
Xit�

�t
)+(1� yit) ln[1� �(

Xit�

�t
)]:

Note that to identify the scale of the parameters, the standard error of the
error term in the �rst period is normalised to 1 (�1 = 1). If all coe¢ cients are
allowed to vary over time in an unrestricted way, then more variances have to
be normalised.2 In many applications however, the variance of the error is kept
constant over time (�t = 1). For notational convenience this assumption will
be maintained in the remainder of the chapter.

2.2 One factor error terms

2.2.1 The model

Probably the most immediate generalisation of the assumption of independent
errors over time is a one-factor structure where all error terms are decomposed

2See for example the discussion in Chamberlain, 1984
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into two di¤erent independent components. One is constant over time (ui)
and is called the individual e¤ect, the other one being time variable (vit), but
identically and independently distributed (iid) over time and individuals. Thus,
we assume that for i = 1; : : : ; N and t = 1; : : : ; T :

"it = ui + vit; F (T )v (vi1; :::; viT jXi) =
TY
t=1

Fvt(vit);

F (T )u;v (ui; vi1; :::; viT jXi) = Fu(ui)
TY
t=1

Fvt(vit):

The individual e¤ect, ui, can be interpreted as describing the in�uence of time-
independent variables which are omitted from the model and that are inde-
pendent of the explanatory variables. Note that the one-factor decomposition
is quite strong in terms of its time series properties, because the correlation
between the error terms of the latent model does not die out when the time
distance between them is increased.
To achieve identi�cation, restrictions need to be imposed on the variances of

each error component which are denoted �2v and �
2
u. For example, variance �

2
v

can be assumed to be equal to a given value (to 1 in the normal case), or one
can consider the restriction that the variance of the sum of error terms is equal
to 1 (�2u + �

2
v = 1). It simpli�es the comparison with cross section estimations.

In this section, we do not restrict �u and �v for ease of notation though such a
restriction should be imposed at the estimation stage.

2.2.2 Maximum likelihood estimation

The computation of the log-likelihood function is di¢ cult when errors are not
independent over time or have not a one-factor structure since the individual
likelihood contribution is de�ned as an integral with respect to a T dimensional
distribution function. Assumptions of independence or one-factor structure sim-
plify the computation of the likelihood function (Butler and Mo¢ t 1982).
The idea is the following. For a given value of ui, the model is a standard

binary choice model as the remaining error terms vit are independent between
dates and individuals. Conditional on ui, the likelihood function of individual i
is thus:

Li(YijXi; ui; �) =
TY
t=1

�
[1� Fv(�Xit� � ui)]yit [Fv(�Xit� � ui)]1�yit

�
The unconditional likelihood function is derived by integration:

Li(YijXi; �) =
R +1
�1 Li(YijXi; ui; �)fu(ui)dui: (5)

The computation of the likelihood function thus requires simple integrations
only. Moreover, di¤erent parametric distribution functions for ui and vit can
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be speci�ed in this �integrating out�approach. For instance, the marginal dis-
tribution functions of the two error components can be di¤erent as in the case
with a normal random e¤ect and logistic iid random error.3 Also note that the
random e¤ect may be modelled in a �exible way. For example Heckman and
Singer (1984), Mroz (1999), and many others suggested the modeling framework
where the support of individual e¤ects of ui is discrete so that the cumulative
distribution function of ui is a step function. Geweke and Keane (2001) also
suggest mixtures of normal distribution functions.
For the special case of a T normal variate error, ui, the log-likelihood of the

resulting probit model is given by:

Li(YijXi; �) = (6)

=

Z +1

�1

(
TY
t=1

�
�(
Xit� + �uui

�v
)]yit [1� �(Xit� + �uui

�v
)]1�yit

�)
�(ui)dui;

where �(�) denotes the density function of the standard normal distribution. In
this case, the most usual identi�cation restriction is �2u + �

2
v = 1, so that the

disturbances can be written as:

"it = 
ui +
p
1� 
2vit;

where ui and vit are univariate normal, N(0; 1), and 
 > 0. Parameter 
2 is the
share of the variance of the error term due to individual e¤ects.
The computation of the likelihood function is a well-known problem in math-

ematics and is performed using gaussian quadrature. The most e¢ cient method
of computation that leads to the so called �random e¤ects probit estimator�uses
the Hermite integration formula (Butler and Mo¢ t, 1982). See also the paper
by Guilkey and Murphy (1993) for more details on this model and estimator as
well as Lee (2000) for more discussion about the numerical algorithm.
Finally, Robinson (1982) and Avery, Hansen and Hotz (1983) show that the

pooled estimator is an alternative to the previous method. The pooled estimator
is the pseudo-maximum likelihood estimator where it is incorrectly assumed
that errors are independent over time. As a pseudo likelihood estimator, it
is consistent though ine¢ cient. Note that the standard errors of estimated
parameters are to be computed using pseudo-likelihood theory (Gouriéroux,
Monfort and Trognon, 1984).

2.3 General error structures

Obviously, the autocorrelation structure implied by the one factor-structure is
very restrictive. Correlations do not depend on the distance between periods t
and t0. The general model that uses only the restrictions implied by equations
(1) and (2) poses, however severe computational problems. Computing the

3As it can be found in STATA for instance.
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maximum likelihood estimator requires high dimensional numerical integration.
For example, Gaussian quadrature methods for the normal model do not work
in practice when the dimension of integration is larger than four.
There are two ways out of these computational problems. First, instead

of computing the exact maximum likelihood estimator, we can use simulation
methods and approximate the ML estimator by simulated maximum likelihood
(SML). It retains asymptotic e¢ ciency under some conditions that will be stated
later on (e.g. Hajivassiliou, Mc Fadden, Ruud, 1996). In particular, SML meth-
ods require that the number of simulations tends to in�nity to obtain consistent
estimators. As an alternative there are estimators which are more robust to mis-
speci�cations in the serial correlation structure but which are ine¢ cient because
they are either based on misspeci�ed likelihood functions (pseudo-likelihood) or
on moment conditions that do not depend on the correlation structure of the
error terms (GMM, e.g. Avery, Hansen and Hotz, 1983, Breitung and Lechner,
1997, Bertschek and Lechner, 1998, Inkmann, 2000). Concerning pseudo-ML
estimation, we already noted that the pooled probit estimator is consistent irre-
spective of the error structure. Such a consistency proof is however not available
for the one-factor random e¤ects probit estimator.
De�ne the following set function :

D(Yi) =

�
Y �i 2 R

T such that
0 � y�it < +1 if yit = 1
�1 < y�it < 0 if yit = 0

�
(7)

The contribution of observation i to the likelihood is:

Li(Yi jXi; �) = E [1 fY �i 2 D(Yi)g] (8)

