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Abstract We consider a finite number of particles characterised by their
positions and velocities. At random times a randomly chosen particle, the
follower, adopts the velocity of another particle, the leader. The follower
chooses its leader according to the proximity rank of the latter with respect
to the former. We study the limit of a system size going to infinity and,
under the assumption of propagation of chaos, show that the limit equation
is akin to the Boltzmann equation. However, it exhibits a spatial non-locality
instead of the classical non-locality in velocity space. This result relies on the
approximation properties of Bernstein polynomials.
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1 Introduction

In this paper, we explore collective dynamics driven by rank-based interac-
tions, i.e. that’s to say interactions determined by the rank of the agents with
respect to certain criterion. There are many examples where such interactions
take place. In economics for instance, it was extensively analysed in [14] that
agents are more sensitive to their rank compared to others (salary or wealth
for example) than their own independant cardinal level. To go further, [17]
studies, in an organisation, compensation schemes which pay according to an
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individual’s ordinal rank rather than their output level. Such payoff based
on the rank approach also appears very naturally in a variety of economics
applications such as bids, the labour market, portfolio management, the oil
market, academic production, reputation, etc.

Evolutionary game theory studies the evolution of strategies/genes trans-
mitted through natural selection. In chimpanzees as in cockroaches a group
is formed of a dominant male, females and lower order males. Only the domi-
nant male is supposed to mate with the females. However, when the dominant
male is absent, the females also reproduce with other males giving the pref-
erence to males in descending order [12]. It is also known that the rank of an
offspring strongly depends on the rank of its mother [16], so that in the repli-
cator dynamic process the rank increases the chance of reproduction. The
study of such models requires taking into account interactions depending on
the rank of the agents.

In this article we focus on the dynamics of bird flocks. There is a wide-
spread literature of flocking models where the birds react to their neigh-
bours as a function of the neighbours’ distance from them within the flock.
These are the co-called “metric” interactions. In this context, dynamics based
on alignment [20], consensus [11] or attraction-repulsion see [3,4] have been
widely studied. However, there has been recent compelling evidence [1] that
interactions within bird flocks are mostly metric free, as the birds react pri-
marily with a limited number of their nearest neighbours irrespective of
the distances between them. This observation has motivated the concept
of “topological interaction”, which has been widely echoed in the scientific
literature [5,7,10,13,19].

Our goal is to investigate the large size limit of a system of agents in-
teracting through topological interactions. Specifically, we consider a leader-
follower model [8,9] where at random times a randomly chosen bird, the
follower, decides to adopt the velocity of another bird, its leader, in the flock.
The follower chooses its leader according to a probability only depending on
the proximity rank of the latter with respect to the former. If we assume that
the probability has a strong cutoff as soon as the proximity rank exceeds a
certain value, of the order of seven in actual flocks, the considered model is
akin to the topological interactions of [1].

To our knowledge, [6] is the first mathematical work where interaction
rules between agents depending on their rank are considered. The closest to
our work is [15] where kinetic and hydrodynamic models for topological in-
teractions have been proposed. However, the considered dynamics is different
from ours. In [15], it is supposed that an agent’s velocity relaxes towards an
average velocity of its neighbours where the relative weights of the neigh-
bours depend on their proximity rank to the considered agent. Therefore, it
is a model of Cucker-Smale type [11] combined with a topological interaction
rule. In [15], a mean-field type kinetic model is rigorously derived under some
regularisation in the large system size limit and a hydrodynamic model under
a monokinetic closure assumption is proposed.

Here, the interaction rule is different and, in the large system size limit,
leads to a Boltzmann type model with an integral operator describing the
balance between gains and losses due to the interactions rather than a mean-
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field model where the interactions are described through a force field. From
the mathematical viewpoint, this makes a considerable difference, as an em-
pirical measure approach is not possible. Instead, one has to rely on the
propagation of chaos property for the solution of the master equation. In the
present work, propagation of chaos is assumed and its proof is defered to fu-
ture work. Still, under this assumption, the derivation of the kinetic equation
is not obvious and as we will see, relies on fine approximation properties of
Bernstein polynomials.

Indeed, we will realise that the derivation of a kinetic model requires the
estimation of the probability that given two particles say numbered 1 and 2,
the rank of 2 with respect to 1 be equal to a given integer j. Then, the interac-
tion probability of 1 with 2 in this configuration is a function K(j/N), where
N is the total number of particles and the function K is characteristic of
the considered interaction. Thanks to an easy combinatorial estimation, the
total probability of 1 interacting with 2 is found as the Bernstein polynomial
approximation of K when N is large. Due to some cancellations, the first or-
der correction in powers of 1/N of the Bernstein polynomial approximation
of K is also needed. This correction can be found in the literature [18].

The paper is organised as follows. In Section 2, we present the N parti-
cle dynamics and state the main result. In Section 3, we derive the master
equation of the process and the equation for the first marginal under the
assumption of propagation of chaos. In Section 4 we precisely state our main
result, namely that, in the limit N → ∞ and the assumption of propagation
of chaos, the equation for the first marginal reduces to a kinetic equation
of Boltzmann type with spatial nonlinearity. To prove this theorem, we use
results on Bernstein’s polynomial approximation from the literature [18]. Sec-
tion 5 offers some considerations on the limit kinetic equation and illustrates
our discussion with numerical simulations. Finally, a conclusion is drawn in
Section 6.

