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Abstract: In survey analysis, the estimation of the cumulative distiion function
(cdf) is of great interest: it allows for instance to derivgagtiles estimators or other
non linear parameters derived from the cdf. We consider &éise avhere the response
variable is a right censored duration variable. In this feamrk, the classical estimator
of the cdf is the Kaplan-Meier estimator. As an alternatie,propose a nonparamet-
ric model-based estimator of the cdf in a finite populatiorne hew estimator uses
auxiliary information brought by a continuous covariate @based on nonparametric
median regression adapted to the censored case. The biearaamte of the prediction
error of the estimator are estimated by a bootstrap proeestiapted to censoring. The
new estimator is compared by model-based simulations tE&pdan-Meier estimator
computed with the sampled individuals: a significant gaipricision is brought by the
new method whatever the size of the sample and the censatimg\Welfare duration
data are used to illustrate the new methodology.
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1 Introduction

In survey sampling, the classical literature studies esiivn of totals or means but in
many applications the parameters of interest are more @mfiley can be quantiles
(see e.g. Rueda et al, 2004) or other non linear parametévedé&om the cumulative
distribution function (cdf) of the interest variable. Wensider the estimation of the cdf
in a finite population when the interest variable is rightsmed. This is the case when
the interest variable is a duration which is observed duaitigiited period of time. For
example, if we consider unemployment spells, individudi®\wave not found a job at
the end of the study have right censored unemployment dasatNotice that the cen-
soring mechanism is different from the nonresponse casenfe response variable
of an individual is censored, we know that the duration fas thdividual is greater
than the censoring time, whereas no information is avaglédr non respondents. Tak-
ing into account the partial information brought by the aeirgy times improves the
estimation.

To the best of our knowledge, there is no literature aboutestenation of the
cdf in a finite population with right censored data. This candoe to the fact that
the censoring methodology has been essentially developtbe imedical field, where
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survey sampling is not usual. Note that the classical cdhesor of a right censored
variable in classical inference is the Kaplan-Meier estongkaplan and Meier, 1958).

The estimation of the cdf in survey sampling has been widelyied in the absence
of censoring (for a review, see by instance Chapter 36 infétfafin et al, 2009 and
Mukhopadhyay, 2001). In a naive way, the cdf is estimatedyempirical cdf com-
puted on the sampled individuals. In the design-based apprdhe conventional esti-
mator of the cdfis defined in a similar way but takes into acdtue inclusion probabil-
ities as for the Horvitz-Thompson estimator of a total (se&,K.988)| Rao etlal (1990)
proposed a parametric model-assisted estimator of thencki @aonparametric version
of this estimator was defined by Johnson et al (2008). In th@ding, we will focus on
model-based estimators. In a parametric regression franke@hambers and Dunstan
(1986) improve the estimation of the cdf by predicting thepanse variable values of
non sampled individuals using auxiliary information brbugy a covariate (this es-
timator will be denoted CD in the following). Wang and Dorfin@996) construct a
weighted average of the CD estimator and the estimator of eéRab(1990) which
performs better than the original estimators in terms of meguared error. Several
variants of CD and Rao et al (1990) estimators have been pegp@ee Chapter 36 in
Pfefferman et al, 2009). Dorfman and Hall (1993) define a aoametric version of
the CD estimator and study its asymptotic properties.

In section 2, we propose a nonparametric model-based astimfathe cdf for a
finite population when the variable of interest is right aaesl. The estimator uses
auxiliary information brought by a continuous covariate @based on nonparametric
median regression adapted to the censored case. In sgktibe Broperties of the
estimator are discussed. In sectidn 4, a bootstrap proegdwestimate the bias and
variance of the prediction error is proposed. Sedfibn 5 @epthe performance of
the new estimator to the naive Kaplan-Meier estimator casgpwith the sampled
individuals by a model-based simulation study. An appitrato a data set of welfare
spellsis presented in sectidn 6 and design-based sinngaie performed in sectibh 7.
Some remarks are given in sectfdn 8.

