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Abstract

We propose a simple liability rule when several agents are jointly responsible for mon-

itoring a risky economic activity or certifying its security. Examples are safety controls

for drugs or technical systems, environmental liability, or air safety accidents. The agents

have private knowledge of their monitoring or avoidance costs. We adopt a mechanism

design approach to ensure optimal monitoring incentives. Our innovation is to focus on

information that is available or can be proxied when harm has occurred and when typically

regulators and/or courts deliberate over ¯nes and damages. By contrast, earlier proposals

require more estimations of hypothetical accident scenarios and their ex ante probabilities.

We argue that our rule promises substantial savings in information costs for courts and

regulators and excludes likely sources of errors.
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1. Introduction

We analyze e±cient liability rules when several agents are jointly responsible for carry-

ing out a risky economic activity or monitoring its security. As an example, consider the

classical DES case. Between 1941 and 1971, about 200 drug companies produced and mar-

keted Diethylstilbestrol (DES) that was prescribed to prevent miscarriage among expectant

mothers. It was only in the late 1960s that DES was discovered to cause a vaginal cancer in

women whose mothers had taken DES. Any of the manufacturers bore responsibility, since

all had failed to carry out thorough enough testing that would have revealed the cancer

risk, as was acknowledged by the courts who considered apportioning liability according

to market shares (see Cooter and Ulen 1988, 339). All manufacturers were responsible for

controlling the safety of the drug, and one company's discovery of the risk would have been

su±cient to prevent the spread of vaginal cancer.

Environmental regulation is another area where the safety of procedures and instal-

lations is independently monitored by multiple agents. Typically, companies constantly

monitor the safety of hazardous plants. In parallel, the regulating agency performs regular

or random controls. Finally, insurers also impose standards of safety controls, and they

may monitor these standards themselves.

Independent security controls as in these examples are only special cases of a wider class

of closely related problems. In other cases, monitors may not be in charge of the same tests,

but their responsibilities overlap in the sense that one agent has reasons to believe that

the control activity of others would be su±cient to guarantee safety. For instance, in case

of air safety accidents, there are various layers of security controls, like manufacturers, the

airline, the ground sta®, the service company, the air tra±c control, the safety regulator,

the pilot, and it frequently takes the simultaneous failure of two or more of them to trigger

an accident.

Designing an e±cient liability rule would be trivial if information were perfect. Any

kind of negligence rule, where each agent has to pay if she violates the due care level,

implements the e±cient care choices.1 However, e±cient negligence rules require that the

court is perfectly informed about the various agents' avoidance costs. In the DES case,

it was di±cult to ¯nd out what the reasonable standard of care had been. Among the

many possible risks of the new drug, which ones deserved special attention at the time?

What prior knowledge about the risks did the manufacturers really have? How competent

were their test technologies, and hence, what would have been the costs to develop tests

that would have been really e®ective? On all these questions, the drug manufacturers

1See e.g. Shavell (1987).
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are likely to hold private information. The same is true for our environmental regulation

example. Typically, all parties will keep records of their monitoring activity, as a precaution

in the event of damage. But if the controls fail and an environmental disaster occurs, the

question will be how competent the test procedures and the monitoring sta® really were,

or translated in economic terms, what the true costs of e®ective monitoring were for any of

the agents in charge. For these reasons, we analyze liability rules for multiple agents when

monitoring costs are private information.

We restrict our attention to liability rules without punitive damages, that is to liability

rules where total liability payments must not exceed total harm.2 We refer to this condi-

tion as balancedness, employing the usual term in the mechanism design literature. This

literature has shown that solutions exist which give agents the right incentives and satisfy

balancedness. D'Aspremont and Gerard-Varet (1979) (AGV henceforth) have suggested an

optimal mechanism which does precisely that. The idea is that agents pay for the entire

damage that their own actual choice of monitoring e®ort causes, relative to an expected

choice of e®ort. This gives agents the desired incentives at the margin. Any surpluses col-

lected in this way are transferred to other agents in a way that ensures that the recipients

cannot manipulate the transfers.

