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1 Introduction

Environmental taxes are an important part of the system for regulating pollution in

several European countries. At member state level, there has been a continuing in-

crease in the use of environmental taxes over the last decade, especially in Scandinavia,

Austria, Belgium, France, The Netherlands, Germany and The United Kingdom (Eu-

ropean Environmental Agency, 1996). It appears from textbook discussions that the

first major advantage of environmental taxes is to provide polluters with the correct

incentives to internalize external costs. This leads to a better integration of economic

and environmental policies. Second, such taxes produce revenue which may be used to

improve environmental expenditures and/or to reduce the distortions due to taxation

on labor, capital and savings (the so-called double dividend).

However, a careful design of environmental taxes should also include an enforcement

mechanism to deter non compliance and tax evasion. Monitoring and enforcement may

not be the first elements that come to mind in this field and indeed, these issues are of-

ten ignored by both academic and policy makers when discussing environmental policy

reform (Cohen, 1999). This general lack of attention may have negative consequences

for environmental quality and for social welfare. Trying to implement stricter regula-

tions than the existing ones may result in increased pollution levels if the agency cannot

control the firms activities and enforce compliance. Moreover, ignoring monitoring and

enforcement costs in the case of a new regulation might lead the public authorities to

implement costlier policies than the current ones. Consequently, when investigating

the optimal regulation of polluting firms, the analysis must include the facts that the

monitoring of actual polluters’ emissions is costly and, more generally, that the infor-

mation needed by the regulator is decentralized in the economy (see Lewis, 1996, for

a survey on these issues). In particular, if it is realistic to assume that the regulator

possesses aggregate information on polluters’ abatement costs, it seems doubtful that
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she can observe the costs of each individual firm. Moreover, many systems for enforcing

pollution controls are impeded by legislation that puts limitations on the regulator’s

power to punish non compliance.

We shall then analyze a nonlinear environmental taxation assuming that emission

levels can be observed through a costly audit and that abatement costs remain private

information even when an audit is performed. Given this information structure, we

derive and investigate the properties of the optimal tax and enforcement policy.

Our analysis brings out the following points. i/ The optimal tax is different from

the Pigovian level because of the second dividend of the environmental tax and of

the social cost of monitoring. Both effects imply greater allowances to polluting firms

(under-deterrence). This phenomenon is easily understood: With a strictly positive

social cost of public funds, due to imperfections of existing tax systems on labor or

capital, the regulator is tempted to raise more money with environmental taxes than of

the Pigovian levels. Moreover, costly enforcement per se entails pollution levels strictly

higher than the Pigovian levels in order to reduce the incentive to evade. ii/ The usual

rule of equalizing private marginal benefits to social marginal damage is violated fur-

ther, because of complex distortions due to the adverse selection problem which give

rise to firms-specific marginal tax rates. Under adverse selection on the abatement

technology but without monitoring cost, Baron (1985) and Laffont (1994) show that

the optimal tax schedule entails lower emission levels the higher the firm’s abatement

costs (over-deterrence effect due to the adverse selection problem). With costly en-

forcement and self-reporting, we show that the agency has to take account of another

adverse-selection effect: under-deterrence increases the informational rents of profitable

firms but decreases the inspection effort on less efficient firms. The regulator has thus

to arbitrate between two effects when designing the taxation policy: an increase in the

emission levels for a given firm allows the reduction in the inspection efforts on less

profitable firms but causes a decrease in the tax collection on more profitable ones. iii/
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Since the optimal tax policy is intimately related to the monitoring capabilities of the

agency, monitoring and tax policies must be designed jointly. In particular, optimal

monitoring efforts of the agency are inversely related to the amounts of tax paid by

the firms (and thus, to their emission levels). iv/ Command-and-control instruments

are closer to economic instruments once the economic incentives of their enforcement

policies are considered. We investigate the properties of a pollution standard, where

the firms are allowed to pollute up to a given level (the emission standard) by paying a

lump-sum transfer (the license fee) and where the agency verifies the firms’ compliance

with a uniform inspection probability. We show that the optimal standard policy in-

duces the less efficient firms to pollute at the standard in accordance with their licence.

Consequently these firms are not fined when inspected. However, more profitable firms

pollute over the standard and pay the corresponding penalty when inspected. Con-

sequently, this licence cum-fine schedule resembles a taxation scheme. Malik (1992)

already observed that an environmental standard policy may be considered as a special

case of taxation policy. A standard policy appears to be a restricted case of a taxation

policy because of the “marginal deterrence” induced by the penalty schedule of its

enforcement policy. Using an increasing fine schedule allows the agency to introduce

efficiency considerations in an otherwise rather inefficient policy.

Although there has been rapid growth in theoretical and empirical studies on en-

forcement of environmental policies over the last years (see Cohen, 1999, for a recent

survey), only few papers have analyzed the case of environmental taxes. Swierzbinski

(1994) analyses the optimal regulation when abatement costs are private information

and when monitoring is costly. While assuming the regulator is allowed to reward

compliant firms, Swierzbinski shows that the optimal mechanism resembles a deposit-

refund system and that the abatement schedule is affected downward by both adverse

selection and monitoring problems. This result is mainly due to the policy objectives

he considers. In his framework, the environmental agency wants firms to allocate funds
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to abating polluting emissions up to a maximum amount, which corresponds to the

firms’ opting out cost. In particular, with a retirement cost equal to zero, the agency

has to subsidize firms to induce abatement. We encountered the opposite situation in

the case of environmental taxation we investigated. We show that the perfect informa-

tion schedule is diversely affected by adverse selection and monitoring problems. This

framework allows us to detail these effects thoroughly, especially the adverse selection

effect in association with the monitoring policy. It also enables us to give a complete

characterization of the optimal emission schedule.1

In their study on marginal deterrence, Mookherjee and Png (1994) analyze the

optimal enforcement of a standard. Our analysis extends this model by considering the

possibility of raising money through a licence fee paid by every active firm. Since they

take the opposite viewpoint that fines are socially costly, it comes as no surprise that

their results differ from ours. However, we show that it is socially efficient to associate

a licence fee with the standard even in the case of negligible second-dividend aspects.

Firms extracting very low benefits from emissions choose not to pollute because the

benefit they derive from polluting up to the standard is smaller than the fee they have to

pay. Moreover, we show that profitable firms are divided into two (non empty) subsets.

Medium-profitability firms decide to pay the fee and emit up to the standard. Even for

these firms the standard exerts a real constraint. Only relatively high-profitability firms

exceed the standard. We also analyze the adverse-selection problem generated by the

second-dividend aspect in this context. The imitation problem has a downward effect

on the optimal emission schedule for firms exceeding the standard. While Mookherjee

and Png conclude that the marginal expected penalty should be strictly less than

1Swiersbinsky also considers the stick-and-carrot policy of penalties-cum-tax-rebates. For deter-
rence purposes, and given that audits do not reveal the firms’ abatement costs, tax-rebates and
penalties are symmetric. To enforce risk-neutral firm’s compliance, only the payment expected in case
of fraud matters, i.e. total penalty amount minus tax-rebate times the probability of an audit. The
larger the payment, the fewer the inspections. In our analysis, we do not allow for tax-rebates to stick
to actual environmental taxation policies.
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the corresponding marginal social harm, we show that when second-dividend aspects

matter, and depending on the efficiency of the firm, the marginal expected penalty for

violating the standard can be higher or lower than the marginal damage.

Applications of principal-agent models with audit have been developed in various

fields like insurance, income taxation or monopoly regulation. The key differences

between our problem and these models are that they usually assume that the maximal

penalty depends on the private information of the agents and/or that the regulator

can reward honesty. As a result, the incentive constraints of audit models are badly

behaved. This fact was first recognized by Baron and Besanko (1984) in their analysis

of monopoly regulation. For example, in most studies on income taxation, the labor

supply is assumed to be given and auditing the income allows access to the entire

agent’s private information. The maximum fine can thus be set to the entire benefit

the agent extracts from evading, which is type-dependent (see Border and Sobel, 1987

and Chander and Wilde, 1998).2 However, in our problem, the audit does not reveal

the firm’s benefit, which implies that the maximum penalty cannot be type-dependent.