2 The N-particle dynamics

Consider a set of N particles. The particle i is characterised by its position
xi ∈ R

n and its velocity vi ∈ R
n where n ≥ 1 is both the spatial and velocity

dimension. For a given particle i we can order the other particles relatively
to their distance to i. More precisely, we have the following:

Definition 1 (Rank) Consider N particles located at x1, . . . , xN . Consider
the i-th particle and order the list

(

|xj − xi|
)

j=1,...,N, j 6=i
by increasing order

and denote by RN (i, j) ∈ {1, . . . , N − 1} the position of the j-th item in this
list. If two indices j and j′ are such that |xj −xi| = |xj′ −xi|, then we choose
arbitrarily an ordering between these two numbers. We define RN(i, i) = 0.
Now, we define the rank of j with respect to i as:

rN (i, j) =
RN(i, j)

N − 1
∈

N−1
⋃

k=1

{ k

N − 1

}

.
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We introduce a function K: r ∈ [0, 1] 7→ K(r) ∈ [0,∞) such that

∫ 1

0

K(r) dr = 1 .

We define

KN (r) =
K(r)

∑N−1
k=1 K

(

k
N−1

) ,

in order to have for any i ∈ {1, . . . , N}:

N
∑

j=1
j 6=i

KN
(

rN (i, j)
)

=

N−1
∑

k=1

KN

(

k

N − 1

)

= 1 .

In this way, for any i ∈ {1, . . . , N}, the collection (πij)
N
j=1,j 6=i, where

πN
ij = KN

(

rN (i, j)
)

,

defines a discrete probability measure on the set {j ∈ {1, . . . , N}, j 6= i}.

ConsiderN particles {(x1(t), v1(t)), . . . , (xN (t), vN (t))} which are subject
to the following dynamics (previously referred to as the “Choose the Leader”
dynamics [8,9]):

- The dynamics is a succession of free-flights and collisions.
- During free-flight, particles follow straight trajectories

{

ẋi = vi,

v̇i = 0 .

- At Poisson random times with a rate equals to N , particles undergo the
following collisions process: Pick a particle i in {1, . . . , N} with uniform
probability 1/N and perform a collision, i.e. pick a collision partner j in
the set {j ∈ {1, . . . , N}, j 6= i} with probability πN

ij and perform:

{

(xi, xj) remains unchanged,

(vi, vj) is changed into (vj , vj).

Since the rank of j with respect to i is an intrinsic property of the positions
of the pair of particles and does not depend on how they are numbered, we
have the following properties of the rank:

Remark 1 Let (x1, . . . , xN ) be a set on N particles.

(i) The rank rN (i, j), and hence πN
ij , is a function of (x1, . . . , xN ), i.e.

rN (i, j) = rN (i, j)(x1, . . . , xN ) .

More precisely, we consider the rank rN (i, j) as a function of L∞(RnN ).



5

(ii) The rank is permutation invariant, i.e. for any permutation σ ∈ SN

where SN denotes the set of permutations of {1, . . . , N}, we have

rN (σ(i), σ(j))(xσ(1) , . . . , xσ(N)) = rN (i, j)(x1, . . . , xN ).

The aim of this article is to study the limit of this dynamics when the
number of particles goes to ∞. To do so we will assume that the propagation
of chaos property holds true i.e.

f (N)(Z1, · · · , ZN , t) =

N
∏

ℓ=1

f
(1)
N (Zℓ, t), ∀Z ∈ R

2nN , ∀t ∈ [0,∞) .

Assuming that f
(1)
N → f and ρ

(1)
N :=

∫

f
(1)
N dv → ρ =

∫

f dv, then in the
limit N → ∞, we will prove that f is a solution of the kinetic equation:

∂f

∂t
(x, v) + v · ∇xf(x, v) = ρ(x)

∫

f(x′, v)K (Mρ(x, |x
′ − x|)) dx′ − f(x, v),

where Mρ is the partial mass of ρ and is defined by

Mρ(x, s) =

∫

x′∈B(x,s)

ρ(x′) dx′ ,

and where B(x, s) = {y ∈ R
n | |y − x| ≤ s} is the ball centered at x and of

radius s > 0.

Remark 2 The conservation of mass property holds true by Lemma 5 applied
to H = K.

In the following section, we derive the master equation for this process,
Section 3.1, and the first marginal equation for indistinguishable particles,
Section 3.2. Then, in Section 3.3, we derive the master equation under the
assumption of propagation of chaos.