The problem with the AGV-mechanism and related contributions (e.g. Demski and

Sappington (1984) and Emons and Sobel (1991)) is that it is rather demanding, if it should

be used in practice. It requires to assess what agents' e±cient behavior would have been,

how it would have translated into expected damage, and how this expected damage is

a®ected if agents deviated from their expected behavior. Our main contribution is to show

that for the problem at hand, a considerably less complex version of the AGV-mechanism

can be used. Similar to an AGV mechanism, we construct side payments such each agent

bears total accident costs in expectation, and hence acts e±ciently, but these side payments

use only the minimal amount of information needed.

Speci¯cally, our liability rule has two attractive features. First, the rule is relatively

simple because all side payments are linear in the ratios between the agents' expected and

actual failure risks. Second, it is su±cient to make the liability payments dependent on the

actual accident. This means that the court can safely ignore the impact of hypothetical

accident scenarios. We develop our rule for independent security controls where farm occurs

only if all of many layers in a safety net fail jointly. Afterwards, we demonstrate that the rule

can also be applied to more general patterns of damage functions where the agents' impacts

2Punitive damages are not only legally controversial (see Polinsky and Shavell (1998)), but also prob-

lematic from an economic point of view: Since injurers will pay more than the total harm caused to society,

it will discourage potential injurers from investing into socially bene¯cial economic activities.
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on the damage function are not separable. Unfortunately, the liability rule then becomes

more complicated as nothing like an individual failure risk exists for general multicausal

damage functions. We conclude that our suggestion is most useful for independent security

controls.

Besides the literature on AGV-mechanisms, our paper is related to the law and eco-

nomics literature on optimal liability rules for accidents with multiple tortfeasors. Shavell

(1987) and Landes and Posner (1987) demonstrate that negligence rules solve the problem

under perfect information. Kornhauser and Revesz (1989, 1994) and Arlen (1992) extend

the analysis to di®erent sharing rules and settlements. Finsinger and Pauly (1990), and

Polinsky and Che (1991) propose liability rules with punitive damages. Feess and Hege

(1999) consider the moral hazard case and show that the team production problem can be

solved through insurance contracts.

The paper is organized as follows. A simple example with only two security agents is

presented in Section 2. We introduce the general model and discuss the main result in

Section 3. Section 4 extends the analysis to more general patterns. Section 5 concludes.

2. An Example: Two Agents

2.1. The Model

We begin with the simple case of two risk-neutral agents, in order to develop the intuition

for our rule. Two agents i = 1; 2, are in charge of monitoring an economic activity that

produces harm x if the agents fail to detect errors. Agent i's veri¯able e®ort ai determines

the probability p(ai) that an error escapes her attention. Both agents monitor the activity

independently, and harm x will only occur if both agents fail to stop the causes or security

gaps. Hence, the probability for the harm occurring is p(a1; a2) = p(a1) ¢ p(a2) :
Agent i's e®ort costs ct(ai) depend on her type t that is private information. There are

two possible cost types, high, t = h, or low, t = l. We assume that ch(ai) > c
l(ai) for all

levels of ai. Outsiders and regulators believe that t = h with probability f
h
i and t = l with

probability f li = 1 ¡ fhi . The types of the two agents are independently distributed. To
ensure an interior optimum, we assume

dp(ai)

dai
< 0,

d2p(ai)

da2i
> 0,

dct(ai)

dai
> 0,

d2p(ai)

da2i
> 0 8i, 8t.

Social costs are de¯ned as

C = ct(a1) + c
t(a2) + p(a1) p(a2) x ;

3



and depend on the types and on the e®ort choices, t1; t2; a1 and a2. Our assumptions

ensure that C is strictly concave in a1 and in a2.

Let ati denote the e±cient choice of action for i, given her cost function is of type

t = (h; l). Interim e±ciency requires that agent i minimizes expected social costs, given

that each of the types of agent j takes her e±cient action. Let ¹pj = f lj p(a
l
j) + f

h
j p(a

h
j )

denote the expected failure probability of agent j in an interim e±cient equilibrium. Thus,

ati is agent i's choice of action minimizing

p(ai) ¹pj x+ c
t(ai) : (2.1)

This leads to the ¯rst order condition determining ati:

¹pj x
dp(ai)

dai
= ¡dc

t(ai)

dai
(2.2)

Eqn.(2.2) expresses the familiar condition that agent i's optimal e®ort requires that her

marginal costs of care be equal to the marginal decrease in expected social harm. The

marginal decrease in expected social harm is based on the belief that the agent j will

also exercise her optimal e®ort, atj , and therefore fail to detect errors with an expected

probability of ¹pj = f
l
j p(a

l
j) + f

h
j p(a

h
j ).