Moreover, as it is often the case in practice, we forbid tax rebates in case of compliance.

Using standards arguments, we show that the optimal fines are not type-dependent: the

fine is either 0, if the firm does not evade, or equal to the maximal penalty otherwise.

This simple penalty scheme allows to handle the two aspects of the audit problem

separately: The inspection/penalty schedule is intended to solve the evasion problem

only, and the tax/emissions schedule to solve the mimicking problem. Once it is verified

that no firm is induced to evade, the incentive constraints of the remaining adverse-

selection problem are well-behaved.

The paper proceeds as follows. Section 2 is devoted to notation, assumptions and

the derivation of the optimal policy in the perfect information benchmark case. Section

2See Cremer and Gahvari (1996) for a model with endogeneous labor supply where the agent’s
income is the result of two unobservable variables, ability and labor supply, the latter being discovered
through a costly audit.
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3 offers the main results concerning the optimal taxation and enforcement policy. In

section 4, we study the optimal enforcement of an environmental standard. The last

section comes to a conclusion. Most proofs are in the appendix.

2 The model

Consider an economy consisting of a continuum of firms with mass unity. Firms differ

in a one-dimensional measure of their private benefit of pollution. Profitability param-

eter θ is distributed over a non-negative interval Θ = [θ, θ̄], according to distribution

function G and probability density function g ≡ G′ with g(θ) > 0 for all θ ∈ Θ. Each

firm chooses an emission level q (or abatement effort) which yields the profit π(q, θ)

and we normalize the set Θ by assuming that ∂θπ > 0.3 Without regulation, individual

emission level q◦(θ) satisfies

q◦(θ) ∈ arg max
q

π(q, θ).

We assume that ∂qqπ(q, θ) ≤ 0 and ∂qθπ(q, θ) > 0 for all q < q◦(θ), i.e., that the

marginal benefit of pollution decreases with pollution and increases with the firms’ type.

This implies that emission pattern q◦(·) is a non-decreasing function of θ. The latter

assumption corresponds to the well-known Spence-Mirrlees single crossing condition

that simplifies the analysis of the adverse-selection problems.4 The profit of the type-θ

firm without regulation is given by

π◦(θ) ≡ π(q◦(θ), θ)

which is an increasing function of θ under the assumption ∂θπ > 0.

Environmental damage D is supposed to depend on aggregate pollution Q =∫ θ̄

θ
q(θ)g(θ)dθ according to the relation D = Qd where d is the marginal environ-

3We denote by ∂xf the partial derivative of a function f(·) with respect to the variable x.
4We also briefly analyze the case where ∂qθπ(q, θ) < 0, i.e., where more profitable firms use greener

technologies and pollute less.
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mental damage.5 The regulator’s task is thus to design an environmental tax schedule

that induces producers to internalize this damage.6 More precisely, we assume that

the regulator’s objective is to maximize the expected social welfare given by∫ θ̄

θ

{π(q(θ), θ)− dq(θ) + λt(θ)}g(θ)dθ (1)

where λ ≥ 0 and t(θ) is the tax paid by the type-θ firms. The term λ
∫ θ̄

θ
t(θ)g(θ)dθ cor-

responds to the indirect social benefit of an environmental taxation, commonly called

the “second dividend”: Using tax to correct the externality also allows the government

to diminish the tax burden that weighs on the rest of society. This reduction decreases

the deadweight losses associated with other existing tax systems, like income taxation,

that induce distortions in the economy. λ is a per monetary unit measure of these

deadweight losses (1 + λ is commonly called the shadow cost of public funds). Raising

t on a polluting firm with an environmental tax allows the government to diminish

other taxes by the same amount and thus induces an indirect social gain equal to λt.

As a consequence, the government wants to raise as much money as possible through

an environmental tax in order to save on costlier tax systems, and thus capture the

entire profit of the polluting firms.7 More precisely, if the regulator was able to observe

the firms’ emissions directly, it would be possible to implement the perfect information

outcome via a tax-emissions schedule {t∗(θ), q∗(θ), θ ∈ Θ} satisfying

∂qπ(q∗(θ), θ) = d/(1 + λ)

and

t∗(θ) = π(q∗(θ), θ).

5This assumption is made to simplify the algebra while keeping the main insights of our analysis.
Extensions to more general damage functions is straightforward.

6For simplicity, we do not consider here the impact of the regulation on the consumers’ surplus.
7We implicitly assume that there is no political constraint that limits the government’s latitude in

setting up environmental taxation. Such political constraints may be taken into account by requiring
that the firms’ profits after tax be greater than a given level π̄ > 0. By assuming π̄ = 0 we save on
notation without changing the qualitative results of the analysis.
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When λ = 0, the optimal emission pattern corresponds to the first-best levels,

defined by the usual rule of equating marginal private benefit ∂qπ(q∗(θ), θ) to marginal

social damage d. Moreover, there is no reason in that case to charge firms per se.

The optimal policy may be implemented with a Pigovian tax equal to the marginal

social damage regardless of the private information of firms. This is no longer the

case when there are distortions in the rest of the economy (λ > 0). In that case,

the regulator seeks to raise as much tax revenue as possible with the environmental

tax and she has not only to consider the environmental objective of the policy but

also its incentive aspect. A direct effect of the distortions is that the regulator is led

to allow firms to over-pollute compared to first-best levels. This increase in emission

levels allows the regulator to raise more revenue, since the entire benefit of pollution is

captured by the agency. However, such a capture is possible only when the regulator

is able to assess the benefit that each firm extracts from polluting and if the firms

are not tempted to evade taxation. Moreover, assuming that the regulator desires to

implement a given tax-emissions schedule, it is doubtful that she will be able to check

the firms’ compliance with the legislation at no cost. More generally, the agency has to

take account of the informational aspect of the problem when designing its policy. We

assume the following information structure. First, individual profitability is the firm’s

private information, while the regulator only knows the distribution of types. Pollution

is not directly observable by the regulator either, but can be discovered through a costly

audit. However, the audit cost increases with the number of firms audited. The agency

has thus to balance the benefits of an audit with its cost.

Given this information structure, we derive the optimal revelation mechanism and

investigate the properties of optimal tax and audit policies. The process of regula-

tion and inspection is modeled as a three-stage game. First, the regulator chooses a

mechanism. Second, the firm reports its type and simultaneously chooses its pollution

level. Third, the contract is implemented, that is, the firm is monitored according to
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the probability determined by the type’s report. If no audit occurs, the firm pays only

the tax according to its announcement. In the case of auditing, it pays the transfer

corresponding to its announcement and the result of the audit.

More formally, a mechanism for the environmental agency consists of four functions:

q(θ̃), µ(θ̃), t(θ̃) and f(θ̃, q), where θ̃ is the reported type and q the pollution as revealed

by the audit. A firm that has reported a profitability parameter θ̃ is assigned to an

emission level q(θ̃), pays a tax t(θ̃) and is audited with probability µ(θ̃). In case of

auditing, it pays a fine f(θ̃, q) ≥ 0 if q 6= q(θ̃).8

A firm may misbehave along two ways. First, it may misreport its type while

producing the emission level assigned to the reported type. In this case, the firm

perfectly mimics another type but does not evade, and the result of the audit gives

q = q(θ̃). This mimicking cannot be discovered by auditing the firm, because the

inspection reveals only the level of pollution and not the firm’s type and profit level.

Secondly, it may evade by choosing an emission level different from the one it is assigned

to by its report, i.e. q 6= q(θ̃). This shirking is detected by auditing the firm.

