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ABSTRACT: This paper studies how an institution such as markets

affects the evolution of mankind. My key point is that the forces of natural

selection are made weaker because trade allows people to specialize in those

activities where they are strong, and to offset their weaknesses by purchas-

ing adequate goods on the market. Absent trade, people must allocate their

time among all the activities necessary for their fitness. A productivity ad-

vantage in any given dimension will increase survival probability, so that in

the long run natural selection makes sure that population is entirely made

of individuals with the strongest alleles at all loci. Under trade, there exist

long-run equilibria where weaker individuals are able to achieve the same

survival potential as the fittest, by specializing in activities where they are

not at a disadvantage, and purchasing goods that are substitute for activities

for which they are weak.
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1 Introduction

Basic Darwinian theory considers individuals competing for resources in order

to achieve their goals of fitness and reproduction. Its more recent develop-

ments have considered cooperation and altruism as the outcome of selective

forces at the gene level, which typically leave room for cooperation at a very

small scale, within a family or tribe of genetically close individuals. Yet our

species has developed institutions which allow cooperation on a much larger

scale.1 Markets, in particular, allow people to specialize according to their

comparative advantage and to purchase goods needed for fitness and sur-

vival from other participants. One may think that most present-day humans

who make a living from specializing in narrow activities would have trouble

surving if suddently left alone facing the forces of natural selection.

This paper studies how an institution such as markets affects the evolution

of mankind. My key point is that the forces of natural selection are made

weaker because trade allows people to specialize in those activities where

they are strong, and to offset their weaknesses by purchasing adequate goods

on the market. Absent trade, people must allocate their time among all

the activities necessary for their fitness. A productivity advantage in any

given dimension will increase survival probability, so that in the long run

natural selection implies that population is entirely made of individuals with

the best genes at all loci. Under trade, I define a long-run equilibrium as

a situation where (i) markets clear at each period, and (ii) the distribution

of genotypes in the population is stationary. I show that there exist long-

run equilibria where weaker individuals are able to achieve the same survival

potential as the strongest, by specializing in activities where they are not at

a disadvantage, and purchasing goods that are substitute for activities for

which they are ’weak’.

Hence, markets allow many genotypes that would be eliminated by nat-

ural selection to survive, thus building in greater genetic diversity in human

1Interesting surveys on interactions between the economic and biological spheres include
Hirshleifer (1977), Robson (2001), and Seabright (2003), forthcoming.

2



populations. As shown in the analysis below, this genetic diversity may be

helpful in face of environmental shocks, implying that when such shocks pre-

vail, a population which trades will grow faster than a population which does

not, eventually eliminating it in statistical terms.

Note that the model is silent about how markets themselves evolve2. The

literature on gene/culture coevolution is mostly concerned with the genetic

basis for adoptions of cultural norms such as altruism (often relying on con-

troversial group selection hypotheses).3 To my knowledge it has not provided

a theory of how complex institutions such as markets evolve. The present

paper only looks at causality in one dimension, taking institutions as given

and studying their impact on the gene pool. The most closely related paper

is Horan et al. (2002). They make a similar point that trade increases a

population’s fitness and partially offsets natural selection. They argue that

trade may have played a role in the extinction of the Neanderthal and its

replacement by homo sapiens. On the other hand, their model does not allow

to study the evolution of the gene pool (as alleles and sexual reproduction

are ignored), nor do they analyze the properties of a long-run equilibrium as

defined here. A related literature (See Hammerstein (2003), and in particular

Bowles and Hammerstein (2003)), studies the rise of markets and specializa-

tion in animal societies, but does not draw this paper’s implications for the

gene pool and the survival of alleles that would not survive absent arkets.

A potentially relevant critique — which applies to any causal link from

culture to genes — is that it is not clear whether trade has been around

for long enough to significantly affect evolution. It is often argued that

evolution is very slow, and that our genes are essentially determined by the

hunter-gatherer societies which prevailed hundreds of thousands of years ago.

However, there are two quite different aspects of evolution. The first one

is that mutations do not happen frequently, which explains why it takes

2Interestingly, Adam Smith saw our propensity to trade as a genetic property of our
species. See Smith (1994).

3See Cavalli-Sforza and Feldman (1981); Lumsden and Wilson (1981); Gintis (2002),
Boyd and Richerson (1985).

3



hundreds of thousands of years for a feature like the human brain to develop.

The second one is that an existing allele can replace another one quite rapidly.

A well-known example is that of the gene for lactose tolerance; the share

of the European population with a ”tolerant allele” increased from 5 % to

70 % in less than 5,000 years, due to changes in food habits. In contrast,

most Asian populations are lactose intolerant because their cultures had not

developed dairy farming.4 It is this kind of evolution that I consider here: the

race between existing competing alleles. The message is then that in some

sense, markets ”slow” evolution, by making alleles less loaded with selective

pressure. The example of lactose tolerance suggests that trade can have a

significant impact on our gene pool if it has been present for say 10,000 years.

This paper’s contribution is theoretical, but it may have interesting impli-

cations concerning the ”nature vs. nurture” debate. For example, there is a

controversy on the role played by genes in determining economic success. To

simplify, social scientists, looking at income, tend to favor the environment5

more than psychometrists, who look at test scores and insist on the genetic

determinants of intelligence.6. My model suggests that specialization allows

to disconnect economic success from general measures of ability, and that

the former is less influenced by genes than the latter. One should therefore

expect measures of economic success to be less heritable than test scores.

The paper is organized as follows. The next section describes a simplified

model of genetic evolution with sexual reproduction. Section 3 introduces

natural selection by assuming that genotypes differ by their survival rates;

some genotypes are better than others at activities that affect survival. Sec-

tion 4 shows that under autarky, only the strongest alleles survive in the

long-run. Section 5 shows that under trade, a continuum of long-run equi-

4See e.g. Aoki (1991).
5See Becker and Tomes (1986), Ashenfelter and Krueger (1994).
6This debate is somewhat captured by the heated ”Bell curve” debate in the 1990s.