In probit models, "i is distributed as multivariate normal N(0;
), 
 being a
T � T variance-covariance matrix. The likelihood function is:

Li(YijXi; �) =
Z
D(Yi)

�(T )(Y �i �Xi�;
)dY �i ;

where �(T )(�) denotes the density of the T -variate normal distribution.
In the general case, the covariance matrix of the errors 
 is unrestricted

(except for identi�cation purposes, see above). It is very frequent however to
restrict its structure to reduce the number of parameters to be estimated. The
reason for doing so is computation time, stability of convergence, occurrence
of local extrema and the di¢ culties to pin down (locally identify) the matrix
of correlations when the sample size is not very large. In many applications
the random e¤ects model discussed in the previous section is generalised by
allowing for an AR(1) process in the time variant error component (vit). Other
more general structures however are feasible as well if there are enough data.
We will see below how to use simulation to approximate the likelihood func-

tion by using Simulated Maximum Likelihood (SML). Another popular estima-
tion method consist in using conditional moments directly. They are derived
from the true likelihood function and are approximated by simulation (Method
of Simulated Moments or MSM). McFadden (1989) proposed to consider all
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possible sequences of binary variables over T periods, Y!, where ! runs from 1
to 2T . Choice indicators are de�ned as di! = 1 if i chooses sequence ! and is
equal to 0 otherwise. A moment estimator solves the empirical counterpart of
the moment condition:

E

24 2TX
!=1

Wi! [di! � Pi!(�)]

35= 0; (9)

where Pi!(�) = Li(Y! j Xi; �) is the probability of sequence ! (i.e. such that
Yi = Y!). The optimal matrix of instruments Wi! in the moment condition is:

W �
i! =

@ log[Pi!(�)]

@�

����
�=�0

;

where parameter �0 is the true value of �. In practice, any consistent estimator
is a good choice to approximate parameter �0: The �rst of a two-step GMM
procedure using the moment conditions above and identity weights can lead to
such a consistent estimate. It is then plugged in the expression for W �

i! at the
second step.
Even if T is moderately large however, the number of sequences ! is geo-

metric in T (2T ) and functions Pi!(�) can be very small. What proposes Keane
(1994) is to replace in equation (9), unconditional probabilities by conditional
probabilities:

E

24 TX
t=1

1X
j=0

~Witj (ditj � Pitj(�))

35= 0;
where ditj = 1 if and only if yit = j and where:

Pitj(�) = P (yit = j j yi1; :; yit�1; Xi; �)

=
P (yit = j; yi1; :; yit�1 j Xi; �)

P (yi1; :; yit�1 j Xi; �)

is the conditional probability of choice j conditional on observed lagged choices.
Finally, maximising the expectation of the log-likelihood function Elog[Li(Yi j Xi; �)]

is equivalent to solving the following system of score equations with respect to
�:

E [Si(�)]= 0;

where Si(�) =
@ log[Li(YijXi;�)]

@� is the score function for individual i. It can
be shown that, in most limited dependent variable models (Hajivassiliou and
McFadden, 1998):

@

@�
Li(Yi j Xi; �) = E [gi(Y �i �Xi�)1 fY �i 2 D(Yi)g]]
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where:

gi(u) =

�
X 0
i


�1u

�1(uu0 � 
)
�1=2

�
The score function can then be written as a conditional expectation:

Si(�) = E [gi(Y
�
i �Xi�) jY �i 2 D(Yi) ] (10)

which opens up the possibility of computing the scores by simulations (Method
of Simulated Scores, MSS, Hajivassiliou and McFadden, 1998).

2.4 Simulation methods

Simulation methods (SML, MSM, MSS) based on the criteria established in the
previous section consist in computing the expectation of a function of T random
variates. The exact values of these high dimensional integrals are too di¢ cult
to compute and these expectations are approximated by sums of random draws
using laws of large numbers:

1

H

HX
h=1

f("h)
P!

H!1
Ef(")

when "h is a random draw from a distribution. In the case of panel probit
models, it is a multivariate normal distribution function, N(0;
).
It is not the purpose of this chapter to review the general theory of simulation

(see Gouriéroux and Monfort, 1996, Geweke and Keane, 2001). We review the
properties of such methods in panel probit models only to which we add a brief
explanation of Gibbs resampling methods which borrow their principle from
Bayesian techniques.

2.4.1 The comparison between SML, MSM, MSS in probit models

The naive SML function is for instance:

1

H

HX
h=1

I fY �i 2 D(Yi)g

where I[Y �i 2 D(Yi)] is a simulator. It is not continuous with respect to the
parameter of interest however and this simulation method is not recommend-
able. What is recommended is to use a smooth simulator which is di¤erentiable
with respect to the parameter of interest. The Monte Carlo evidence that the
Geweke-Hajivassiliou-Keane (GHK) simulator is the best one in multivariate
probit models seems overwhelming (see Geweke and Keane, 2001 and Hajivas-
siliou, McFadden, and Ruud, 1996, for a presentation).
The asymptotic conditions concerning the number of draws (H) and leading

to consistency, absence of asymptotic bias and asymptotic normality are more or
less restrictive according to each method, SML, MSM or MSS (Gouriéroux and
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Monfort, 1993). The method of simulated moments (MSM) yields consistent,
asymptotically unbiased and normally distributed estimators as N ! 1 when
H is �xed because the moment condition (9) is linear in the simulated expression
(or the expectation). In Keane�s (1994) version of MSM where conditional
probabilities are computed by taking ratios, the estimator is only consistent
when the number of draws tends to in�nity. Similarly, because a logarithmic
transformation is taken, SML is not consistent when H is �xed. Consistency is
obtained when H grows at any rate towards in�nity (Lee, 1992). Furthermore,
a su¢ cient condition to obtain asymptotically unbiased, asymptotically normal
and e¢ cient estimates is

p
N=H ! 0 as N ! 1 (Lee, 1992, Gouriéroux and

Monfort, 1993).
It is the reason why some authors prefer MSM to SML. As already said,

MSM however requires the computation of the probabilities of all the potential
paths with longitudinal data although the less intensive method proposed by
Keane (1994) seems to work well in panel probit models (Geweke, Keane and
Runkle, 1997). The computation becomes cumbersome when the number of
periods is large and there is evidence that small sample biases in MSM are much
larger than the simulation bias (Geweke and Keane, 2001). Lee (1995) proposed
procedures to correct asymptotic biases though results are far from impressive
(Lee, 1997, Magnac, 2000). The GHK simulator is an accurate simulator though
it may require a large number of draws to be close to competitors such as Monte
Carlo Markov Chains (MCMC) methods (Geweke, Keane and Runkle, 1997).
There seems to be a general consensus between authors about the deterioration
of all estimators when the amount of serial correlation increases.
Another way to obtain consistent estimators for �xedH is the method of sim-

ulated scores (MSS) if the simulator is unbiased. It seems that it is simpler than
MSM because it implicitly solves the search for optimal instruments. Hajivassil-
iou and McFadden (1998) proposes an acceptance-rejection algorithm consisting
in rejecting the draw if the condition in equation (10) is not veri�ed. The sim-
ulator is not smooth however and as already said a smooth simulator seems to
be a guarantee of stability and success for an estimation method. Moreover, in
particular when T exceeds four or �ve, it is possible for some individuals that
the acceptance condition is so strong that no draw is accepted. Other methods
consist in considering algorithms either based on GHK simulations of the score
or on Gibbs resampling. Formulas and an evaluation are given in Hajivassiliou,
McFadden, and Ruud (1996).4