As the revelation principle applies in our context, we can restrict the search of the

optimal mechanism to the set of direct and incentive-compatible mechanisms without

loss of generality.9 The expected profit of a type-θ firm that announces to be of type

θ̃ and that pollutes at level q is given by

U(θ, θ̃, q) = π(q, θ)− t(θ̃)− µ(θ̃)f(θ̃, q) (2)

Compared to the perfect information situation, a positive expected profit corre-

8Since the fine is constrained to be non negative, we forbid tax rebates. Consequently, in accordance
to the general practice, the agency cannot reward firms in case of compliance. See Swierzbinski (1994)
for an analysis of the incentive properties of tax rebates.

9Thanks to the Taxation Principle, the menu of contracts described above is equivalent to a non-
linear taxation schedule associated with monitoring and penalty policies (see, e.g., Laffont and Tirole,
1993). Indeed, the regulator could ask each firm to report its q̃ pollutions level and pay the corre-
sponding tax τ(q̃), where τ(·) is a non linear function of the declared emissions level. The firm is
audited with probability ξ(q̃) and pays a penalty ϕ(q̃, q) when the true pollution level q is different
from the reported q̃.
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sponds to an informational rent for the firm that enjoys it. Denote by R(θ) the ex-

pected profit of a type-θ firm that truthfully announces its type and pollutes according

to the regulator’s requirement. The first type of incentive constraints can be written

as

R(θ) ≡ U(θ, θ, q(θ)) ≥ U(θ, θ̃, q(θ̃)) (IC1)

for all θ and θ̃ in Θ, where U(θ, θ̃, q(θ̃)) corresponds to the expected profit of a type-θ

firm that perfectly mimics a firm of type θ̃, i.e., that announces θ̃, pays the tax t(θ̃)

and pollutes at q(θ̃). The constraints (IC1) insure that the firm does not improve

its expected profit by choosing the tax-pollution pair designed for another type. The

second type of incentive constraints is given by

R(θ) ≥ max
θ̃,q

U(θ, θ̃, q) (IC2)

for all θ. The difference between (IC1) and (IC2) is as follows: with the latter, the firm

does not constraint itself to mimic another existing type by choosing the pollution level

which corresponds to its announcement. Instead, it allows itself to choose any pollution

level. If the regulator’s mechanism satisfies (IC2), the firm is better off choosing the

tax-pollution pair designed for its type rather than produce any other emission level

and try to pay any other tax amount. Obviously, if (IC2) constraints are satisfied, so

are (IC1). Taking account of (IC2) constraints only is thus sufficient to pursue the

analysis. However, it is useful to distinguish between these two sets of constraints, as

shown below.

To satisfy (IC2), the regulator must be able to inflict severe punishments to the

firm. However, the fines that the regulator may inflict are usually bounded, i.e.

f(θ̃, q) ≤ F̄ (3)

where F̄ is the exogenous maximum fine due, for example, to limited firms’ liability.10

It is straightforward that the maximum fine should be applied to any firm that is

10This assumption has been largely discussed in the literature and is founded on several justifications
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caught shirking. This does not affect (IC1) constraints and relaxes (IC2) constraints.

Hence, we have f(θ̃, q) = F̄ whenever q 6= q(θ̃).11 The same reasoning applies if the

audit reveals that the firm is compliant with the rule: We can relax (IC2) constraints

by setting f(θ̃, q(θ̃)) = 0 without changing (IC1) constraints. Indeed, with risk neutral

firms, all incentives to truthfully report the type can be embedded in tax level t(θ).12

Consequently, penalty schedule f(·) reads as

f(θ, q) =

{
0 if q = q(θ)
F̄ otherwise

(4)

We thus have a simple penalty scheme: the payment is either 0 if the firm does not

evade, or is equal to the maximal penalty otherwise. This simplicity allows us to

separate the two aspects of the audit problems: the evasion problem is taken care of by

the inspection-penalty schedule, whereas the inefficient mimicking problem is deterred

by the tax-emissions schedule. Indeed, since compliance is not rewarded, the expected

profit of a type-θ firm with an incentive-compatible mechanism becomes

R(θ) = π(q(θ), θ)− t(θ) (5)

which corresponds to the informational rent of a firm when emissions are observable

without cost by the principal.

As mentioned above, auditing firms entails a cost that diminishes the expected

social welfare (1). This cost, by expanding public expenses, also diminishes the indirect

ranging from the limited liability of shareholders (the extension of firms liability to third parties, such
as lenders or contractors, has been recently considered, see Boyer and Laffont, 1997) to the functioning
of the judicial system (even if prescribed by laws, courts are usually reluctant to enforce penalties
that are not reasonably related to the damage). More technically, unlimited liability gives rise to the
improbable result that by using an arbitrarily large penalty in case of fraud, the agency can deter
tax evasion at almost no cost (as pointed out by Border and Sobel, 1987). One possibility often
investigated in the literature is to assume that maximal penalty is limited by the additional profit
the firms can extract from polluting. However, in our context, the audit does not allow the agency to
appraise the firms’ benefits. The maximum fine has thus to be the same for every firm.

11Moreover, we must consider the so-called Becker’s conundrum: Given that the inspection effort is
socially costly, it is optimal to increase penalties as much as possible and to minimize the probability
of costly auditing.

12Formally, any scheme q(·), t(·), µ(·), f(·) with f(q(θ), θ) ≥ 0 may be replaced by a schedule
q(·), t̂(·), µ(·), f̂(·) with t̂(θ) = t(θ) + µ(θ)f(q(θ), θ) and f̂(q(θ), θ) = 0.
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benefit of the environmental taxation. Assuming that the cost of auditing a type-θ firm

with a probability µ(θ) is given by cµ(θ), the social welfare (1) becomes13

W =

∫ θ̄

θ

{π(q(θ), θ)− dq(θ) + λt(θ)− (1 + λ)cµ(θ)} g(θ)dθ (6)

This objective is constrained by the participation of the firms, i.e.

R(θ) ≥ 0. (IR)

This insures that the firms’ revenues are at least equal to their profits if they choose

not to pollute (normalized to 0, see footnote 7). Finally, the audit probability must

satisfy

0 ≤ µ(θ) ≤ 1 (7)

for all θ ∈ Θ. The agency’s program may thus be written as

max
q(·),t(·),f(·),µ(·),R(·)

W : (IC1), (IC2), (IR), (5), (7) I

where W is given by (6), and the right hand sides of (IC1) and (IC2) are deduced from

(2) and (4).

3 Analysis

Problem I presents five sets of inequality constraints and cannot be solved directly. We

shall proceed by presenting intermediate results (lemmas 1 and 2) to transform this

general problem into a simple (although parametric) optimal control program (Program

III). The following lemma allows us to simplify the incentive and profit constraints.

Lemma 1 Assuming a non-decreasing emission schedule q(·) such that q◦(θ) ≥ q(θ)

for all θ ∈ Θ, the sets of constraints (IC1), (IR) and (IC2) reduce to

Ṙ(θ) = ∂θπ(q(θ), θ) (IC1’)

13The assumption of a constant marginal monitoring cost is made for analytical convenience. Ex-
tensions to more general cost functions are straightforward.
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R(θ) ≥ 0 (IR’)

and

R(θ̄) ≥ π◦(θ̄)−K (IC2’)

with

µ(θ) ≥ (K − π(q(θ), θ) + R(θ))/F̄ (8)

and where

K = min
θ
{t(θ) + µ(θ)F̄} (9)

Proof. (IR’), (IC1’) and the monotonicity constraint on q(·) are derived from standard

arguments (see, e.g., Guesnerie and Laffont, 1984). From (9), we can rewrite (IC2)

constraints as

K ≥ π◦(θ)−R(θ).

(IC2’) follows from the fact that

d

dθ
[π◦(θ)−R(θ)] = ∂θπ(q◦(θ), θ)− ∂θπ(q(θ), θ) =

∫ q◦(θ)

q(θ)

∂θqπ(u, θ)du

≥ 0

since ∂θqπ ≥ 0 when q(θ) ≤ q◦(θ). (9) also implies

K ≤ t(θ) + µ(θ)F̄

= (π(q(θ), θ)−R(θ)) + µ(θ)F̄

from (5). Rearranging terms gives (8).