2 Cdf estimation of a censored variable in a finite pop-
ulation

2.1 Framework

In the following we will focus on model-based estimation kattthe inclusion prob-
abilities will not be used for the estimation. Therefore, deenot need to specify a
sampling design. However, to obtain consistent and effigistimators, we need to as-
sume that the sampling design is not informative (or igniefakhat is the same model
holds for the sample and the population (see Introductid?eit 4 in Pfefferman etlal,
2009). Moreover we will propose a nonparametric estimatarder to reduce the risk
of model misspecification.
Let us consider a finite populatio® with sizeN and lets be a sample of” with

sizen. The cdf of the interest variableis thereford-(t) = % Z 2(t; <t) which can
jez



be partitioned into
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wheret; is the value of the variable of interest measured for theviddal j of the
populationZ?. Moreover, we suppose thitis a non-negative value possibly right
censored by a censoring tinsg So, on the samplg we observe; = min(t;, cj) and

o; = 1(t; < cj). We assume that auxiliary information available on the whmbpu-
lation is given by a continuous covariaXeandx; denotes the value of the covariate
measured for the individuglof the populationZ’.

2.2 A naive estimator of the cdfF

It is well known that the empirical cdf does not provide a dstent estimator of the
cdf in the presence of censored data. The cdf can be conbyststimated by the
Kaplan-Meier estimator (Kaplan and Meier, 1958) calcuate the sample, which
generalizes the empirical cdf to the censored case.

Notice that the original Kaplan-Meier estimator is undetigred after the last ob-
served timey(y, if this latter is censored. Therefore, to obtain a distitmufunction,
we will use the Efron’s version (Efron, 1967) defined by:

U(y; <t,85=1)
1
. 1— 1. =
Frm (1) = Ds > Ay >y))

res

if t< Yn) o)

1 otherwise.

The Kaplan-Meier estimator is uniformly strongly consigtésee Foldes etlal, 1980)
and under suitable regularity conditions, it convergeskiyea a Gaussian process (see
Breslow and Crowley, 1974).

2.3 Cdf estimation using the prediction of the interest varable

We propose a model-based estimator of the cdf by estimatiagwo terms of[{l1).
Notice that the first term of{1) is unknown because of rightsteing and must be
estimated. Since it can be written as:

%Z]J(tjét)—£<%zﬂ(tj§t)>v (3)

IES |€s

we recognize the cdf on the samplan the term in parenthesis. This term can also be
estimated by the Kaplan-Meier estimator on the saraple
In order to estimate nonparametrically the second terrh]ofw# assume the su-
perpopulation model:
o tj=m(xj)+¢ (je2) (4)



where theg; are i.i.d. variables with cd& andm(x;) is the conditional median of
given X = x;. We have chosen to modelize the relationship betvte@md x by the
conditional median instead of the classical conditionaeam&nce the median is easier
to estimate than the mean in presence of right censored data.

As [E; (1(t; <t)) = P(tj <t) = G(t — m(x;)), a prediction of 1t; <t) can be ob-
tained by estimating(t — m(x;j)). Therefore, we first need to estimate the conditional
medianm(x;). To this aim, we estimate the conditional cdflofjivenX = x with the
generalized Kaplan-Meier estimator (see Beran, 1981) esdmples:

I(yj <t,6=1)
B B B;j (%)
Fokm (t]X) = ! JDS ! > Br(x) Uy > j)

res

if t< Y(n)

1 otherwise,
(5)
where theB;(x) are Nadaraya-Watson type weights defined by:

<(a)
Bj (x) = +Xk

2 (%)

kes X
K is a kernel andhx denotes a suitable bandwidth. It is easy to check Bray is a
distribution function. Its uniform strong consistency heeen proved by Dabrowska
(1989) and W. and Cadarso-Suatez (1994) established aoéasymptotic normality
with a norming factor of/nhy.