4Hajivassiliou and McFadden (1998) �rst propose to simulate the numerator and the de-
nominator separately. Of course, this method does not lead to unbiased simulation because
the ratio is not linear but, still, as simulators are asymptotically unbiased, those MSS estima-
tors are consistent whenever H tends to in�nity. The authors furthermore argue that using
the same random draws for the denominator and the numerator decreases the noise. The
other method based on Gobbs resampling seems expensive in terms of computations using
large samples though it is asymptocally unbiased as soon as H tends to in�nity faster than
log(N).
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2.4.2 Gibbs sampling and data augmentation

It is possible however to avoid maximisation by applying Gibbs sampling tech-
niques and data augmentation in multiperiod probit models (Geweke, Keane
and Runkle, 1997, Chib and Greenberg, 1998, Chib, 2001). Though the original
setting of Monte Carlo Markov Chains (MCMC) is Bayesian, it can be applied to
classical settings as shown by Geweke, Keane and Runkle, (1997). The posterior
density function of parameter � given the data (Y;X) = f(Yi; Xi); i = 1; :; ng can
indeed be used to compute posterior means and variance-covariance matrices to
be used as classical estimators and their variance-covariance matrices.
To compute the posterior density p(� j Y;X); we rely on two tools. One is

the Metropolis-Hastings algorithm which allows for drawing samples in any (well
behaved) multivariate density function, the other is Gibbs resampling which
allows to draw in the conditional densities instead of the joint density function.
In the case of panel probit models, it runs as follows. First, let us �augment�

the data by introducing the unknown latent variables Y �i = Xi� + " in order
to draw from the posterior density p(�; Y � j Y;X) instead of the original den-
sity function. The reason is that it will be much easier to sample into density
functions conditional on the missing latent variables. Second, parameter � is
decomposed into di¤erent blocks (�1; :; �J) according to the di¤erent types of
parameters in � or in 
 the variance-covariance matrix.5

Let choose some initial values for �, say �(0) and proceed as follows. Draw
Y � in the distribution function p(Y � j �(0); Y;X) �it is a multivariate truncated
normal density function � in a very similar way to the GHK simulator. Then
draw a new value for the �rst block �1 in �, i.e. from p(�1 j Y �; �(0)�1; Y;X) where
�
(0)
�1 is constructed from parameter �(0) by omitting �(0)1 . Denote this draw �(1)1 .
Do similar steps for all blocks j = 2; :; J; using the updated parameters, until a
new value �(1) is completed. Details of each step are given in Chib and Greenberg
(1998). Repeat the whole step M times �M depends on the structure of the
problem (Chib, 2001). Trim the beginning of the sample f�(0); :::; �(m)g, the �rst
200 observations say. Then, the empirical density function of f�(m+1); :::; �(M)g
is p(� j Y;X). Once again, this method is computer intensive with large samples
and many dates. It is however a close competitor to SML and MSS (Geweke
and Keane, 2001).

2.4.3 Using marginal moments and GMM

Instead of working with the joint distribution function, the model de�ned by
equation (8) implies the following moment conditions about the marginal period-
by-period distribution functions.6

5See Chib and Greenberg (1998) to assess how to do the division into blocks according to
the identifying or other restrictions on parameter � or on matrix 


6The following section heavily draws from Bertschek and Lechner (1998)

11



E[M(Y;X;�0)jX] = 0;
M(Y;X;�) = [m1(y1; X;�); :::;mt(yt; X;�); :::;mT (yT ; X;�)]

0;
mt(yt; X;�) = Yt � [1� F (�Xt�)]:

(11)

For the probit model the last expression specialises to mt(Yt; Xt;�) = yt �
�(Xt�). Although the conditional moment estimator (CME) based on these
marginal moments will be less e¢ cient than full information maximum likeli-
hood (FIML), these moment estimators have the clear advantage that fast and
accurate approximation algorithms are available and that they do not depend
on the o¤-diagonal elements of the covariance matrix of the error terms. Thus,
these nuisance parameters need not be estimated to obtain consistent estimates
of the scaled slope parameters of the latent model. At least, these estimators
yields interesting initial conditions and previous methods can be used to increase
e¢ ciency.
As in the full information case, there remains the issue of specifying the

instrument matrix. First, let us consider a way to use these marginal moments
under our current set of assumptions in the asymptotically e¢ cient way. Opti-
mal instruments are given by:

A�(Xi; �0) = D(Xi; �0)
0
(Xi; �0)

�1;

D(Xi; �) = E
@M(Y;Xi; �)

@�
jX = Xi; (12)


(Xi; �) = E[M(Y;Xi; �)M(Y;Xi; �)
0]jX = Xi: (13)

For the special case of the probit model under strict exogeneity the two other
elements of (13) have the following form:

Dit(Xit;�0) = ��(Xit�0)Xit

!its(Xit; �0) = [E(Yt � �it)(Ys � �is)jX = Xi] (14)

=

�
�it(1� �it) if t = s
�
(2)
its � �it�is if t 6= s

(15)

where �it = �(Xit�0) and �
(2)
its = �

(2)(Xit�0; Xis�0; �ts) denotes the cdf of the
bivariate normal distribution with correlation coe¢ cient �ts. The estimation of
the optimal instruments is cumbersome because they vary with the regressors
in a nonlinear way and depend on the correlation coe¢ cients.
There are several di¤erent ways to obtain consistent estimates of the optimal

instruments. Bertschek and Lechner (1998) propose to estimate the conditional
matrix nonparametrically. They focus on the k-nearest neighbour (k-NN) ap-
proach to estimate 
(Xi), because of its simplicity. K-NN averages locally over
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functions of the data of those observations belonging to the k-nearest neigh-
bours. Under regularity conditions (Newey, 1993), this gives consistent esti-
mates of 
(Xi) evaluated at ~�N and denoted by ~
(Xi) for each observation �i�
without the need for estimating �ts. Thus, an element of 
(Xi) is estimated by:

~!its(Xi) =
NX
j=1

wijtsmt(yjt; Xjt; ~�N )ms(yit; Xit; ~�N ); (16)

where wijts represents a weight function. This does not involve an integral over
a bivariate distribution. For more details one di¤erent variants of the estimator
and how to implement it, the reader is referred to Bertschek and Lechner (1998).
In their Monte Carlo study it appeared that optimal (nonparametric) Condi-
tional Moment estimators based on moments rescaled to have a homoscedastic
variance performed much better in small samples. They are based on:

mW
t (Yt; X;�) =

m
(
tYt; Xt;�)q

E[m
(
tYt; Xt;�)

2jX = Xi]

: (17)

The expression of the conditional covariance matrix of these moments and the
conditional expectation of the �rst derivatives are somewhat di¤erent from the
previous ones, but the same general estimation principles can be applied in
this case as well.7 Inkman (2000) proposes additional Monte Carlo experiments
comparing GMM estimators to SML with and without heteroskedasticity.