Given (IC1’), in order to deter imitation of low profitability firms by high ones,

the informational rents have to be increased according to the (marginal) advantage

in term of profitability at the assigned pollution levels. Condition (IR’) states that

if the firm with the lowest type enjoys positive rent this guarantees that all other

(more profitable) firms will. A monotonic emission schedule and conditions (IC1’)
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and (IR’) are reminiscent of the reduced incentive constraints of standard adverse-

selection models, as explained in Guesnerie and Laffont (1984). In addition to these

no-mimicking conditions, (IC2’), (8) and (9) allow to deter tax evasion. Any shirking

firm would choose to pollute at its private optimum q◦(θ) and would announce the

type that minimizes the sum of the corresponding expected penalty and environmental

tax. Since π◦(θ) increases with θ, the most profitable firms extract the largest profit

from such a strategy. Condition (IC2’) states that by deterring the most profitable

firm from evading it ensues that all other (less profitable) firms will follow the policy

requirements. Evasion constraints reduce to (IC2’) under the assumption that the

agency does not oblige firms to over-pollute compared to their selfish levels, which we

assume in the following.14 Condition (8) recalls that minimal inspection efforts are

necessary to maintain these incentives, whereas (9) defines the minimal expected cost

of evading then incurred by shirking firms. Once it is verified that firms are deterred

from evading (by designing an audit policy that insures that the most profitable firms

will not), the simple fine schedule brings the situation back to the standard problem

of designing a contract in a pure adverse-selection setting: The mimicking incentive

constraints are the same as those of a pure contract problem with perfect observability

of the emission levels, and usual results on second-order conditions of these models

hold.15

14It may appear that the regulator finds it profitable to reallocate pollution towards the most
efficient firms so that they over-pollute compared to their status-quo levels (see corollary 4). However,
allowing for over-pollution at the optimum could result in evasion constraints binding for interior
firms’ types, involving more complicated algebra, as explained in Jullien (2000).

15However, to obtain a monotonic emission schedule conditions are more stringent than in the case
of free observability of emissions as explained below.
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After substituting (5) for t(·), Lemma 1 allows us to transform program I to

max
q(·),µ(·),R(·),K

∫ θ̄

θ
{(1 + λ)(π(q(θ), θ)− cµ(θ))− dq(θ)− λR(θ)} g(θ)dθ

s.t.

Ṙ(θ) = ∂θπ(q(θ), θ)
R(θ̄) ≥ π◦(θ̄)−K
R(θ) ≥ 0
µ(θ) ≥ (K + R(θ)− π(q(θ), θ))/F̄
0 ≤ µ(θ) ≤ 1

II

where the monotonicity condition on the emission schedule q(·) and conditions 0 ≤

q(·) ≤ q◦(·) are neglected. We thus have to verify that these conditions hold with the

emission scheme solution of program II.

This program may be simplified further by observing that constraints (IR’) and (8)

are binding at the optimum, as stated formally in the following lemma.

Lemma 2 At the optimum of program II we have

(i) R(θ) = 0

(ii) µ(θ) = (K + R(θ)− π(q(θ), θ))/F̄ for all θ ∈ Θ.

(iii) µ(θ) > 0 whenever q(θ) < q◦(θ)

Proof. (i). Assume R(θ) > 0 at the optimum. Using (IC1’), we have

R(θ) = R(θ) +

∫ θ

θ

∂θπ(q(u), u)du.

Since R(·) affects the program’s objective negatively, reducing R(θ) increases the ob-

jective while satisfying the constraints, hence a contradiction. (ii). Assume that (8)

is slack on a non-degenerate subset Θ at the optimum. We may reduce µ(θ) slightly

on this subset and still satisfy (8). This diminishes audit cost and thus increases the

objective, hence a contradiction. (iii). We have

K + R(θ)− π(q(θ), θ) ≥ K + R(θ)− π◦(θ) ≥ 0
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where the last inequality comes from (IC2). So, unless q(θ) = q◦(θ), we have µ(θ) > 0.

By (i), the tax collected on the lowest profitable firm corresponds to the entire

benefit it obtains from polluting. Since informational rents are increasing, the other

(more profitable) firms benefit from the asymmetric information. As stated point (ii),

at the optimum, the expected cost of evading is the same whatever the announcement,

given by K = t(θ)+µ(θ)F̄ for all θ. Since this cost is constant, the optimal tax schedule

and inspection rate are negatively related: The lower the tax paid by the firm, the

higher the probability it will be inspected. Since q(·) and t(·) are non-decreasing, the

inspection rate is thus a non-increasing function of the firm’s type. Consequently, the

more a firm pollutes, the less likely it is to be inspected. This can be easily understood:

One of the agency’s tasks is to deter firms from cheating about their pollution levels.

It is tempting for a firm to evade by announcing a low emission level. To deter such

shirking, the agency has thus to increase the probability of inspection for firms paying

low taxes. Finally, by (iii), the agency has to check compliance if it wants to induce

lower emission levels than the selfish ones. It may arise that µ = 1 for low types.

Using (2), we can substitute the right hand side of (8) for µ in program II to obtain

max
q(·),R(·),K

∫ θ̄

θ

{
(1 + λ)(π(q(θ), θ)− c(K + R(θ)− π(q(θ), θ))/F̄ )− dq(θ)− λR(θ)

}
g(θ)dθ

s.t.

Ṙ(θ) = ∂θπ(q(θ), θ)
R(θ) = 0
R(θ̄)− π◦(θ̄) + K ≥ 0

III

where constraint µ ≤ 1 is neglected, i.e.

R(θ)− π(q(θ), θ) + K ≤ F̄ (10)

Program III is a parameterized optimal control problem (with K as the parameter),

where informational rent R(·) stands for the state variable and emission schedule q(·)

for the control variable. Since K affects the objective of program III negatively, the
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last inequality of this program is binding at the optimum. The resolution of program

III is given in the appendix. This solution solves agency problem I if the monotonicity

constraint on q(·) and conditions 0 ≤ q(·) < q◦(·) and (10) are satisfied. We shall

go back to these constraints after having characterized the unconstrained emission

schedule given in the following proposition.

Proposition 3 The solution of program III, emission schedule q̂(·), satisfies

∂qπ(q̂(θ), θ) =
d

1 + λ
− c

F̄
∂qπ(q̂(θ), θ) + M(θ)∂θqπ(q̂(θ), θ) (11)

where

M(θ) ≡ λ

1 + λ

1−G(θ)

g(θ)
− c

F̄

G(θ)

g(θ)

Proof. See appendix.

Compared to perfect information levels, the emission schedule involves two addi-

tional terms in the right hand side of (11), one reflects the evasion problem and the

other is due to the adverse selection problem. To interpret (11), it is useful to con-

sider the two benchmark cases of a costly audit-cum-perfect information and a free

audit-cum-asymmetric information. Depicted in Fig. 1 are the emission schedules

corresponding to these different assumptions.

To understand the direct effect of the evasion problem on the emissions schedule,

assume first that the regulator has perfect knowledge of firms’ types but that the

agency has to audit each firm to discover their emission levels. Denote by e(·) the

optimal emission schedule in that case. Since deterring imitation is not relevant, (IC1)

constraints do not matter. We have R(θ) = 0, i.e. t(θ) = π(e(θ), θ). However, the

agency still has to deter evasion, i.e.; that firms pay the tax amounts corresponding to

their type and pollute accordingly. When eliminating the term due to adverse selection

in (11), the optimal emission schedule satisfies

∂qπ(e(θ), θ) =
d

1 + λ

1

1 + c/F̄
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and thus e(·) > q∗(θ), i.e.; we have under-deterrence compared to first-best levels.

Indeed, to deter any deviation of firms from their assigned emission levels, the agency

has to inspect the type-θ firm at a minimal rate µ(θ) = (K−π(q(θ), θ))/F̄ . Compared

to the perfect information level, a dq increase in the type-θ emission level induces a

decrease in the inspection cost of (d/dq)[cµ] = −∂qπ(q∗(θ), θ)c/F̄ . The corresponding

marginal social loss is (1 + λ)∂qπ(q∗(θ), θ)− d = 0. The agency will thus increase the

emission schedule above that of perfect information.