As Foku is a step function with respect tpin order to estimate the conditional

median by inversion, we will use insteadff«y a smoothed version inproposed by
Leconte et al (2002). Moreover, simulation studies havevsitbe gain brought by the

smoothing int in terms of the mean averaged squared error. The proposeuttsado
generalized Kaplan-Meier estimator is defined by:

Fsakm (t | X) = #Sil ('fGKM (yf | X) — Fokm (y,[l | X)) H (%) ; (6)

wheres' is the subset of the uncensored individuals anc{ﬂﬁel =1,... ,#s*} denote
the ordered times of'. In addition, we use the following conventiony% =0 and
ylsul =Y. H is anintegrated kernel arte is an appropriate bandwidth. Note that
this smoothing is similar to the classical kernel smootlohthe empirical cdf by re-
placing the jump% of the empirical cdf by the jumps of the generalized Kaplaeaid
estimator. Thanks to the definitions Bf., andH, it is easy to check tD&iGKM (t]x)

is a nondecreasing function of The sum of the jumps is equal (y(n) |x)
which turns out to be 1 by formul&l(s). Therefd%m(- | X) is a distribution func-
tion. An estimator of the conditional median is then deribbgchumerical inversion as
(X)) = Fegim(0.5 ] %;).



Now, let us return to the estimation &f(t — m(x;)). As the residualg; =y; —
m(x;), j € s may be right censored (obviouslg; is censored ify; is censored), a
natural estimator of the cd® of the errors is the Kaplan-Meier estimator computed
with the sampled residuafs. We denote this estimatQ}KM and derive the following
estimator of~:

maw=1(maMm+

o éma—mm»). 7)

je?\s

It is straightforward thaEy, is a nondecreasing function. Moreover, it tends to 1
whent tends to infinity. So, the proposed estimator is a genuirteldigion function.
Note that this estimator, as well as the KM estimator, hagarabextension in case of
tied time values (see 2.4 of Leconte et al, 2002).

3 Properties of the new estimator

Nascimento Silva and Skinner (1995) have listed the praserequired by a good es-
timator of a cdf in a finite population. The first one is that #rstimator should be
a genuine cdf. This goal is achieved by the estimator we haile tEstimators of
guantiles can then be easily obtained by inverting the dithesor.

Another desirable property verified by the proposed estimiatthe flexibility of
the use of the auxiliary variable. We assume in the above adetbgy that the aux-
iliary variable is continuous. However, this estimator damadapted to a discrete
auxiliary variable by replacing the generalized KaplanidestimatorFgiw (t | %)
by the Kaplan-Meier estimator on the subsample of indivislfar whom the covari-
ate is equal to. In addition to it, in the presence of several covariates atxiliary
information can be easily summarized by a univariate indexpmuted for instance
performing a sliced inverse regression adapted to righgaémg (Li et al} 1999).

Moreover, the definition of the proposed estimator is reddyi automatic: as we
use a nonparametric approach, no choices are requiredspéuéication of the model.
The only choice is the specification of the bandwidths whigh lse achieved by auto-
matic technigues such as cross-validation (see sddtion 4).

In a finite population, Dorfman and Hall (1993) have shown tha nonparametric
version of the CD estimator is asymptotically model unbidageder some conditions
concerning the bandwidth. They also exhibit an asymptatieetbpment for the vari-
ance of the estimator leading to its consistency. Becausieea$imilarity of Ry with
the nonparametric version of the CD estimator, we expechéve estimator to have
similar asymptotic properties. However these latter carbembviously derived as an
extension of the existing methodology because of the cehgor

Let us address the question of variance estimation. An toalyariance estima-
tor for the CD estimator can be foundlin Wu and Sitter (2001heyralso develop a
jacknife estimator of the variance and show its design sbeiscy.| Lombardia et/al
(2004) have proposed to estimate by bootstrap the biasnaiand prediction error
of the nonparametric version of the CD estimator and theg lslown the consistency
of the used bootstrap estimator. Due to the presence of kegsand nonparametric



techniques which involve complex estimation procedunesyalytical formula for the
variance estimation of the new estimator has not yet beeairaat. However, in the
next section, we present an adaptation to the censored taselwotstrap techniques
of Lombardia et al (2004) in order to estimate the bias antaae of the prediction
errors of the new estimator.

4 Bootstrap estimation of the bias and variance of the
prediction error

Following Lombardia et al (2004), we use the argument preddsi Booth et al (1994)
which consists in estimating a characteristic of a finite pafion by averaging the
values of the characteristics over booststrapped popuakissued from the original
sample.

