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Abstract

I study nonlinear income taxation in a dynamic environment where

individual labor supply is subject to frictions, e.g., hours constraints

within firms. Specifically, consistent with the empirical evidence, agents

incur a fixed cost of adjusting their hours of work in response to wage

or tax changes. This generates an endogenous extensive margin of labor

supply, conditional on participation. I derive a formula that charac-

terizes the optimal long-run progressive tax schedule in this economy,

and show in particular that the standard frictionless models, which ig-

nore the lumpiness of labor supply, underestimate the long-run costs of

raising tax progressivity.

∗Toulouse School of Economics. Address: 21 Allée de Brienne, 31000 Toulouse, France.
Email: nwerquin@gmail.com. Click here to download the latest version. I am extremely
grateful to Mikhail Golosov, Giuseppe Moscarini and Aleh Tsyvinski for their invaluable
guidance and support. I thank Andrew Abel, Costas Arkolakis, Andrew Atkeson, Alan Auer-
bach, Martin Beraja, David Childers, Emmanuel Farhi, Nathan Hendren, Tibor Heumann,
Johannes Hörner, Louis Kaplow, Francesco Lippi, Costas Meghir, Tommaso Porzio, Ali
Shourideh, Stefanie Stantcheva, Alexis Toda, and Danny Yagan, for helpful comments and
suggestions.

https://www.dropbox.com/s/gf7h99ktvlb2abm/Werquin2015.pdf?dl=0


Theoretical models of optimal labor income taxation typically assume that

labor supply can be adjusted costlessly and optimally on the intensive margin

in response to wage or tax changes: a 1 percent increase in the marginal tax

rate induces an ε percent decrease in hours of work or gross income. Given this

simple modeling of labor supply, optimal tax rates are then determined by the

trade-off between their effect on government revenue (including these behav-

ioral losses driven by the elasticity ε) and their effect on welfare, measured by

the marginal utility of consumption (normalized by the shadow value of public

funds, also called marginal social welfare weights). Even models of taxation

that incorporate explicitly an extensive margin of labor supply typically con-

sider the binary decision of whether to participate in the labor force, keeping

the assumption that conditional on participation, hours are either exogenously

fixed or fully flexible on the intensive margin.

One of the most common criticisms of this framework is that this modeling

of labor supply is unrealistic. A large (and growing) body of empirical evidence

shows that the adjustment of labor supply in response to productivity, wage

or tax changes, is subject to substantial frictions. The empirical literature

(e.g., among others, Altonji and Paxson (1992), Chetty, Friedman, Olsen, and

Pistaferri (2011)) finds that workers face hour constraints set by firms and

must change jobs in order to adjust their hours of work. This entails large

fixed (search) costs. The presence of such fixed adjustment costs generates

endogenously an extensive margin of labor supply conditional on participation,

where the thresholds of adjustments (i.e., their timing and size) are chosen

optimally by the agent.

Despite this empirical evidence, there is little theoretical work that explic-

itly incorporates such labor supply adjustment frictions into models of income

taxation. The reason (besides tractability concerns) is that it is commonly
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believed, perhaps loosely, that in the long-run, when individuals have had the

time to fully adjust their labor supply, the effects of a tax change should be

accurately captured by the standard frictionless optimal tax formulas, where

ε is interpreted as a long-run labor supply elasticity; in other words, there

may exist short-run adjustment frictions and sluggish responses to taxes at

the individual level, but they become irrelevant in the long-run.

The question I address in this paper is whether long-run optimal taxes, in

a dynamic model with lumpy individual labor supply, differ from those derived

in the standard frictionless model with intensive margin behavior, and if so,

what are the theoretical forces that determine optimal policy in the frictional

economy.1 The main result is that the long-run effects of non-linear taxation

are not correctly captured by the frictionless tax formulas in the presence of

fixed costs at the micro level. I derive novel formulas for long-run optimal

taxes with lumpy labor supply and show that the frictionless tax formulas

implicitly make an implausibly strong assumption about the effects of wage

changes on optimal individual behavior.

I set up a dynamic model in which individuals choose their labor supply

as a function of their stochastic idiosyncratic wage shocks and the non-linear

tax schedule. In order to adjust their hours of work in response to wage or

tax changes, they must pay a fixed cost. This fixed adjustment cost can be

thought of as the cost of searching for a new job in an economy where hours

are constrained within the firm, and is assumed proportional to the worker’s

foregone utility of consumption from the search activity. Once they decide

1In this paper I call “long-run” the time until the new steady state of the economy
is reached after a tax change, which is driven by the time it takes for workers to react
and adjust their labor supply. This should be thought of as a horizon of, say, five to ten
years. I am not concerned with “very” responses to taxes which would take into account, for
instance, distorted human capital accumulation of future generations – a problem analyzed
by Stantcheva (2015), Findeisen and Sachs (2015), Badel and Huggett (2015).
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to pay the fixed cost, i.e., to start searching for a new job, they receive a

job offer (a costless adjustment opportunity) at an exogenous Poisson rate,

which captures in a reduced-form way the frictions on the demand side of the

labor market. Several assumptions allow me to keep the model analytically

tractable: the utility function has no income effects; the wage follows a random

growth process; the nonlinear tax schedule has a constant rate of progressiv-

ity; individuals are born (or enter the labor force) and die (or retire) at an

exogenous Poisson rate; and they cannot save or borrow. As a result, hours of

work evolve in a lumpy manner at the individual level: workers remain inac-

tive, that is they keep the same job, until their productivity (or wage) is such

that their optimal desired labor supply is far enough from their current, actual

labor supply; at this point, which I characterize analytically, they decide to

pay the fixed cost and start searching for a new job.2

The government chooses the tax schedule given this optimal individual

behavior. Its objective is to maximize a long-run utilitarian social objective

(the sum of individual value functions, weighted by the stationary distribution

of agents), subject to a budget constraint. In the frictionless model, the op-

timum tax schedule is characterized by sufficient statistic formulas standard

in the public finance literature. In the frictional model, I show two results.

First, the long-run effect on social welfare of a uniform increase in marginal

tax rates is given by the same formula as in the frictionless environment; this

neutrality result formalizes the intuition described in the third paragraph and

justifies the use of the frictionless intensive margin model for the analysis of

long-run (linear) taxation. Second, the long-run effect on social welfare of an

2For salaried workers, an alternative setup would place the fixed cost on income rather
than hours of work. All the results of this paper would continue to hold in this model, see
Werquin (2014) for details.
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increase in the progressivity of the tax schedule is not accurately captured by

the frictionless formula: it depends on several new (extensive margin) labor

supply elasticities and marginal social welfare weights. The main force is the

following. An increase in progressivity reduces the volatility of the income

process, as higher incomes are taxed at a higher rate. This indirectly reduces

the option value of waiting to adjust labor supply in response to wage changes.

The lumpiness of labor supply generates extensive margin effects on welfare

unless these two effects exactly cancel out. In other words, the frictionless

tax formula implicitly makes a strong assumption about the effect of taxes

on the option value, namely, that it is exactly as large as their effect on the

volatility of income shocks. However, the option value effect is typically negli-

gible relative to the direct volatility effect of raising progressivity: individuals

adjust their labor supply whenever their current hours of work are 10 percent

away (say) from their optimum, and this value is hardly affected by taxes.

Relative to the benchmark (frictionless equivalent) case where the two effects

exactly cancel out, an increase in progressivity leads to a wider dispersion of

individual incomes around their desired frictionless values, which adversely af-

fects welfare. I show numerically in a calibrated version of the model that the

magnitude of these effects can be large (the true welfare effects of raising taxes

differ by up to 7 percent from those computed using the frictionless formulas),

and is larger for smaller values of the labor supply elasticity ε.3

3There is another, “composition” effect of raising progressivity that is not captured by
the frictionless formulas: the presence of adjustment frictions implies that individuals who
earn the same income differ in their utility, as the least productive of them (i.e., those
with a lower wage) are working more hours to earn the same income; this non-degenerate
distribution is itself endogenous to the tax schedule. By treating the population earning a
given income as a representative agent, the frictionless model thus ignores this endogenous
heterogeneity and miscalculates the welfare effects of perturbing taxes.
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Related literature. This paper is related to three distinct strands in the

literature. First, it is motivated by the large empirical literature that points

to the presence of frictions in the adjustment of labor supply. Altonji and

Paxson (1992) show that changes in labor supply preferences have a much

larger effect on hours of work when individual change jobs, suggesting that

hours are constrained within firms and adjusting behavior entails substantial

fixed costs. Other papers have similarly argued that labor supply is subject to

fixed adjustment costs,4 e.g., Cogan (1981), Altonji and Paxson (1988), Dick-

ens and Lundberg (1993), Holmlund and Söderström (2008), Chetty, Guren,

Manoli, and Weber (2012), Gelber, Jones, and Sacks (2013). Two closely re-

lated papers to mine are Chetty, Friedman, Olsen, and Pistaferri (2011) and

Chetty (2012), who argue that adjustment frictions (in particular, fixed costs)

can reconcile several puzzles observed in the large literature that estimates la-

bor supply elasticities (see, e.g., Saez, Slemrod, and Giertz (2012) and Keane

and Rogerson (2012) for surveys), e.g., the wide range of empirical elasticity

estimates (from 0.1 to 1 for the micro Hicksian elasticity), or the fact that

larger tax changes generate larger responses. My contribution is to incorpo-

rate explicitly these fixed costs into a theoretical dynamic model and derive

the consequences for long-run optimal income taxes.

Second, this paper relates to the optimal taxation literature. The litera-

ture on the sufficient statistic approach to optimal taxation (e.g., Saez (2001),

Golosov, Tsyvinski, and Werquin (2013), Hendren (2014, 2015), Jacquet and

Lehmann (2015), derive optimal tax formulas for a large class of underly-

ing functional forms for the utility function, the sources of heterogeneity, etc,

but generally assumes that labor supply is set optimally. Recently, Chetty,

4Other types of fixed costs than hour requirements within firms can also be present,
e.g., the cognitive cost of paying attention to a tax change.
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Looney, and Kroft (2009) and Farhi and Gabaix (2015) have extended these

results to cases with boundedly rational agents, but in static settings. My

focus is instead on the long-run effects of taxes in a dynamic environment,

when individuals have had the time to adjust their behavior in response to the

tax change.