3 Master equation and propagation of chaos

3.1 Master equation

To simplify the notation, when no confusion is possible, we will denote x :=
(x1, . . . , xN ), v := (v1, . . . , vN ), Zi := (xi, vi), Z := (Z1, . . . , ZN ) and dZ :=
dx1 dv1 . . . dxN dvN .
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As the collisions occur at Poisson times with rate N , the master equation
in weak form is, for all test function φN : Z 7→ φN (Z):

∂t

∫

f (N)(Z)φN (Z) dZ−

N
∑

i=1

∫

f (N)(Z)(vi · ∇xi
)φN (Z) dZ

=N

∫

[

1

N

N
∑

i,j=1
j 6=i

πN
ij (x)φ

N (Z1, . . . , xi, vj , . . . , xj , vj , . . . ZN )

− φN (Z)

]

f (N)(Z) dZ

= N

∫

[

1

N

N
∑

i,j=1
j 6=i

∫

πN
ij (x)φ

N (Z1, . . . , xi, v
′
i, . . . , xj , vj , . . . ZN ) δ(v′i − vj) dv

′
i

− φN (Z)

]

f (N)(Z) dZ. (1)

By exchanging the notations vi and v′i we obtain the following master equa-
tion in the strong form:

∂tf
(N)(Z) =

N
∑

i=1

f (N)(Z) (vi · ∇xi
) +NLf (N)(Z) ,

where the operator L is defined by

Lf (N)(Z) :=

1

N

N
∑

i,j=1
i6=j

πN
ij (x) δ(vi − vj)

∫

f (N)(Z1, . . . , xi, v
′
i, . . . ZN ) dv′i − f (N)(Z).

Lemma 1 (Invariance under permutation) Define for all σ ∈ SN ,

σf (N)(Z) := f (N)(Zσ(1), . . . ,Zσ(N)).

Then we have:
L(σf (N)) = σ

(

Lf (N)
)

.

As a consequence, if f (N)(t) is permutation invariant at time t = 0, i.e.
σf (N)(t)|t=0 = f (N)(t)|t=0 for all σ ∈ SN , then it is permutation invariant
for all times.

Proof To emphasise the dependence in Z, we can rewrite the operator L as:

Lf (N)(Z) =
1

N

N
∑

i,j=1
i6=j

πN
ij (x(Z))δ(Vi(Z) − Vj(Z))Pif

(N)(Z)− f (N)(Z),
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with x(Z) = x, Vi(Z) = vi and

Pif
(N)(Z) =

∫

f (N)(Z1, . . . , xi, v
′
i, . . . ZN) dv′i .

First note that, setting σZ = (Zσ(1), . . . , Zσ(N)), we have

Vi(Z) = Vσ(i)(σZ) , and Pi(σf
(N))(Z) = Pσ(i)f

(N)(σZ) .

Therefore by applying the σ−1 permutation to the double sum and using the
permutation invariance of the rank, see Lemma 1 (ii), we obtain

Lσf (N)(Z) =
1

N

N
∑

i,j=1
i6=j

πN
ij (x(Z)) δ(Vi(Z)− Vj(Z))Pi(σf

(N))(Z)

− (σf (N))(Z)

=
1

N

N
∑

i,j=1
i6=j

KN [rN (i, j)](x(Z)) δ(Vi(Z)− Vj(Z))Pσ(i)f
(N)(σZ)

− (σf (N))(Z)

=
1

N

N
∑

i′,j′=1
i′ 6=j′

KN [rN (σ−1(i′), σ−1(j′))](x(Z)) δ(Vσ−1(i′)(Z)

− Vσ−1(j′)(Z))Pi′f
(N)(σZ) − (σf (N))(Z)

=
1

N

N
∑

i′,j′=1
i′ 6=j′

KN [rN (i′, j′)](x(σZ)) δ(Vi′ (σZ)

− Vj′ (σZ))Pi′f
(N)(σZ) − f (N)(σZ)

= (Lf (N))(σZ) = σL∂tf
(N)(Z).

The above property states that σ−1Lσ = L, for all σ ∈ SN . Supposing
that L is a bounded operator, we deduce that σ−1Lkσ = Lk, for all k ∈ N

and consequently σ−1eLσ = eL. Now, the solution of the problem ∂tf
(N) =

NLf (N) with f (N)|t=0 = f
(N)
0 can be written f (N)(t) = eNLtf

(N)
0 . We deduce

that σf (N)(t) = eNLtσf
(N)
0 . Therefore, if σf

(N)
0 = f

(N)
0 , then σf (N)(t) =

f (N)(t), for all t ≥ 0. If L is not bounded, the same property remains true
thanks to an approximation argument.

3.2 First marginal equation for indistinguishable particles

In the remainder of this article, we will suppose that f (N) is invariant under
permutations which physically means that the particles are indistinguishable.
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This allows us to define the k-particle marginal as

f
(k)
N (Z1, . . . , Zk, t) =

∫

f (N)(Z1, · · · , ZN , t) dZk+1 · · · dZN . (A1)

and f
(k)
N is still invariant under permutations of (Z1, . . . , Zk).

Proposition 1 (First marginal equation for indistinguishable parti-
cles) Assume (A1). For any test functions satisfying

φN (Z1, · · · , ZN ) = φ(Z1) , (2)

we have

∂t

∫

f
(1)
N (Z1)φ(Z1) dZ1 =

N
∑

i=1

∫

f
(1)
N (Z) (vi · ∇xi

)φ(Z) dZ

+ (N − 1)

∫

πN
12(x)φ(x1 , v2)f

(N)(Z) dZ

+ (N − 1)

∫

πN
21(x)φ(Z1)f

(N)(Z) dZ

+ (N − 1)(N − 2)

∫

πN
23(x)φ(Z1)f

(N)(Z) dZ

−N

∫

φ(Z1) f
(1)
N (Z1) dZ1.