Let us consider the original samgg, Jj, X; ) jes With the superpopulation modél
(seel(®)), with the covariateknown on the whole populatio®. The adaptation of the
Lombardia et all (2004) method to the censored case leads tmotbtstrap resampling
method in three steps as follows:

1. Compute the residual€j = y; — M(xj) as in section 2.3. and derive a smoothed
Kaplan-Meier estimato&, of G:

#st+1

_ ot
é)\ (u) = Z (éKM (é(-rw) _é‘KM (é(-rIf;L))) H (U )\8(|)> (8)

=1

wheres' is the subset of the uncensored individuals anq&ag l=1,....#"}}
denote the ordered residualsshf In addition, we use the following conventions:
& = — (G)(§)) = 0) andg), | =&p (Gy( = 1). H is an integrated
kernel and\ is an appropriate bandwidth.

The bandwidth&r andhx have been chosen in a suitable grid of bandwidths so

that they minimize a cross-validation criterion adaptedeasoring defined as
follows:

I
g#s’f+1)

CV =3 lyj—m(x)| 9)
jesf
whereni_;(x;) is the estimator of the conditional median basedsominus the
jth individual ofs. Note that we only use the uncensored durations in the CV
criterion as the durations are not exactly known for cergoteservations.

As far as the choice of th& smoothing parameter is concerned, it has been
chosen in a suitable grid by cross-validation adapted t@stifnation with cen-
soring. LetAg denote the value of which minimizes the following criterion:

(1E <w -6 _;w)’

uc% jest



whereé,\,,j (u) is the smoothed Kaplan-Meier estimator@based ors minus

the jth individual ofs" and¥; is the grid of the 30 regularly spaced residuals in
the range of the;.

2. Generate &-membered bootstrap populatioh™ = (yi, &, Xk )ke 2 Whereyy =
min(t;, c;) andgy; = U(t; < cy). The bootstrapped event duratigpiare obtained
using the superpopulation modeby t; = M(xc) + £, where the bootstrap errors
g are generated according é)\o by numerical inversion. The bootstrapped
censored duratiorgg have been obtained by inverting numerically the smoothed
Kaplan-Meier estimator of the cdf of the censored times ftoeoriginal sample
(known as the reverse Kaplan-Meier estimator).

3. Draw a sampls* of sizen from &7* without replacement.

LetF*(t) = % z A(tg <t) be the cdf of the* variable.

ke

The functionF* can be estimated from the samgfe leading to an estimator de-
notedF*. Eq. [2) (respectively EqL17)) gives the estima?g,p, (respectivelyf,j,). For
computing time reasons, the bandwidthsandhy have been chosen by data-driven
techniqueshr equals 30% of the range of tiyeandhy equal 30% of the range of the
X in the bootsrapped sample.

Following/Lombardia et &l (2004), for an estimafoof F, we can estimate the bias
E(F(t) — F(t)|.2?) and the varianc¥ar (F (t) — F ()| 2) of the prediction error using
the predictord, (E(F*(t) — F*(t)|27*)) andE, (Var (F*(t) — F*(t)| 2*)) respectively.
To approximate these predictors, according to step 2 andf8egrevious procedure,
we generat® bootstrap populations denoted*®(b = 1,...,B) with sizeN and from
each one we draR samples with size, denoteds™ (r = 1,...,R). So we have the
following approximations:

B R _
E.(E(F*(t) —F*(t)|2) ~ %%bzl [F" (t) — F*(t)]
B R R
E.(Var(F*(t) —F*(t)| ")) ~ § & Z[F*br(t) —F(t))?
b=1r=

whereF*? is the cdf of thebth boostrap populatiork; **' is the estimator oF *® com-
puted from the'th sample of thésth bootstrapped population (with EqJ (2) or EQl. (7))
andF* is the mean of th& estimate$=*"" for a givenb.

Moreover, followind Lombardia etlal (2004), a A6~ a)% bootstrap confidence
interval forF can be obtained by

CIF®)]" = [FO) - 6;_g,F(t) + 0] (10)

whereF (t) is computed from the original sample (with EQl (2) or E{Zj.A@))jq’g, is the
100a-percentile of the bootstrap estimation of the functidfu) = P(F(t) — F(t) <
u| ).