Second, assume that audit is free (c/F̄ is negligible) but does not reveal the firms’

types. We would have the usual adverse-selection quantity schedule (à la Baron and

Myerson, 1982, B-M hereafter), given by

∂qπ(qBM(θ), θ) =
d

1 + λ
+

λ

1 + λ

1−G(θ)

g(θ)
∂θqπ(qBM(θ), θ)

which states that, due to asymmetric information, the optimal emission schedule is

lower than the perfect information one except for firms with the highest type, as de-

picted in Fig. 1. In that case, compared to the perfect information level, the principal

has indeed to trade-off the social welfare gain of a dq increase in emissions for g(θ)

type-θ firms, equal to (1 + λ)∂qπ(q∗(θ), θ) − d = 0, with the social losses of decreased

tax collections (increased informational rents) on all firms of type higher than θ, that

amount to (1−G(θ))λ∂θqπ(q∗(θ), θ) > 0. The optimal schedule solution of this trade-

off qBM(·), allows the agency to deter firms of type higher than a given θ to mimic the

type-θ firm. Observe that this adverse-selection effect induces marginal tax rates that

decrease with the firms’ type and that the most efficient firms only have a marginal

tax rate equal to the perfect information level.

In the general case where the audit is costly and reveals only the firms’ emission

levels, there is an additional distortion that affects the emission schedule. It is equal

to

−(1 + λ)c/F̄G(θ)∂θqπ(q(θ), θ) (12)
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and can be interpreted as follows. First, in addition to the usual mimicking adverse-

selection effects produced by a dq increase in the emission level of the type-θ firm, the

increase indirectly changes the inspection efforts on higher types. Indeed, to maintain

the same expected penalty when reporting a type greater than θ, the agency has

to increase the inspection efforts on these firms: since the dq increase induces a dR

increase for all firms with type greater than θ and have dµ/dR = 1/F̄ for all θ (recall

that increased rents correspond to lower tax burdens). This induces an additional

marginal social cost equal to

(1 + λ)c/F̄ (1−G(θ))∂θqπ(q(θ), θ).

However, the increase in the type-θ̄ informational rent allows the agency to reduce

the expected cost of evading K, since we have R(θ̄) = π◦(θ̄)−K at the optimum, i.e.

at the optimum, evading or paying their taxes must be indifferent to these firms. In

turn, this decrease induces a lower inspection rate for all firms (since dµ/dK = 1/F̄ ).

The marginal saving of inspection costs is given by

(1 + λ)c/F̄ ∂θqπ(q(θ), θ).

Consequently, inspection efforts are unaffected for the firms with type higher than

θ (the increase in their rents R(·) and the decrease in K let µ(·) unchanged), but

they are reduced for types lower than θ (the decrease in K is not compensated by

an increase in their informational rents). To sum it up, with costly enforcement and

self-reporting, the agency has to account for two opposite adverse-selection effects:

under-deterrence increases the informational rents of the most profitable firms, but

greater informational rents allow for a decrease in the inspection effort on less efficient

firms. The result of the agency’s trade-off is an emission schedule that is steeper than

the previous ones, as depicted in Fig. 1. Observe that mimicking and shirking adverse-

selection effects distort the emission schedule in opposite directions around emission
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levels e(θ), which the regulator would implement if he knew the firms’ type when taking

the audit costs into account. As depicted in Fig. 1, there is a unique firm’s type θs

for which these adverse-selection effects annihilate each other, i.e.; M(θs) = 0 which

implies q̂(θs) = e(θs). More generally, we have the following results:

Corollary 4 Emission schedule q̂(·) solution of program III satisfies

(i) For all θ < θs, q̂(θ) < e(θ) and for all θ > θs, q̂(θ) > e(θ), where θs is given by

θs = G−1

(
λ

λ + (1 + λ)c/F̄

)
and we have θ < θs < θ̄, dθs/dλ > 0 and dθs/d[c/F̄ ] < 0.

(ii) q̂(θ) < q∗(θ) if ∂θqπ(q∗(θ), θ) > c/F̄ g(θ)/λ.

(iii) q̂(θ̄) = q◦(θ̄) if ∂θqπ(q◦(θ̄), θ̄) ≥ g(θ)/((1 + λ)c/F̄ ).

Proof. See appendix.

By (i), the mimicking effect dominates evasion for low profitability firms. The

agency thus designs a tax schedule that induces these firms to under-pollute compared

to schedule e(·). If the marginal profit of pollution increases rapidly with the type at

perfect information emission levels q∗(·), this mimicking effect may lead the agency

to enforce pollution levels below perfect information emission levels for low types as

stated in point (ii). This is the case in Fig. 1 for all types lower than θ2, where all

firms bellow θ1 have their emissions reduced to zero. For more profitable firms, the

shirking effect is dominant and leads the agency to induce higher emission levels than

e(·). As revealed in point (iii), when the marginal profit of pollution increases rapidly,

the agency may even give up pollution reduction for the higher types.16 This case is

also depicted in Fig. 1 where all firms with the emission levels of all firms with types

greater than θ3 have their equal their private optimum q◦(θ).

16It may even be socially optimal to induce the more profitable firms to over-pollute compared to
their selfish levels, see footnote 14.
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It is interesting at this point to comment briefly on the pattern of the optimal

policy in the case of negligible second-dividend aspects. When λ = 0, informational

rents R(θ) are no longer directly socially costly. However, they still affect monitoring

efforts and thus are indirectly costly, through pollution monitoring cost, as the objective

of program III indicates. Indeed, greater informational rents correspond to lower tax

payments. When tax payments are low, the agency has to increase the probability

of inspection to maintain the same expected payment for a would-be evading firm.

Consequently, inspection probabilities and informational rents are positively related

and the regulator still has an incentive to reduce rents in order to decrease monitoring

cost. As a result, when λ = 0, the mimicking adverse-selection effect disappears but

the shirking adverse-selection effect still matters in the determination of the optimal

pollution level. This appears clearly in equation (11), which can be written as

∂qπ(q̂(θ), θ) = d− c

F̄
∂qπ(q̂(θ), θ)− c

F̄

G(θ)

g(θ)
∂θqπ(q̂(θ), θ)

Observe that the first-best taxation rule (∂qπ = d) must still be corrected by two

terms. Both the impact of deterring tax evasion and the shirking adverse-selection

effect lead the regulator to implement higher emission levels than the first-best ones.

Finally, in the general case, when (10) does not bind, that is, when inspection rate

µ is inferior to 1 everywhere, emission schedule e∗(·) solution of program I is given by

e∗(θ) = q̂(θ) for all θ ∈ Θ (whenever 0 ≤ q̂(θ) ≤ q◦(θ)). To complete the analysis, the

last proposition characterizes the opposite case of an inspection rate µ equal to 1 for

the low types firms. As stated formally, the entire regulation schedule is affected, with

every firm’s emission levels larger than in the unconstrained case.

Proposition 5 If (10) binds on a Θ subset, the solution of program I, emission sched-

ule e∗(·), verifies e∗(θ) > q̂(θ) for all θ ∈ Θ (whenever q̂(θ) < q◦(θ)).