This paper also relates to the literature on extensive margin labor supply re-

sponses to taxes: Saez (2002), Rogerson and Wallenius (2009), Shourideh and

Troshkin (2009), Chone and Laroque (2010), Ljungqvist and Sargent (2011),

Jacquet, Lehmann, and Van der Linden (2013), study optimal taxation models

where individuals face a fixed cost of working, leading to binary participation

decisions and an intensive margin of hours. Alvarez, Borovicková, and Shimer

(2015) model labor supply in a similar way as I do in this paper, although

they consider only one adjustment (participation) threshold and do not focus

on optimal taxation. My paper can be seen as a generalization of their in-

sights, by deriving tax formulas that account for the many more (endogenous)

extensive margins of labor supply observed in practice, conditional on partici-

pation. It would be straightforward to include an explicit participation margin

in my setting (similar to Alvarez, Borovicková, and Shimer (2015)), although

empirically the long-run responses to taxation seems to be driven mostly by

hours worked conditional on employment (see Davis and Henrekson (2004),

and Chetty, Guren, Manoli, and Weber (2012) for analyses of labor supply

across countries with different tax regimes).

Finally, the technical tools that I use to model lumpy individual behavior

are those developed in the impulse control literature originally developed to

analyze operations research questions. Dixit and Pindyck (1994) and Stokey

(2008) summarize many references and applications of these models to eco-

nomics, primarily for monetary and investment topics. To cite only a few re-
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cent papers, Caplin and Leahy (1991), Bertola and Caballero (1990), Grossman

and Laroque (1990), Caballero and Engel (1999), Alvarez and Lippi (2014),

and Alvarez, Bihan, and Lippi (2014), have made important economic con-

tributions to this literature, on which this paper builds. I contribute to this

literature by studying long-run optimal policy in this class of models.5 Finally,

in public finance, there is a rich literature on investment in the presence of

adjustment costs: Hall and Jorgenson (1967), Summers (1981), Abel (1983),

Auerbach and Hines Jr (1987), Auerbach (1989), Auerbach and Hassett (1992).

I bring this literature to the study of labor supply, since labor supply (and not

just capital) adjustment costs are important.

The structure of the paper is as follows. Section 2 sets up the environment

and describes the maximization problems of the individual and the govern-

ment. Section 3 analyzes the optimal individual behavior. Section 4 charac-

terizes the aggregate steady-state of the economy. Section 5 derives the main

formulas for optimal taxes. Section 6 calibrates the model and runs numerical

exercises. Section 7 concludes. The proofs of all the results and additional

details are gathered in the Appendix.

5This paper finds that non-linear policy tools interact with fixed adjustment costs to
yield long-run aggregate real effects on welfare. This is in contrast with many papers with
indivisibilities or fixed costs at the micro level, where the aggregate economy behaves as a
frictionless (representative agent) model (e.g., Caplin and Spulber (1987), Rogerson (1988)).
I show in this paper that this insight holds only if the available policy instruments are linear.
This insight could be applied more generally to models with fixed costs and non-linear policy
instruments, beyond the taxation framework.
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1 Environment

There is a continuum of mass one of individuals in the economy. Time is

continuous.

Preferences. Individuals have the following Greenwood, Hercowitz, and

Huffman (1988) utility of consumption c and hours of work (labor supply)

h, with isoelastic disutility of labor:

U (c, h) =
1

1− γ

(
c− 1

1 + 1/ε
h1+1/ε

)1−γ

, (1)

with γ ∈ [0, 1). They discount the future at rate ρ1. They are born (or enter

the labor force) and die (or retire) at an exogenous and constant Poisson rate

ρ2. I denote g (x) = (1− γ)−1 x1−γ.

Technology. Individual productivity θ is exogenous. The production func-

tion is linear in the labor input, so that workers’ wages wt are equal to θt

for all t ≥ 0. An individual’s log-wage (i.e., log-productivity) at birth, w0,

is drawn from a normal distribution flnw0 (·) with mean mw and variance s2
w.

The idiosyncratic wage wt then evolves stochastically over time according to

a geometric Brownian motion with drift µw and volatility σw:

d lnwt = µwdt+ σwdWt, (2)

The reduced-form equation (2) for the exogenous wage process can be micro-

founded.6 A large empirical literature7 estimates wage specifications of this

form and its findings are consistent with the presence of a unit root in the

6See, e.g. Gabaix, Lasry, Lions, and Moll (2015) and the references therein.
7See Meghir and Pistaferri (2011) for a survey.
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wage process wt.8

Budget constraint and taxes. An individual with wage w who works

h hours earns taxable labor income y = w × h and pays taxes T (y) to the

government. I assume that she cannot save or borrow, so that her consumption

equals her net income, c = y−T (y). The tax-and-transfer system is restricted

within a class of two-parameter tax schedules, defined as

T (y) = y − 1− τ
1− p

y1−p, (3)

with τ ∈ R and p ∈ (−∞, 1). If p = 0, the income tax schedule is linear with

constant marginal tax rate τ . If p ∈ (0, 1), the ratio of the marginal tax rate

to the average tax rate is T ′ (y) / [T (y) /y] > 1, so that the tax schedule is

progressive; if p < 0, the tax schedule is regressive. The parameter p is the

coefficient of marginal rate progression.9 It is equal to the elasticity of the

net-of-tax rate with respect to taxable income,

p = −d ln (1− T ′ (y))

d ln y
.

This functional form for the tax schedule approximates extremely accurately

the U.S. tax system.10 Figure 2 in the Appendix plots this tax function cali-

brated to the U.S. tax code (p = 0.151).

8The results of this paper would not be affected if wages were allowed to jump. This
extension (letting jumps be drawn from a double-Pareto distribution) would also make the
wage process consistent with the evidence presented in Guvenen, Song, Ozkan, and Karahan
(2015), who find that the distribution of income growth rates d lnwt has Pareto tails.

9See Musgrave and Thin (1948). Recent papers by Benabou (2002) and Heathcote,
Storesletten, and Violante (2014) study optimal taxes using this functional form assumption.

10See Figure 1.(a) in Heathcote, Storesletten, and Violante (2014). They fit this tax
function to the PSID data and find an R2 equal to 0.96.
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Individual problem. In a frictionless environment, individuals choose their

labor supply ht optimally and costlessly at every instant t. A worker with

current wage w0 solves

V∗ (w0) = max
{ht}t≥0

E0

[ˆ ∞
0

e−(ρ1+ρ2)tU (wtht − T (wtht) , ht) dt

]
, (4)

subject to (2). The solution to this problem gives the agent’s frictionless,

or desired, labor supply {h∗t}t≥0, consumption {c∗t}t≥0, and value function

V∗ (w0).

I now suppose that in order to adjust their labor supply from h to h′,

individuals must pay a fixed utility cost κ ≥ 0, which can be interpreted as

the search cost of finding a new job.11 After paying this fixed adjustment

cost, a job offer arrives at rate q > 0, at which time the agent can costlessly

and optimally adjust her hours; intuitively, q captures in a reduced-form way

the frictions on the demand side of the labor market.12 I assume that κ is

proportional to the utility from the foregone (frictionless) disposable income

due to the search activity, which is itself proportional to the instantaneous

utility g (c∗0):13

κ = κ̃× E0

[ˆ τ̂
0

e−(ρ1+ρ2)tU (c∗t , h
∗
t ) dt

]
= κ× g (c∗0) , (5)

with κ ≥ 0 and τ̂ is the Poisson random time at which a job offer is received

after paying the fixed cost at time 0 (the second equality is proved in the

11See the empirical evidence presented in, e.g., Altonji and Paxson (1992) and Chetty,
Friedman, Olsen, and Pistaferri (2011).

12In this paper I focus on the labor supply effects of taxation, and thus assume that q is
exogenous to taxes.

13Assuming γ < 1 in (1) ensures that the fixed cost κ is strictly positive and increasing
in income.
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Appendix). When κ > 0 and q = ∞, the environment reduces to an (S, s)14

model. When κ = 0 and q <∞, it becomes a model à la Calvo (1983).15

In this frictional environment, individuals decide when and by how much

to adjust their labor supply as their wage evolves. They can choose their

hours optimally and costlessly at birth. I define an impulse control policy p

as a sequence of stopping times (at which the fixed adjustment cost is paid)

0 < τ1 < . . . < τi < . . . adapted to the filtration {Ft} generated by Wt,

and a sequence of random variables (the jumps in log-hours upon receiving

an adjustment offer) ∆0,∆1, . . . ,∆i, . . ., constructed inductively as follows.

Let τ0 = τ̂0 = 0 and {τ̂i}i≥1 be a sequence of i.i.d. random variables with

exponential distribution E (q), i.e., P (τ̂i ≥ t) = e−qt for all t ≥ 0. For all i ≥ 0,

∆i ∈ R is measurable with respect to the minimum σ-algebra Fτi+τ̂i of events

up to time τi + τ̂i, and τi+1 > τi + τ̂i. I denote by P the set of such impulse

control policies p.

An individual with current wage w0 who just received an adjustment offer

chooses hours h0 and a stopping time τ1 > 0 (the next time at which he will

14See Dixit and Pindyck (1994) and Stokey (2008), and the references therein.
15In a previous version of this paper (Werquin (2014)), I considered salaried workers

instead, and assumed that the total taxable income y, rather than hours h, is subject to
the fixed adjustment cost. In this case, w and h are interpreted respectively as productivity
and effort, and their product y is the agent’s effective labor supply, or income. As the
individual becomes more productive and stays in her current job (w increases and y remains
constant), she needs to provide less effort (h decreases) to produce the required amount
y. She adjusts her income upwards (resp., downwards) when she becomes so productive
(resp., unproductive) that she spends most of her time idle (resp., when she must provide
too much effort) to produce y. The results of the paper are unaffected by this alternative
specification.
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pay the fixed cost) to solve:

Ṽ (w0) = max
{h0,τ1}

E0

[ˆ ∞
0

qe−qτ̂

{ˆ τ1+τ̂

0

e−(ρ1+ρ2)tU (wth0 − T (wth0) , h0) dt

− e−(ρ1+ρ2)τ1κτ1 + e−(ρ1+ρ2)(τ1+τ̂1)Ṽ
(
wτ1+τ̂1

)}
dτ̂

]
,

(6)

subject to (2). An individual is “inactive” if she has not yet paid the fixed

adjustment cost since she started working at her current job, and is “search-

ing” otherwise. Let Vi (w, h) and Vs (w, h) denote the corresponding value

functions.

Government’s problem. The government chooses the tax schedule (τ, p)

to maximize long-run utilitarian social welfare16 over all living individuals,

subject to a budget balance constraint with an exogenous revenue requirement

R̄. Assuming their existence, let f iw,h (·, ·) and f sw,h (·, ·) denote the stationary

joint densities of wages w and hours h for inactive and searching individuals,

respectively. The government solves:

max{τ,p}

ˆ ∞
0

ˆ ∞
0

∑
x∈{i,s}

Vx (w, h) fxw,h (w, h) dwdh (7)

s.t.
ˆ ∞

0

ˆ ∞
0

∑
x∈{i,s}

T (wh) fxw,h (w, h) dwdh ≥ R̄. (8)

Let λ denote the marginal value of public funds, i.e. the Lagrange multiplier

associated with the budget constraint (8), R (T ) denote tax revenue, i.e. the

left-hand side of (8), and W (T ) denote social welfare expressed in monetary

units, i.e. the maximand in (7) normalized by λ.