Proof Separating the cases i = 1 6= j, j = 1 6= i, and i ≥ 2, j ≥ 2, the master
equation (1) gives

∂t

∫

f (N)(Z)φ(Z) dZ =

N
∑

j=2

A
(1)
j +

N
∑

i=2

A
(2)
i +

N
∑

i=2

N
∑

j=2,j 6=i

Ai,j

−N

∫

φ(x1, v1)f
(N)(Z) dZ, (3)

with

A
(1)
j :=

∫

πN
1j(x)φ(x1, vj)f

(N)(Z) dZ,

A
(2)
i :=

∫

πN
i1 (x)φ(Z1)f

(N)(Z) dZ,

Ai,j :=

∫

πN
ij (x)φ(Z1)f

(N)(Z) dZ.

To compute the first term A
(1)
j , we perform the change of variables Z ′

2 = Zj

and Z ′
j = Z2, which leads to:

A
(1)
j =

∫

πN
1j(x1, x

′
j , . . . , x

′
2, . . . , xN )φ(x1, v

′
2) f

(N)(Z1, Z
′
j , . . . , Z

′
2, . . . , ZN )

dZ1 dZ ′
j . . . dZ

′
2 . . . dZN .
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Using the permutation invariance of the rank (see Lemma 1 (ii)), we have

πN
1j(x1, x

′
j , . . . , x

′
2, . . . , xN ) = πN

12(x1, x
′
2, . . . , x

′
j , . . . , xN ).

Therefore, dropping the primes and using the permutation invariance of f (N),
we obtain

A
(1)
j =

∫

πN
12(x)φ(x1 , v2)f

(N)(Z) dZ,

which does not depend on j.

Similarly, we have

A
(2)
i =

∫

πN
i1 (x1, xi, . . . , x2, . . . , xN )φ(Z1) f

(N)(Z1, Zi, . . . , Z2, . . . , ZN)

dZ1 dZi . . . dZ2 . . . dZN

so that, using the permutation invariance of the rank, see Lemma 1 (ii), and
the permutation invariance of f (N) as previously, we obtain

A
(2)
i =

∫

πN
21(x)φ(Z1)f

(N)(Z) dZ ,

which does not depend on i.

Also, we have with i ≥ 2, j ≥ 2 and i 6= j:

Ai,j =

∫

πN
ij (x1, xi, xj . . . , x2, . . . , x3, . . . , xN )φ(Z1)

f (N)(Z1, Zi, Zj, . . . , Z2, . . . , Z3, . . . ZN) dZ1 dZi dZj . . . dZ2 . . . dZ3 . . . dZN .

Then using the permutation invariance of the rank, see Lemma 1 (ii), and
the permutation invariance of f (N) as previously, we obtain

Ai,j =

∫

πN
23(x)φ(Z1) f

(N)(Z) dZ .

For the last term of (3) we obviously have

∫

φ(Z1)f
(N)(Z) dZ =

∫

φ(Z1) f
(1)
N (Z1) dZ1.

Collecting all these identities, we obtain the identity stated in Proposi-
tion 1.



10

3.3 Propagation of chaos

Assume now that the propagation of chaos property holds true i.e.

f (N)(Z1, · · · , ZN , t) =

N
∏

ℓ=1

f
(1)
N (Zℓ, t), ∀Z ∈ R

2nN , ∀t ∈ [0,∞) , (A2)

and define:

ρ
(1)
N (x) =

∫

f
(1)
N (x, v) dv .

We remark that ρ
(1)
N is a probability density.

We have the following proposition:

Proposition 2 (First marginal equation with propagation of chaos)
Assume (A2). For any test functions satisfying (2), we have

∂t

∫

f
(1)
N (Z1)φ(Z1) dZ1

=

N
∑

i=1

∫

f
(1)
N (Z) (vi · ∇xi

)φ(Z) dZ+ (AN ) + (BN ) + (CN ) + (DN ), (4)

with

(AN ) =
1

SN (K)

∫

φ(x1, v2) f
(1)
N (Z1) f

(1)
N (Z2)

K
(

rN (1, 2)(x)
)

N
∏

ℓ=3

ρ
(1)
N (xℓ) dxℓ dZ1 dZ2,

(BN ) =
1

SN (K)

∫

φ(Z1) f
(1)
N (Z1)K

(

rN (2, 1)(x)
)

N
∏

ℓ=2

ρ
(1)
N (xℓ) dxℓ dZ1,

(CN ) =
N − 2

SN (K)

∫

φ(Z1) f
(1)
N (Z1)K

(

rN (2, 3)(x)
)

N
∏

ℓ=2

ρ
(1)
N (xℓ) dxℓ dZ1,

(DN ) = −N

∫

φ(Z1) f
(1)
N (Z1) dZ1,

where SN (K) is given by

SN (K) =
1

N − 1

N−1
∑

k=1

K

(

k

N − 1

)

.

We note that SN(K) is the Riemann sum approximation of
∫ 1

0
K(r) dr.

Since we assume
∫ 1

0
K(r) dr = 1, SN (K) converges to 1 as N goes to ∞.
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Proof This result is a direct consequence of Proposition 1, integrating in v
when possible. We then use that

KN =
K

(N − 1)SN(K)
,

to obtain the stated result.

4 Limit equation

For a density ρ, define the partial mass of ρ centred in x and of radius s by:

Mρ(x, s) =

∫

|x−x′|≤s

ρ(x′) dx′ .