We are looking for a liability rule that minimizes total costs C. Let li(a1; a2) denote

the liability attributed to agent i if the harm x occurs. The liability rule li(a1; a2) is called

e±cient if it leads to agent i choosing her interim e±cient e®ort level ati. We restrict our

attention to liability rules where victims are exactly compensated, i.e. where l1(a1; a2) +

l2(a1; a2) = x ; 8a1; a2 (balancedness). The liability rule l(a1; a2) must implement the best
attainable e®ort pro¯le(ai; aj) as a Bayesian Nash equilibrium after the rule is announced.

2.2. An Optimal Liability Rule

In this example with two agents, our e±cient liability rule will take the following form:

li(a1; a2) =
x

2

"
1 +

¹pj
p(aj)

¡ ¹pi
p(ai)

#
; i = 1; 2 (2.3)

The rule consists of three components. First, agent i pays half of the damage, x=2.

Second, half of damages is multiplied by the ratio of agent j's expected failure probability

¹pj, divided by j's actual failure probability p(aj). This ratio, ¹pj= p(aj), can be smaller or

larger than one, and it magni¯es or reduces the part that agent i has to pay in total. In the

third term, the same ratio is applied to agent i herself, but since this term has a negative
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sign, it can be viewed as a transfer that agent i receives from agent j. Throughout, we

refer to the second and the third part as side payments.

The failure ratios ¹pj= p(aj) and ¹pi = p(ai) are the essential element of our mechanism.

Agent i's failure ratio can be interpreted as the percentage increment by which i's expected

error tolerance, ¹pi, fell short or exceeded i's actual error tolerance p(ai). This ratio is larger

than one if agent i was more careful than expected, and vice versa.

E±ciency requires that each type minimizes expected social costs, given that the other

player choose her type-speci¯c e±cient action. In the remainder of this Section, we will

demonstrate why li(a1; a2) satis¯es this requirement. When choosing her e®ort, agent i

minimizes3

~Cti = p(ai) ¹pj li(a1; a2) + c
t(ai) ;

Substituting li(a1; a2) from Eqn. (2.3) leads to

~Cti = p(ai) ¹pj
x

2

"
1 +

¹pj
p(aj)

¡ ¹pi
p(ai)

#
+ ct(ai) (2.4)

or

~Cti = ¹pj
x

2

"
p(ai) + p(ai)

¹pj
p(aj)

¡ ¹pi
#
+ ct(ai) (2.5)

When calculating her e±cient care level, agent i is uncertain about agent j's type or

e®ort p(aj), and she replaces them by expectations p(aj) = f
l
jp(a

l
j) + f

h
j p(a

h
j ) = ¹pj. Thus,

she assesses the value of the ¯rst two terms in the objective square bracket of (2.5) as

p(ai) + p(ai)E
h
pj
p(aj)

i
= p(ai) + p(ai)

¹pj
¹pj
= p(ai)2. Agent i will operate with the following

simple objective function

~Cti = p(ai) ¹pj x ¡ ¹pi ¹pj
x

2
+ +ct(ai) ; (2.6)

where ¹pi ¹pj
x
2
, that is the part that agent i expects to get from agent j, is independent

of i's actual behavior since p(ai) cancels out. It is then immediate that the ¯rst order

condition of agent i's objective function (2.6),

d ~Cti
dai

= 0 , dp(ai)

dai
¹pj x = ¡dc

t(ai)

dai
;

is identical to the ¯rst-order condition (2.2) of social cost minimization.

We add three remarks to sharpen the understanding of liability rule (2.3). First, since

the ¯rst term and the second term of liability rule (2.3) add up to x in expectations, one

3The tilde on ~Cti indicates that this is i's private objective function, as opposed to the social cost

function (2.1).

5



may wonder why these terms are not aggregated immediately. The reason is that simply

de¯ning li(a1; a2) =
x
2
+ x

2
¹pi

pi(ai)
instead would imply punitive damages of x. And while the

second term x
2

¹pj
p(aj)

does not in°uence agent i's care level, it is clearly important to make

sure that agent j behaves e±ciently.