16Due to the assumption of exponential deaths, individuals receive equal weights inde-
pendently of their age.
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2 Individual behavior

Frictionless model. The first-order conditions of the frictionless problem

(4) imply that the individual’s optimal labor supply h∗t at each instant t is

an increasing function of her wage wt and her net-of-tax rate (1− T ′ (wth∗t )).

The frictionless taxable income y∗t = wth
∗
t and disposable income c∗t are then

given by the following expressions as functions of the labor supply elasticity

and the parameters of the tax schedule:

y∗t = (1− T ′ (y∗t ))
ε
w1+ε
t = (1− τ)

ε
1+pε w

1+ε
1+pε

t ,

c∗t =y∗t − T (y∗t ) =
1

1− p
(1− τ)

1+ε
1+pε w

(1−p)(1+ε)
1+pε

t .
(9)

Equations (9) imply that the effects of taxes on frictionless incomes at each

time t are given by

d ln y∗

d ln (1− τ)
=

ε

1 + pε
, and

d ln y∗

dp
= − ε

1 + pε
ln y∗. (10)

The interpretation is as follows. The behavioral change in income y∗ following

a tax increase (both in τ and p) is determined by the elasticity ε. If the baseline

tax system is linear, i.e. p = 0, (10) implies immediately that the elasticity of

labor income y∗ with respect to the net-of tax rate 1− τ is equal to ε. If the

baseline tax system is non-linear, i.e. p 6= 0, a change in the marginal tax rate

T ′ (y∗) induces a direct reduction of labor income y∗ by ε, which triggers in

turn an indirect change d (T ′ (y)) = T ′′ (y) dy in the marginal tax rate faced

by the individual, due to the non-linearity of the tax schedule, and hence a
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further income adjustment. Therefore

d ln y∗

d ln (1− T ′ (y∗))
=

ε

1 + T ′′ (y∗) y∗ε
1−T ′(y∗)

=
ε

1 + pε
. (11)

Thus the effect on income of a perturbation of the parameter (1− τ) is equiva-

lent to uniformly perturbing by the same amount the net-of tax rates (1− T ′ (y)),

while a perturbation of p is equivalent to perturbing the marginal tax rates at

each income level by an amount proportional to log-income.

Equations (9) imply moreover that taxable and disposable incomes evolve

according to random growth processes with endogenous drifts and volatilities:

d ln y∗t = µydt+ σydWt, with {µy, σy} =
1 + ε

1 + pε
{µw, σw} , (12)

d ln c∗t = µcdt+ σcdWt, with {µc, σc} = (1− p) 1 + ε

1 + pε
{µw, σw} .(13)

These expressions show that a higher rate of progressivity of the tax schedule

lowers the drift and the volatility of both the taxable and the disposable income

processes,

d ln {|µy| , |σy|}
dp

= − ε

1 + pε
, and

d ln {|µc| , |σc|}
dp

= − 1

1− p
1 + ε

1 + pε
. (14)

Intuitively, individual income responses to increases in wages are attenuated

by the fact that higher incomes pay higher marginal tax rates if the tax sched-

ule is progressive, so that tax progressivity dampens the volatility of income

fluctuations. A uniform change in the marginal tax rates (i.e., a change in τ),

on the other hand, does not affect the volatility of the income processes since

all incomes are shifted by a proportional amount.

I assume that ρ ≡ ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c > 0, which ensures
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that lifetime utility is finite. The value function V∗ (y) of an individual with

income y is given by (see Appendix):

V∗ (y) =
1

ρ
g

(
1 + pε

1 + ε

1− τ
1− p

y1−p
)
. (15)

Note that ρ depends on the growth rate of (the utility from) consumption,

so that the relevant discount rate to compute the present value of utility is

endogenous to taxes.

Frictional model. To analyze the frictional problem (6), introduce the labor

supply deviation δ, defined as the log-difference between the actual and the

frictionless hours of work h and h∗,

δt ≡ ln (ht)− ln (h∗t ) = ln (yt)− ln (y∗t ) . (16)

While the individual remains inactive, δt evolves according to

dδt =− d lnh∗t = µδdt+ σδdWt, with {µδ, σδ} = −(1− p) ε
1 + pε

{µw, σw} ,

(17)

and when she adjusts her labor supply from h to h′ at time τ̂, it jumps from

δ
τ̂
− to δ

τ̂
− + (lnh′ − lnh).

We can replace the state variables (w, h) by either (y∗, δ) or (y, δ) in the

individual’s problem. I denote accordingly the utility and value functions by

U (y∗, δ), Vx (y∗, δ) for x ∈ {i, s}, and the value function of an individual with

actual, rather than frictionless, income y as V̂x (y, δ) ≡ Vx
(
ye−δ, δ

)
. I finally

denote by V̄ (y, δ) the average (over employment states x) welfare of individuals

with states (y, δ) (see Appendix for a formal definition).

In the Appendix I show that the utility function can be written as U (y∗, δ) =
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u (δ)× g (c∗), where u (δ) is (approximately) quadratic around the frictionless

optimum δ = 0.17 The homogeneity of the utility function and of the fixed ad-

justment cost (5), along with the random growth processes for the frictionless

disposable income (13), allow us to crucially reduce the dimensionality of the

state space.18

Proposition 1. The policy functions and the value functions of inactive and

searching individuals with frictionless taxable income y∗ and labor supply devi-

ation δ are homogeneous of degree one in the utility of frictionless consumption

g (c∗):

Vx (y∗, δ) = vx (δ)× g
(

1− τ
1− p

y∗(1−p)
)
, ∀x ∈ {i, s} , (18)

for some functions vi, vs : R→ R.

Proof. See Appendix. The value functions vi (δ) , vs (δ) are defined formally in

(42) and plotted in Figure 3.

An implication of Proposition 1 and equation (15) is that the value func-

tions V̂x (y, δ) of individuals with income y and deviation δ can be expressed

as the value V∗ (y) that the planner would compute for an individual with

income y wrongly assuming that the world is frictionless, times a correction

factor v̂x (δ) which depends only on her (unobservable) labor supply deviation

δ. Unlike in the frictionless environment, where there is a representative agent

at each income level y, there is now a heterogeneous population of individuals

who earn the same income y but reach different levels of utility, because their

17Because the exact expression (derived in the Appendix) for the function u (δ) is not
well defined for δ far away from 0, I assume for simplicity that the utility loss from failing
to optimize is given by its quadratic approximation for any δ ∈ R. Alternatively we can
keep the exact expression if γ = 0, and add curvature to the social welfare function to give
the government a redistributive motive; none of the qualitative results would be affected.

18See Alvarez and Stokey (1998) for a general analysis of this property.
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wage-hour bundles (i.e., their deviation δ) and their employment state x (inac-

tive or searching) differ.19 This heterogeneity is summarized by the functions

v̂x (δ) which are strictly decreasing in δ (individuals who work less but earn

the same income are better off) and are endogenous to tax policy (see Figure

4 and Appendix for details).

I now analyze the solution to the impulse control problem (6). Define a

“
{
δ, δ∗, δ̄

}
-policy”, where δ < δ∗ < δ̄, as follows. For any labor supply h, the

individual remains inactive as long as the state process δt is in
(
δ, δ̄
)
. When

δt hits or is below δ or above δ̄, she pays the fixed cost κ and waits until

she receives an adjustment opportunity, which occurs at the random time

τ̂ ∼ E (q). She then adjusts the state to δ∗, so that hours jump from h to

h′ = h exp
(
δ∗ − δ

τ̂
−
)
.

To find the solution to the individual’s problem and characterize her opti-

mal labor supply behavior, guess that the optimal control is a
{
δ, δ∗, δ̄

}
-policy.

The value of inaction vi (δ) must satisfy the following Hamilton-Jacobi-Bellman

equation within the inaction region: ∀δ ∈
(
δ, δ̄
)
,

Lvi (δ)−ρvi (δ) = −u (δ) , where Lv ≡ 1

2
σ2
δv
′′+ [µδ + (1− γ)σcσδ] v

′, (19)

which has a standard asset pricing interpretation (see Appendix), subject to

the following boundary conditions: (i) value-matching,

vi
(
δ̄
)

= vs
(
δ̄
)
− κ, and vi (δ) = vs (δ)− κ, (20)

which impose that at the time the agent decides to pay the fixed cost and search

19A key friction in this paper is that the government is restricted to using a tax T (·) on
observed incomes y, and hence cannot differentiate between various individuals who earn
the same amount but have different wage-hour pairs and employment states.
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for a new job she is indifferent between doing so and remaining inactive; (ii)

smooth-pasting,

v′i
(
δ̄+
)

= v′i
(
δ̄−
)

= v′s
(
δ̄
)
, and v′i

(
δ+
)

= v′i
(
δ−
)

= v′s (δ) , (21)

which impose that at the time the agent decides to pay the fixed cost the

marginal value and the marginal cost of starting to search are equal; and (iii)

optimality,

v′i (δ
∗) = 0, (22)

which imposes that the value function at the optimal adjustment target δ∗ is

maximized. The value of searching vs (δ) is equal to the sum of: the flow utility

from the time at which the fixed cost is paid until the adjustment occurs; and

the expected value of returning to δ∗. That is, for all δ ∈ R, letting τ̂ ∼ E (q),

vs (δ) = E0

[ˆ τ̂
0

e−(ρ1+ρ2)tU (y∗t , δt) dt

∣∣∣∣∣ δ0 = δ

]
+

q

ρ+ q
vi (δ

∗) . (23)

Equation (44) in the Appendix gives a closed-form expression for vs (δ). I also

show a heuristic derivation of this system of equations (19)-(23), and provide

detailed interpretations.

The following proposition shows under which conditions the
{
δ, δ∗, δ̄

}
-

policy described above is the solution to the individual’s problem:20

Proposition 2. Suppose that there exist δ < δ∗ < δ̄ and vi ∈ C1 (R) ∩

C2
(
R \

{
δ, δ̄
})

that solve the system of equations (19) to (23). Suppose more-
20Note that equations (19) to (23) define a free-boundary problem, as the boundaries

of the inaction region are part of the solution
(
vi, vs, δ, δ

∗, δ̄
)
. For any set of three fixed

(potentially suboptimal) thresholds δ < δ∗ < δ̄, equations (19), (20) and (23) define a
fixed-boundary problem which can be solved in closed-form by integrating the second-order
differential equation and inverting the linear system of two equations and two unknowns
formed by the boundary conditions.
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over that the following quasi-variational inequalities hold: Lvs−ρvs ≤ −u for

all δ ∈ R \
(
δ, δ̄
)
and vi ≥ vs − κ for all δ ∈

(
δ, δ̄
)
, and that the technical con-

dition (48) in the Appendix is satisfied. Then vi and vs are the value functions

of inactives and searchers, respectively, and the optimal impulse control policy

is the
{
δ, δ∗, δ̄

}
-policy.