The original populationZ has been generated according to the accelerated failure
time model of subsectidn 5.1 with HR=7.4, wth= 400 and a censoring rate= 25%.
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Figure 1: Boostrap estimation of the biases and varianciegdrediction error for the
two estimators of the cdB = 200,R = 1000,N = 400, T = 25%).tt denotes the time
values of the gridy

B = 200 bootstrapped populations have been generatedRand000 samples have
been drawn from each population. The target cdf, its estirsas well as the bootstrap
estimators have been computed on the gtriof theK = 30 evaluation timeg regularly
spaced between the first and the 99th percentiles dfihkies of the original sample.

Figure[1 shows boostrap estimation of the biases and vasaoicthe prediction
error for the two cdf estimatorigy andFy. As expected, the bias of the prediction
error is smaller for the estimatdiy than for the estimatoFRy. In compensation,
the variance of the prediction error is weaker for the nevredbr. The orders of
magnitude of bias and variances are quite similar to thotsrmdd by the model-based
simulations (see section 5.2).

Figure[2 presents the c# with its two estimatordxy and Ry computed from
the initial sample, as well as the 95% bootstrap confidenieials forF based on
formula [I0). The confidence interval basedFanis more narrow than this based on
Fxw for 83.3 % of the t values of the grid.
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Figure 2: Cdf estimators and the corresponding boostramasd 95% confidence
intervals forF (B = 200,R=1000,N = 400, = 25%).tt denotes the time values of
the grid¥.The target cdf has been computed from the original pomra#

5 Model-based simulations

5.1 Description

We present a simulation study to compare the performancéedivo cdf estimators
Fu andFxy, this latter being the naive estimator of the cdf in presesfaaensoring.
We have also derived estimators for the quartiles of the cdf.

At each iteration, a population of siné(N = 200 and 400) has been generated ac-
cording to the accelerated failure time model(lpp= —3+ 0.2x X+ 0 x u; where the
covariatex; is uniformly distributed on1,4). The error termu; follows an extreme
value distribution in order to obtain a Weibull distributidor thet;. Note that this
model is a proportional hazard model with a hazard ratio (E&)al to ex0.2/0)
which means that the ratio of the hazard rates of two indafsiwhose covariatedif-
fers from one unit is constant over time and equal ta/@%) o). Two values ofo (0.5
and 0.1) have been chosen leading to hazard ratios of 1.5.4n@/Mich correspond
respectively to a weak and a strong relationship betweenahable of interest and
the auxiliary variablet; is censored bg; wherec; is uniformly distributed or{0,c), ¢
being chosen in order to obtain 0%, 10%, 25% or 50% of cengamithe whole pop-
ulation. At each iteration, we then draw a simple random damjthout replacement
of sizen=N/10. S= 1000 iterations have been performed.



As far as the smoothing is concerned, we choose the triwéigitel K (x) =

g—‘;’ (1— x2)3]J(,1’1) (x) rather than the more commonly used Epanechnikov kernel be-
cause the triweight kernel is twice differentiable at thatdaries of the interval-1,1).

So the resulting estimators will have the same degree ofagtyu For each iteration

s, the bandwidthéir andhyx have been chosen in a grid of bandwidths so that they
minimize the averaged square error (ASE) criterion defirseed a

K
ASE(Rys) = % i; (Fw,s(tti) — Fs(tti))Z.
where the evaluation timesbelong to the gri&Z of theK = 30 regularly spaced values
of times between the 5th and the 95th percentiles of thelligion oft. Note that this
grid is common to all the iterations. The defis computed for iteratios according to
formula (1) using the trug times.

5.2 Results

The performances of the two estimators have been compatethis of Monte Carlo
bias, variance and mean squared error. For each estifatg compute the estimated
bias

the estimated variance

and the estimated mean squared error (MSE):

. 135 . 2
MISE(F(1) = g 3 (R~ ()"

Note that the usual relationship between the three abowetitjea does not hold
here since thé&s function changes as the population is generated at eaecttidter In
practice, these estimators have been computed on th&/gtafined above.