(Herrnstein and Murray, 1995; Devlin et al. 1997; Cawley et al. 1996; Ashenfelter and
Rouse (1998)). Note that recent evidence on brain structure, as well as studies of heri-
tability of test scores, suggest that intelligence has substantial genetic determinants. See
Bouchard and McGue (1981), and recent studies by Tang et al. (1999), Tsien (2000)).
and, Thompson et al. (2001).
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libria exist, such that one weak allele has disappeared, but others may be

present in strictly positive proportions. It is also shown that the market price

of each fitness-enhancing activity is pinned down in a long-run equilibrium,

and inversely proportional to the strongest genotype’s productivity at that

activity. Population size is shown to be larger under trade than autarky,

while population growth is the same. Section 6 shows that the model can

be extended to study forms of organization that are intermediate between

autarky and trade, i.e. ’hunter-gatherer’ groups. It is shown that in such a

case, as in autarky, only the strongest alleles eventually survive. However,

the weaker alleles are eliminated at a slower rate than under autarky. This

rate is lower, the larger the size of the group and the more it can replicate

the optimal specialization that the market achieves. Section 7 analyzes the

transitional dynamics to the long-run equilibrium when the economy is not

initially in a long-run equilibrium. It is shown that trade then allows the

strongest genotype to achieve even greater fitness; hence along the transi-

tion path, trade exacerbates inequality. As a result, the frequency of the

strongest alleles replicate at an even higher rate than under autarky. But

this process is self-defeating because it has a feedback effect on prices: as the

best genotype is more frequent, the price of the goods in which it specializes

falls, which eventually makes it possible for the weaker genotypes to survive.

Also, convergence to a long-run equilibrium is speeded up when one allows

for migration between trading and non trading populations, and migration

widens the gap in population size between a trading and a non-trading pop-

ulation. Section 8 introduces environmental shocks that may reverse the

fitness advantage of a given allele. A trading population then grows faster

than a non-trading one, as specialization helps its members to achieve the

highest fitness level in all environments. Section 9 discusses the conditions

under which the results can be extended to a more general model of sexual

reproduction, referring to a companion paper. Section 10 briefly discusses

some qualifications to the results that apply when other phenomena are in-

troduced into the model.

5



2 The model: population genetics

This section describes the basic features of the model, and its demographic

implications. It is a simplified representation of genetic evolution in a het-

erogeneous population. This haploid population has two chromosomes with

a single locus each. These two (unliked) loci are indexed by i = 1, 2.7 At

each locus there can be one of two competing alleles, indexed by κ = H,L.

Consequently, there are 4 possible genotypes, denoted by HH,HL,LH and

LL. Genotype κκ0 has allele κ at locus 1 and allele κ0 at locus 2.

Each of these genotypes g has a specific survival rate ϕg, which is inter-

preted as the probability of surviving until mating89.

Reproduction is sexual; at any date t, people mate randomly and produce

ν offsprings. They inherit their father’s (or mother’s) allele at locus i with

probability 0.5, independently of which allele is transmitted at the other

locus. Random mating makes it easy to compute the genotypic distribution

of population at t+1 as a function of the distribution at t. Denoting by hi(t)

the frequency of the H allele at locus i at date t, the genotypic distribution

of generation t’s offsprings, denoted by πg(t), is given by

πHH(t) = h1(t)h2(t),

πHL(t) = h1(t)(1− h2(t)),

πLH(t) = (1− h1(t))h2(t), and

πLL(t) = (1− h1(t))(1− h2(t)).

Denoting byN(t) the total surviving population at t, and by ng(t) its fraction

with genotype g, we have

ng(t+ 1)N(t+ 1) = νϕgπg(t)N(t).

7This is clearly not realistic but a simplified representation of sexual reproduction. The
extension in Saint-Paul (2006) includes the real-world process, where chromosomes come
by pairs, as a special case.

8or, equivalently, the probability of mating.
9Under trade, ϕg depends on the total distribution of genes, through its effect on prices.
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Total population at t+ 1 can then be computed as

N(t+ 1) = νN(t)
X
g

ϕgπg(t)

The distribution of alleles is then recovered as

h1(t+ 1) = nHH(t+ 1) + nHL(t+ 1)

h2(t+ 1) = nHH(t+ 1) + nLH(t+ 1).

As we shall see below, we assume a positive correlation between the pres-

ence of an H−allele and fitness. Thus we assume:

ASSUMPTION A1:

ϕHH ≥ max(ϕHL,ϕLH),

ϕLL ≤ min(ϕHL,ϕLH).

Most of the results we will derive will be concerned with a stationary

equilibrium, i.e. such that ng(t+1) = ng(t), for all t — that is, the distribution

of genotypes is invariant, implying that hi is also constant.

This section’s central result is then the following lemma:

LEMMA 1 — Assume (A1) holds. Then, in any stationary equilibrium

such that hi > 0,∀i, one must have
(i) nHL = nLL = nLH = 0 if ϕHH > ϕHL and ϕHH > ϕLH .

(ii) nLL = nHLnLH = 0 if ϕLL < ϕHH

(iii) all surviving genotypes must have the same survival rate, which is

the maximum across all genotypes.

Proof — Consider the evolution of h1 :

h1(t+ 1) =
h1(t) [ϕHHh2(t) + ϕHL(1− h2(t))]

h1(t) [ϕHHh2(t) + ϕHL(1− h2(t))] + (1− h1(t)) [ϕLHh2(t) + ϕLL(1− h2(t))]
.
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Note that ϕLH ≤ ϕHH and that ϕLL ≤ ϕHL. Clearly, one can have

h1(t+ 1) = h1(t) only if (i) h2(t) = 1 and ϕLH = ϕHH , or (ii) 0 < h2(t) < 1,

ϕHH = ϕLH ,ϕHL = ϕLL, or (iii) h1(t) = 1. Similarly, to have h2(t+1) = h2(t)

we need (i) h1(t) = 1 and ϕHL = ϕHH , or (ii) 0 < h1(t) < 1, ϕHH =

ϕHL,ϕLH = ϕLL, or (iii) h2(t) = 1. The statements in the lemma derive

straightforwardly from these observations. Q.E.D.

This lemma tells us that, as long as the H-alleles are present in the

population, only the best genotypes survive. Furthermore, as (ii) implies,

HL and LH cannot simultaneously survive—even though they may be as fit

as HH— if LL has a strictly lower survival rate than HH. This is because

they occasionally mate together, thus yielding some LL types which have a

lower survival probability. This process tends to drive L alleles out of the

gene pool until they have disappeared at at least one locus, thus preventing

any LL—individuals from arising.

3 Fitness and survival

We now describe how survival rates are determined. People have a total time

endowment equal to 1. They allocate time between two activities, referred

by ”f” (fight) and ”d” (defence). Furthermore, they have different produc-

tivities in each activity, and these productivities are genetically determined.

Productivity at the f -activity is determined by the gene at locus 1, and pro-

ductivity in d is determined by locus 2. More specifically, if the individual

has allele H (resp. L) at locus 1, his productivity at f is fH (resp. fL).

Similarly, productivity at activity d is dH (resp. dL) for people with allele H

(resp. L) at locus 2.