Proof. See Appendix.

Individual labor supply behavior is depicted graphically in Figure 1. The

variable on the x-axis is the individual’s frictionless labor supply h∗, and that

on the y-axis is her actual labor supply h. In the frictionless environment, labor

supply would evolve along the 45°-line. In the frictional environment, labor

supply is lumpy: an inactive individual moves along a horizontal (red) line,

that is, her actual labor supply h stays constant while her desired labor supply

h∗ tracks the evolution of her productivity. When she reaches the (optimally

chosen) boundaries of her inaction region (the thick blue lines h∗ = e−δ̄h or

h∗ = e−δh), she starts searching and, as soon as she receives an offer, she

adjusts (up or down) to the new labor supply level on the central blue line

h′ = eδ
∗
h∗.
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Figure 1: Optimal labor supply behavior
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The optimal labor supply adjustment behavior
{
δ, δ∗, δ̄

}
is not affected by

the parameter τ of the tax schedule, while a lower progressivity p increases

the size of the inaction region:

d ln
{
|δ| , δ̄

}
d ln (1− τ)

= 0, and
d ln

{
|δ| , δ̄

}
dp

< 0.

This is because a decrease in p acts as a positive volatility shock (see equation

(14)), i.e., it increases the volatilities σy, σδ of the income and the deviation

processes. This in turn raises the option value of waiting to adjust labor supply,

and therefore widens the optimal inaction region. Intuitively, a less progressive

tax schedule magnifies the unexpected shocks to the wage, which raises the
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incentives for the individual to keep her current job and wait to observe the

evolution of her productivity before carrying out the costly adjustment, in

order to save on new search costs.

It follows that a lower rate of progressivity has an ambiguous effect on the

frequency of adjustment of labor supply: on the one hand, the higher volatility

of the deviation process makes current labor supply diverge from its frictionless

optimum at a faster rate, so that individuals reach more quickly the bound-

aries of their inaction region; on the other hand, the inaction region is wider,

which tends to make them adjust less often. Importantly, there is no reason

to expect a priori that the (direct) volatility-dampening effect of progressivity

has exactly the same magnitude as the (indirect) option value effect on the

boundaries of the inaction region; in fact, the reduction in the volatility of

income typically vastly dominates the option value effect.21 Another way to

express this heuristically is to say that an individual adjusts her labor supply

in response to productivity changes whenever her current hours of work are 10

percent (say) away from their optimum amount, and this maximum tolerated

deviation is hardly affected by taxes. On the other hand, progressivity has a

large dampening effect on the volatility of income fluctuations. The discrep-

ancy between these two opposing forces plays a crucial role in the optimal

taxation analysis of Section 4.

Figures 3 and 4 in the Appendix show the optimal thresholds δ, δ∗, δ̄, the

value functions vi (δ) , vs (δ) and v̂i (δ) , v̂s (δ), and their responses to a change

21Hence a less progressive tax schedule increases the frequency of adjustment. This result,
which I show numerically in Section 5, is common to all the papers in this literature, see
e.g. Vavra (2014) (with the exception of Bloom (2009), because he focuses on the impact
effect of shocks, rather than on the long-run effects). Theoretically, Dixit (1993) shows in
a simple version of the model that the option value effect is several orders of magnitude
smaller than the direct volatility effect. The optimal taxation formulas I derive in Section
4 hold of course for any relative value of these two opposing forces.
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in progressivity.

3 Aggregation

In this section I characterize the long-run wage and income distributions ob-

tained by aggregating the optimal individual policies described in Section 2.

3.1 Stationary wage distribution

A variable x has a double-Pareto-lognormal distribution (DPLN) (or lnx has

a Normal-Laplace distribution) with parameters (r1, r2,m, s
2) (where r1 < 0 <

r2) if its density is given by

fx (x) =
|r1| r2

|r1|+ r2

{
e

1
2
r2
1s

2−r1mxr1−1Φ

(
lnx−m

s
+ r1s

)
+e

1
2
r2
2s2−r2mxr2−1Φc

(
lnx−m

s
+ r2s

)}
.

(24)

The double-Pareto-lognormal distribution closely approximates the actual wage

and income distributions observed empirically.22 In particular, the DPLN dis-

tribution exhibits power-law behavior in both tails, with Pareto coefficients on

the right and left tail respectively given by (r1, r2), that is,

fx (x) ∼
x→0

wr2−1, and fx (x) ∼
x→∞

wr1−1. (25)

Define, for any x ∈ {w, y, c, δ} and ρ > 0,

rρ1,x ≡
µx
σ2
x

−

√
µ2
x

σ4
x

+
2ρ

σ2
x

, and rρ2,x ≡
µx
σ2
x

+

√
µ2
x

σ4
x

+
2ρ

σ2
x

, (26)

22See, e.g., Reed (2003), Reed and Jorgensen (2004), Toda (2012).
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The following proposition shows that the wage distribution converges to a

DPLN stationary distribution:

Proposition 3. The distribution of wages w converges towards a unique sta-

tionary distribution fw (·) which is double-Pareto-lognormal with parameters(
rρ2

1,w, r
ρ2

2,w,mw, s
2
w

)
, where rρ2

1,w, r
ρ2

2,w are defined in (26) and mw, s
2
w are the mean

and variance of the log-wage distribution at birth.23

Proof. See Toda (2012).

The aggregation of the random growth individual wage processes naturally

generates the wage distribution’s Pareto tails,24 which is one of the most ro-

bust empirical stylized facts (as well as an important determinant of optimal

taxes, see Saez (2001)). The smaller the Pareto coefficient (in absolute value)∣∣rρ2

1,w

∣∣, the thicker the right tail, the more unequal the distribution. A higher

drift µw and volatility σw, and a lower death rate ρ2, lead to a more unequal

distribution.

3.2 Stationary income distributions

I now characterize the stationary joint distributions f iln y∗,δ and f sln y∗,δ of fric-

tionless taxable incomes ln y∗ and labor supply deviations δ for inactive and

searching individuals, respectively. Denote by f1, f2 their partial derivatives

with respect to the first and second variables, and by f11, f12, f22 their second

partial derivatives. We have f i = 0 for all δ < δ and δ > δ̄. Moreover, for all

ln y∗ ∈ R, all δ ∈ (δ, δ∗)∪
(
δ∗, δ̄

)
if f = f i, and all δ ∈ R\

{
δ, δ̄
}
if f = f s, these

23The frictionless taxable and disposable incomes y∗, c∗ are also log-normally distributed
at birth with respective mean and variance (my, sy) and (mc, sc) and follow random growth
processes (12,13) from then on. Hence their stationary distributions fy∗ , fc∗ are also double-
Pareto lognormal with respective parameters

(
rρ21,y, r

ρ2
2,y,my, s

2
y

)
and

(
rρ21,c, r

ρ2
2,c,mc, s

2
c

)
.

24See, e.g., Nirei and Souma (2007), Gabaix (2009).
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distributions are the solutions to the following Kolmogorov-forward equations

(KFE):

0 = − (ρ2 + qIfs) f − µyf1 + µδf2 +
1

2
σ2
yf11 +

1

2
σ2
δf22 − σyσδf12, (27)

where Ifs is equal to one if f = f sln y∗,δ and zero if f = f iln y∗,δ. The boundary

conditions and the derivation and interpretation of these equations, which

equate the inflows and outflows at any (ln y∗, δ) ∈ R2, are laid out in the

Appendix.

Proposition 4. Assuming their existence, the stationary distributions f iln y∗,δ
and f sln y∗,δ of inactive and searching individuals are the solution to the Kolmogorov-

forward partial differential equations (27) subject to the boundary conditions

(49), (50), (51), (52), (53), (54), and (55) in the Appendix. If q = ∞ the

stationary distributions of taxable and disposable incomes fy, fc have Pareto

right and left tails with respective coefficients
(
rρ2

1,y, r
ρ2

2,y

)
and

(
rρ2

1,c, r
ρ2

2,c

)
.

Proof. See Appendix.

Ignoring the search period for simplicity (q = ∞), Proposition 4 shows

that the Pareto coefficients of the tails of the taxable and disposable income

distributions are given in closed form by

{
rρ2

1,y, r
ρ2

2,y

}
=

1 + pε

1 + ε

{
rρ2

1,w, r
ρ2

2,w

}
, and

{
rρ2

1,c, r
ρ2

2,c

}
=

1

1− p
1 + pε

1 + ε

{
rρ2

1,w, r
ρ2

2,w

}
.

(28)

These expressions show that the labor supply elasticity ε and the progressiv-

ity p determine the amount by which inequality in exogenous productivities

(measured by the Pareto coefficient rρ2

1,w) translates into inequality in tax-

able and disposable incomes. The distribution of taxable income y is more
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unequal (thicker tail) than the wage distribution, because wage differences

are amplified by the labor supply responses due to the positive elasticity ε.25

Moreover, both the before-tax and (more strongly so) the after-tax income

distributions become more equal when the tax schedule is more progressive:
d
dp

ln
∣∣rρ2

1,c

∣∣ > d
dp

ln
∣∣rρ2

1,y

∣∣ > 0.26 Figure 5 in the Appendix summarizes these

results graphically and plots the stationary distributions of wages w, incomes

y, c, and labor supply deviations δ, as well as the effects of taxes on these

distributions.

4 Optimal taxation

In this section, I analyze the effects of taxes on long-run social welfare (com-

parative statics across steady-states) in order to characterize the optimal tax

schedule, that is, the solution to the government’s problem (7,8), given that in-

dividual labor supply is characterized by Proposition 2. Before deriving these

formulas, I formally define and characterize two sets of key variables for the

analysis of tax policy: the labor income elasticities and the marginal social

welfare weights.

4.1 Labor income elasticities

I first define the (Hicksian) frictionless intensive margin labor income elastic-

ity, ε∗ (y∗), as the elasticity of an individual’s frictionless taxable income y∗

with respect to the net of tax rate (1− T ′ (y∗)). We saw in Section 2 that

25This is consistent with the findings of Krueger, Perri, Pistaferri, and Violante (2010).
26Note also that rρ21,y ≤ rρ21,c < rρ21,w if p ≥ 0 and rρ21,c ≤ rρ21,y < rρ21,w if p ≤ 0, with strict

inequalities if p 6= 0, so that the distribution of frictionless disposable income is less unequal
than the distribution of desired taxable income if and only if the tax schedule is progressive.
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this elasticity is constant accross individuals and is given by the (normalized)

structural elasticity parameter ε.

Definition 1. The frictionless intensive margin labor income elasticity is de-

fined as

ε∗ (y∗) ≡ d ln y∗

d ln (1− T ′ (y∗))
=

ε

1 + pε
, ∀y∗ ∈ R+, (29)

where the second equality follows from equations (10) and (11).