The MASE criteria (mean of the estimated MSE o#ér of the estimators have
been computed and the ratibbASE (Fy ) /MASE (Fy) are shown in tablg]1 for two
sample sizes, different censoring rates and two strendttieaelationship between
the interest variable and the auxiliary variable.

Fu performs always better thafky with a maximal ratio of the MASE criteria
equal to 3.03. As expected, the gain brought by the auxiliafyrmation is much
higher when the relationship between the interest variahtethe auxiliary variable is
great: the ratios of the MASE are more than twice greater wihehazard ratio equals
7.4. For both estimators, the simulations show that the MABteria decrease with
the sample size and increase with the censoring rate, brdtibe of the MASE criteria
remain almost the same for a given hazard ratio.

10
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Figure 3: Estimated biases, variances and MSE of the twmasiis of the cdf for
N=400 individuals, a censoring rate= 25% and the two values of the hazard ratio
HR. tt denotes the evalution times of the g&d

Figure[3 shows the estimated bias, variance and MSE of thestimators of the
cdf forN = 400 individuals and a censoring rate- 25% for both hazard ratios. Notice
that similar patterns are obtained for other sample sizdsansoring rates. The new
estimator has a greater bias than the estinfatqrbut it shows a smaller variance and
MSE for both values of the hazard ratio. As expected, whemdlagionship between
the interest variable and the auxiliary is strong, the b&awaell as variance and MSE
are appreciably smaller.

The estimators of the quartiles have been obtained by naaiénversion of the
two cdf estimators. Tablés 2 ahd 3 show the relatives biasthe square roots of the
relavive mean squared errors for the different sample simdscensoring rates, for the
two hazard ratios. The results are very similar to thoseiobtbfor the cdf estimation:
the quartile estimator based &gy has almost always a larger MSE than the quartile
estimator based oRy. As far as the relative bias is concerned, the estimatorchase
Fu shows a better performance than the estimator basdg@rin half of the cases.
Notice that, when the auxiliary variable is strongly linkedthe interest variable, the
third quartile estimator based &y always behaves better than the estimator based on
Fxwm in terms of bias and MSE criterion. Acccording to figlte 3stban be explained
by the fact that the curves of the biasesrgf has very small biases for thevalues
close to the third quartile.
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Table 1: Estimated ratidd ASE (Fxwm ) /MASE (Fy ). nis the sample siza, denotes the
censoring rate and HR is the hazard ratio of the proportibaaird model describing
the relation betweenhandx

HR=1.5 HR=7.4
n 1=0% T1=10% T1=25% T1=50% T1=0% T1=10% T1=25% T1=50%

20 1.27 1.37 1.38 1.59 3.03 2.84 2.85 2.81
40 1.27 1.33 1.34 1.46 2.88 2.96 2.97 2.85

6 Example

We analyse the data from the Survey of Income and Prograritipation (SIPP) with
the new method (see Hu and Rioder (2012) for more detailstahelsIPP). We use
the 1992 and 1993 SIPP panels. Each individual is followeduring 36 months. We
consider the subsample of monoparental families who benafitthe Aid to Families
with Dependent Children program (AFDC). Theariable of interest is the length of
time spent on welfare. For simplicity, only the first welfagell will be considered.
The spell is right-censored if it does not end before the ffateaves the panel. 520
spells have been recorded, among which 269 are right-oethdeading to a censoring
ratet =51.7%. It has been found in the literature that the benefit iewnegatively and
significantly related to the probability of leaving welfaii@ the SIPP sample, a Cox
model explaining the welfare duration by the benefit leveégia hazard ratio of 0.999
(with a p-value of 0.0013). Therefore we use the benefit laseluxiliary variable.