Proof. See appendix.
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It remains to verify that the second-order conditions for an incentive-compatible

policy are satisfied. Differentiating (11) gives

0 =
[
(1 + c/F̄ )∂qqπ(q̂(θ), θ)−M(θ)∂θqqπ(q̂(θ), θ)

]
q̂′(θ) (13)

−M(θ)∂θθqπ(q̂(θ), θ)−
[
M ′(θ)− (1 + c/F̄ )

]
∂θqπ(q̂(θ), θ)

With inverse hazard rates, i.e. d/dθ[G(θ)/g(θ)] > 0 and d/dθ[(1−G(θ))/g(θ)], M(·)

is non-increasing. However, since M(θ) > 0 and M(θ̄) < 0, the sign of q̂′(θ) is ambigu-

ous, even under the usual assumptions about third derivatives of agent’s profit function

which are commonly made in standard adverse selection problems. Consequently, the

second-order conditions on the emission schedule are more likely to be binding when

the emissions are costly to observe than when assuming perfect observation of pollution

levels.17

However, in the particular case of profit functions linear in θ, e.g. π(q, θ) = θB(q)

where B is an increasing and a concave function of q satisfying B′(0) = +∞, monotonic

hazard rates are sufficient to insure an increasing emission schedule. Indeed, in that

case we have q̂(θ) > 0 for all θ only if

1 +
c

F̄
> M(θ)/θ (14)

or equivalently

θg(θ) >
λ

1 + λ

1

1 + c/F̄

that also implies q̂′(θ) > 0 using (13). If (14) is not satisfied, firms with type θ < θ1

will choose not to pollute (i.e.; we have q̂(θ) = 0 for all θ ≤ θ1) , with θ1 satisfying

(1 + c/F̄ )θ1 −M(θ1) = 0

and the second-order condition is trivially satisfied for all θ < θ1.

17When the monotonicity constraints on the emission schedule bind, the optimal solution entails
the bunching of individuals (see Guesnerie and Laffont, 1984, for a formal treatment).
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To complete the analysis, it is worth considering the case of pollution’s marginal

benefits which decrease with firms’ profitability parameter θ, i.e.; πqθ < 0 (together with

πθ > 0). Compared to the previous analysis, the optimal emission schedule decreases

according to type. Moreover, in that case, the least profitable firms are the most

tempted by tax evasion. Indeed, it is easy to show that the constraint corresponding

to (IC2’) is R(θ)−π◦(θ)+K ≥ 0. As (IR’) is still binding at the optimum, this evasion

constraint simplifies to K ≥ π◦(θ) and is binding at the optimum since K affects the

regulator’s objective negatively. On the other hand, the other firms are still able to

extract informational rents by understating their types. This implies that the adverse

selection term in (11) has the opposite sign, and thus the adverse selection effects

described above distort the optimal emission schedule in opposite directions.

4 Environmental standard policy

In this section, we investigate the properties of the typical command-and-control policy

of a pollution standard enlarged to its enforcement aspects. As we will show, an

increasing fine schedule allows the agency to introduce efficiency considerations in an

otherwise rather inefficient policy. The standard policy then appears to be a restricted

case of a taxation policy because of the “marginal deterrence” induced by the penalty

schedule of its enforcement policy. To make this point more striking, we consider the

simplest case of a standard policy where the firms do not report their emission levels

to the agency: They simply pay a licence fee k that allows them to pollute up to an

uniform quota z. Since the firms’ pollution q levels are not reported to the agency and

because the agency cannot distinguish between firms, it audits all firms with the same

inspection rate µ. The task of the agency is thus to decide on a z standard level, a

k licence and a fine schedule f(q) (along with a monitoring rate µ), where f(q) ≥ 0

whenever the audit reveals a q emission level greater than z. In the following, standard

z will be implicitly defined as the maximal emission level with a null fine.
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Thanks to the taxation principle, we can use the mechanism-design approach and

consider that a uniform standard policy is given by {z, k, µ, F (θ̃), q(θ̃) : θ̃ ∈ Θ} where

θ̃ is the firm’s announcement, q(θ̃) and F (θ̃) = f(q(θ̃)) two functions of this announce-

ment, and z, k, µ are three constants. The interpretation of this mechanism reads as

follow: The firm truthfully reports its type θ, and pollutes q(θ) which may be greater

or lower than standard z. Whenever q(θ) is lower than z, it pays only a lump sum

licence k, whereas it is charged an expected amount k+µF (θ) for levels greater than z.

The monitoring rate is constrained to be the same for all firms, and we have F (θ̃) = 0

whenever q(θ̃) ≤ z.

Inflicting the maximum fine whenever the firms exceed the standard is no longer

socially efficient. Indeed, fines proportional to the fraud may induce profitable firms to

pollute over the standard and thus restore the efficiency of the environmental policy. In

that case, the expected fine µF (θ̃) for pollution q(θ̃) > z is close to an environmental

tax, as discussed in the previous section.18

The type-θ firm’s expected profit with a standard policy is given by

u(θ, θ̃) = π(q(θ̃), θ)− k − µF (θ̃) (15)

and the schedule is incentive-compatible if, for all θ ∈ Θ,

R(θ) ≡ u(θ, θ) ≥ u(θ, θ̃)

and

R(θ) ≥ max
q

π(q, θ)− k − µF̄ (16)

We also have to take account of (IR) constraints. However, it may be worthwhile

when defining the standard policy to exclude (implicitly) the lower profitability firms

18A standard corresponds to the particular (and constrained) case of a taxation policy. The mech-
anism proposed is truly stochastic, since payment depends on the probability of inspection µ. In the
unconstrained taxation case, the payment structure is p(θ) = t(θ) + µ(θ)f(θ, q(θ)) = t(θ), whereas it
is given by p(θ) = k + µF (θ) (for all θ where q(θ) > 0) in the case of a standard. The mechanism is
thus constrained by t(θ) = k and µ(θ) = µ, and economic incentives are given through the expected
penalty µF (θ) only.
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by charging a large fee. Indeed, there is an obvious trade-off between the licence fee

charged and the number of firms that can afford to pay it. As a consequence, for a

given k licence, only firms with type greater than threshold level θ0 ≥ θ benefit from

polluting, and we have R(θ0) = 0.

Taking the licence and the fine schedule into account, the social welfare becomes

W =

∫ θ̄

θ0

{π(q(θ), θ)− dq(θ) + λ(k + µF (θ))} g(θ)dθ − (1 + λ)cµ

Using previous arguments (see lemma 1), an incentive mechanism must satisfy

Ṙ(θ) = ∂θπ(q(θ), θ) (17)

along with non-decreasing emission schedule q(·) and

R(θ̄) ≥ π◦(θ̄)− k − µF̄ (18)

which is binding at the optimum of the agency’s program and defines µ. The fine is

deduced from (15) according to the relation

µF (θ) = π(q(θ), θ)−R(θ)− k

and since 0 ≤ F (·) ≤ F̄ , we must have

0 ≤ π(q(θ), θ)−R(θ)− k ≤ µF̄ (19)

for all θ, where the last inequality is satisfied whenever (16) holds (and thus whenever

(18) holds).

The agency’s program is thus given by

max
q(·),R(·),k,θ0

∫ θ̄

θ0
{(1 + λ)π(q(θ), θ)− dq(θ)− λR(θ)}g(θ)dθ − (1 + λ)

c

F̄
(π◦(θ̄)−R(θ̄)− k)

s.t.

Ṙ(θ) = ∂θπ(q(θ), θ)
R(θ0) = 0
π(q(θ), θ)−R(θ)− k ≥ 0
π◦(θ̄)−R(θ̄)− k ≤ F̄

IV
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where θ0 ≥ θ and where the monotonicity condition on the emission schedule q(·) is

neglected and must thus be verified afterwards.

Program IV is a simple parametrized optimal control problem, where R(·) stands

for the state variable, q(·) for the control variable and k for the parameter. The solution

of this program is characterized in the following proposition, assuming that the last

constraint is slack (i.e. µ < 1).

Proposition 6 Assuming an interior solution in µ, the solution of program IV satisfies

(i) k = π(z, θ0) > 0.

(ii) F (θ) = 0 and q(θ) = z < q◦(θ0) for all θ0 ≤ θ ≤ θ̂ with θ̂ > θ0.