Second, i's side payment ¹pj
pj(aj)

x is decreasing in the agent j's actual failure risk pj(aj)

compared to agent j's expected failure risk ¹pj . This is a desirable property: The higher

agent j's expected failure risk, the more important that agent i detects the fault, the

higher her e±cient liability risk. But the lower agent j's actual failure risk, the lower the

probability that harm occurs, i.e. the higher i's optimal payment if a damage happens

despite agent j's low failure risk. Note that it cannot be su±cient to make agent i's

payment simply depend on agent j's actual failure probability alone, because agent i takes

expectations in equilibrium, and variable expected liability payments would no longer add

up to total harm.

Third, we have only considered a symmetric liability rule, where each agent is expected

to pay half of the harm. However, the liability rule can easily be generalized to any rule

of the form li(a1; a2) = x
h
®i + (1¡ ®i) ¹pj

p(aj)
¡ ®i ¹pi

p(ai)

i
, where 0 < ®i < 1, as we will see.

Expected contributions are asymmetric then, with agent i paying an expected fraction of

®i of the damages.
4

3. The General Case of Independent Security Controls

In this Section, we extend the analysis to n ¸ 2 agents and to k di®erent accident scenarios,
where scenario k leads to harm xk 2 (xi; :::; xK). Each of the n agents i = 1; :::; n chooses
an e®ort ai 2 Ai, determining the probability pk(ai) that agent i's care fails with respect to
a risk leading to harm xk. We assume that harm xk depends on the care of m · n agents,
and we maintain the assumption that each agent is independently monitoring all possible

elements that could lead the economic activity to cause harm. The probability of harm xk

occurring is then

pk(a) =
Y
i

pk(ai) ;

where a = (a1; :::; ai; :::; am) is the vector of e®ort choices of all m agents. We construct

a ring of the m agents, such that each has exactly one predecessor and one successor. If

agent i is not involved in avoiding harm xk, her respective probability is simply pk(ai) = 1.

4This is easily seen by recalling that the ex ante expectated values of the ratios pj = p(aj) and pi = p(ai)

are equal to one.
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Agent i's cost function ct(ai) is private knowledge and depends on her type ti, drawn

from an agent-speci¯c and discrete set Ti, and distributed according to an agent-speci¯c

marginal probability f ti . Agents' types are independently distributed. The interim e±cient

choice of action for type ti is denoted a
t
i, and minimizes social costs

ct(ai) +
X
k

pk(ai) x
k
Y
j 6=i

¹pkj ;

where ¹pkj =
P
t f

t
j p

k(atj) is the expected failure probability of agent j, i's successor in

the ring of agents, with respect to harm xk.

Let li(x
k; a) denote i's liability payment if harm xk occurs, and if the combined e®ort

pro¯le of all m · n agents was a. We can then immediately proceed to the statement of
the e±cient liability rule:

Proposition 1. Suppose m · n agents could have contributed to prevent harm xk. Then
the following liability rule is e±cient:

li(x
k; a) = xk

"
®i + (1¡ ®i) ¹pki

pk(ai)
¡ (1¡ ®h) ¹pkh

pk(aj)

#
for h = i¡ 1 mod m;
for j = i+ 1 mod m;

where 0 < ®i < 1,
Pm
i=1 ®i = 1.

Proof. See the Appendix.

In fact, the rule is practically the same that we presented for the two agents case,

except that we now arranged the m agents in a circle (also known as tweed ring) in order

to match their transfers. Each agent is the sender of a transfer to his predecessor (the

second component in li(x
k; a)) and the receiver of a transfer from his successor (the third

component). In addition, there are now many accident scenarios, and the liability rule uses

the data of only the scenario that actually occurred. Hence, x is substituted by xk. But as

far as a single agent is concerned, her expected payment pk(a) li(x
k; a) depends on her own

e®ort choice ai in exactly the same fashion as in the two-agents example, so we can refer to

our argument there as to why e±cient incentives are assured. Moreover, the rule satis¯es

budget balancing,
P
i li(x

k; a) = xk, since all side-payments cancel out and the average net

contribution of each agent is ®i x
k.