2.4.4 Other estimators based on suboptimal instruments

Of course there are many other speci�cations for the instrument matrix that
lead to consistent, although not necessarily e¢ cient, estimators for the slope co-
e¢ cients. Their implementation as well as their e¢ ciency ranking is discussed in
detail in Bertschek and Lechner (1998). For example they show that the pooled
probit estimator is asymptotically equivalent to the previous GMM estimator
when the instruments are based on equations (16) to (13) but the o¤-diagonal
elements of 
(Xi) are set to zero. Avery, Hansen and Hotz (1983) also suggested
to improve the e¢ ciency of the pooled probit by exploiting strict exogeneity in
another way by stacking the instrument matrix, so as to exploit that the con-
ditional moment in period t is also uncorrelated with any function of regressors
from other periods.
Chamberlain (1980) suggests yet another very simple route to improve the

e¢ ciency of the pooled probit estimator when there are arbitrary correlations
of the errors over time which avoids setting up a �complicated�GMM estimator.
Since cross-section probits give consistent estimates of the coe¢ cients for each
period (scaled by the standard deviation of the period error term), the idea is
to perform T probits period by period (leading to T �K coe¢ cient estimates)
and combine them in a second step using a Minimum Distance estimator. The

7For all details, the reader is referred to Bertschek and Lechner, 1998
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variance-covariance matrix of estimators at di¤erent time periods should be
computed to construct e¢ cient estimates at the second step although small
sample bias could also be a problem (Altonji and Segal, 1996). In the case of
homoscedasticity over time this step will be simple GLS, otherwise a nonlinear
optimisation in the parametric space is required.8

2.5 How to choose a random e¤ects estimator for an ap-
plication

This section introduced several estimators that are applicable in the case of
random e¤ect models under strict exogeneity. In practice the question is what
correlation structure to impose and which estimator to use. Concerning the
correlation structure, one has to bear in mind that exclusion restrictions are
important for non parametric identi�cation and thus that explanatory variables
should be su¢ ciently variable across time in order to permit the identi�cation
of a very general pattern of correlation of errors. For empirical applications of
the estimators that we have reviewed, the following issues seem to be important:
Small sample performance, ease of computation, e¢ ciency, robustness. We will
address them in turn.
With respect to small sample performance of GMM estimators, Monte Carlo

simulations by Breitung and Lechner (1997), Bertschek and Lechner (1998) and
Inkmann (2000) suggest that estimators based on too many overidentifying re-
strictions (i.e. too many instruments), like the sequential estimators and some
of the estimators suggested by Avery, Hansen, and Hotz (1983) are subject
to typical weak instruments problem of GMM estimation due to too many in-
struments . Thus they are not very attractive for applications. The exactly
identi�ed estimators appear to work �ne.
�Ease of computation�is partly a subjective judgement depending on com-

puting skill and software available. Clearly, pooled probit is the easiest to
implement, but random e¤ects ML is available in many software packages as
well. Exact ML is clearly not feasible for T larger than 4. For GMM and simu-
lation methods, there is GAUSS code available on the Web (Geweke and Keane,
2001 for instance) but they are not part of any commercial software package.
The issue of computation time is less important now that it was some time
ago (Greene, 2002) and the simulation estimators are getting more and more
implementable with the increase of computing power. Asymptotic e¢ ciency is
important when samples are large. Clearly, exact ML is the most e¢ cient one
and can in principle be almost exactly approximated by the simulation estima-
tors discussed.
With respect to robustness, it is probably most important to consider viola-

tions of the assumption that explanatory variables at all periods are exogeneous
and restrictions of the autocorrelation structure of the error terms. We will
address the issue of exogeneity at the end of this chapter though the general
conclusions are very close to the linear case, as far as we know. Concerning

8Lechner (1995) proposes speci�cation tests for this estimator.
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the autocorrelation of errors, pooled probit either in its pseudo-ML or GMM
version is robust if it uses marginal conditional moments. It is not true for the
other ML estimators that rely on the correct speci�cation of the autocorrelation
structure. Finally, GMM estimators as they have been proposed here (with the
exception of pooled probit, of course) are robust against any autocorrelation.
However, they obtain their e¢ ciency gains by exploiting strict exogeneity and
may become inconsistent if this assumption does not hold.

2.6 Correlated E¤ects

In the correlated e¤ects (or unrelated e¤ects) model, we abandon the assumption
that individual e¤ects and explanatory variables are independent. In analogy
with the linear panel data case, Chamberlain (1984) proposes, in a random e¤ect
panel data nonlinear model, to replace the assumption that individual e¤ects ui
are independent of the regressors by a weaker assumption. This assumption is
derived from writing a linear regression:

ui = Xi
 + �i (18)

where explanatory variables at all periods, Xi, are now independent of the
rede�ned individual e¤ect �i. This parametrization is convenient but not totally
consistent with the preceding assumptions : considering the individual e¤ect as
a function of the Xi variables makes its de�nition depend on the length of the
panel. However, all results derived in the previous section can readily be applied
by replacing explanatory variables Xit by the whole sequence Xi at each period9 .
To recover the parameters of interest, �, two procedures can be used. The

�rst method uses minimum distance estimation and the so called ��matrix
technique of Chamberlain (Crépon & Mairesse, 1995). The reduced form:

y�it = Xi
t + �i + vit; (19)

is �rst estimated. The second step consists in imposing the constraints given by:


t = 
 + �et (20)

where et is an appropriate known matrix derived from equations (18) and (19).
The second procedure uses constrained maximum likelihood estimation by

imposing the previous constraint (20) on the parameters of the structural model.
The assumption of independence between �i and Xi is quite strong in the

non-linear case in stark contrast to the innocuous non-correlation assumption in
the linear case. Moreover, it also introduces constraints on the data generating
process of xi if one wants to extend this framework when additional period
information comes in (Honoré, 2002). Consider that we add a new period T +1
to the data and rewrite the projection as:

ui = Xi~
 +XiT+1~
T+1 + ~�i
9The so-called Mundlak (1978) approach is even more speci�c since individual e¤ects ui

are written as a function of averages of covariates, 1
T

PT
t=1 xit only and a rede�ned individual

e¤ect �i.