(iii) z and θ̂ satisfy

0 = −λ(1−G(θ0))
∂qπ(z, θ0)

∂qπ(z, θ̂)
+ d

G(θ̂)−G(θ0)

∂qπ(z, θ̂)
−
∫ θ̂

θ0

∂qπ(z, x)

∂qπ(z, θ̂)
g(x)dx

−(1 + λ)
c

F̄
+ λ(1−G(θ̂))

0 = ((1 + λ)∂qπ(z, θ̂)− d)g(θ̂) + ((1 + λ)
c

F̄
− λ(1−G(θ̂)))∂θqπ(z, θ̂)

with θ0 ≥ θ, and if θ0 > θ we have

0 = (1 + λ)π(z, θ0)− dz.

(iv) For all θ > θ̂, q(θ) satisfies

∂qπ(q(θ), θ) =
d

1 + λ
− c

F̄

1

g(θ)
∂θqπ(q(θ), θ) (20)

+
λ

1 + λ

1−G(θ)

g(θ)
∂θqπ(q(θ), θ)

Proof. See appendix.

By (i), it is socially efficient to impose a positive license fee on firms. The fee

corresponds to the benefit the least profitable firms obtain from polluting at the stan-

dard. These firms thus do not benefit from the policy, while firms of lower type, if any,
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choose not to pollute because the benefit from polluting up to the standard is smaller

than the fee they have to pay. As revealed by (ii), up to an intermediate profitability

type θ̂, low profitable firms pollute at the standard in accordance to their licence and

consequently are not fined when inspected. For these firms the standard corresponds

to a real constraint compared to the levels they would have chosen without regulation.

More profitable firms exceed the standard. The emission levels they choose is given by

(20). These levels result from the agency trade-offs between adverse selection costs and

audit costs. Indeed, as observed previously, if λ = 0, the inspection cost induces an

increase in the emission levels compared to those of perfect information. On the other

hand, if c/F̄ is negligible, the adverse selection effect is dominant, and the emission

levels are lower than with perfect information for all but the most profitable firms.

Consequently, depending on the efficiency of the firm, the marginal expected penalty

for violating the standard can be higher or lower than the marginal damage.

Again, one can easily verify by differentiating (20) that the usual assumptions

about third derivatives of the profit function and on hazard rates are not sufficient

to guarantee an increasing pollution level. The optimal policy may thus involve a

bunching of individuals on subset [θ̂, θ̄].

5 Conclusion

We have studied the optimal environmental taxation and standard policies under asym-

metric information with an imperfect and costly audit. Compared to the results of

Baron (1985) and Laffont (1994), we have shown that the threat of being audited al-

ter the usual incentives of firms to over-estimate their abatement costs. In particular,

depending on firms’ abatement costs, the optimal policy may involve over or under-

deterrence compared to perfect information levels. We also showed that a pollution

standard is close to an environmental tax once the economic incentives of the accom-

panying enforcement policy are considered.
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The main policy implications of our analysis are the following. Environmental

quality and fiscal considerations are conflicting objectives. The textbook Pigovian

tax allows the regulator to raise some revenue while reducing pollution to efficient

levels. Assuming that firms do not evade, the agency does not have to worry about

the firms’ private information to obtain some tax revenue from the policy. However,

the environmental efficiency of the policy is severely reduced if the regulator primarily

wants to raise tax revenue with an environmental tax. The environmental quality is

reduced since the agency grants more allowances to pollute in order to increase the

tax base. Moreover, the environmental policy suffers from the usual woes of the other

tax systems: Tax evasion and inefficient uses of plants or production facilities reduce

the tax burden. The regulator has thus to design an incentive tax schedule to enhance

economic efficiency and to perform costly monitoring activities to enforce the policy.

We demonstrated that deterring evasion through pollution monitoring and screening

heterogenous firms through taxation are intimately related. From a fiscal standpoint,

environmental taxes are more efficient than standards. Informational rents left to firms

are larger under an environmental standard than with a taxation policy. Whether this

result extends to the case of tradable pollution permits remains an open question and

needs further research. However, from an environmental standpoint, standards may

appear more efficient. Indeed, as shown in an illustrative example in Bontems and

Bourgeon (2002), total pollution may be lower under the optimal standard than under

the optimal tax. These computations also show that administrative costs may be

greater with a taxation policy than with a standard.

Finally, as usual in most models of audit with commitment, the tax policy analyzed

here suffers from a time inconsistency problem. Indeed, no audit is needed ex-post as

all firms are compliant with the optimal pollution scheme. In the case where the

agency’s inspection effort is not readily verifiable by firms, such a commitment seems

unrealistic (for more on this problem, see Khalil, 1997). This is not the case for the
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command-and-control policy of a pollution standard. Indeed, the monitoring of the

firms allows the regulator to raise some revenues in addition to the licence fees in case

of standard violations.
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Figure 1: Optimal emission schedule and asymmetric information.
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Appendix

A Proof of proposition 3

With ν(·) as the Lagrange multipliers for (IC1’) and by τ ≥ 0 the multiplier for (IC2’),

the Lagrangian of program III is given by

L =

∫ θ̄

θ

{
(1 + λ)(1 +

c

F̄
)π(q(θ), θ)− dq(θ)− (λ + (1 + λ)

c

F̄
)R(θ)

}
g(θ)dθ

−(1 + λ)K
c

F̄
+

∫ θ̄

θ

ν(θ)(∂θπ(q(θ), θ)− Ṙ(θ))dθ + τ(R(θ̄)− π◦(θ̄) + K)

Integrating by parts gives∫ θ̄

θ

ν(θ)Ṙ(θ)dθ = ν(θ̄)R(θ̄)− ν(θ)R(θ)−
∫ θ̄

θ

ν̇(θ)R(θ)dθ

and the Lagrangian reduces itself to

L =

∫ θ̄

θ

H(θ)dθ − ((1 + λ)
c

F̄
− τ)K −R(θ̄)(ν(θ̄)− τ)− τπ◦(θ̄)

where

H ≡ ((1 + λ)(1 + c/F̄ )π(q(θ), θ)− dq(θ))g(θ)

+R(θ){ν̇(θ)− (λ + (1 + λ)c/F̄ )g(θ)}+ ν(θ)∂θπ(q(θ), θ)

Assuming an interior solution, pointwise maximizations give

∂H

∂q
= 0 = g(θ)((1 + λ)(1 + c/F̄ )∂qπ(q(θ), θ)− d) (21)

+ν(θ)∂θqπ(q(θ), θ)

∂H

∂R
= ν̇(θ)− (λ + (1 + λ)c/F̄ )g(θ) = 0 (22)

with transversality condition

∂L
∂R(θ̄)

= τ − ν(θ̄) = 0 (23)
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and with first-order condition for K given by

∂L
∂K

= τ − (1 + λ)
c

F̄
= 0. (24)

Integrating (22) gives

ν(θ̄)− ν(θ) = (λ + (1 + λ)c/F̄ )(1−G(θ))

where

ν(θ̄) = (1 + λ)c/F̄

using (23) and (24). We thus have

ν(θ) = (1 + λ)c/F̄ − (λ + (1 + λ)c/F̄ )(1−G(θ))

= (1 + λ)c/F̄G(θ)− λ(1−G(θ)) (25)

Plugging this expression into (21) and rearranging terms gives (11).