We now state the main theorem of this article:

Theorem 1 (Limit equation) Assume (A2). If

lim
N→∞

f
(1)
N → f and lim

N→∞
ρ
(1)
N → ρ =

∫

f dv,

then, in the limit N → ∞, for all test functions φ we have:

∂t

∫

f(Z)φ(Z) dZ

=

∫

φ(x1, v2) f(Z2) ρ(x1)K (Mρ(x1, |x2 − x1|) dx1 dZ2

−

∫

φ(Z1) f(Z1) dZ1 ,

or, in strong form:

∂f

∂t
(x, v) + v · ∇xf(x, v) = ρ(x)

∫

f(x′, v)K (Mρ(x, |x
′ − x|)) dx′ − f(x, v).

This result will be obtained by passing to the limit when N → ∞ in (4).
To pass to the limit in the transport term of (4) is classical and we refer
the reader to classical textbooks on the subject. We divide the proof of this
theorem in two sections. The first section deals with the two first terms
(AN ) and (BN ) of (4) while the second will deal with the last two terms
(CN ) and (DN ) of (4). To do so we will be using the Bernstein polynomial
approximation of functions which is a follows:

Proposition 3 (Bernstein polynomial approximation, [18]) Let f be
a function defined on [0, 1]. The n-th Bernstein polynomial associated with f
is defined by

Bn(f ;x) :=

n
∑

i=0

f

(

i

n

)(

n

i

)

xi(1− x)n−i .

If f ∈ C2[0, 1] then

Bn(f ;x) = f(x) +
x(1 − x)

2n
f ′′(x) + o

(

1

n

)

.
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4.1 Evaluation of (AN ) and (BN )

Proposition 4 (Evaluation of (AN ) and (BN )) Under the assumptions
of Theorem 1, we have for large N

SN (K)× (AN ) =
∫

φ(x1, v2) ρ
(1)
N (Z1) f

(1)
N (Z2)K

(

M
ρ
(1)
N

(x1, |x1 − x2|)
)

dx1 dZ2 + o(1),

and

SN (K)× (BN ) =
∫

φ(Z1) f
(1)
N (Z1)K

(

M
ρ
(1)
N

(x2, |x1 − x2|)
)

ρ
(1)
N (x2) dZ1 dx2 + o(1).

To prove this result we first prove the following:

Lemma 2 Under the assumptions of Theorem 1, we have for N large,

∫

K
(

rN (1, 2)(x)
)

N
∏

ℓ=3

ρ
(1)
N (xℓ) dxℓ = K

(

M
ρ
(1)
N

(x1, |x1 − x2|)
)

+ o(1) ,

and

∫

K
(

rN (2, 1)(x)
)

N
∏

ℓ=2

ρ
(1)
N (xℓ) dxℓ

=

∫

K
(

M
ρ
(1)
N

(x2, |x1 − x2|)
)

ρ
(1)
N (x2) dx2 + o(1) .

Proof We first give a combinatorial interpretation of the rank and then use
it to interpret the terms of the statement as expectation.

• Let us fix x1 and x2. The rank rN (1, 2) is equal to the number of points
x3, . . . , xN belonging to the ball B = B(x1, |x2 − x1|) = {x : |x − x1| ≤
|x2 − x1|} plus one unit, scaled by the factor N − 1, i.e.

rN (1, 2)(x) =
#{j ∈ {3, . . . , N} : xj ∈ B}+ 1

N − 1
.

Denote PR be the probability such that RN (1, 2) = R where RN (1, 2) =
(N − 1) rN (1, 2). To have RN (1, 2) = R, we have to choose R − 1 particles
amongst N − 2 to lie in B. The probability that one of the R − 1 particles
belongs to B is equal to

p := M
ρ
(1)
N

(x1, |x2 − x1|) ,

while the probability that one of the N − 2− (R− 1) remaining particles lies
in R

n \B is 1− p. Therefore,

PR =

(

N − 2

R − 1

)

pR−1 (1 − p)N−2−(R−1) . (5)
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• Now, x1 and x2 being fixed, the quantity

∫

K
(

rN (1, 2)(x)
)

N
∏

ℓ=3

ρ
(1)
N (xℓ) dxℓ,

can be interpreted as the expectation of K(rN (1, 2)) when N − 2 points
x3, . . . , xN are drawn according to independent identically distributed prob-

abilities with density ρ
(1)
N (x) dx. It will be denoted E{K(rN (1, 2)(x))}.

By (5), we compute

E
{

K
(

rN (1, 2)(x)
)}

=

N−1
∑

R=1

K

(

R

N − 1

)(

N − 2

R− 1

)

pR−1 (1− p)N−2−(R−1)

=

M
∑

R=0

K

(

R+ 1

M + 1

)(

M

R

)

pR (1− p)M−R ,

with M = N−2. Since, for N large, K ((R+ 1)/(M + 1)) = K (R/M)+o(1)
(remarking that R/M ≤ 1),

E
{

K
(

rN (1, 2)(x)
)}

=

M
∑

R=0

K

(

R

M

)(

M

R

)

pR (1− p)M−R + o(1) .

Using Bernstein’s approximation, Proposition 3, we obtain

E
{

K
(

rN (1, 2)(x)
)}

= K(p) + o(1) .

Which is the first statement.