In a frictionless world (κ = 0), this variable ε∗ (y) would be equal to the

response of the individual’s true income to a change in marginal tax rates. It

could be estimated empirically by observing the magnitude of the change in

income following a change in statutory net-of-tax rates (see, e.g., Gruber and

Saez (2002)). However, when the adjustment of labor supply in response to

tax changes is frictional (κ > 0), the individual elasticity of actual (observed)

income is not well defined: it is in general equal to zero, if the agent has not yet

adjusted her income in response to the tax change, and is infinite at the time of

adjustment since a small tax increase then induces a discrete jump in income.

In this environment we can nevertheless define and observe empirically the

long-run elasticity of aggregate labor income with respect to a uniform change

in net-of-tax rates (that is, a change in (1− τ)). Formally,

Definition 2. The macro labor income elasticity E is defined as

E ≡
d ln
´∞

0
yfy (y) dy

d ln (1− τ)
, (30)

where fy (·) is the stationary density of incomes.

The following proposition proves a neutrality result that characterizes the

relationship between the frictionless individual elasticity and the macro elas-

ticity:
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Proposition 5. The frictionless intensive margin elasticity and the macro

elasticity are equal, that is,

E = ε∗ (y) =
ε

1 + pε
, ∀y ∈ R+. (31)

Proof. See Appendix.

Proposition 5 shows that in the frictional model, the long-run aggregate

income elasticity E is equal to the elasticity of frictionless individual income

ε∗, even though there is always (even in the steady-state) a non-degenerate

distribution of individuals with actual incomes y at each frictionless level y∗.

Intuitively, in the long-run, individuals have had the time to fully adjust their

behavior to the new tax schedule and even though they almost never actually

earn their desired income y∗, the individual errors wash out in the aggregate:

after the tax change, individuals revolve around their new optimum which

is ε percent away from the previous one, so that the aggregate (log-)income

distribution is uniformly shifted by ε. In other words, in the case of a uniform

increase in the net-of-tax rates (i.e., a change in the parameter τ), the economy

behaves in the long-run as if there were a representative frictionless agent at

each income level.27,28 Note in particular that this result allows us to recover

empirically the structural parameter ε when individual labor supply is lumpy.

Next, I define three extensive margin labor income elasticities as the ef-
27This neutrality result is related to those of Caplin and Spulber (1987) and Rogerson

(1988) who build models where frictions at the micro (individual) level are irrelevant at the
macro (aggregate) level.

28This neutrality result formalizes the intuition (explained in the Introduction of this
paper) that the standard frictionless model should be interpreted as the long-run outcome
of an environment with sluggish adjustments in the short-run. Of course this result depends
on the assumptions I have made in the previous sections about individual behavior. It
should be interpreted as follows: the assumptions of my model are giving the strongest
possible chances to the frictionless model’s tax formulas (39), (40) to capture the long-run
effects of taxation in the frictional environment.
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fects of changes in the adjustment thresholds δ, δ∗, δ̄ on the stationary income

distribution.

Definition 3. The extensive margin labor income elasticities Ξ (y), Ξ∗ (y),

and Ξ̄ (y) are defined as

Ξ (y) ≡ ∂ ln fy (y)

∂ ln |δ|
, Ξ∗ (y) ≡ ∂ ln fy (y)

∂ ln |δ∗|
, and Ξ̄ (y) ≡ ∂ ln fy (y)

∂ ln δ̄
, (32)

where fy (·) is the stationary density of incomes.

These elasticities capture the effects of percentage variations in the inaction

thresholds on the number of employed workers at income y. The definition

of these elasticities is similar to the participation elasticities in, e.g., Saez

(2002); the key difference is that in Definition 3 the income thresholds are not

exogenously given as in the case of a binary participation decision, but instead

are endogenously and optimally chosen by the individual.

4.2 Marginal social welfare weights

The social welfare effects of taxation can be characterized using the notion of

marginal social welfare weights.29 In the standard frictionless static model with

a utilitarian social objective, the social weight at income y is defined as the

individual’s marginal utility of consumption normalized by the shadow value of

public funds, λ−1c−γ0 ,30 and represents intuitively the increase in social welfare,

expressed in terms of public revenue, of distributing an additional unit of

consumption uniformly among individuals who earn income y. In this section

I define formally and generalize to the dynamic and frictional environment the

relevant notions of marginal social welfare weights.
29See, e.g., Saez and Stantcheva (2016) for a recent general exposition.
30Note that these marginal social welfare weights are endogenous.
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First consider, in the frictionless model, the effect of giving an additional

marginal consumption stream {ĉt}t≥0 to an individual with current income

y, where ĉt evolves stochastically according to the same process (13) as the

frictionless disposable income c∗t . The frictionless social weight ω∗ (y) is defined

as the change in the individual’s value function (and hence, in utilitarian social

welfare) due to this additional consumption stream:

ω∗ (y) ≡ 1

λ∗
d

dĉ0

E0

[ˆ ∞
0

e−(ρ1+ρ2)tu

(
c∗t + ĉt −

(h∗t )
1+1/ε

1 + 1/ε

)
dt
∣∣∣y0 = y

]∣∣∣∣∣
ĉ0=0

,

(33)

where λ∗ is the marginal value of public funds in the frictionless model. A

closed-form expression for ω∗ (y) is derived in the Appendix.

Now, in the frictional model, giving individuals with income y the addi-

tional marginal consumption stream {ĉt}t≥0 defined above has different welfare

effects depending on their deviations δ (i.e., their wage-hours bundles) and em-

ployment states x ∈ {i, s}. Since the income tax system treats all individuals

with the same income identically, we define the average social weight at income

y, ω (y), as follows:

Definition 4. The static intensive margin social weight ω (y) is defined as

ω (y) =
λ∗

λ
ω∗ (y)×

ˆ ∞
−∞

v̄ (y, δ) fδ|y (δ |y ) dδ, (34)

where ω∗ (y) is the corresponding frictionless welfare weight defined in equation

(33), v̄ (y, δ) is the average (over employment states x) welfare of individuals

with income and deviation (y, δ), defined formally in equation (43), fδ|y =

f iδ|y + f sδ|y is the total density of deviations conditional on an actual income y,

and λ is the marginal value of public funds in the frictional model.
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Second, we saw that a permanent change in progressivity affects the drift

and volatility of the consumption process, and hence the discount rate ρ used

to compute welfare. I thus define the dynamic intensive margin social weight

ω̂ (y) as the welfare effect of a percentage decrease in ρ. In the frictionless

model, this is given by

ω̂∗ (y) = − 1

λ∗
∂V∗ (y)

∂ lnρ
, (35)

for which a closed-form expression is given in the Appendix. Similarly, in the

frictional model I define:

Definition 5. The dynamic intensive margin social weight ω̂ (y) is defined as

ω̂ (y) =
λ∗

λ
ω̂∗ (y)×

ˆ ∞
−∞

v̄ (y, δ) fδ|y (δ |y ) dδ. (36)

Third, I define the extensive margin social weights Ω (y), Ω∗ (y), Ω̄ (y) as

the effects of changes in the thresholds δ, δ∗, δ̄ on total welfare at the income

level y:

Definition 6. Let {δi}1≤i≤3 ≡
{
δ, δ∗, δ̄

}
. The extensive margin social weights

{Ωi (y)}1≤i≤3 =
{
Ω (y) ,Ω∗ (y) , Ω̄ (y)

}
are defined as

Ωi (y) ≡1

λ

ˆ ∞
−∞

∂ ln fy,δ (y, δ)

∂ ln |δi|
V̄ (y, δ) fδ|y (δ |y ) dδ, ∀i ∈ {1, 2, 3} , (37)

where V̄ (y, δ) is defined in equation (43).

Finally, the equilibrium composition of each income group y, summarized

by the value functions v̄ (y, δ), is endogenously affected by progressivity, which

in turn has an effect on social welfare. I thus define the composition margin

social weight Ω̃ (y) as:
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Definition 7. The composition margin social weight Ω̃ (y) is defined as

Ω̃ (y) ≡1

λ

ˆ ∞
−∞

(
∂ ln v̄ (y, δ)

∂p
+
∂ ln v̄ (y, δ)

∂ ln y

∂ ln y

∂p

)
V̄ (y, δ) fδ|y (δ |y ) dδ,

(38)

where ∂ ln y
∂p

is given by (10). In particular, when q =∞, Ω̃ is simply equal to
1
λ
∂E[v̄(δ)|y ]

∂p
V∗ (y), that is, the effect of progressivity on the average welfare at

income y.

4.3 Tax reforms and optimal tax schedule

In this section I derive the first-order social welfare effects of two “local tax

reforms” of a given baseline (potentially suboptimal) tax system T : an (in-

finitesimal) perturbation of the parameter τ by dτ , and a perturbation of the

progressivity p by dp. In the former case, this implies that the tax liabil-

ity at income y, T (y) = 1−τ
1−py

1−p, is replaced by the perturbed tax liability

T (y) + Ψτ (y) dτ , and in the latter case by T (y) + Ψp (y) dp, where for all

y ∈ R+,

Ψτ (y) =
y1−p´∞

0
x1−pfy (x) dx

, and Ψp (y) =

(
ln y − 1

1−p

)
y1−p

´∞
0

(
lnx− 1

1−p

)
x1−pfy (x) dx

,

where fy (x) denotes the stationary density of incomes given the baseline tax

schedule (τ, p). The denominators of these expressions are simply a normal-

ization ensuring that in the absence of any behavioral responses (i.e., if all

individuals earned the same taxable income before and after the tax reform),

the total (“statutory”) additional tax revenue collected would be 1 (in monetary

units, say dollars).

I denote the corresponding first-order social welfare changes by Γτ and Γp,
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defined as

Γτ = lim
dτ→0

W (T + Ψτdτ)−W (T )

dτ
, and Γp = lim

dp→0

dW (T + Ψpdp)−W (T )

dp
,

where W (T ) denotes the social welfare when the tax schedule is T (see (7)).

Formally, this is the Gateaux derivative of social welfare with respect to the tax

reforms Ψτ and Ψp, or simply the derivatives dW /dτ and dW /dp, normalized

as explained above.31 The optimal tax schedule (τ ∗, p∗) is then characterized

by imposing that the first-order welfare effects Γτ and Γp are equal to zero.

The following proposition characterizes the welfare effects of the perturba-

tion Ψτ .

Proposition 6. The first-order social welfare effects of uniformly perturbing

the marginal tax rates of any baseline tax schedule T are given by:32

Γτ = 1−
ˆ ∞

0

T ′ (y)
yε∗ (y)

1− T ′ (y)
Ψ′τ (y) fy (y) dy −

ˆ ∞
0

ω (y) Ψτ (y) fy (y) dy.