B Proof of corollary 4

Point (i) is straightforward. We have q̂(θ) < q∗(θ) if (∂H/∂q)|θ=θ,q=q∗ < 0 and q̂(θ̄) =

q◦(θ̄) if (∂H/∂q)|θ=θ̄,q=q◦ ≥ 0. Using (25) and (21),

∂H

∂q

∣∣∣∣
θ=θ,q=q∗

= g(θ)((1 + λ)(1 + c/F̄ )∂qπ(q∗(θ), θ)− d)− λ∂θqπ(q∗(θ), θ)

and

∂H

∂q

∣∣∣∣
θ=θ̄,q=q◦

= g(θ̄)((1 + λ)(1 + c/F̄ )∂qπ(q◦(θ̄), θ̄)− d) + (1 + λ)c/F̄ ∂θqπ(q◦(θ̄), θ)

where ∂qπ(q∗(θ), θ) = d/(1 + λ) and ∂qπ(q◦(θ̄), θ̄) = 0 by definition, which gives (ii)

and (iii).
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C Proof of proposition 5

With γ(θ) ≥ 0 as the Lagrange multiplier for constraints (10), first-order conditions

(21)-(24) become

∂H

∂q
= 0 = g(θ)((1 + λ)(1 + c/F̄ )∂qπ(q(θ), θ)− d) (26)

+ρ(θ)∂θqπ(q(θ), θ) + γ(θ)∂qπ(q(θ), θ) ≥ 0 (q ≤ q◦)

∂H

∂R
= ρ̇(θ)− (λ + (1 + λ)c/F̄ )g(θ)− γ(θ) = 0 (27)

∂L
∂R(θ̄)

= τ − ρ(θ̄) = 0 (28)

∂L
∂K

= τ − (1 + λ)
c

F̄
−
∫

Θ

γ(θ)dθ = 0. (29)

where ρ(·) is the costate variable. Integrating (27) gives

ρ(θ̄)− ρ(θ) = λ + (1 + λ)c/F̄ +

∫
Θ

γ(θ)dθ

= λ + τ

= λ + ρ(θ̄)

using (29) and (28). Consequently, using (25), ρ(θ) = −λ = ν(θ) and since

ρ̇(θ) = (λ + (1 + λ)c/F̄ )g(θ) + γ(θ)

≥ (λ + (1 + λ)c/F̄ )g(θ)

= ν̇(θ)

by (22), we thus have ρ(θ) ≥ ν(θ). Moreover, since µ(·) is non-increasing, if constraints

(8) bind over a subset of Θ, they bind over a [θ, θ1] interval which implies ρ(θ) > ν(θ)

for all θ > θ. In that case, whenever e∗(θ) < q◦(θ), (26) gives

∂qπ(e∗(θ), θ) =
d− ρ(θ)/g(θ)∂θqπ(e∗(θ), θ)

(1 + λ)(1 + c/F̄ )∂qπ(e∗(θ), θ) + γ(θ)

<
d− ν(θ)/g(θ)∂θqπ(e∗(θ), θ)

(1 + λ)(1 + c/F̄ )∂qπ(e∗(θ), θ)

and thus e∗(θ) > q̂(θ) whenever e∗(θ) < q◦(θ).
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D Proof of proposition 6

With ν(·) and τ(·) as the multipliers for (17) and (19) respectively (with τ(·) ≥ 0), the

Lagrangian of program IV is given by

L =

∫ θ̄

θ0

H(θ)dθ − (1 + λ)
c

F̄
(π◦(θ̄)−R(θ̄)− k)− ν(θ̄)R(θ̄) + ν(θ0)R(θ0)

where

H ≡ ((1 + λ)π(q(θ), θ)− dq(θ))g(θ) + ν(θ)∂θπ(q(θ), θ)

+R(θ){ν̇(θ)− λg(θ)}+ τ(θ)(π(q(θ), θ)−R(θ)− k)

Pointwise maximizations give

∂H

∂q
= ((1 + λ)∂qπ(q(θ), θ)− d)g(θ) + ν(θ)∂θqπ(q(θ), θ) (30)

+τ(θ)∂qπ(q(θ), θ) ≥ 0 (= 0 if q(θ) < q◦(θ))

∂H

∂R
= ν̇(θ)− λg(θ)− τ(θ) = 0 (31)

First-order conditions for k and θ0 are given by

∂L
∂k

= −
∫ θ̄

θ0

τ(θ)dθ + (1 + λ)c/F̄ ≤ 0 (= 0 if k > 0) (32)

∂L
∂θ0

= −H(θ0) + ν̇(θ0)R(θ0) + ν(θ0)Ṙ(θ0) ≤ 0 (= 0 if θ0 > θ). (33)

and transversality conditions by

∂L
∂R(θ̄)

= −ν(θ̄) + (1 + λ)c/F̄ = 0 (34)

and

∂L
∂R(θ0)

= ν(θ0) ≤ 0 (= 0 if R(θ0) > 0). (35)

(i) and (ii). Since c/F̄ > 0 we have, from (32), k > 0 and τ(θ) > 0 for all θ in

a non-negligible subset Θ1 of Θ. Over Θ1, we thus have R(θ) = π(q(θ), θ) − k which

gives F (θ) = 0. Since F (·) is non-decreasing, we must have Θ1 = [θ0, θ̂] with θ̂ >
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θ0. Moreover, from (17), we must have (d/dθ)π(q(θ), θ) = ∂θπ(q(θ), θ) which implies

∂qπ(q(θ), θ)q̇(θ) = 0 and thus either q(θ) = q◦(θ) (we then have ∂qπ(q◦(θ), θ) = 0) or

q(θ) = z for all θ ≤ θ̂. Assuming q(θ) = q◦(θ), (30) implies

ν(θ)∂θqπ(q◦(θ), θ) > g(θ) > 0

for all θ ∈ [θ0, θ̂). By integrating (31) over [θ, θ̄] and using (34), we have

ν(θ) = (1 + λ)c/F̄ − λ(1−G(θ))−
∫ θ̄

θ

τ(x)dx (36)

and thus, using (32),

ν(θ0)∂θqπ(q◦(θ0), θ0) =

(
(1 + λ)c/F̄ − λ(1−G(θ0))−

∫ θ̄

θ0

τ(θ)dθ

)
∂θqπ(q◦(θ0), θ0)

= −λ(1−G(θ0))∂θqπ(q◦(θ0), θ0) ≤ 0

hence a contradiction. We thus have q(θ) = z < q◦(θ0) for all θ ∈ [θ0, θ̂]. Using (32)

and (36), k > 0 implies ν(θ0) = −λ(1−G(θ0)) < 0 and thus R(θ0) = π(z, θ0)− k = 0.

(33) simplifies to

−((1 + λ)π(z, θ0)− dz)g(θ0) ≤ 0 ( = 0 if θ0 > θ)

and we have θ0 > θ if (1 + λ)π(z, θ)− dz > 0.

(iii). Plugging (31) into (30) gives, for all θ ∈ [θ0, θ̂),

ν̇(θ) + ν(θ)∂θqπ(z, θ)/∂qπ(z, θ) + (1− d/∂qπ(z, θ))g(θ) = 0

which is a linear first-order differential equation in ν(·). The solution is given by

ν(θ) = h(θ)r(θ) where

ṙ(θ) + r(θ)∂θqπ(z, θ)/∂qπ(z, θ) = 0

ḣ(θ)r(θ) + (1− d/∂qπ(z, θ))g(θ) = 0

which gives r(θ) = 1/∂qπ(z, θ) and

h(θ) = h(θ0) + d[G(θ)−G(θ0)]−
∫ θ

θ0

∂qπ(z, x)g(x)dx

38



From ν(θ0) = −λ(1−G(θ0)) we have

ν(θ) = −λ(1−G(θ0))
∂qπ(z, θ0)

∂qπ(z, θ)
+ d

G(θ)−G(θ0)

∂qπ(z, θ)
−
∫ θ

θ0

∂qπ(z, x)

∂qπ(z, θ)
g(x)dx

for all θ < θ̂. By continuity of ν(·), we have ν(θ̂
−
) = ν(θ̂

+
) hence

−λ(1−G(θ0))
∂qπ(z, θ0)

∂qπ(z, θ̂)
+d

G(θ̂)−G(θ0)

∂qπ(z, θ̂)
−
∫ θ̂

θ0

∂qπ(z, x)

∂qπ(z, θ̂)
g(x)dx = (1+λ)

c

F̄
−λ(1−G(θ̂))

From (30) and (36), we also obtain

((1 + λ)∂qπ(z, θ̂)− d)g(θ̂) + ((1 + λ)c/F̄ − λ(1−G(θ̂)))∂θqπ(z, θ̂) = 0

(iv) For all θ > θ̂, (36) gives

ν(θ) = (1 + λ)c/F̄ − λ(1−G(θ)).

Plugging this expression into (30) gives (20).
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