Consequently, an individual with genotype g = κκ0 chooses his fight and

defence levels f and d subject to the following time allocation constraint:

f

fκ
+
d

dκ0
= 1 (1)
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Survival ϕ is then an increasing function of ”fitness” u, which is increasing

in the total amount of f and d activities:10

ϕκκ0 = ϕ(u(f, d));u01 > 0, u
0
2 > 0

We shall assume that having an H—allele increases productivity, that is:

fH > fL; dH > dL.

Finally, we assume that people set f and d in order to maximize their fit-

ness.11 Thus they maximize u(f, d) subject to the time allocation constraint

(1). In order to avoid analytical problems we shall assume that u is concave,

and satisfies the following conditions:

ASSUMPTIONS A2 —

lim
f→0

u01(f, d0)

u02(f, d0)
= +∞, d0 > 0

lim
d→0

u02(f0, d)

u01(f0, d)
= +∞, f0 > 0.

This assumption, which is standard in economics, means that the first unit

of each activity is infinitely useful (relative to the other activity), so that if,

say, f = 0 and d > 0, one is willing to reduce one’s consumption of d and

to increase one’s consumption of f, regardless of prices. In other words, the

two activities must be sufficiently ”complementary”.

10The distinction between fitness and survival is immaterial; maximizing u is like max-
imizing ϕ. The extra notation is used just to avoid manipulating functions that can only
take values between 0 and 1, as ϕ should.
11By bluntly making this assumption, we depart from biology and enter economics.

A biologist would ask why people should behave like that, and would probably assume
the existence of a gene for such behavior, and try to show that it drives out genes for
alternative behaviors. This ”as if” argument is out of the scope of this paper, and we
directly assume maximization of fitness. See Hirschleifer (1977) and Robson (2001) for
discussions.

9



To get analytical solutions we shall often use a Leontief fitness function12:

u(f, d) ≡ min(f, d)

4 Autarky

The preceding section describes an economy without trade. To get the long-

run composition of the population is quite simple: The HH type has a more

favorable time allocation contraint. Therefore, it is able to achieve a strictly

greater fitness. In the Leontief case, for example, the fitness of genotype κκ0

is

uAκκ0 =
fκdκ0

fκ + dκ0
, (2)

where superscript A stands for Autarky. The corresponding survival rate is

ϕAκκ0 = ϕ(uAκκ0). Then, by virtue of Lemma 1, HH must be the only remaining

type in the long run.

PROPOSITION 1 — The solution to people’s maximization problem satis-

fies (A1) with strict inequalities. Consequently, in any stationary equilibrium

with a positive supply of H alleles at each locus:

nHH = 1;nHL = nLH = nLL = 0

Proof — Straightforward by application of Lemma 1.Q.E.D.

In the long run, the strongest gene is ”fixed” at both loci. The weaker

genes have disappeared. That is in conformity with basic principles of natural

selection.

5 Trade

I now introduce the possibility of trade among people and derive its impli-

cations for the long-run composition of the population. I now assume that
12It does satisfy (A2) in an extended sense, since the denominators are zero in both

cases.
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f and d, instead of being activities, are tradeable goods. At any date their

price is denoted by pf and pd, and it is convenient to normalize this price

vector so that

pf + pd = 1.

An equilibrium is then determined the standard way. Each individual of

genotype g = κκ0 determines his allocation of time by maximizing income:

max pff
S + (1− pf)dS

Subject to the time allocation constraint:

fS

fκ
+
dS

dκ0
= 1

This determines his supply to the market of goods f and d, fS(g, pf) and

dS(g, pf), as well as his total income R(g, pf) = pffS + (1− pf)dS.
People purchase quantities fD and dD of each good on the market, by

maximizing u(fD, dD) subject to

pff
D + (1− pf)dD = R(g, pf). (3)

This determines the individual demand functions fD(g, pf), and dD(g, pf),

and the resulting fitness u(fD(g, pf), dD(g, pf)). An economic equilibrium at

t is an allocation and a price vector which are solution to these optimization

problems and such that markets clear, i.e.13X
g

ng(t)f
D(g, pf) =

X
g

ng(t)f
S(g, pf). (4)

We are now interested in how economic forces affect the long-run ge-

netic composition of the population. For this we introduce the concept of a

13By Walras’ law, if this holds, then the market for d is also in equilibrium. Standard
results (Debreu, 1959) tell us that, given the current distribution of genotypes {ng}, an
equilibrium exists and is Pareto optimal, in that an agent’s fitness can’t be increased
without reducing another agent’s fitness.
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long-run equilibrium, which is a situation where the economy is in economic

equilibrium and the distribution of genotypes in the population is stationary.

The two are interrelated because the economic equilibrium determines the

level of fitness of each genotype, which in turn affects its population genetics.

DEFINITION — A Long-Run Equilibrium (LRE) is an allocation (fSg , d
S
g , f

D
g , d

D
g ),

a price vector pf , and a genotypic distribution {ng} such that
(i) Markets clear, i.e. fSg = f

S(g, pf), f
D
g = f

D(g, pf), d
S
g = d

S(g, pf), d
D
g =

dD(g, pf), and (4) holds.

(ii) The genotypic distribution is stationary, i.e. ng(t+ 1) = ng(t),∀g.
We now turn to the central result of this section, which characterizes the

properties of an LRE. We first state it formally and prove it, and then discuss

it.

PROPOSITION 2 — In any LRE

(i) The price of f must be equal to

pf =
dH

dH + fH
(5)

(ii) The L-allele has disappeared at at least one locus.

Proof of (i) — This price makes the HH type indifferent between sup-

plying f and supplying d. Suppose, say, pf > dH
dH+fH

. Then HH only sup-

plies f, and so does HL. As for LH, his maximum income does not ex-

ceed max(pffL, (1 − pf)dH) < max(pffL,
dHfH
dH+fH

) < pffH . Consequently,

ϕLH < ϕHH . Next, Lemma 1, (iii), implies that both LL and LH must

have disappeared in equilibrium. But, then total supply of good d is zero,

which can’t be true because of conditions (A2). A similar line of reasoning

holds if pf < dH
dH+fH

.

Proof of (ii) — The LL type has a strictly lower income thanHH, therefore

ϕLL < ϕHH . Applying (ii) in lemma 2 does the rest. Q.E.D.
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Part (i) of Proposition 2 is striking. It tells us that in an LRE, the price

vector is entirely pinned down by the productivity levels of the H alleles,

regardless of the shape of the fitness function u and of the composition of

the population. This is a property of any LRE but not of a situation which

would just be an economic equilibrium. In other words, pf may transitorily

differ from dH
dH+fH

but in the long-run it has to be equal to it.

The intuition is as follows: if the HH type were not indifferent between

the two goods, it would specialize in one of them, and any type which sup-

plies the other would be strictly worse-off, i.e. less fit, than HH, since its

productivity at doing it is at most as high as that of HH, which strictly

prefers not supplying it. Then, all suppliers of this good gradually disappear

relative to the rest of the population, and this cannot be in an LRE.