15



By substracting both linear regressions at times T and T +1 and taking expec-
tations conditional on information at period T , it implies that:

E(XiT+1 j Xi) = Xi(
 � ~
)=~
T+1

which is not only linear in Xi but also, only depend on parameters governing
the yit process.
It is therefore tempting to relax equation (18) and admit that individual

e¤ects are a more general function of explanatory variables:

ui = f(Xi) + �i

where f(:) is an unknown function satisfying weak restrictions (Newey, 1994).
Even if the independence assumption between the individual e¤ect �i and ex-
planatory variables xi is still restrictive �because the variance of �i is constant
for instance �this framework is much more general than the previous one. What
Newey (1994) proposes is based on the cross section estimation technique that
we already talked about.
Consider the simple one-factor model where the variance of the individual-

and-period speci�c shocks is not period-dependent, �2v, and where the variance
of �i is such that �

2
v+�

2
� is normalized to one. We therefore have:

E(yit j Xi) = �(Xit� + f(Xi))

where � is the distribution function of a zero-mean unit-variance normal variate.
It translates into:

��1(E(yit j Xi)) = Xit� + f(Xi) (21)

By any di¤erencing operator (Arellano, 2003) and for instance by �rst di¤er-
encing, we can eliminate the nuisance function f(Xi) to get:

��1(E(yit j Xi))� ��1(E(yit�1 j Xi)) = (Xit �Xit�1)� (22)

The estimation runs as follows. Estimates of E(yit j Xi) at any period are
�rst obtained by series estimation (Newey, 1994) or any other non parametric
method (kernel, local linear, smoothing spline, see Pagan & Ullah, 1999 for
instance). A consistent estimate of � is then obtained by using the previous
moment condition (22).
A few remarks are in order. First, Newey (1994) proposes such a model-

ing framework in order to show how to derive asymptotic variance-covariance
matrices of semi-parametric estimators. As it is outside of the scope of this
chapter, the reader is refered, for this topic, to the original paper. It can also
be noted that as an estimate of f(Xi) can be obtained, in a second step, by
using the equation in levels (21). One can then use a random e¤ect approach
to estimate the serial correlation of the random vector, vit. Finally, there is a
non parametric version of this method (Chen, 1998) where � is replaced by an
unknown function to be estimated, under some identi�cation restrictions.
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3 Fixed e¤ects models under strict exogeneity

In the so-called �xed e¤ect model, the error component structure of section 2.2 is
assumed. The dependence between individual e¤ects and explanatory variables
is now unrestricted in contrast to the independence assumption in the random
e¤ects model. In this section, we retain the assumption of strict exogeneity
that explanatory variables and period-and-individual shocks are independent.
We write the model as:

yit = 1fXit� + ui + vit > 0g (23)

where additional assumptions are developed below.
As the conditional distribution of individual e¤ects ui is unrestricted, the

vector of individual e¤ects should be treated as a nuisance parameter that we
should either consistently estimate or that we should eliminate. If we cannot
eliminate the �xed e¤ects, asymptotics in T are required in most cases.10 It is
because only T observations are available to estimate each individual e¤ect. It
cannot be consistent as N !1 and its inconsistency generically contaminates
the estimation of the parameter of interest. It gives rise to the problem of
incidental parameters (Lancaster, 2000). The assumption that T is �xed seems
to be a reasonable approximation with survey data since the number of periods
over which individuals are observed is often small. At the end of the section
however, we will see how better large T approximations can be constructed for
moderate values of T .
The other route is to di¤erence out the individual e¤ects. It is more di¢ cult

in non-linear models than in linear ones because it is not possible to consider
linear transforms of the latent variable and to calculate within-type estimators.
In other words, it is much harder to �nd moment conditions and speci�c likeli-
hood functions that depend on the slope coe¢ cient but do not depend on the
�xed e¤ects. In short panels, ML or GMM estimation of �xed e¤ects probit
models where the individual e¤ects are treated as parameters to be estimated
are severely biased if T is small (Heckman, 1981a).
In the �rst sub- sections we discuss some methods that appeared in the

literature that circumvent this problem and lead to consistent estimators for
N ! 1 and T is �xed. Of course, there is always a price to pay either in
terms of additional assumptions needed or in terms of the statistical properties
of these estimators.

3.1 The model

As already said, we consider equation (23) and we stick to the assumption of
strict exogeneity of the explanatory variables:

F"t("itjui; Xi1; :::; XiT ) = F"t("itjui): (24)

10Not in all cases, the example of count data being prominent (Lancaster, 1998).
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Using the error component structure of section 2.2, we can reformulate this
assumption:

Fvt(vitjui; Xi1; :::; XiT ) = Fvt(vit): (25)

Note that F"t("itjXi1; :::; XiT ) 6= F"t("it) and also note that the distribution of
the individual e¤ect is unrestricted and can thus be correlated with observables.
In most cases we will also impose that the errors are independent conditional
on the �xed e¤ect:

F ("i1; :::; "iT jui; Xi1; :::; XiT ) =
TY
t=1

F"t("itjui) (26)

F (vi1; :::; viT jui; Xi1; :::; XiT ) =
TY
t=1

Fvt(vit):

There are two obvious di¢ culties with respect to identi�cation in such a
model. First, it is impossible to identify the e¤ects of time-invariant variables.11

It has serious consequences because it implies that choice probabilities in the
population are not identi�ed. We cannot compare probabilities for di¤erent
values of the explanatory variables. In other words, a �xed e¤ect model that does
not impose some assumption on distribution of the �xed e¤ects cannot be used
to identify causal (treatment) e¤ects. This sometimes overlooked feature limits
the use of �xed e¤ects models.12 What remains identi�ed are the conditional
treatment e¤ects, conditional on any (unknown) value of the individual e¤ect.
The second di¢ culty is speci�c to discrete data. In general, the individuals

who stay all over the period of observation in a given state do not provide any
information concerning the determination of the parameters. It stems from an
identi�cation problem, the so called mover-stayer problem. Consider someone
which stays in state 1 from period 1 to T . Let vi be any value of the individual-
and-period shocks. Then if the individual e¤ect ui is a coherent value in model
(23) with staying in the state all the time, then any value �ui � ui is also coherent
with model (23). Estimations are thus implemented on the sub-sample of people
who move at least once between the two states (�moving�individuals).