As to the advantages of our rule, recall that a standard application of the AGV-

mechanism would require taking expectations over all possible damages and action vec-

tors. By contrast, for our rule it is su±cient to consider only the actual scenario xk when

assigning liability payments to the agents. Furthermore, the rule only requires estimating

the failure ratios ¹pki = p
k(ai) of each agent i and not actual probabilities. The use of ratios

o®ers two practical advantages when proceeding to ¯ll in numbers.
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1. The risk of miscalculating the level of the probabilities is excluded or largely dimin-

ished, and mistakes are likely to occur only with respect to the slope of the probabil-

ities. For example, a monitor may detect a fraction x of all faults, if a fraction y > x

of all systems is checked. The actual failure rate x=y, may be hard to determine, since

it depends on the competence of the monitor, etc. But it is easy to extrapolate that

the same monitor would probably detect a fraction of 2x of faults if she controlled 2y

of the joints.

2. Regulators or courts often have a fairly good idea of a reasonable standard for care

in terms of observable resource commitments, like time spent monitoring, frequency

of safety controls, etc. It is much harder to estimate how resource measures translate

into failure probabilities. When using ratios, resource commitments can be used to

proxy for probability estimates in a simple linear approximation: In our example, the

ratio of the mandated frequency to the actual frequency of controls can be used to

approximate the failure ratio ¹pki = p
k(ai).

Once the failure ratios are estimated or approximated, the liability rule is very simple

since all payments are linear in the failure ratios. For example,
¹pki

pk(aj)
= 0:5 if i's failure

probability was twice as high as it was expected to be. Again, the weights ®i are indeter-

minate, and can be chosen so as to accommodate distributional objectives, or other judicial

considerations like the equity principle.

4. Extension to General Patterns of Monitoring Interaction

Until now we assumed that the probability pk(a) for harm xk to occur was the risk that

none of the agents detected a failure, and hence it could be written as pk(a) =
Q
i p
k
i (ai). In

this Section, we demonstrate that our liability rule can be suitably extended to the most

general patterns of how the monitoring e®orts of the agents may interact. That is, we drop

the assumption that the joint failure probability pk(a) can be separated in a multiplicative

fashion into the individual failure probabilities pk(a). We maintain all other assumptions,

however, notably the assumption that the problem is well-speci¯ed, i.e. pk(ai)x
k + ct(ai) is

strictly concave in ai, and that the types t of each agent are independently distributed.
5

We denote the type pro¯le of all agents excluding agent i by t¡i = (t1; t2; :::; ti¡1; ti+1; :::; tn).
Let at¡i denote the e±cient pro¯le of actions for all agents except agent i, if their type pro¯le

5An extension to correlated types is possible, though. See also Cremer and McLean (1985) and McAfee

and Reny (1992).
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is t¡i. Let f(t) be the joint probability of agents having the type pro¯le t = (t1; t2; :::; tn),
and let f(t¡i) be the joint probability of all agents except i having the type pro¯le t¡i.
E±ciency requires then that each agent i chooses her care level so as to minimize social

cost

cti(ai) +
X
t¡i

X
k

f(t¡i) pk(at¡i; ai)x
k ;

where
P
t¡i
P
k f(t¡i) pk(ai; at¡i) x

k is agent i's expectation of the total harm, based on her

own type t and her expectation that all other agents use their e±cient actions. The situation

is more complicated compared to independent security controls, but the basic principle of

our liability rule remains the same. The only di®erence is that the side payments can no

longer be expressed as a function of individual failure risks, since there is nothing like an

"individual failure risk" in generalized multicausal damage functions.

To develop the necessary modi¯cation for the side payments, de¯ne

Ei
h
pk(a)

i
=
X
t2Ti

f ti p
k(a¡i; ati)

as the expected probability for harm xk when all other agents except agent i choose the

actual pro¯le a¡i, and agent i takes the e±cient action ati. In other words, the expectation
is taken only with respect to agent i's action; for all other agents, their actual action choices

are used. Ej
h
pk(a)

i
is de¯ned analogously, where expectations are only taken with respect

to agent j's action. The e±cient liability rule can now be stated as:

Proposition 2. The following liability rule is e±cient for general patterns of interaction:

li(x
k; a) = xk

24®i + (1¡ ®i)Ej
h
pk(a)

i
pk(a)

¡ (1¡ ®h)
Ei
h
pk(a)

i
pk(a)

35 for h = i¡ 1 mod m;
for j = i+ 1 mod m;

8xk;

where 0 < ®i < 1
Pn
i=1 ®i = 1.

Proof. See the Appendix.