As a corollary, the HH type has no gains from trade in an LRE, because

the relative price pf/pd is equal to its marginal rate of transformation between

the two activities. For this to be the case it must be, as shown below, that

the H allele is sufficiently abundant.

Part (ii) tells us that one of the two L—alleles has to disappear, because

of the LL type acting as a genetic well. What is important, however, is that

only one weak gene has to disappear, whereas all of them were eventually

eliminated under autarky. Trade allows weaker people to specialize in the

activity where they can match the best, thus making their genetic deficiencies

irrelevant for survival. Consequently, these ‘inferior’ genes are passed to the

next generation with the same frequency as ‘superior’ ones, and are no longer

eliminated in the long run. The LL-type, on the other hand, has an absolute

disadvantage in all activities and as long as mating between people with

an L-gene produces some LL’s, the L genes gradually disappear in relative

terms. But this process stops when H is fixed at one of the two loci, since

no new LL is then produced.

It is easy to construct equilibria where the L-allele survives at one locus.

To do this let us simply take the Leontief fitness function u(f, d) ≡ min(f, d).
Let us construct an LRE where nHH > 0 and nHL > 0. Since pf+pd = 1, the
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maximum fitness of an agent with income R, at d = f, is equal to R. Thus

fitness under trade for genotype g and price pf is simply uTg (pf) = R(g, pf).

Since, at pf = dH
dH+fH

, genotype HH is indifferent between the two activ-

ities, HL must specialize in f. Thus its supply of f is nHLfH , and its income

is R(HL, dH
dH+fH

) = dHfH
dH+fH

, which also equals its demand for both goods:

fD(HL) = dD(HL) =
dHfH
dH + fH

The income of HH is also equal to dHfH
dH+fH

and its demand is therefore the

same:

fD(HH) = dD(HH) =
dHfH
dH + fH

To get an equilibrium it must be that the total demand for f exceeds

what HL is supplying. The difference is then supplied by HH. Thus it must

be that:

dHfH
dH + fH

(nHH + nHL) ≥ nHLfH ,

or equivalently14

nHL ≤
dH

dH + fH
. (6)

This condition is necessary and sufficient for an economic equilibrium.

Then noting thatHL andHH have the same mortality rate, one can trivially

check that the stationarity conditions ng(t+ 1) = ng(t) are satisfied. In fact

any initial distribution satisfying nLH = nLL = 0 and (6) will indefinitely

reproduce itself, without any transitional dynamics.

Thus, as long as the proportion of HL in the population is not too high,

the economy can be in an LRE with stationary proportions of each type.

14Similarly an LRE with HH and LH in the populatio can be constructed, a necessary
and sufficient condition is

nLH <
fH

dH + fH
.
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In such an equilibrium, fitness is simply equal to .

uTHL = u
T
HH =

dHfH
dH + fH

= uAHH . (7)

Note also that the RHS of (6) is greater, the greater the maximum pro-

ductivity level in the d−activity relative to the f−activity. When dH/fH
is large, only a few people are needed to produce society’s demand for the

d−good. Since all of these people must be of genotype HH in equilibrium,

equilibrium exists if nHH is large enough relative to the required number of

people who must produce d. This is more likely to be the case, the smaller

this number, i.e. the greater dH/fH .

If nHH is initially to small, the HH types will have positive gains from

trade and will achieve higher fitness than the HL type. The frequency of the

H allele in the population will rise until (6) is satisfied. These transitional

dynamics are studied in Section 7 below.

While Proposition 2 has characterized the equilibrium in terms of prices

and genotypic composition, the following one compares trade and autarky in

terms of total population.15

PROPOSITION 3 — (i) The long-run population growth rate is the same

under trade and autarky

(ii) For given initial conditions, population at any subsequent date is

larger under trade than autarky.

Proof — (i) follows from the observation that uTHL = u
T
HH = u

A
HH . Trade

and autarky yield the same population growth rate equal to νϕAHH .

To prove (ii), just note that for any given type, fitness is always higher

under trade than under autarky — even if the economy is not currently in

an LRE — since each genotype could replicate its autarkic allocation of time.

Q.E.D.

15Proposition 3 clearly ignores phenomena such as the demographic transition, when
increased fitness may mean lower population growth (See Galor and Moav (2000) for an
analysis). Such effects could be reintroduced by endogenizing birth rates.
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6 ‘Hunter-gatherers’

One may criticize the preceding analysis on the grounds that the autarky

metaphor is too stylized, in that one does not observe Robinson Crusoe

human societies in reality. Rather, one observes small tribes with egalitarian

resource sharing (hereafter nick-named ”hunter-gatherers”, HG)16, a more

advanced form of organization than mere autarky.

In this section, we extend the analysis to such groups. We do so in such a

way that autarky and trade are special cases. We show that except for large

HG groups with efficient specialization (which is equivalent to trade), the L

alleles are eventually eliminated, as in the pure autarky case. That may be

due either to inefficient specialization or to small group size. Let us discuss

these effects in turn.

First of all, because of the egalitarian allocation of resources, the HG

society lacks a mechanism for inducing its members to specialize efficiently—

contrary to the market which rewards people for choosing the most produc-

tive activity. People will tend to select the least unpleasant activity rather

than the most productive one, and therefore will not specialize according to

comparative advantage17. That effect will make it impossible for the members

of the tribe to achieve the maximum fitness level that optimal specialization

would yield. As a result, tribes with a higher frequency of high alleles will

achieve a higher fitness, as in the autarky case; in the long-run, high alleles

will prevail.18

16See, for example Boehm (1993, 2001) for an analysis of egalitarianism in HG tribes.
17If any consensus emerges from the literature, it is that some specialization takes place

in HG societies, but that this is much more rudimentary than the one which arises in
complex trading societies. One mostly observes specialization according to sex and/or
age. See Jochim (1988), Watanabe (1983), Lee and Devore (1968), Dahlberg (1981) and
Jones (1996). Therefore, task assignment is not random but far from efficient either.
That makes sense: in the absence of a market mechanism, the group leaders can improve
efficiency only by assigning tasks on the basis of some obvious characteristic, such as sex.
All this suggests that we expect real-world HG societies to be closer to ”autarky” than to
the ”trading” population.
18Note that it is not a group selection argument: individual fitness is an increasing func-

tion of the average frequency of high alleles in the individual’s tribe.Because of egalitarian
sharing, individuals with an H-allele do not achieve a higher fitness level than individuals
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Building on the above results, let us concentrate on the case where allele