3.2 The method of conditional likelihood

The existence of biases leads to avoid direct ML estimations when the number
of dates is less than ten (Heckman, 1981a). In certain cases, the bias can
consist in multiplying by two the value of some parameters (Andersen, 1971 ;
Chamberlain, 1984 ; Hsiao, 1996). This features makes this estimator pretty

11 It is however possible to de�ne restrictions to identify these e¤ects, see Chapter XXX
12The claim that a parametric distributional assumption of individual e¤ects is needed for

the identi�cation of causal treatment e¤ects is however overly strong. What is true is that
the estimation of the conditional distribution function of individual e¤ects is almost never
considered though it can be under much weaker assumptions than parametric ones.
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unattractive in large N , small T type of applications. If the logit speci�cation
is assumed however, it is possible to set up a conditional likelihood function
whose maximisation gives consistent estimators of the parameters of interest �,
regardless the length of the time period.

Conditional logit: T periods In the case where random errors, vit, are
independent over time and are logistically distributed, the sum yi+ =

PT
t=1 yit,

is a su¢ cient statistic for the �xed e¤ects, in the sense that the distribution
of the data given yi+ does not depend on the �xed e¤ect. Consider the logit
model :

P (yit = 1jXi; ui) = F (Xit� + ui); (27)

where F (z) = exp(z)
1+exp(z) =

1
1+exp(�z)

The idea is to compute probabilities conditional on the number of times the
individuals is in state 1:

Li(�) = P (yi1 = �i1; : : : ; yiT = �iT j Xi; ui;
TX
t=1

yit = yi+) =

exp(
TP
t=1
Xit��it)

P
d2Bi

exp(
TP
t=1
Xit�dt)

where

Bi =

(
d = (d1; :::; dT ) such that dt 2 f0; 1gand

TX
t=1

dt =
TX
t=1

yit

)

The set Bi di¤ers between individuals according to the value of
TP
t=1
yit, i.e. the

number of visits to state 1. Parameter � is estimated by maximising this condi-
tional log-likelihood function. The estimator is consistent as N !1, regardless
of T (Andersen, 1970, Chamberlain, 1980, 1984, Hsiao, 1996). Nothing is known
about its e¢ ciency as in general conditional likelihood estimators are not e¢ -
cient. Note that only the �moving�individuals are used in the computation of
the conditional likelihood. Extensions of model (27) can be considered. For in-
stance, Thomas (2005) develops the case where individual e¤ect are multiplied
by a time e¤ect which is to be estimated.
The estimation of such a T�period model is also possible by reducing se-

quences of T observations into pairs of binary variables. Lee (2002) develop
two interesting cases. First, the T periods can be chained sequentially two-
by-two and a T = 2 conditional model can be estimated (as in Manski, 1987
see below). All pairs of periods two-by-two could also be considered. These
decompositions will have an interest when generalizing conditional logit, when
considering semi-parametric methods or more casually, as initial conditions for
conditional maximum likelhood. It is why we now review the T = 2 case.

19



3.2.1 An example: the two period static logit model

The conditional log-likelihood based on the logit model with T=2 computed
with moving individuals is given by:

L =
X
di=1

log
expXi2�

expXi1� + expXi2�
+
X
di=0

log
expXi1�

expXi1� + expXi2�
;

where for moving individuals, the binary variable di is:�
di = 1 if yi1 = 0; yi2 = 1
di = 0 if yi1 = 1; yi2 = 0

Denote �Xi = Xi2 �Xi1. The conditional log-likelihood becomes:

L =
X
ijdi=1

log
exp(�Xi�)

1 + exp(�Xi�)
+
X
ijdi=0

log
1

1 + exp(�Xi�)

which is the expression of the log-likelihood of the usual logit model:

P (di = 1j�Xi) = F (�Xi�) (28)

adjusted on the sub-sample of moving individuals. Note that the regressors do
not include an intercept, since in the original model the intercept was absorbed
by the individual e¤ects.

3.2.2 A generalization

The consistency properties of conditional likelihood estimators are well known
(Andersen, 1970) and lead to the interesting properties of conditional logit.
This method has however been criticized on the ground that assuming a logistic
function is a strong distributional assumption. When the errors vi1 and vi2
are independent, it can be shown that the conditional likelihood method is
applicable only when the errors are logistic (Magnac (2004)). It is possible
however to relax the independence assumption between errors vi1 and vi2 to
develop a richer semi-parametric or parametric framework in the case of two
periods. As above, pairing observations two-by-two presented by Lee (2002)
can be used when the number of periods is larger.
The idea relies on writing the condition that the sum yi1 + yi2 = 1 is a

su¢ cient statistic in the sense that the following conditional probability does
not depend on individual e¤ects:

P (yi1 = 1; yi2 = 0 j Xi; ui;
2X
t=1

yit = 1) = P (yi1 = 1; yi2 = 0 j Xi;
2X
t=1

yit = 1)

In that case, the development in the previous section can be repeated because
the conditional likelihood function depends on parameter � and not on individ-
ual e¤ects. It can be shown that we end up with an analog of equation (28)
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where distribution F (:) is a general function which features and semi-parametric
estimation are discussed in Magnac (2004).

3.3 Fixed e¤ect Maximum Score

The methods discussed until section 3.2.2 are very attractive under one key
condition, namely that the chosen distributional assumptions for the latent
model are correct, otherwise the estimators will be typically inconsistent for
the parameters of the model. However, since those functional restrictions are
usually chosen for computational convenience instead of a priori plausibility,
models that require less stringent assumptions or which are robust to violations
of these assumptions, are attractive. Manski (1987) was the �rst to suggest a
consistent estimator for �xed e¤ect models in situations where the other ap-
proaches do not work. His estimator is a direct extension of the maximum
score estimator for the binary model (Manski, 1975). The idea of this estima-
tor for cross-sectional data is that if the median of the error term conditional
on the regressors is zero, then observations with Xi� > 0 (resp. < 0) will
have P (y = 1 jXi� > 0) > 0 :5 (resp < 0:5). Under some regularity conditions
this implies that E fsgn(2yi � 1)sgn(Xi�)g is uniquely maximised at the true
value (in other words (2yi � 1)and (Xi�) should have the same sign). There-
fore, the analogue estimator obtained by substituting expectations by means
is consistent although not asymptotically normal and converges at a rate N1=3

to a non-normal distribution ( Kim and Pollard, 1990). There is however a
smoothed version of this estimator where the sign function is substituted with
a kernel type function, which is asymptotically normal and comes arbitrarily
close to

p
N -convergence if tuning parameters are suitably chosen (Horowitz,

1992). However, Chamberlain (1992) shows that it is not possible of attaining
a rate of

p
N in the framework adopted by these papers.