• The identity

∫

K
(

rN (2, 1)(x)
)

N
∏

ℓ=3

ρ
(1)
N (xℓ) dxℓ = K

(

M
ρ
(1)
N

(x1, |x2 − x1|)
)

+ o(1),

is obtained in an analogous way by exchanging the role of 1 and 2. We then

have to integrate by ρ
(1)
N (x2) dx2 to obtain the stated result.

Proof (of Proposition 4) Inserting the expressions of Lemma 2 in (AN ) and
(BN ) we readily obtain the stated result.

4.2 Evaluation of (CN ) + (DN )

Proposition 5 (Evaluation of (CN ) + (DN )) Under the assumptions of
Theorem 1, we have

(CN ) + (DN ) = −

∫

φ(Z1) f
(1)
N (Z1) dZ1

−

∫

φ(Z1) f
(1)
N (Z1) ρ

(1)
N (x2)K

(

M
ρ
(1)
N

(x2, |x1 − x2|
)

dx2 dZ1 + o(1).
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Like in the previous section, to evaluate (CN ) we first transform the term
in parenthesis:

Lemma 3 Under the assumptions of Theorem 1, we have for large N

∫

K
(

rN (2, 3)(x)
)

N
∏

ℓ=4

ρ
(1)
N (xℓ) dxℓ

= K(p23)−
K ′(p23)

N

(

1− χB(x2,|x2−x3|)(x1)
)

+
1

N

[

p23(1− p23)

2
K ′′(p23) + 2(1− p23)K

′(p23)

]

+ o

(

1

N

)

,

where p23 = M
ρ
(1)
N

(x2, |x2 − x3|) only depends on x2 and x3 and

χB(x2,|x2−x3|)(x1) =

{

1 if x1 ∈ B(x2, |x2 − x3|)
0 otherwise.

Proof Similarly to the proof of Lemma 2, we interpret the quantity

∫

K
(

rN (2, 3)(x)
)

N
∏

ℓ=4

ρ
(1)
N (xℓ) dxℓ,

as the expectation of K
(

rN (2, 3)(x)
)

when the N − 4 points x4, . . . , xN are
drawn according to independent identically distributed probabilities with

density ρ
(1)
N (x) dx. Two cases have to be distinguished:

• First case: if x1 ∈ B(x2, |x2 − x3|) – Like in the proof of Lemma 2 we

have

rN (2, 3) =
#{j ∈ {4 . . . , N} | : xj ∈ B(x2, |x2 − x3|)} + 2

N − 1
.

Hence, setting p23 = M
ρ
(1)
N

(x2, |x2 − x3|) =: p,

E
{

K
(

rN (2, 3)(x)
)}

=

N−1
∑

R=2

K

(

R

N − 1

)(

N − 3

R− 2

)

pR−2 (1− p)N−3−(R−2)

=

M
∑

R=0

K

(

R+ 2

M + 2

)(

M

R

)

pR (1− p)M−R,

with M = N − 3. By expanding K, we have, uniformly with respect to
R ∈ {0, · · · ,M}

K

(

R+ 2

M + 2

)

= K

(

R

M

)

+
2

M

(

M −R

M + 2

)

K ′

(

R

M

)

+ o

(

1

M

)

.
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Since (M −R)/(M +2) = 1−M/R+ o(1) we obtain uniformly with respect
to R ∈ {0, · · · ,M}

K

(

R+ 2

M + 2

)

= K

(

R

M

)

+
2

M

(

1−
R

M

)

K ′

(

R

M

)

+ o

(

1

M

)

.

So, we obtain

E
{

K
(

rN (2, 3)(x)
)}

=

M
∑

R=0

K

(

R

M

)(

M

R

)

pR (1− p)M−R

+
2

M

M
∑

R=0

(

1−
R

M

)

K ′

(

R

M

)(

M

R

)

pR (1− p)M−R + o (1) .

Using Bernstein’s approximation, Proposition 3, toK and to p 7→ (1−p)K ′(p)
we obtain

E
{

K
(

rN (2, 3)(x)
)}

= K(p) +
p(1− p)

2M
K ′′(p) +

2(1− p)

M
K ′(p) + o (1)

= K(p) +
2(1− p)

N
K ′(p) +

p(1− p)

2N
K ′′(p) + o (1) .

(6)

• Second case: if x1 /∈ B(x2, |x2 − x3|) – In this case,

rN (2, 3) =
#{j ∈ {4 . . . , N} : xj ∈ B(x2, |x2 − x3|)}+ 1

N − 1
.

Following the same step as before we compute, with p = M
ρ
(1)
N

(x2, |x2 − x3|)

E
{

K
(

rN (2, 3)(x)
)}

=

N−2
∑

R=1

K

(

R

N − 1

)(

N − 3

R− 1

)

pR−1 (1− p)N−3−(R−1) ,

which we rewrite

E
{(

rN (2, 3)(x)
)}

=

M
∑

R=0

K

(

R+ 1

M + 2

)(

M

R

)

pR (1− p)M−R,

with M = N − 3. By expanding K, we have

K

(

R+ 1

M + 2

)

= K

(

R

M

)

+
1

M

(

1−
2R

M

)

K ′

(

R

M

)

+ o

(

1

M

)

.