H is fixed at locus 1 (the f activity). Assume total population is large, equal

to N(t) at date t. People are split in tribes of constant size Q << N. Each

tribe is characterized by the number QH of individuals who have anH−allele
at locus d. Consider the extreme case where the tribe is unable to allocate

people to tasks on the basis of their productivity. Say it asks from each

individual a uniform contribution f to the f−activity, while his contribution
to the d−activity is determined residually19. That is, an, individual j with
a κ-allele at locus 2 will provide d(j) = (1− f/fH)dκ of the d−activity. The
aggregate amounts of f and d are then shared equally between the members

of the tribe. Let us assume again a Leontief fitness function min(f, d) and

that the tribe manages to calibrate f so as to optimally yield an amount

d = f for each member. As d = QH
Q
(1− f

fH
)dH +

Q−QH
Q
(1− f

fH
)dL, this yields

a fitness equal to:

d = f = fH

QH
Q
dH + (1− QH

Q
)dL

fH + dH
QH
Q
+ (1− QH

Q
)dL

= u0(QH/Q)

That is clearly strictly increasing with QH .

Consider now the more interesting case where the tribe manages to allo-

cate people efficiently to the two tasks. It can then replicate the outcome of

a market economy and reach the same fitness level as if all individuals had

an H-allele. However, that is only true for tribes such that (6) holds. Tribes

for which (6) does not hold will have a lower fitness, and these will be the

tribes with a higher frequency of an L−allele.
Let us see this more precisely. An optimal allocation of effort within a

tribe must be such that genotype κκ0 specializes in f if dκ0/fκ < δ, in d if

dκ0/fκ > δ, and can produce both commodities if dκ0/fκ = δ, where δ is the

endogenous comparative advantage threshold. Since, at the optimum, d = f,

with an L-allele in the same tribe. However, H-alleles eventually drive-out L-alleles in
the long-run because of a composition effect: they are overrepresented in the tribes that
achieve a higher fitness.
19Any other assumption which deviates from efficient specialization would yield the same

results.

17



generically, some individuals must produce both commodities. Thus there

are only two possibilities: either δ = dH/fH or δ = dL/fH . The first case

prevails if QHfH > (Q−QH)dH , i.e.

QH
Q
>

fH
fH + dH

= q̄ (8)

and the resulting fitness for each member of the tribe is then20

f = d =
fHdH
fH + dH

= u1(QH/Q) (9)

Thus, under condition (8), which is equivalent to (6), the tribe replicates

the market equilibrium, which yields the highest fitness to all members, in-

dependently of the proportion of H-alleles in the tribe. Conversely, if (8) is

violated, then δ = dL/fH , and the tribe achieves the following fitness level:21

f = d =

QH
Q
fHdH + (1− QH

Q
)fHdL

fH + dL
= u1(QH/Q) (10)

In this zone, fitness is again an increasing function of QH/Q.

To summarize:

• If the allocation of tasks is ”random”, fitness is an increasing function
u0 of QH/Q;

• If it is efficient, it is an increasing function u1 of QH/Q up to a thresh-
old, q̄, then stays constant at its maximum level.

Let us now check that in both cases, the L-allele eventually disappears

from the population. Let us assume that mating is random and exogamic

(i.e. one does not mate in one’s tribe). Tribes are formed randomly at each

20Denoting by κ(j) the allele at locus 2 of individual j, the common individual fit-
ness level derives from the unique allocation of effort such that f = d, that is Q.d =P

κ(j)=H d(j) = Q.f =
P

κ(j)=H f(j) + fH(Q−QH)
= fHQH −Q.d. fHqH + dH(Q−QH), which yields (9).
21To equate f and d, one must have in this case f.Q =

P
κ(j)=L f(j) = d.Q = QHdH +P

κ(j)=L d(j)

= QHdH + dL(Q−QH)− dL
fH
f.Q, which yields (10).
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new generation. Therefore, the frequency of QH in the population is given

by the binomial distribution:

ρ(QH ;h2(t)) =
CQHQ
2Q

h2(t)
QH (1− h2(t))Q−QH ,

where h2(t) is again the frequency of the H-allele at locus 2. The survival

rate of an individual in a tribe with QH is ϕ(uk(QH/Q)) which, in the two

cases we have discussed (k = 0, 1), is nondecreasing and strictly increasing

for QH/Q < q̄. Consequently, the frequency of the h-allele in the distribution

of offsprings is

h2(t+ 1) =

PQ
QH=0

ρ(QH ;ht)
QH
Q
ϕ(uk(QH/Q))PQ

QH=0
ρ(QH ;ht)ϕ(uk(QH/Q))

= ψ(h2(t))

This quantity is clearly larger than h2(t) =
PQ

QH=0
ρ(QH ;h2(t))

QH
Q
. Thus

h2(t) grows over time. Furthermore, since ρ(QH ;h2(t)) > 0 for all QH , and

ϕ(uk(QH/Q)) is strictly increasing over some range, one has ψ(h) > h for all

h ∈ (0, 1). Thus h = 0 and h = 1 are ψ’s only fixed points. Therefore, h2(t)
monotonically converges to 1.

L-alleles are eventually eliminated from HG societies even though these

implement efficient specialization within a tribe. The reason is that the law

of large numbers does not apply to the distribution of QH . At each date, a

positive fraction of individuals end up in tribes such that QH/Q < q̄. These

individuals achieve lower fitness and are also more likely to have an L-allele.

Consequently, this allele eventually disappears.22

In some sense, this section has studied the effects of living in large groups.

The greater Q, the more the distribution of ρ(QH ;h2(t)) resembles a mass

point at QH = h2(t). If the economy is in a zone where h2(t) >
fH

fH+dH
,

the L−allele will therefore be eliminated at a lower rate, the larger the size
of the group Q. The ”trade” case analyzed above is a special case when Q

becomes large, while autarky is the special case associated with Q = 1. Note

22Intuitively, the result would still hold under endogamy: because of genetic drift, tribes
such that h2(t) < 1 would regularly end up below the threshold q̄, and they will eventually
be replaced by tribes such that h2 = 1.
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however that this reasoning ignores the coordination problems involved in

allocating people to the right tasks as Q becomes large; markets are indeed

an institution which solves these problems.

To conclude this section: the L allele will eventually be eliminated from

small HG group, regardless of how efficiently they specialize.

7 Transitional dynamics

Section 5 has studied the long-run equilibrium of a trading population and

shown that it is compatible with survival of the L-allele at one locus. In this

section, I analyse the transitional dynamics to an LRE. I will again assume

that H is fixed at locus 1, but that (6) is initially violated.

7.1 The economic equilibrium in a transition

When (6) is violated, the only possibility for an equilibrium is that HH

provides d and HL is indifferent between providing f and d. Consequently

the price level must be

pf =
dL

fH + dL
.