The intuition behind the liability rule is mainly the same as before. Again, the expecta-

tion of the side payment that each agent i receives (i.e. xk (1¡®h)Ei[p
k(a)]

pk(a)
) is independent

of agent i's behavior: First, Ei
h
pk(a)

i
is independent of ai by de¯nition. Second, ai enters

into the expectation over pk(a) in exactly the same way as into the expectation over xk,

and hence cancels out. Now consider the additional amount that agent i has to pay (i.e.

(1 ¡ ®i)Ej[p
k(a)]

pk(a)
xk ): Since her actual action choice enters both into Ej

h
pk(a)

i
and into

pk(a), it cancels out. It follows that her expected payment depends on ai in the same way

9



as the social cost function, because the expectation over xk depends on ai. The main di®er-

ence to independent security controls is that side payments must now be de¯ned according

to the total (expected) probability for harm, i.e. over Ei
h
pk(a)

i
instead of pik. Nevertheless,

the court can still remain completely agnostic about other hypothetical accident scenarios.

5. Conclusion

We have analyzed optimal liability rules for institutions or agents who independently mon-

itor a risky economic activity. The problem is non-trivial since there are multiple agents

with private knowledge of their monitoring costs, and since a widely accepted goal in safety

regulation is that sanctions should not exceed total harm. Bayesian mechanisms as the the-

oretical answer to this problem require ex ante estimations of what accident scenarios could

have occurred, how much harm they would have caused and how likely they would have

been. This complexity explains why mechanism design methods still lack any signi¯cant

progress as a tool in regulatory or judicial practice.

We propose a simpli¯ed version of Bayesian mechanism for an important class of situa-

tions, where damage is only caused when all of many layers in a safety net fail jointly. Our

rule focuses on the information that is easily available when harm has occurred and when

typically regulator and/or courts deliberate over ¯nes and damages.

Our rule is attractive because (i) all hypothetical scenarios can be fully ignored, and (ii)

because only estimates of failure ratios are required, that is of the shortfall or surplus of an

agent's expected care relative to her actual care. The use of ratios o®ers useful advantages

for application, since estimation errors in the levels can be avoided and the ratios can be

linearly approximated by easily observable resource commitments.

We generalize our rule to all possible patterns of interaction in the monitoring e®orts

of the various agents. The essential remaining assumption is that agents' cost functions

are independent. This is not a fundamental obstacle, however, as various solutions for

correlated information in the Bayesian mechanism literature show. But adopting these

proposals to our rule yields rather unwieldy expressions, and certainly goes at the expense

of ease-to-use.
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Appendix

Proof of Proposition 1: Proposition 1 is a special case of Proposition 2, hence its proof

is implied by the proof of Proposition 2.

Proof of Proposition 2. De¯ne

¢j(x
k; a) =

Ej
h
pk(a)

i
pk(a)

; ¢i(x
k; a) =

Ei
h
pk(a)

i
pk(a)

.

Hence, we prove the e±ciency and balancedness of

li(x
k; a) = ®ix

k + (1¡ ®i)¢j(x
k; a)xk ¡ (1¡ ®h)¢i(xk; a)xk 8i. (5.1)

We investigate the three parts of the liability rule (5.1) separately and call them l1i ,l
2
i

and l3i , thus, rewriting (5.1) as li(x
k; a) = l1i (x

k; a) + l2i (x
k; a) + l3i (x

k; a). The ex ante

incentives are determined by the expectation over the damages to be paid. Let ¹li be agent

i's expected value of these payments, and let ¹l1i be agent i's expected value of the ¯rst term

l1i , etc..

Agent i has to take expectations over all possible realizations of types of the other

agents and over all possible damages xk. In addition to our earlier notation, denote the

type pro¯les excluding i and j by t¡ij. Let at¡ij denote the e±cient pro¯le of actions for all
agents except agents i and j, if their type pro¯le is t¡ij. Denote by Et¡i =

P
¡i f(t¡i) the

expectation operator over all possible type pro¯les t¡i.
For the ¯rst term, ¹l1i , we get after taking probabilities over all scenarios and type pro¯les

¹l1i = ®iEt¡i

"X
k

pk(at¡i; ai)x
k

#
.

For the second term, consider ¯rst only a single damage xk and a single type vector t¡i:
Then l2i leads to:

l2i (x
k; at¡i; ai) = (1¡ ®i)¢j(xk; a) xk = (1¡ ®i)

X
tj2Tj

f tj p
k
³
at¡ij ; a

t
j; ai

´
pk(at¡i; ai)

xk.