So, we have

E
{(

rN (2, 3)(x)
)}

=

M
∑

R=0

K

(

R

M

)(

M

R

)

pR (1 − p)M−R

+
1

M

M
∑

R=0

(

1−
2R

M

)

K ′

(

R

M

)(

M

R

)

pR (1− p)M−R + o (1) .
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Using Bernstein’s approximation (see Proposition 3), we obtain

E
{(

rN (2, 3)(x)
)}

= K(p) +
p(1− p)

2M
K ′′(p) +

1− 2p

M
K ′(p) + o (1)

= K(p) +
2(1− p)

N
K ′(p)−

K ′(p)

N
+

p(1− p)

2N
K ′′(p) + o (1) . (7)

• We obtain the result stated in Lemma 3 by noticing that Expression (7) is
equal to the sum of Expression (6) and an extra term −K ′(p)/N .

Lemma 4 (Evaluation of SN (K)×(CN )/(N−2)) Under the assumptions
of Theorem 1, we have

SN (K)

N − 2
× (CN ) =

(

1 +
1

N
+

K(1)−K(0)

2N

)
∫

φ(Z1) f
(1)
N (Z1) dZ1

−
1

N

∫

φ(Z1) f
(1)
N (Z1) ρ

(1)
N (x2)K

(

M
ρ
(1)
N

(x2, |x2 − x3|
)

dx2 dZ1 + o(1).

Proof Using Lemma 3 and separating the cases x1 ∈ B(x2, |x2 − x3|) and
x1 6∈ B(x2, |x2 − x3|), we can write

SN(K)

N − 2
× (CN ) = (1) + (2) + o (1) ,

where, writing p for p23, i.e. p = M
ρ
(1)
N

(x2, |x2 − x3|), we have:

(1) =
1

N

∫

x1∈B(x2,|x2−x3|)

φ(Z1) f
(1)
N (Z1)K

′(p) ρ
(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1

+ o

(

1

N

)

,

and

(2) =

∫

φ(Z1) f
(1)
N (Z1)

(

K(p) +
1− 2p

N
K ′(p) +

p(1− p)

2N
K ′′(p)

)

ρ
(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1 + o

(

1

N

)

.

• For the term (1), we first notice that x1 ∈ B(x2, |x2 − x3|) is equivalent to
saying that x3 /∈ B(x2, |x1 − x2|) so that, for p = M

ρ
(1)
N

(x2, |x2 − x3|),

(1) =
1

N

∫

x3 /∈B(x2,|x1−x2|)

φ(Z1) f
(1)
N (Z1)K

′(p) ρ
(1)
N (x2) ρ

(1)
N (x3) dx2 dx3 dZ1

+o

(

1

N

)

.
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By the change of variable stated in Lemma 5 and applied toH = K ′, ρ = ρ
(1)
N ,

x = x2, and r = |x1 − x2| we have

∫

x3 /∈B(x2,|x1−x2|)

K ′
(

M
ρ
(1)
N

(x2, |x2 − x3|)
)

ρ
(1)
N (x3) dx3

= K(1)−K
(

M
ρ
(1)
N

(x2, |x1 − x2|
)

.

Inserting this in (1) we obtain

N × (1) = K(1)

∫

φ(Z1) f
(1)
N (Z1) dZ1

∫

ρ
(1)
N (x2) dx2

−

∫

φ(Z1) f
(1)
N (Z1) ρ

(1)
N (x2)K

(

M
ρ
(1)
N

(x2, |x1 − x2|
)

dx2 dZ1 + o(1)

= K(1)

∫

φ(Z1) f
(1)
N (Z1) dZ1

−

∫

φ(Z1) f
(1)
N (Z1) ρ

(1)
N (x2)K

(

M
ρ
(1)
N

(x2, |x1 − x2|
)

dx2 dZ1 + o(1). (8)

• Using again the change of variable result of Lemma 5 together with inte-
gration by parts, we compute:

∫

(

K(p) +
1− 2p

N
K ′(p) +

p(1− p)

2N
K ′′(p)

)

ρ
(1)
N (x3) dx3

=

∫ 1

0

(

K(p̃) +
1− 2p̃

N
K ′(p̃) +

p̃(1− p̃)

2N
K ′′(p̃)

)

dp̃

= 1 +
1

N
−

K(0) +K(1)

2N
,

where p = M
ρ
(1)
N

(x2, |x2 − x3|). From this and Lemma 3, we deduce:

(2) =

(

1 +
1

N
−

K(0) +K(1)

2N

)
∫

φ(Z1) f
(1)
N (Z1) dZ1 + o

(

1

N

)

. (9)

• Combining the two terms (8) and (9), we obtain the result stated in Lemma
4.

We are now ready to prove Proposition 5

Proof (of Proposition 5) The proof is divided in two main steps.
• We first have

SN (K) =
1

N − 1

N−1
∑

k=1

K

(

k

N − 1

)

=
K(1)−K(0)

2(N − 1)
+

1

N − 1

(

K(0) +K(1)

2
+

N−2
∑

k=1

K

(

k

N − 1

)

)

.
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In the second term of this expression, we recognize the approximation of
∫ 1

0
K(s) ds by the trapezoidal rule. As the trapezoidal rule is second order,

it leads to

SN (K) =
K(1)−K(0)

2(N − 1)
+

∫ 1

0

K(s) ds+ o

(

1

N

)

=
K(1)−K(0)

2N
+ 1 + o

(

1

N

)

.