The HL type achieves a fitness level pffH = pddL =
fHdL
fH+dL

. It has no

gains from trade and achieves the same fitness as in autarky. The HH type

has a fitness level pddH =
fHdH
fH+dL

> dHfH
dH+fH

. It has positive gains from trade

and achieves a greater fitness level than under autarky.

The dynamics are simple: the frequency of the H allele will increase;

hence nHL will fall, until the first date when (6) is satisfied. nHL will then

typically be a bit above the threshold, and would stay there; but that is due

to the discrete time structure of the model, and it is easy to see that (6)

would be matched with equality under continuous time. When the economy

enters the LRE, fitness drops from dHfH
dL+fH

to dHfH
dH+fH

for the HH type, and

jumps from dLfH
dL+fH

to dHfH
dH+fH

for the HL type.
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Comparing trade and autarky during the transition, the H-allele repli-

cates faster under trade, but that eventually eliminates its economic ad-

vantage and the economy settles in an LRE with nHL > 0, while selection

continues to operate under autarky. These transitional dynamics are illus-

trated on Figure 1: there is a first phase of rapid increase in the frequency of

the H allele, and a second phase where the economy is an LRE where both

types have the same fitness.

7.2 Inequality

By construction, the above model rules out any inequality in income and

fitness between individuals in a long-run equilibrium, regardless of the insti-

tutional settings. That is because inequality can only come from differences

in genotypes: if there were inequality, more successful genes would replicate

at a higher rate and one would not be in a long-run equilibrium.

Yet, more advanced societies typically generate more inequality than

primitive ones. In some sense, that should not come as a surprise: the

potential for generating inequality is much smaller if one is close to the sub-

sistence level. But can we reconcile that observation with the mechanism

discussed in this paper?

The preceding subsection implies that inequality may arise as a transi-

tional phenomenon. Along the transition path just described, HH has a

higher income and fitness under trade than under autarky, while HL has the

same fitness level. Therefore, inequality is higher under trade than under

autarky. As for the egalitarian HG society, inequality is even smaller than

under autarky: within-tribe inequality is equal to zero by construction, and

per-capita tribe income spans the [ fHdL
fH+dL

, fHdH
fH+dH

] as QH varies from0 to Q,

whereas under autarky individual income is equal to one of these two bounds.

Second, inequality may persist if it is unrelated to genotype. Suppose that

some individuals are lucky and with some small probability p can get hold

of a large amount of resources in the f activity; call F that amount. Assume

p is the same for all genotypes. Under autarky, the effect of luck on fitness

21



is limited by concavity in the u(., .) function. In the extreme Leontief case,

fitness can only increase up to dκ, the individual’s endowment in the other

activity. In the HG society, the prize F is shared between all the members

of the tribe. If tasks are allocated optimally, then each member’s fitness

typically goes up but cannot exceed (1− QH
Q
)dL +

QH
Q
dH .

23 Under trade, the

individual’s fitness is equal to pfF +max(pffκ+(1−pf)dκ). It therefore goes
up without bounds with F. Trade can therefore generate a much larger level

of inequality than autarky and HG societies, yet as long as luck is unrelated

to genotypes (which must be for inequality to be persistent in an LRE), the

model’s conclusions are unchanged.

7.3 Migration

It is interesting to discuss how the transitional dynamics are changed if one

allows for migration between trading and non-trading populations. In the

logic of this paper, trade is a cultural trait associated with a population, not

a genetic trait associated with individuals. Since trade makes people at least

as well-off as autarky (or HG tribes), migration would tend to take place

from autarkic populations to those who trade.

A natural way to think of migration is to assume that the fraction of

the population which migrates is larger, the larger the fitness gain associated

with such a move. In an LRE, fitness is the same in a trading and in a non

trading population (with onlyHH genotypes), so that there should be no net

migration between the two populations.24 During the transition, however,

23Straightforward computations along the lines of the previous section allow to prove
that. There are three cases:
1. If F < QHdH − (Q − QH)fH , then δ = dH/fH and the common fitness level u is

equal to f = d = u = dH(fH+F/Q)
fH+dH

≤ dHQH

Q .

2. If QHdH − (Q − QH)fH ≤ F ≤ (Q − QH)dL + QHdH , then δ = dL/fH and
the common fitness level is equal to f = d = u = (1−QH/Q)dLfH+(QH/Q)dHfH+dLF/Q

dL+fH
≤

(1− QH

Q )dL +
QH

Q dH .

3. If F > (Q−QH)dL +QHdH , then f = F/Q > d = u = (1− QH

Q )dL +
QH

Q dH .
24Furthermore, if a type migrates to a trading population, its fitness does not exceed

that of the resident types. Therefore, the LRE passes the invasibility test discussed in
Mylius and Diekmann (1995).
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interesting effects arise, to the extent that HL types are still present in the

non-trading population. Suppose that (6) holds at a point in time. Then

the price level is pf = dH/(fH + dH), and the HH type achieves the same

fitness level as under autarky. Thus we expect only HL types to migrate

from a non-trading to a trading population. But that increases the relative

frequency of L alleles in the trading population, so that (6) may eventually be

violated. On the other hand, if it is violated with strict inequality, then the

HH type has gains from trade, and not the HL type. There will therefore

be an inflow of HH types. Thus, in the medium run, we expect migration

to affect the gene pool of the trading population in such a way that (6) holds

with equality. The frequency of the H allele in the trading population is

therefore entirely pinned down by this condition.

When (6) holds with equality, relative prices are no longer determinate.

Provided dL
dL+fH

< pf <
dH

dH+fH
, the HH type will entirely specialize in the

d activity and the HL type in the f activity. Markets clear regardless of

pf because of the equality in (6). How is then pf determined? It must

take the only value such that migrations are compatible with that equality.

To see this more precisely, suppose that a fraction mg(t) of people with

genotype g migrates from the autarkic to the trading population every period.

Assume it is an increasing function of the differences in fitness between the

two populations

mg(t) = γ(uTg (pf(t))− uAg ),

where γ() is such that γ() ≥ 0, γ(0) = 0, γ() < 1, and γ0() > 0. While uAg is

given by (2), the specialization pattern implies that:

uTHH(pf) = (1− pf)dH ;

uTHL(pf) = pffH ;

Using Section 2, we get that the non trading population evolves according
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to

NA(t)nAHL(t) = νϕAHLN
A(t− 1)nAHL(t− 1)(1−mHL(t)); (11)

NA(t)nAHH(t) = νϕAHHN
A(t− 1)nAHH(t− 1)(1−mHH(t)). (12)

The trading population evolves according to

NT (t)nTHL(t) = νϕ(uTHL(pf))N
T (t− 1)nTHL(t− 1) (13)

+mHL(t)νϕ
A
HLN

A(t− 1)nAHL(t− 1)

NT (t)nTHH(t) = νϕ(uTHH(pf))N
T (t− 1)nTHH(t− 1) (14)

+mHH(t)νϕ
A
HHN

A(t− 1)nAHH(t− 1)

Migration flows must adjust so as to maintain equality in (6), that is

equivalent to

dH
fH

=
nTHL(t)

nTHH(t)
, (15)

which because of (13) and (14) defines a unique value for pf(t).