As we need to know the value of the auxiliary variaber the whole population,
we have to consider the above sample of 520 spells as the fixedlgiion 22, in
which we draw a sample of sizen = 40 without replacement. We compute the two
cdf estimators«y andFRy based on the sampkeand the auxiliary variable. The
bandwidthshr andhyx have been chosen by cross-validation according to forrf@la (
Bootstrap estimated 95% confidence intervals for the cdédas the two estimators
have been obtained by the procedure of seéfion 4 (see foi@@aAs the variable of
interest is censored in the considered populati®nwe cannot compute the true cdf.
So, instead of the true cdf, we can use as a target cdf the Kapdaer estimatofy
computed with all the individuals of?. The estimators have been computed over the
grid of theK = 30 evaluation time#t regularly spaced between the first and the 99th
percentiles of thé values of the sample

Figure[4 presents the two cdf estimatéig andFy as well as the corresponding
95% bootstrap confidence intervals fer Note that the censoring rate of the drawn
sample is 42.5%. We also plot as a reference the Kaplan-Msinatory computed
on 2. The confidence interval based By is more narrow than this based By for
all the t values of the grid. The median welfare duration tsweted to 6.68 months by
invertingFxm and to 10.88 months by invertirigy. This latter estimation is very close
to the estimation of the median welfare duration based oiK#an-Meier estimator
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Table 2: Model-based simulation results for the estimatibthe quartiles by the two
estimators for a weak relationshiplR = 1.5). Entries indicate relative biases, with
square roots of the relavive mean squared errors in pargathe

T=0% T=10% T=25% T=50%
Target Q1. 0.080
n KM M KM M KM M KM M
20 -0.004 -0.021 0.023 -0.015 0.063 -0.001 0.286 0.049
(0.330) (0.128) (0.397) (0.115) (0.519) (0.211) (1.054).4%3)
40 -0.025 -0.024 -0.021 -0.019 -0.022 -0.017 -0.008 -0.019
(0.100) (0.084) (0.116) (0.081) (0.129) (0.080) (0.235).08a)
Target Q2: 0.108
n KM M KM M KM M KM M
20 0.07v4 0.104 0.080 0.107 0.107 0.122 0.246 0.133
(0.306) (0.223) (0.316) (0.228) (0.389) (0.263) (0.748).36a)
40 0.045 0.100 0.063 0.101 0.074  0.115 0.061 0.099
(0.187) (0.195) (0.199) (0.197) (0.209) (0.212) (0.233).20(B)
Target Q3: 0.164
n KM M KM M KM M KM M
20 0.076 0.089 0.062 0.071 0.083 0.088 0.071 0.015
(0.295) (0.228) (0.281) (0.217) (0.320) (0.247) (0.441).2%7)
40 0.029 0.049 0.047 0.046 0.058 0.055 -0.036 -0.004
(0.191) (0.162) (0.198) (0.165) (0.223) (0.186) (0.165).18®)

Fn, which equals 10.79 months.

7 Design-based simulations

Design-based simulations have been performed: they assllmsthe SIPP data pre-
sented in the previous section. To compare the two estismatm@ consider the SIPP
sample of size 520 as a fixed population in which we randomécs8= 500 samples

of size 40 without replacement. As in sect[dn 6, the trueFedfan not be computed
because of censoring. Therefore we use as a target cdf tharkkeier estimator

Fn computed with all the individuals of the SIPP sample. Foreigerations, the
bandwidthsht andhx have been chosen in a suitable grid of bandwidths so that they

13



Table 3: Model-based simulation results for the estimatibthe quartiles by the two
estimators for a strong relationshidiR = 7.4). Entries indicate relative biases, with
square roots of the relavive mean squared errors in pargathe

7=0% T=10% T=25% 7 =50%
Target Q1. 0.075
n KM M KM M KM M KM M

20 -0.014 0011 -0.015 0015 -0.014 0.016 -0.030 0.012
(0.092) (0.037) (0.095) (0.038) (0.107) (0.044) (0.139).0%7)

40 0.001 0.010 0.003 0.010 0.001 0.012 -0.004 0.013
(0.046) (0.026) (0.053) (0.027) (0.059) (0.030) (0.077).0%@)

Target Q2: 0.089
n KM M KM M KM M KM M

20 -0.003 0.007 -0.004 0010 -0.005 0.008 -0.010 0.006
(0.073) (0.043) (0.071) (0.043) (0.076) (0.044) (0.089).0%1)