Using a similar reasoning as in the conditional logit model and using the
assumption that the distribution of the errors over time is stationary, Manski
(1987) showed that, conditional on X:

P (y2 = 1 jy2 + y1 = 1; Xi) > 0:5 if (X2 �X1)� > 0

Therefore, for a given individual higher values of Xt� are more likely to be
associated with yt = 1. In a similar fashion as the cross-sectional maximum score
estimator, this suggests the following conditional maximum score estimator:

�̂N = argmax
�

NX
i=1

sgn(yi2 � yi1)sgn[(Xi2 �Xi1)�]

For longer panels one can consider all possible pairs of observations over
time:

�̂N = argmax
�

NX
i=1

X
s<t

sgn(yis � yit)sgn[(Xis �Xit)�]
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The estimator has similar properties than the cross-sectional M-score estima-
tor, in the sense that it is consistent under very weak conditions, but not asymp-
totically normal and converges at a rate slower than

p
N . Kyriazidou (1995)

and Charlier, Melenberg, and van Soest (1995) show that the same �smooth-
ing trick�that worked for the cross-sectional M-score estimator also works for
the conditional panel version. Hence, depending on the choice of smoothing
parameters, the rate of convergence may come arbitrarily close to

p
N .

In practice, there are few applications of this estimator, since many di¢ -
culties arise : the solution of the optimisation problem is not unique, and the
optimisation can be very complicated, because of the step function involved.
Other semi-parametric methods of estimation include Lee (1999) and Hon-

oré and Lewbel (2002). In the �rst paper, an assumption about the dependence
between individual e¤ects and explanatory variables allows for the construction
of method of moments estimator which is root-N consistent and asymptotically
normal. In the second paper, another partial independence assumption is made
as well as assumptions about the large support of one special continuous covari-
ate. By linearizing the model (Lewbel, 2000), one can return to the reassuring
world of linear models and di¤erence out the individual e¤ects. The reader is
referred to the original papers in both cases.

3.4 GMM estimation

A possible solution to solving the problem posed by the presence of unobservable
individual e¤ect is to propose moment conditions which will be approximately
satis�ed provided that the individual e¤ects are small, and estimators based on
such moments (Laisney and Lechner, 2002). Consider the moment condition for
any t = 1; : : : ; T :

E(yt jXi; ui) = F (xit� + ui)
When the individual e¤ect is close enough to the value of ~u, the �rst order Taylor
approximation around u = ~u is exact, so we can write for any s; t = 1; : : : ; T :

U � ~u = E[yt jXi; ui ]� F (Xt� + ~u)
f(Xt� + ~u)

=
E[ys jXi; ui ]� F (Xs� + ~u)

f(Xs� + ~u)

Thus, for any s; t = 1; : : : ; T ; s 6= t, the following function,

mts(y;X;�) =
yt � F (Xt� � ~u)
f(Xt� � ~u)

� ys � F (Xs� � ~u)
f(Xs� � ~u)

has a conditional mean of zero at the true value of �, given X = Xi. It can be
used as the basis for (almost) consistent estimation of the panel probit model
with �xed e¤ects close to ~u. Under standard regularity conditions, a GMM
estimator of the coe¢ cients for the time varying regressors of the panel model
based on these moment functions is consistent (almost, given the Taylor ap-
proximation) and

p
N asymptotically normal (Newey, 1993 ; Newey, McFadden,

1994).
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3.5 Large-T Approximations

Finally, there are some new developments that are only brie�y sketched here and
that rely on large-T approximations in parametric binary models. The inspira-
tion comes from Heckman�s (1981a) pioneering work. Monte Carlo experiments
can indeed be used to assess the magnitude of the bias of �xed e¤ect estimators
in binary probit or logit models as it was developed in the previous section.
This bias due to the presence of incidental parameters is of order O(T�1) in
panel probit and for values around T = 10 the bias is found to be small (see
also Greene, 2002).
A �rst direction for improving estimators is to assess and compute the bias

either analytically or by using jackknife techniques as proposed by Hahn and
Newey (2004). Under assumptions of independence over time of regressors and
disturbances, bias-corrected estimators can be easily constructed. Hahn and
Kuesteiner (2004) relax the assumption independence over time by proposing
another analytical correction of the bias and that could also apply to the dy-
namic case (see next section).
The second direction relies on parameter orthogonalization. Inconsistency

of �xed e¤ect estimators occurs because the number of useful observations to
estimate individual e¤ects is �xed and equal to T and because there is contami-
nation from the inconsistency of individual e¤ect estimates into the parameters
of interest. If, as in the Poisson count data example,13 parameters of interest
and individual e¤ects can be factored out in the likelihood function (Lancaster,
2003) contamination is absent. Parameters are said to be orthogonal. These
cases are not frequent however. The pionnering work of Cox and Reid (1987)
uses a weaker notion of information orthogonality. At the true parameter values,
the expectation of the cross derivative of the likelihood function w.r.t. the para-
meter of interest and the nuisance parameters is equal to zero. The invariance of
likelihood methods to reparametrizations can then be used. The reparametriza-
tion which is interesting to use is the one (if it exists) that lead to information
orthogonality. If this reparametrization is performed and if the nuisance para-
meters are integrated out in Bayesian settings, or concentrated out in classical
settings, the bias of the ML estimator is of order 1=T 2 instead of 1=T (in prob-
ability). For Probit (or other parametric) models, this method is proposed by
Lancaster (2003) in a Bayesian setting. General theory in parametric non linear
models in the Bayesian case is developed by Woutersen (2002). In the classical
case, the panel static probit model is studied in a Monte Carlo experiment as
an example by Arellano (2003) and in a dynamic case by Carro (2003). They
show that for moderate T (4-6), the bias is small. It is smaller than the value
for T advocated by Heckman (1981a) though these values shall be theoretically
validated in each instance where it is applied, as always when using Monte Carlo
experiments about approximations.

13As described in Montalvo (1997) and Blundell, Gri¢ th and Windmeijer (2002).
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4 Dynamic Models

In dynamic models where explanatory variables comprise lagged endogenous
variables and other predetermined variables, we could further abandon the as-
sumption that individual-and-period shocks and explanatory variables are inde-
pendent. We distinguish again random and �xed e¤ects models. This section
is short not because the subject is unimportant but because the main ideas are
extensions of the strict exogeneity case. There is one original issue however that
we shall insist on, which is the choice of initial conditions.

4.1 Dynamic Random E¤ects Models

There are many potential sources of dynamics in econometric models. Some
sources are easily dealt with in the framework of the last section: coe¢ cients
changing over time, lagged values of the strictly exogenous explanatory vari-
ables, correlation of random e¤ects over time. There could also be true state
dependence that is structural dependence on the lagged dependent variable or
feedback e¤ects of dependent variables on explanatory variables. Those ex-
planatory variables are thus predetermined instead of strictly exogeneous. Most
behavioral economic models using time-series or panel data are likely to be
dynamic in this sense.
There are various dynamic discrete models as introduced by Heckman (1981a).