Next, we have to take into account that agent i does not know the pro¯le of types t¡i
of the other injurers ex ante, and hence she takes expectations:

¹l2i (x
k) = (1¡ ®i)

X
t¡i
f(t¡i)

26664
X
tj2Tj

f tj p
k
³
at¡ij ; a

t
j; ai

´
pk(at¡i; ai)

37775 xk.
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Moreover, agent i will take expectations over all possible outcomes xk. Thus:

¹l2i = (1¡ ®i)
X
k

8>>><>>>:
X
t¡i
f(t¡i)

26664
X
tj2Tj

f tj p
k
³
at¡ij ; a

t
j; ai

´
pk(at¡i; ai)

pk(at¡i; ai)

37775
9>>>=>>>; xk.

The probability pk(at¡i; ai) cancels state by state, hence

¹l2i = (1¡ ®i)
X
k

8<:X
t¡i
f(t¡i)

24 X
tj2Tj

f tj p
k
³
at¡ij; a

t
j ; ai

´359=;xk
= (1¡ ®i)

X
k

8<:X
t¡ij
f(t¡ij)

X
tj2Tj

f tj

24 X
tj2Tj

f tj p
k
³
at¡ij; a

t
j; ai

´359=;xk
= (1¡ ®i)

X
k

8<:X
t¡ij
f(t¡ij)

X
tj2Tj

f tj p
k
³
at¡ij ; a

t
j; ai

´9=;xk
= (1¡ ®i)

X
k

8<:X
t¡i
f(t¡i)pk

³
at¡i; ai

´9=;xk = (1¡ ®i)Et¡i
"X
k

pk
³
at¡i; ai

´
xk
#
:

For the third term, the crucial point is that the denominator depends on agent i's

behavior, but so does the probability pk that scenario xk occurs. Again, consider ¯rst only

a single damage xk and a single type vector t¡i: Then l3i leads to:

l3i (x
k; at¡i; ai) = (1¡ ®h)¢i(xk; a) xk =

= (1¡ ®h)

X
ti2Ti

f ti p
k
³
at¡i; a

t
i

´
pk (at¡i; ai)

xk.

Next, introduce expectations over t¡i and over xk:

¹l3i = (1¡ ®h)
X
k

8>>><>>>:
X
t¡i
f(t¡i)

26664
X
ti2Ti

f ti p
k
³
at¡i; a

t
i

´
pk (at¡i; ai)

pk
³
at¡i; ai

´37775
9>>>=>>>; xk ;

where pk
³
at¡i; ai

´
again cancels out:

¹l3i = (1¡ ®h)
X
k

8<:X
t¡i
f(t¡i)

24X
ti2Ti

f ti p
k
³
at¡i; a

t
i

´359=;xk
= (1¡ ®h)

X
k

(X
t

f(t)pk
³
at¡i; a

t
i

´
xk
)
= (1¡ ®j)¹x:
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¹l3i does not depend on the choice or the revealed type of agent i: The reason is of course

that we have set up ¢j(x
k; a) in such a way as for the probability pk(at¡i; ai) to cancel out

in every state.

Putting together the three parts, the expected liability payments of every agent i in

equilibrium are:

¹li = ¹l
1
i +

¹l2i +
¹l3i = ®i Et¡i

"X
k

pk(at¡i; ai)x
k

#
+ (1¡ ®i)Et¡i

"X
k

pk(at¡i; ai)x
k

#
¡(1¡ ®h) ¹x

= Et¡i

"X
k

pk(at¡i; ai)x
k

#
¡ (1¡ ®h) ¹x.

Since (1¡ ®h) ¹x is independent of i's behavior and since Et¡i
24X
xk

pk(at¡i; ai)x
k

35 is the
total damage expectation, our liability rule is e±cient.

To prove balancedness, note that the second and third term in (5.1) are simply passed

around in the ring. Thus, they cancel out when the penalties are summed over allm agents,

or

mX
i=1

³
l2i (x

k; a) + l3i (x
k; a)

´
= 0 .

Hence
mX
i=1

li(x
k; a) =

mX
i=1

®i x
k = xk :
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