(39)

In particular, the optimal tax schedule (τ ∗, p∗) satisfies Γτ = 0. In the fric-

tionless model, the same equation holds, except that the marginal social welfare

weights ω (y) are replaced by their frictionless counterparts ω∗ (y).

Proof. See Appendix.

The interpretation of equation (39) is as follows. The first and second terms

on the right hand side measure the actual change in government tax revenue

31See details in Golosov, Tsyvinski, and Werquin (2013).
32This equation can be thought of as pinning down the marginal value of public funds

λ given a tax schedule (τ, p). Intuitively, λ (the Lagrange multiplier associated with the
constraint (8)) is equal to the social value of redistributing a dollar of tax revenue through
an decrease in τ by dτ , i.e., through a uniform increase in the net of tax rates (taking into
account the behavioral responses that this perturbation induces).
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of a one-dollar statutory increase in taxes through a uniform perturbation of

the marginal tax rates, taking into account the induced change in individual

behavior. The additional tax liability levied at the income level y after the tax

reform is implemented is given, to a first order in dτ → 0, by Ψτ (y) dτ , and the

marginal tax rate changes by Ψ′τ (y) dτ . The first term in the right hand side

of (39) is the mechanical effect of the perturbation, i.e., the statutory increase

in government revenue absent behavioral responses. It is equal to one (dollar)

by construction of the normalization of the magnitude of the perturbation

Ψτ . The second term in the right hand side of equation (39) is the behavioral

effect of the perturbation. The increase dT ′ ≡ Ψ′τ (y) dτ in the marginal

tax rate of an individual with income y induces her to decrease her taxable

income by y
1−T ′(y)

ε∗ (y) dT ′. This behavioral income response generates a loss

in government revenue proportional to the marginal tax rate T ′ (y). Summing

over individuals using the density of incomes fy (·) yields the total revenue

loss, i.e. the second term in (39). Finally, the third term in (39) is the welfare

effect of the perturbation, expressed in monetary units. An increase in the

tax liability of individual y by dT ≡ Ψτ (y) dτ directly reduces her utility and

hence social welfare by ω (y) × dT , by construction of the marginal social

welfare weights (33).

This equation (39) has a structure that is identical to the “sufficient statis-

tic” formulas derived by, e.g., Saez (2001), Golosov, Tsyvinski, and Werquin

(2013), Hendren (2014, 2015), Jacquet and Lehmann (2015), to characterize

the optimal tax systems in frictionless models. Note in particular that all

the variables other than the marginal social welfare weights in equation (39)

(elasticities, tax schedule, income distribution) are empirically observable.33

33Using the formula Γτ = 0 to characterize the optimum tax schedule requires evaluating
these endogenous variables at the optimum. Strictly speaking, the values estimated given
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Proposition 6 extends the neutrality result of Proposition 5. Its main

insight is that the long-run effects on social welfare of a uniform change in

marginal tax rates are the same as we would calculate by assuming that the

economy is frictionless and has a representative agent at each income level y.

In particular, as in Proposition 5, the relevant elasticity is the individual fric-

tionless elasticity ε∗ (y) defined in (29). In short, the frictions at the individual

level wash out in the long-run of the aggregate economy.34

The next proposition characterizes the welfare effects of perturbing the

progressivity p of the tax schedule. It is the main theoretical result of the

paper.

Proposition 7. In the frictionless model, the first-order social welfare effects

of perturbing the progressivity of any baseline tax schedule T are given by:

Γ∗p = 1−
ˆ ∞

0

T ′
y

1− T ′
ε∗Ψ′pdFy −

ˆ ∞
0

[
ω∗Ψp +

d lnρ

dp
ω̂∗
]
dFy. (40)

In the frictional model, these effects are given by:

Γp = 1−
ˆ ∞

0

T ′
y

1− T ′
ε∗Ψ′pdFy −

ˆ ∞
0

[
ωΨp +

d lnρ

dp
ω̂

]
dFy +A

+

ˆ ∞
0

T
3∑
i=1

d ln |δi||σδ|
dp

ΞidFy +

ˆ ∞
0

[
3∑
i=1

d ln |δi||σδ|
dp

Ωi + Ω̃

]
dFy,

(41)

where {δi}1≤i≤3 =
{
δ, δ∗, δ̄

}
, {Ξi}1≤i≤3 =

{
Ξ,Ξ∗, Ξ̄

}
, {Ωi}1≤i≤3 =

{
Ω,Ω∗, Ω̄

}
,

the current tax code (in particular, the current U.S. income distribution) can only be used
to quantify the welfare effects of local tax reforms, as explained above.

34There is one difference, however, between the frictionless and the frictional versions of
the optimal tax formula (39): the frictional marginal social welfare weights ω (y) must be
computed by taking into account the non-degenerate distribution of utilities E [v̄ (y, δ) |y ]
within income groups. In general this correction term varies with income y, so that the
schedule of frictional social weights is not perfectly homothetic to the schedule of frictionless
weights, and the effective redistributive tastes of the government have to be adjusted relative
to a model with a representative agent at each income level.
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and A =
d ln

σy

|σδ|
dp

´ (
T ′y − 1

λ
∂V̄
∂ ln y

)
δdFy,δ. In particular, the optimal tax sched-

ule (τ ∗, p∗) is fully characterized by (8), (39), and Γp = 0.

Proof. See Appendix.

The first result of Proposition 7, equation (40), characterizes the effects of

an increase in progressivity (and in particular, the optimal tax schedule) in

the frictionless model. Its interpretation is identical to that of equation (39),

except that the welfare effect depends in addition on the social weight ω̂∗ (y).35

It has the same structure as the standard sufficient statistic formulas in static

models.

The second, and most important, result of Proposition 7 is the derivation

of equation (41) which characterizes the long-run welfare effects of raising

progressivity in the frictional model. The first line of this expression is the

same as the frictionless formula (40), replacing the social weights with their

frictional counterparts ω (y) , ω̂ (y) (and with the exception of the unimportant

termA).36 The presence of the second line implies that the frictionless formula

does not correctly account for all of the long-run effects of nonlinear taxes.

The novel effects are: (i) behavioral (revenue) effects driven by the extensive

margin labor income elasticities Ξ (y), Ξ∗ (y), Ξ̄ (y); (ii) welfare effects driven

by the extensive margin social weights Ω (y), Ω∗ (y), Ω̄ (y); and (iii) a welfare
35These social weights are absent from expression (39) and of the optimal tax formulas

derived in standard static models. This highlights the need to properly microfound the
“long-run” as the steady-state of a dynamic economy (rather than simply applying the
static formulas) to capture the full welfare effects of permanent changes in taxes.

36This term appears because because a change in progressivity affects the relative pro-
cesses driving the frictionless income variables {µy, σy,my, sy} (with elasticity d lnσy

dp ) and
the deviation (or hour) variables

{
µδ, σδ, δ, δ

∗, δ̄
}

(with elasticity d lnσδ
dp ); this decoupling

affects the long-run density of incomes, see Appendix for details. If the fixed adjustment
cost were on income y rather than hours h (see footnote 15), the volatility of deviations
σδ would always be equal to (minus) that of frictionless incomes σy, and this term would
disappear from the optimal tax formula (41); see the earlier version of this paper (Werquin
(2014)). Moreover, this term has negligible magnitude in practice; see Section 5.
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effect driven by the composition margin social weight Ω̃ (y).37 The extensive

margin terms arise because of the endogenous lumpiness of labor supply, and

the composition term arises because of the endogenous heterogeneity within

income groups.38

Importantly, the extensive margin elasticities Ξi (y) and social weights

Ωi (y) in (41) are multiplied by the terms
(
d ln|δi|
dp
− d ln|σδ|

dp

)
. This means that

the standard frictionless optimal tax formula (40) amounts to implicitly mak-

ing an (implausibly strong) assumption on behavior: namely, that raising the

progressivity of tax schedule shrinks the inaction region, i.e. lowers the option

value of waiting to adjust labor supply, by the same amount as it reduces the

volatility of income shocks. If this does not hold, then the frictionless optimal

tax formula miscalculates the welfare effects of the extensive margin nature of

labor supply adjustments.39 This condition is satisfied in the case of a uniform

change in marginal tax rates, because τ affects neither the volatility nor the

optimal inaction region; this explains the neutrality results of Propositions 5

and 6. In general, however, this condition is violated: the non-linearity of the

policy instrument (here, the progressivity of the tax schedule) interacts with

37Note that while the intensive margin elasticities are multiplied by the marginal tax rate
T ′ (y) to obtain the behavioral (revenue) effect of the tax change, because an infinitesimal
change in income dy reduces tax revenue by T ′ (y) dy, the three extensive margin terms
(corresponding to the three variables δ, δ∗, δ̄ of discrete adjustment), on the other hand, are
multiplied by the average tax rate T (y).

38This is a stronger result than those in the literature that analyzes optimal policy in
static models with an extensive margin or fixed costs (e.g., Saez (2002), Chetty, Looney, and
Kroft (2009), Chetty, Friedman, Olsen, and Pistaferri (2011)). In these models a fraction of
the population finds it optimal to adjust their labor supply in response to the tax change,
while the rest of the population doesn’t. This is occuring in my dynamic model only in
the short-run: eventually individuals will all optimally adjust their behavior to the new tax
code as their characteristics evolve over time.

39The frictionless tax formula would also be correct if the effects of locally varying the
thresholds of the inaction region had a second-order effect on the density of incomes and
deviations at each income level, so that the extensive margin elasticitiesΞi and social weights
Ωi would be equal to zero. I do not have a sharp theoretical result proving that this is not
the case, but it does not seem to be happening numerically.
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the lumpiness of individual behavior to generate long-term real effects of tax

changes.

We can already anticipate the direction of these effects. In general, the nar-

rowing of the inaction region due to a higher progressivity is vastly dominated

by the decrease in the volatility of incomes. Intuitively, taxes hardly affect the

tolerance of individuals for deviations of their labor supply away from their op-

timum (they will adjust when their hours are 10 percent away, say, from their

optimum, regardless of the progressivity), while progressivity does dampen the

volatility of income fluctuations by a first-order amount. Thus, relative to the

frictionless benchmark where the two effects exactly compensate each other,

raising p is equivalent to a wider dispersion of individual incomes around their

desired values. This in turn adversely affects welfare, so that the extensive

margin effects on welfare Ω,Ω∗, Ω̄ will tend to reduce the gains (or increase

the losses) of raising progressivity. I analyze the quantitative magnitude of the

novel effects of equation (41) in Section 5, and show that this negative effects

on welfare is the dominant force. In particular, the composition effects (com-

ing from the endogeneity to taxes of the average utility within the population

earning income y, which is no longer a representative agent when labor supply

is frictional) play a less important role in practice.