40 -0.006 0.003 -0.004 0.003 0.001 0.006 -0.001 0.004
(0.056) (0.039) (0.056) (0.040) (0.060) (0.041) (0.069).04)

Target Q3: 0.102
n KM M KM M KM M KM M

20 -0.016 0.003 -0.015 0.002 -0.020 0.001 -0.035 -0.003
(0.056) (0.031) (0.056) (0.033) (0.062) (0.036) (0.076).04@)

40 -0.007 0.002 -0.002 0.002 -0.003 0.001 -0.012 0.000
(0.044) (0.022) (0.042) (0.024) (0.045) (0.023) (0.054).08@)

minimize the averaged square error (ASE) criterion defireed a

K
ASE(Fys) = % Z(lfM,s(tti) —Fu(tt))?,
=
where the evaluation time$ belong to the grids’ of the K = 30 regularly spaced
values between the 5th and the 95th percentiles of the t yalfighe whole SIPP
sample.

The ratio of the MASE criteria (mean of the ASE over 8®amples) of the estima-
tor Fxm over the estimatoFy, is equal to 1.72, which shows clearly the gain brought
by the new cdf estimator. Tablé 4 presents the relative hidsralative root mean
squared errors of quartiles estimates of the distributich@welfare spells. The esti-
matorFy has the smallest relative bias except for the median andiwagsithe best
performance in terms of relative mean squared error. Fiaehibits the estimated
bias and mean squared errors (MSE) of the two cdf estimatars the model-based
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Figure 4: Cdf estimators and the corresponding boostramasd 95% confidence
intervals forF (B = 200, R = 1000) based on a sample of sime= 40. tt denotes
the time values of the grid. The target cdf denotes the Kaplafer estimatory
computed on all the individuals of the SIPP sample

simulations, the bias déy is very close to zero. On the other hgﬁd,shows amore
important bias but a substantially smaller mean squarend tranFgy .

8 Concluding remarks

The simulations show the gain in precision by predictingittierest variable for the
non sampled individuals. Therefore it is worth using thénestor Fy instead of the
Kaplan-Meier estimatdfxy in a finite population when auxiliary information is avail-
able.

According to formula[{l7), it is obvious th&, is a step function with jumps among
others things at the uncensored time values. As the inteaesible is continuous, we
expect the cdf to be continuous. So if desired, the cdf estinf® could be smoothed
using for instance an integrated kernel as in formidla (6)ctvivould require another
choice of bandwidth.

The model-based approach is appropriate and will presymehd to consistent
estimators when the sampling is not informative. When a nooraplex sampling
method is used or when the sampling is informative, a mossgisted approach which
takes into account the sampling weights would be more adaptr instance, we can
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Table 4: Relative biases and relative root mean squaredsgiiropercentage) of esti-
mates of quartiles of welfare durationms=€ 40)

Relative bias Relative root MSE
Target quartile KM M KM M

Oo.25= 5.26 26.80 3.18 99.19 36.09
Ooso= 10.70 2154 27.82 51.33 40.15
Jo.75= 22.60 -14.15 279 19.24 12.22
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Figure 5: Estimated bias and MSE of the cdf estimators fontbkare duration data
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consider the model-assisted parametric cdf estimator ofeRal (1990) or its non-
parametric version proposed by Dorfman and|Hall (1993)érctse of simple random
sampling. These estimators could be easily generalizdtetognsored case.

Note that, in panel surveys, nonresponse could be the sofiright censoring: in
the design-based simulations of secfibn 6, an individuslttwfollow-up who was still
in welfare state at his last interview is considered as aeusoA methodology taking
into account the nonresponse could have been more adapted tase.

The proposed estimators are based on the generalized Kisiglen estimator of
the conditional cdf. Other estimators could have been usgghrticular, Van Keilegom etlal
(2001) defined an estimator of the conditional cdf which veldetter than the orig-
inal Beran estimator in the right tail of the distributioneevunder heavy censoring.
Alternatively, as proposed hy Gannoun etlal (2005) in thesosad case, the condi-
tional median could have been directly estimated by loc&ldr polynomials.
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