The latent model that we study in this section, is written as:

y�it = �yit�1 +Xit� + ui + vit (29)

where individual e¤ects ui or individual-and-period speci�c e¤ects vit are or
can be dependent of explanatory variables yit�1 and Xit and/or the future of
these variables. It is in this sense that right-hand side variables are endogenous
in this section. For simplicity we here consider one lag only and that vit are
independent of the past and present of (yit�1; Xit).
As an alternative to this model (29), there is a class of models in which the

lagged latent variable, y�it�1, is included among explanatory variables instead of
the binary variable yit. This type of dynamics is called habit persistence. Be-
cause recursive substitution techniques can be used �the lagged latent variable
is replaced recursively by their expression (29) �these habit persistence mod-
els can be transformed into static models where explanatory variables include
lags of the exogenous variables and where some care should be taken with the
initial condition, y�i1. These types of models are discussed brie�y in Heckman
(1981). Estimation of the structural parameters in the case of binary choice
is detailed in Lechner (1993). Moreover, this framework does not accomodate
weak endogeneity which is one of the focus of this section.

4.1.1 Initial conditions

When the lagged endogenous variable is present, there is an initial condition
problem as in the linear case though it is more di¤cult to deal with. Assuming
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for the moment that there are no other explanatory variables, � = 0, the likeli-
hood function is written by conditioning on individual e¤ects as in the previous
section:

l(yiT ; :; yi2; yi1 j ui) =
TY
t=2

l(yit j yit�1; ui)l(yi1 j ui)

It is obvious that one needs additional information for deriving l(yi1 j ui) that
model (29) is not providing. It is analogous to the linear case and the assump-
tions that initial conditions are exogenous or that initial conditions are obtained
by initializing the process in the in�nite past were soon seen to be too strong or
misplaced. They are generally strongly rejected by the data. Heckman (1981)
proposed to use an auxiliary assumption such as:

y�i1 = �ui + v
0
i1: (30)

The complete likelihood function is then obtained by integrating out, ui, as
before.
Another route was suggested by Wooldridge (2000) or Arellano & Carrasco,

(2002). Instead of using the complete joint likelihood function, they resort to
the following conditional likelihood function:

l(yiT ; :; yi2 j yi1; ui) =
TY
t=2

l(yit j yit�1; ui):

When integrating out ui, one now needs to choose the conditional distribution
function f(ui j y1) which might be written as the auxiliary model which marries
well with the approach of Chamberlain seen above:

ui = �yi1 + �i (31)

It should be noted that one loses information and that it is not immediately
clear whether restriction (30) is more restrictive than (31) in particular when
other explanatory variables are present in the model.

4.1.2 Monte Carlo Experiments of Simulation Methods

In the literature, some papers report Monte Carlo experiments of random e¤ects
dynamic models estimated by simulation (Keane, 1994, Chib et Jeliazkov, 2002,
Lee, 1997). There seems to be a consensus on a few results. Estimates of the
autoregressive parameter seem to be downward biased while parameters of the
variance of random e¤ects can be upward or downward biased according to the
model (Lee, 1997). Biases increase when serial correlation is stronger though
it can be counteracted by increasing the number of draws either for SML or
MSM as well Gibbs sampling. Biases also increase when the number of periods
increases. Misspeci�cation of initial conditions introduces fairly large biases in
the estimation.
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4.1.3 A Projection Method

For treating the weakly endogenous case, there has been an interesting sugges-
tion proposed by Arellano & Carrasco (2002). Let !it = (yit�1; Xit) be the
relevant conditional information in period t that is grouped into the informa-
tion set, !ti = (!it; !

t�1
i ) where !0i is the empty set. Variables !

t
i summarize

the relevant past of the process until period t, that is the sequence of lagged
endogeneous variables, explanatory variables and their lags and any other piece
of information such as instruments for instance. Assume that "it = ui + vit is
such that:

"it j !ti  N(E(ui j !ti); �2t )

where independence between vit and the information set !ti has been used. Thus,
it rules out serial correlation in the usual sense14 while allowing for feedback.
It thus constitutes a generalization of the setting of the projection method of
Chamberlain (1980) and Newey (1994) that we presented in the previous section.
The sequence of conditional means E(ui j !ti) are related by the moment

conditions:
E(E(ui j !ti) j !t�1i ) = E(ui j !t�1i ) (32)

Write now the conditional means:

E(yit j !ti) = �(
�yit�1 +Xit� + E(ui j !ti)

�t
)

which translates into:

�t:�
�1(E(yit j !ti)) = �yit�1 +Xit� + E(ui j !ti)

The moment condition (32) is thus:

E(�t:�
�1(E(yit j !ti))� (�yit�1 +Xit�) j !t�1i ) =

= �t�1:�
�1(E(yit j !t�1i ))� (�yit�2 +Xit�1�)

As before, some nonparametric estimates of E(yit j !ti) can be obtained and
plugged in this moment condition.
As it is formally identi�cal to the approach proposed by Newey (1994), the

same remarks can be addressed to this approach. There may however be a
curse of dimensionality coming in because the dimension of !ti is growing with
the number of periods. Arellano & Carrasco (2002) proposes simpli�cations and
the reader is referred to the original paper.

4.2 Dynamic Fixed E¤ects Models

Chamberlain (1985) extends the conditional logit method to the case where the
lagged endogenous variable is the only covariate (see also Magnac, 2000, for
multinomial and dynamic models where lags can be larger than 1). Su¢ cient

14 Individual-and-period vit�1 is not included in !ti , only yit�1 is.
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statistics are now a vector of three variables. On top of the sum of binary
variables, the binary variables at the �rst and last period are added to the list.
For instance, in the case where only one lag is used, the smallest number of
periods for identi�cation is equal to 4 and the useful information is contained
in the intermediate periods from t = 2 to T � 1. The main drawback of this
method is that, in the logit case and in the model with one lag, the sum of
binary variables, the �rst and last values of the binary variables are not su¢ cient
statistics if other explanatory variables are present in the model.
If explanatory variables are discrete, the idea proposed by Honoré & Kyriazi-

dou (2000) is to consider only the observations such that explanatory variables
are constant in the intermediate periods from t = 2 to T � 1. Conditional to
the values of these explanatory variables, the sum of binary variables, the �rst
and last values of the binary variables are now su¢ cient statistics. In order
to accomodate continuous variables, Honoré & Kyriazidou (2000) proposes to
use observations such that explanatory variables are approximately constant in
the intermediate periods from 2 to T � 1. The statistics described above are
approximately su¢ cient. Observations can be weighted according to the degree
of such an approximation. Under some conditions the estimator is consistent
and asymptotically normal, but due to the nonparametric part, its convergence
rate is less than

p
N . Note also that this construction rules out time dummies,

which cannot by de�nition be similar in two periods.
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