5 Quantitative analysis

In this section I calibrate the model analyzed in the previous sections, and

evaluate quantitatively the welfare effects of raising the progressivity of the

U.S. tax schedule (equation (41)) and the errors made by wrongly assuming a

frictionless economy.
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5.1 Calibration

I calibrate the marginal tax rates and the rate of progressivity (τ, p) of the

tax schedule in the U.S. using the empirical estimates from PSID data of

Heathcote, Storesletten, and Violante (2014): τ = −3 and p = 0.151.40,41 I

take a coefficient of risk aversion42 γ = 0.9 and a discount rate ρ1 such that

(1 + ρ1 + ρ2)−1 = 0.95 (see below for the calibration of ρ2). In an environment

closely related to this paper’s model, Chetty (2012) finds a value for the struc-

tural parameter ε = 0.33 from a meta analysis of the elasticities estimated in

the literature.43 I use this value for the baseline calibration and show how the

results are affected when ε = 1.

The Pareto coefficients and the mean and variance of the U.S. income distri-

bution are observable and lead to
(
rρ2

y,1, r
ρ2

y,2,my, sy
)

= (−1.9, 1.4, 10.46, 0.43).44

The volatility of idiosyncratic wage risk σ2
y in my model corresponds to the vari-

ance of the permanent component of the individual log-income process in the

40This value of p implies that earning twice as high a gross income leads to a 15.1 percent
decrease in the net-of-tax rate.

41These parameters yield a value for total U.S. government revenue R̄ = $2.33tn for a
population of 320m. I keep this value constant throughout the numerical analysis, so that
whenever I vary the progressivity p I adjust τ in order to keep the revenue R̄ unchanged.

42Recall that the theoretical analysis requires γ to be strictly below 1. Even though
allowing for γ > 1 would be more realistic, this assumption is not crucial, since the goal of
this section is to compute optimal tax rates relative to those in the frictionless model. The
optimal progressivity would be higher with a higher risk aversion in the frictionless model,
but here I focus on the difference between the frictionless and the frictional formulas.

43There is substantial controversy in the literature about the value of the observed taxable
income elasticity ε. The micro literature typically finds values lower than 0.3, while the
macro literature and some structural estimates find it to be closer to 1. See Saez, Slemrod,
and Giertz (2012) and Keane and Rogerson (2012) for an overview of the two strands.

44For the Pareto coefficients, see, e.g., Reed (2003), Reed and Jorgensen (2004), Toda
(2012). For the mean my and variance s2

y of the density of incomes at birth, I use E [ln y] =

10.3 and V [ln y] = 1. In the frictionless model, we have E [ln y] = my − r−1
y,1 − r

−1
y,2 and

V [ln y] = s2
y + r−2

y,1 + r−2
y,2.
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literature (e.g., Meghir and Pistaferri (2004, 2011)); I take σ2
y = 0.01.45,46 The

parameters
(
µw, σw,mw, sw, r

ρ2

1,w, r
ρ2

2,w

)
and

(
µc, σc,mc, sc, r

ρ2

1,c, r
ρ2

2,c

)
are then ob-

tained from the relationships rρ2

y,1 + rρ2

y,2 = 2µy
σ2
y

and rρ2

y,1r
ρ2

y,2 = −2ρ2

σ2
y
, which pin

down the drift µy and the death rate ρ2,47 and equations (13) and (28).

The fixed adjustment cost κ and the arrival rate of costless adjustment

opportunities q are calibrated using the average duration of searching for a

new job (I take ts = q−1 = 1 month) and the average duration of a job, which

I take equal to ti+ts = 5 years. For ε = 0.33 (resp., ε = 1), I obtain κ = 0.0038

(resp., κ = 0.015), which implies that the cost of searching for a new job, κ,

is equal to 1.2 percent (resp., 5.1 percent) of the average total (frictionless)

utility received during the duration of the search, and an individual starts

searching when her hours are approximately |δ| = δ̄ ≈ 9 percent (resp., 20

percent) away from their optimal value and she then adjusts to δ∗ = −0.1

percent below her current optimal value.

5.2 Numerical results

In this section, I compute Γp in formula (41), i.e., the revenue and social

welfare effects, expressed in dollars, of a $1 statutory increase in tax revenue

through an increase in the rate of progressivity in the U.S. economy calibrated

in Section 5.1. The advantage of using a tax reform (around the U.S. tax

code) rather than an optimal tax approach for quantitative purposes is that

the endogenous variables that appear in the formula can all be easily evaluated

45See also Jones and Kim (2014), for an estimate in a frictionless model similar to this
paper and further references to the empirical literature.

46If the analysis were extended to allow for jumps in the wage process, the corresponding
parameters could be calibrated from Guvenen, Song, Ozkan, and Karahan (2015) who find
that the distribution of earnings growth rates is double-Pareto.

47Note that this leads to a negative drift of income µy, but the growth rate µy + 1
2σ

2
y is

positive.
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empirically given the actual U.S. data, without the need to extrapolate their

values at the optimum tax schedule.48

The extensive margin elasticities
(
d ln|δ|
dp
− d ln|σδ|

dp

){
Ξ (y) , Ξ̄ (y)

}
are plot-

ted in Figure 6 in the Appendix for ε = 0.33 (left panel) and ε = 1 (right

panel). Figure 7 plots the revenue effects of the tax reform disaggregated by

income for ε = 0.33 and ε = 1 in the frictionless and the frictional models,

that is, −T ′ yε∗
1−T ′Ψ

′
p+T

∑3
i=1

d ln|δi|/|σδ|
dp

Ξi. The elasticities Ξi are non-negligible

(of the order of 0.1 to 0.3 in absolute value). However the revenue effects are

nearly identical in the frictionless and the frictional models at every income

level. This is because the extensive margin elasticities are bounded, while the

increase in progressivity induces an unbounded increase in marginal tax rates

Ψ′p and hence an unbounded intensive margin effect.

Figure 8 plots the welfare effects of increasing progressivity disaggregated

by income for ε = 0.33 and ε = 1, that is, −
[
ωΨp + d lnρ

dp
ω̂
]
+
∑3

i=1
d ln|δi|/|σδ|

dp
Ωi+

Ω̃. These effects are large for the smaller value of the labor income elasticity

ε = 0.33, and almost zero for the larger value ε = 1. The composition effects

(captured by the welfare weight Ω̃) play little role in the discrepancy between

the two curves in the left panel. Instead, the extensive margin effects on wel-

fare tend to reduce the gains of raising progressivity, as explained in Section 4.

Thus, ignoring the stickiness in the labor supply decisions of individuals leads

to substantially mis-estimating the welfare costs of raising the progressivity of

the tax schedule. These effects disappear as the labor income elasticity gets

higher, in which case the standard intensive margin welfare effects dominate

the extensive margin effects.

I finally sum these welfare effects over the whole population to obtain the

48This is strictly speaking what the “sufficient statistic” approach of Chetty (2009) allows
us to do.
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full right hand side of (41). For ε = 0.33, in the frictionless model the total

behavioral (revenue) loss of a $1 statutory increase in p is c11.10, and the

total welfare loss is c83.12.49 The frictional effect of perturbing progressivity

on revenue is 2.25 percent away from this frictionless effect (the behavioral

loss is c0.25 higher), and the frictional effect on welfare is 7.3 percent away

from the frictionless effect (the welfare loss is $6.05 higher), which is a sizeable

error. In contrast, when ε = 1, the total behavioral revenue response of an

increase in p is c33.44, and the total welfare loss is c66.80,50 and the frictional

effects of perturbing progressivity are 0.46 percent and 0.75 percent away from

the frictionless effects on revenue and welfare, respectively; the static model’s

calculations are very accurate in this case.

6 Conclusion

This paper analyzes the effects on nonlinear income taxation in a model where

individual labor supply is subject to fixed adjustment costs. Several long-

run effects arise, captured by novel elasticities and marginal social welfare

weights. This paper can be seen as a generalization of the optimal taxation

models studied by, e.g., Saez (2002) and Jacquet, Lehmann, and Van der

Linden (2013), who derive optimal tax formulas in static models with a 0-1

decision whether to participate in the labor force. Here, I derive a tax formula

where the extensive margins of adjustment arise endogenously and optimally

conditional on participation because of the fixed cost of adjusting labor supply,

49Note that the sum of the two is lower than the mechanical effect $1, implying that the
U.S. tax code is not progressive enough for the parameters of the calibration. The optimum
rate of progressivity is increasing the risk aversion γ and decreasing in the elasticity ε.

50Note that the sum of the two is slightly larger than the mechanical effect $1, implying
that the U.S. tax code is slightly too progressive for this higher value of the labor income
elasticity.
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consistent with a large body of empirical evidence. I show that the nonlinearity

of the policy instruments interacts with the lumpiness of individual behavior

to yield long-run real effects on social welfare, an insight that can be applied

more generally to other settings than income taxation.

The results of this paper rely on several simplifying assumptions that al-

low the model to be analytically tractable (e.g., specific utility function, wage

process, tax schedule, fixed cost proportional to utility, no savings and bor-

rowings). Most of these assumptions were made to allow for a reduction in

the dimensionality of the state space, leading to a sharp characterization of

individual behavior (Proposition 2 and Figure 1).

On the theoretical side, it should be possible to substantially generalize

the results of this paper by directly postulating a given shape (not necessarily

a cone) for the individual inaction region. This would allow in particular

an analysis of the effects of general non-linear income tax schedules. Note

that a mechanism design approach would in addition allow taxes to depend

on the time at which the individual adjusted her income, and the size of

the corresponding jump (for instance, if productivity has a drift, this would

give information about how far a given individual is from its optimum labor

supply).

On the quantative side, it would be valuable to estimate numerically the

novel effects highlighted theoretically in this paper in a more sophisticated

structural model, allowing for, e.g., savings and borrowings, life-cycle labor

supply decisions, non-proportional fixed adjustment costs, transitory as well

as permanent wage shocks, more general non-linear taxes and transfer pro-

grams, and other dimensions of labor supply adjustment choices (e.g., job

satisfaction). Such a model would also provide realistic estimates of the speed

of adjustment of the economy in response to tax changes, and hence allow
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us to infer the long-run elasticities from the empirically observed short-run

elasticities in the presence of sluggish individual adjustments to tax changes.

I leave these investigations for future research.
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Nicolas Werquin

A Appendix

A.1 Proofs and additional results for Sections 1 to 3

Tax system

The tax schedule (3), calibrated to the U.S. tax code, has a rate a progressivity equal to p = 0.151.
This means that the net-of-tax rate decreases by 15% when gross income doubles. Figure 1.(a)
in Heathcote, Storesletten, and Violante (2014) fits this tax function to the U.S. tax-and-transfer
system using PSID data and finds an extremely good fit (R2 = 0.96). Figure 2 shows this tax
schedule for p = 0.151 and p = 0.156. The right panel zooms in at the bottom of the income
distribution, where marginal and average tax rates are negative.