Asymptotically, the ratio nAHL(t)/n
A
HH(t) has to fall to zero, since the HL

type achieves lower fitness in autarky.25 For (15) to hold, it must be that

mHH(t) asymptotically goes to zero, meaning that pf(t) goes to dH/(fH+dH).

Thus one converges to the above described LREwhere (6) holds with equality.

In the short run, the initial conditions may be such that (15) cannot hold.

For example, if

ϕ( fHdL
fH+dL

)nTHL(t− 1)NT (t− 1)
ϕ( fHdH

fH+dL
)NT (t− 1)nTHH(t− 1) + γ( fHdH

fH+dL
− fHdH

fH+dH
)ϕAHHN

A(t− 1)nAHH
>
dH
fH
,

(16)

then the economic equilibrium is such that pf = dL
fH+dL

.One has uTHL(pf) =

uAHL and mHL = 0. Only the HH type migrates to the trading economy,

25The only alternative is a constantly higher migration rate for the HH type. That is, to
have nAHL(t)/n

A
HH(t) > K, we needmHH(t) >

y−1
y +mHL(t), with y = ϕ(uAHH)/ϕ(u

A
HL) >

1. But then, that implies that population in autarky shrinks without bounds relative to
the trading population. That makes it impossible for migration to sustain a constant
nTHL/n

T
HH ratio with migration, unless uTHL = uTHH . But in such a situation mHH(t)

becomes equal to zero, which is a contradiction.
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which speeds up growth in the frequency of the H allele there, while this

may actually (temporarily) favor the L allele in the autarkic population.26

Figure 2 plots the transition to an LRE for the trading population, under

migration vs. no migration, when the initial density of the H allele is low

enough, so that (16) initially holds. Under migration, one converges more

quickly to the critical density of L genes, dH
fH+dH

. As for the non-trading

population (Figure 3), migration initially slows or reverts the elimination of

the L allele and then accelerates it. There is also a qualitative difference in

that, under trade, the HL type achieves the same fitness level as the HH

type in finite time absent migration, while convergence is only gradual under

migration (Figure 4).

It is also obvious that the relative population size of the non-trading

population in the long-run is lower under migration. A less obvious question

is: can it fall to zero? Interestingly, one can prove that it is not the case

(See Appendix). Migration can never be strong enough to eliminate the non-

trading population absent environmental shocks: as pf converges to dH
fH+dH

,

the HH type loses its incentives to migrate too quickly for the non trading

population to vanish.

Allowing for migration therefore does not affect the basic results, but

modifies the transition to an LRE in an interesting way.

26If

ϕ( fHdHfH+dH
)NT (t− 1)nTHL(t− 1) + γ( fHdHfH+dH

− fHdL
fH+dL

)ϕ( fHdLfH+dL
)NA(t− 1)nAHL(t− 1)

ϕ( fHdHfH+dH
)NT (t− 1)nTHH(t− 1)

<
dH
fH
,

then the reverse occurs. One has pf = dH
fH+dH

, uTHH = u
A
HH , and mHH = 0. The L allele

becomes more frequent in the trading population, and disappears more quickly from the
autarkic one.
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8 The impact of trade on collective fitness:
the role of environmental shocks

One question of interest is: does a population which trades do better than one

which does not, by enough to drive out the latter from existence in the long-

run? As we have seen above, for the same initial distribution of genotypes

a trading society will have a larger population in the long-run than a non

trading one, but these two populations will grow at the same rate. Hence,

the former will be larger than the latter but will not eliminate it. If, on the

other hand, it were the case that trade increased population growth, then a

trading population would eventually become infinitely large relative to a non

trading one, so that the latter has been eliminated in relative terms.27

It turns out that trade achieves a greater population growth rate if one

allows for shocks to the environment such that the relative survival value of

H vs. L-alleles can be inverted. A typical example of such an inversion in

nature is skin color. Bears in warm climates are dark, while bears in cold

climate are white. Thus an allele favouring a white skin would be considered

as ”H” in a cold climate, but would have to be re-classified as ”L” if there

is climate change.

If such environmental changes can occur, then, in some sense, the per-

sistence of ”L” genes under trade is an asset for the population as a whole.

It allows it to diversify its genetic composition so as to better cope with

environmental change.

Going back to the simple model of section 2, and assuming a Leontief

fitness function, consider a population without trade. We know that in steady

state only the strongest type survives, so that nHH = 1. This population

grows at rate νϕAHH .

Now, assume that this population is subject to an environmental shock

such that the productivity ofHH at activity d is now dL (the L-environment),

rather than dH (the H-environment), while that of type HL is now dH . Pop-

27A caveat, however, is that if density eventually has a negative impact on fitness, any
differences in population growth rates eventually vanish.
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ulation now grows at the rate corresponding to a population entirely made

of HL individuals, i.e. νϕAHL.

This suggests that on average, when there are shocks to the environment,

population will grow at a rate strictly lower than νϕAHH . Now, this reasoning

is not quite correct, since when there are repeated environmental shocks,

there is no reason why population should entirely be made of HH types.

Rather, as long as environmental shocks do not affect the productivity of the

f -activity, it will be made of bothHH andHL types, with the former tending

to outnumber the latter in an H-environment, and tending to disappear in

an L-environment. In such a case, survival will always be a weighted average

of ϕAHL and ϕAHH , with strictly positive weights, and population growth will

be smaller than νϕAHH .

On the other hand, consider a trading economy with a proportion nHH
of HH types, such that

max (nHH , 1− nHH) <
dH

dH + fH
.

According to the results at the end of section 5, this distribution is an

equilibrium in both the H-environment and the L-environment. In the H-

environment, the ”weak” type HL achieves the lowest mortality rate by

specializing in the f good, while in the L-environment, the weak type is HH

and it is the one which specializes in f. Therefore, in both states fitness is

the same for both types and given by (7). Consequently, population grows

at rate νϕHH .

From there one may argue that if populations with different institutions

compete with each other for land and natural resources, trading populations

will eventually eliminate non trading ones because of their faster population

growth rate. This would not be true in the absence of environmental shocks.