As a consequence

N − 2

SN (K)
= N

1− 2/N

1 + (K(1)−K(0))/2N + o(1/N)

= N −
K(1)−K(0)

2
− 2 + o(1) . (10)

• Now collecting the estimate of Corollary 4 and (10) we obtain

(CN ) =
N − 2

SN(K)
[(1) + (2)]

=

(

N −
K(1)−K(0)

2
− 2

)
∫

φ(Z1) f
(1)
N (Z1) dZ1

+

(

1 +
K(1)−K(0)

2

)
∫

φ(Z1) f
(1)
N (Z1) dZ1

−

∫

φ(Z1) f
(1)
N (Z1) ρ

(1)
N (x2)K

(

M
ρ
(1)
N

(x2, |x1 − x2|
)

dx2 dZ1

+ o (1) .

And as

(DN ) = −N

∫

φ(Z1) f
(1)
N (Z1) dZ1,

we obtain the statement of Proposition 5.

4.3 Proof of Theorem 1

We have to pass to the limit in (4). By Propositions 4 and 5 we have

∂t

∫

f
(1)
N (Z1)φ(Z1) dZ1 −

N
∑

i=1

∫

f
(1)
N (Z) (vi · ∇xi

)φ(Z) dZ

=

(

1

SN(K)
− 1

)
∫

φ(Z1) f
(1)
N (Z1)K

(

M
ρ
(1)
N

(x2, |x1−x2|)
)

ρ
(1)
N (x2) dZ1 dx2

+
1

SN (K)

∫

φ(x1, v2) ρ
(1)
N (Z1) f

(1)
N (Z2)K

(

M
ρ
(1)
N

(x1, |x1−x2|)
)

dx1 dZ2

−

∫

φ(Z1) f
(1)
N (Z1) dZ1 + o(1).
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As N goes to ∞, the second line goes to 0 since SN (K) is the Riemann sum

approximation of
∫ 1

0
K(r) dr = 1. The convergence in the other terms is

formally obvious and leads to the stated result.

5 Discussion

5.1 Large-time behaviour

Consider a function homogeneous in space (t, x, v) 7→ G(t, v). Since
∫

K = 1,
by Lemma 5, we get

∂G

∂t
(v) = −v · ∇xG(v) +G(v)

∫

K (Mρ(x, |x
′ − x|)) dx′ −G(v) = 0 .

Hence any function homogeneous in space (t, x, v) 7→ G(t, v) is a stationary
solution. Moreover, on a periodic spatial domain, we can expect that any
solution converges at large-times toward a function of this type. The proof
of such a claim is left to future work.

5.2 Discrete versus continuous approach

We can wonder if the large-time and large number of particles limits permute.
It does not seem the case. Indeed, the number of distinct velocities decreases
when there is a finite number of particles while, as discussed in the previous
section, the distribution of velocities remains constant in time in the case of
a continuum of particles.

In the case of a finite number of particles the consensus in the direction
the particles adopt is longer and longer to obtain, see Figures 1, 2 and 3.
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Fig. 1 Trajectories of the particles on the left, variance and number of different
speed as functions of time in the case of 10 particles taken randomly in [−10, 10]
for the position and for the speed.
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Fig. 2 Trajectories of the particles on the left, variance and number of different
speed as functions of time in the case of 20 particles taken randomly in [−10, 10]
for the position and for the speed.
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Fig. 3 Trajectories of the particles on the left, variance and number of different
speed as functions of time in the case of 70 particles taken randomly in [−10, 10]
for the position and for the speed.

6 Conclusion

In this paper, we have investigated a system of particles interacting through
leader following interactions where the choice of the leader is determined by
a topological rule. Under a propagation of chaos assumption, we have shown
that the large system size limit is described by a spatially nonlocal kinetic
model of Boltzmann type. This result heavily relies on approximation prop-
erties of Bernstein polynomials. Obviously, the very simple leader following
model considered in this paper offers many directions of complexification
leading to biologically or socially more realistic rules. An example could be
the introduction of some noise, e.g. the velocity after the interaction would be
randomly selected according to a probability law centred around the leader
velocity. One could also think of the two particles joining their average ve-
locity up to some noise, in the spirit of [2]. Finally, binary interactions with
the closest neighbour could also be investigated.
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A Fundamental lemma

Lemma 5 For any H,

I(x; r) :=

∫

Br(x)

H
(

Mρ(x, |x
′ − x|)

)

ρ(x′) dx′ =

∫ Mρ(x,r)

0

H(p) dp .

Proof First note that since

Mρ(x, s) =

∫

s̃<s

∫

ω∈Sn−1
ρ(x+ s̃ ω) s̃n−1 ds̃ dω,

we have
d

ds
Mρ(x, s) =

∫

ω∈Sn−1

ρ(x+ s ω) sn−1 dω.

Using the polar change of variables,

|x′ − x| =: s
x′ − x

|x′ − x|
=: ω ,

we have

I(x; r) =

∫

s<r

∫

ω∈Sn−1

ρ(x+ sω)H(Mρ(x, s)) s
n−1 ds dω

=

∫

s<r

d

ds
Mρ(x, s)H(Mρ(x, s)) ds .

Setting p = Mρ(x, s), so that dp = d
ds
Mρ(x, s) ds, we obtain the stated result.
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