9 A generalization

The preceding results are based on a very simplified representation of sexual

reproduction. Can we extend them to a more realistic situation where chro-
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mosomes come by pair and abilities are determined by alleles at more than

two loci?

An extension of this paper (Saint-Paul, 2006) considers an arbitrary num-

ber of loci, set in groups of K chromosomes.

It is shown that the preceding results can be extended provided the re-

production process satisfies the following properties:

1.Gene conservation: The distribution of genes among offsprings is the

same as among parents.

2. Allele independence: The probability distribution of alleles at a given

set of loci, among offsprings of the same parents, conditional on alleles at

other loci, must be invariant with respect to these other alleles.

3. Mixing: The probability distribution of alleles among offsprings of the

same parents, spans all possible recombinations of the parents’ alleles, given

that one inherits half one’s genes from each parent.

4. Monotonicity: An individual A whose genotype differs from individual

B at only one locus, in that it has more good alleles at that locus than B,

would, when mating with the same partner (denoted by C) as B, produce a

distribution of offsprings who have more good alleles at that locus than the

offsprings of B and C, in a first-order stochastic dominance sense.

If these assumptions hold, then the results of Section 5 can be extended.

Under autarky, bad alleles disappear in the long run. Under trade, the bad

allele only has to disappear at one locus in the long-run. The price system,

in a long-run equilibrium, is again pinned down by the strongest genotype’s

productivity. Finally, for an LRE to hold, genotypes less fit than the fittest

should not account for too large a fraction of the population. Proposition 7

in the Appendix shows how condition (6) can be generalized.

10 Qualifications

The results derived above are stylized in that they depend on two simplifying

ingredients. First, any advantage for one allele over an alternative eventually
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eliminates the latter. Second, specialization makes it possible to eliminate a

gentoype’s fitness disadvantage due to the presence of an ‘inferior’ allele at

one locus. The results would be milder if one relaxed these assumptions.

If there is an inflow of L alleles due to mutation, these cannot be elimi-

nated in the long run. The result that one gets instead, is that under trade

the frequency of L alleles is higher than under autarky. The result that the

trading population will achieve a higher overall fitness, and grow faster, than

the non trading one, remains.

Trade may not equalize fitness levels between genotypes, if there is a

cost (in terms of fitness) to participate in the trade process. The HH type

must then, through trade, get a higher fitness than under autarky, to be

compensated for this cost. For this, it must be that pd >
fH

fH+dH
, which

precludes fitness equalization between HL and HH. In such a setting, the

L allele would also be eliminated asymptotically. However, (i) it would be

at a smaller rate than under autarky; (ii) this rate would go to zero as the

cost of trading becomes arbitrarily small, so that (starting from an initial

distribution which satisfies (6)) the ratio nHL/nHH at any given future date

remains arbitrarily close to its initial value; (iii) if mutation is reintroduced,

the L allele no longer disappears and is more frequent under trade, while the

conclusion that trading populations achieve higher fitness is unaffected.

Another reason why trade may not eliminate fitness differences, is if gene

conservation, and/or allele independence, fail28. In such a case, the sexual

reproduction process favors some alleles, and trade cannot offset their ad-

vantage. If alleles favored by sexual reproduction are also those with lower

mortality under autarky, trade can only eliminate part of these allele’s fitness

advantage. Absent mutation, trade reduces the rate at which weaker alleles

are eliminated, but does not prevent their eventual elimination. Under mu-

tation, trade again increases their equilibrium frequency in the population,

and the preceding conclusions are unaffected. If sexual reproduction favors

28As in the case of ”linkage disequilibrium”, when the presence of an allele at one locus
makes it more likely that a given allele at another locus is present in the offspring.
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alleles that otherwise have higher mortality, one cannot meaningfully state

that these alleles reduce fitness, but again trade will tend to increase their

frequency.

-

11 Conclusion

Understanding how genes and culture coevolve is an important step in inte-

grating biology with the social sciences. One important cultural institution

of our species is the market. Leaving aside the question of what genetic

characteristics of our species led to such a development, this paper has con-

sidered the reverse influence: how do markets in turn affect human genetic

evolution? The answer it that it makes evolution more selectively neutral by

allowing individuals to offset their genetic disadvantages by specializing.

A generalization to small ”hunter-gatherer” societies has shown that the

lower alleles are eliminated at a lower rate, the larger the group and the more

efficient its specialization, while markets can be thought of as a special case

when group size is large.

Furthermore, the genetic diversity brought about by markets is beneficial

if there are environmental shocks which may reverse the fitness ordering of

the alleles; a trading population would then grow faster than a non-trading

one. A potential interesting route for further reseach would be to study how

these effects could be further enhanced by the use of technology.
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12 Appendix: Asymptotics under migration

To prove that migration cannot eliminate the non-trading population, note

that in the long run one must have pft = dH
fH+dH

− πt, where πt << 1. Then

it must be that mHH = πtdHγ
0(0) and mHL = γ(∆u) − πtfHγ

0(∆u), where

∆u =
³

dH
fH+dH

− dL
fH+dL

´
fH is the utility gain to the HL type of moving to

the trading population. Similarly, we have

ϕ(uTHH(t)) = ϕ0(u∗)πtdH + ϕ(u∗);

ϕ(uTHL(t)) = −ϕ0(u∗)πtfH + ϕ(u∗),

where u∗ = fHdH
fH+dH

. Finally, it must also be that nAHL(t) = µtn
A
HH(t), where

µt << 1. Substituting these into (13),(14), and (15) we can compute πt as a

function of µt :

πt =
γ(∆u)fH

ϕ0(u∗) (f2H + d
2
H)x(t− 1) + ϕ(u∗)d2Hγ

0(0)
µt, (17)

where x(t) = NT (t)nTHH(t)/(N
A(t)nAHH(t)). Substituting our first-order

approximations into (12) and (14) we get

x(t) = x(t− 1)
µ
1 +

ϕ0(u∗)dH
ϕ(u∗)

πt

¶
+ 2πtdHγ

0(0). (18)

Thus, substituting (17) into (18), we can write

x(t) = x(t− 1)(1 + aµt
bx(t− 1) + c) +

dµt
bx(t− 1) + c,

where a, b, c, d > 0 are constants. Clearly, x(t) − x(t − 1) < k.µt.

Therefore, x(t) will remain bounded provided the sum
P+∞

t=T µt is conver-

gent. Since mHL(t) >> mHH(t) and uAHL < u
A
HH , (11) and (12) imply that

nHL(t)/nHH(t) converges to zero exponentially. Hence
P+∞

t=T µt is conver-

gent, therefore x(t) is bounded. As a corollary, the autarkic population does

not vanish relative to the trading population.
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