Figure 2: Tax and transfer schedule
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Individual behavior and welfare: frictionless model

I first derive the properties of individual welfare in the frictionless model. I show the second equality
in equation (5), i.e., that the average expected frictionless utility during the search period (and hence
the fixed cost κ) is proportional to the instantaneous utility of frictionless consumption. I also
compute the value function in the frictionless model, i.e., equation (15), which is also proportional
to the current utility of consumption. I finally derive the marginal social welfare weights (33).

Proof of equations (5), (15), and (33). The expected frictionless utility from time 0 to the
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random time τ̂ ∼ E (q) is then equal to

κ =κ̃× E0

ˆ τ̂
0
e−(ρ1+ρ2)t 1

1− γ

(
c∗t −

1

1 + 1/ε

(
y∗t
wt

)1+1/ε
)1−γ

dt


=κ̃

(
1 + pε

1 + ε

)1−γ
E0

[ˆ τ̂
0
e−(ρ1+ρ2)tg (c∗t ) dt

]
,

where the equality follows from the first-order conditions (9). Moreover, equation (13) shows that
c∗ follows a geometric Brownian motion, which implies

dg (c∗t ) =

[
(1− γ)µc +

1

2
(1− γ)2 σ2

c

]
g (c∗t ) dt+ [(1− γ)σc] g (c∗t ) dWt,

and hence g (c∗t ) = g (c∗0) e(1−γ)µct+(1−γ)σcWt . Using the facts that Wt ∼ N (0, t) and E
[
eX
]

=

eµ+σ2/2 if X ∼ N
(
µ, σ2

)
, we thus obtain

κ =κ̃

(
1 + pε

1 + ε

)1−γ
g (c∗0)E0

[ˆ τ̂
0
e−(ρ1+ρ2−(1−γ)µc− 1

2
(1−γ)2σ2

c)t

]

=κ̃

(
1 + pε

1 + ε

)1−γ
g (c∗0)

ˆ ∞
0

qe−qτ̂
ˆ τ̂

0
e−(ρ1+ρ2−(1−γ)µc− 1

2
(1−γ)2σ2

c)tdτ̂

=
κ̃
(

1+pε
1+ε

)1−γ

ρ1 + ρ2 + q − (1− γ)µc − 1
2 (1− γ)2 σ2

c

g (c∗0) ,

which proves equation (5).
Similarly, the individual frictionless value function is given by

V∗ (y) = E

ˆ ∞
0

e−(ρ1+ρ2)t 1

1− γ

(
c∗t −

1

1 + 1/ε

(
y∗t
wt

)1+1/ε
)1−γ

dt

∣∣∣∣∣∣ y = y∗ (w0)


=

(
1+pε
1+ε

)1−γ

1− γ
E0

[ˆ ∞
0

e−(ρ1+ρ2)t (c∗t )
1−γ dt

]
=

(
1+pε
1+ε c

∗
0

)1−γ

1− γ

ˆ ∞
0

e−(ρ1+ρ2−(1−γ)µc− 1
2

(1−γ)2σ2
c)t,

from which equation (15) follows.
Finally, let ĉt follow the same geometric Brownian motion process as c∗t (equation (13)), which
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implies that 1+pε
1+ε c

∗
t + ĉt also follows the same process. The same steps as above imply

ω∗ (y) =
1

λ∗
d

dĉ0

(
E0

[ˆ ∞
0

e−(ρ1+ρ2)tu

(
c∗t + ĉt −

1

1 + 1/ε
(h∗t )

1+1/ε

)
dt

∣∣∣∣ y0 = y

])
ĉ0=0

=
1

λ∗
d

dĉ0

 1
1−γ

(
1+pε
1+ε c

∗
0 + ĉ0

)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c


ĉ0=0

=
1

λ∗

(
1+pε
1+ε

)−γ (
1−τ
1−p

)−γ
y−γ(1−p)

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

,

which gives a closed-form expression for the static marginal social welfare weights in the frictionless
setting. Moreover,

ω̂∗ (y) = − 1

λ∗
∂V∗ (y)

∂ lnρ
=

1

λ∗

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

,

which gives a closed-form expression for the dynamic marginal social welfare weights in the friction-
less setting.

Individual behavior and welfare: frictional model

I now derive the properties of individual welfare in the frictional model. I show the homogeneity of
the utility function and the value functions Vx (y∗, δ) (Proposition 1), and define the value functions
V̂x (y, δ) (i.e., the welfare of individuals with actual, rather than frictionless, income y, deviation δ,
and employment state x) and V̄ (y, δ) (i.e., the average welfare of individuals with actual income y
and deviation δ).

Proof of Proposition 1. Substituting y∗ for w using the optimality condition (9) into the flow
utility U

(
y − T (y) , yw

)
yields

U =
1

1− γ

[
1− τ
1− p

(y∗)1−p
]1−γ

×

[(
y

y∗

)1−p
− 1− p

1 + 1/ε

(
y

y∗

)1+1/ε
]1−γ

=
1

1− γ

[
1− τ
1− p

(y∗)1−p
]1−γ [

e(1−p)δ − 1− p
1 + 1/ε

e(1+ 1
ε)δ
]1−γ

≡ g (c∗)× u (δ) ,

which implies that the flow utility U (y∗, δ) is homogeneous in the utility of frictionless dispos-
able income c∗. A second-order Taylor approximation of the function u (δ) around the frictionless
optimum δ = 0 shows that the utility loss from failing to optimize is locally quadratic,

u (δ) ∼
δ→0

(
1 + pε

1 + ε

)1−γ [
1− 1

2
(1− γ) (1− p)

(
1 +

1

ε

)
δ2

]
.
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The value function Vi (y∗, δ) of inactive individuals is equal to

Vi (y∗0, δ0) = max
τ1

E0

[ˆ τ1
0

e−(ρ1+ρ2)tg

(
1− τ
1− p

y∗1−pt

)
u (δt) dt+ e−(ρ1+ρ2)τ1

{
Vs
(
y∗τ1 , δτ1

)
− κτ1

}]
,

subject to the laws of motion (12) and (17), where τ1 is the optimal stopping time at which the
individual starts searching by paying the fixed cost. The value function Vs (y∗, δ) of searchers is
equal to

Vs (y∗0, δ0) = max
δ∗
τ̂

E0

[ˆ τ̂
0
e−(ρ1+ρ2)tU (y∗t , δt) dt+ e−(ρ1+ρ2)τ̂Vi

(
y∗
τ̂
, δ∗
τ̂

)]
,

subject to the laws of motion (12) and (17), where τ̂ is a stopping time with an exponential distribu-
tion with parameter q, and δ∗

τ̂
is the optimal deviation that the individual chooses upon reception of

an adjustment opportunity at time τ̂. From these equations we can write a sequential formulation
of the value functions Vi and Vs and obtain that Vx(y∗,δ)

g
(

1−τ
1−p y

∗1−p
) = vx (δ) for x ∈ {i, s}, where

vi (δ0) = max
τ1

E0

[ˆ τ1
0

e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtu (δt) dt

+e−(ρ1+ρ2−(1−γ)µc)τ1+(1−γ)σcWτ1 {vs (δτ1)− κ}
]

vs (δ0) = max
δ∗
τ̂

E0

[ˆ τ̂
0
e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtu (δt) dt

+e−(ρ1+ρ2−(1−γ)µc)τ̂+(1−γ)σcWτ̂vi
(
δ∗
τ̂

)]
.

(42)

Proposition 1 follows.
These results imply that the value functions V̂x (y, δ) (for an actual income y) are equal to

V̂x (y, δ) = V∗ (y)× v̂x (δ), where the value functions v̂i (δ) , v̂s (δ) are given by

v̂x (δ) = ρ

(
1 + pε

1 + ε

)γ−1

e−(1−p)(1−γ)δvx (δ) ,

for x ∈ {i, s}. I finally denote by V̄ (y, δ) and v̄ (y, δ) the the value functions averaged over the
employment state (inactive and searching), that is,

v̄ (y, δ) = v̄i (δ)
f iy,δ (y, δ)

f iy,δ (y, δ) + fsy,δ (y, δ)
+ v̄s (δ)

fsy,δ (y, δ)

f iy,δ (y, δ) + fsy,δ (y, δ)
, and V̄ (y, δ) = V∗ (y) v̄ (y, δ) ,

(43)
where f iy,δ, f

s
y,δ denote the stationary joint densities of inactive and searching individuals at income

and deviation (y, δ).

Next, I characterize the solution to the individual’s impulse control problem (Proposition 2). As
a first step, I calculate explicitly the value of searching vs.
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Closed-form expression for (23). I show that

v̂s (δ) ≡E0

[ˆ τ̂
0
e−(ρ1+ρ2)tU (y∗t , δt) dt |δ0 = δ

]

=

´∞
−∞

[
er
ρ1+ρ2+q
2,δ xI{x≤0} + er

ρ1+ρ2+q
1,δ xI{x>0}

]
u (x+ δ) dx

σ2
δ
2 e

(1−γ)(1+ 1
ε)
(
rρ1+ρ2+q

2,δ − rρ1+ρ2+q
1,δ

) ,

(44)

where rρ1,x, r
ρ
2,x are defined in (26). We have, letting τ̂ ∼ E (q),

E0

[ˆ τ̂
0
e−(ρ1+ρ2)tg (c∗t )u (δt) dt+ e−(ρ1+ρ2)τ̂g

(
c∗
τ̂

)
vi (δ∗)

]

=g (c∗0)

ˆ ∞
0

qe−qtE0

[ˆ t

0
e−(ρ1+ρ2−(1−γ)µc)s+(1−γ)σcWsu (δs) ds

+ e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtvi (δ∗)

]
dt.

Using Fubini’s theorem, the fact that Wt ∼ N (0, t), and the quadratic approximation u (δ) = α0 +

α1δ+α2δ
2, we obtain that the stochastic integral (for fixed t) is equal to, with δs = δ0 +µδs+σδWs:

E0

[ˆ t

0
e−(ρ1+ρ2−(1−γ)µc)se(1−γ)σcWsu (δs) ds

]
=

1

ρ3
α2 ((1− γ)σcσδ + µδ)

2 (2− e−ρt (ρ2t2 + 2ρt+ 2
))

+
1

ρ

(
α0 + α1δ0 + α2δ

2
0

) (
1− e−ρt

)
+

1

ρ2

(
α1 (µδ + (1− γ)σcσδ) + α2σ

2
δ + 2α2 (µδ + (1− γ)σcσδ) δ0

) (
1− e−ρt (ρt+ 1)

)
.

Integrating over the stopping time t then yields:

ˆ ∞
0

qe−qtE0

[ˆ t

0
e−(ρ1+ρ2−(1−γ)µc)se(1−γ)σcWsu (δs) ds

]
dt

=

(
α2

ρ+ q

)
δ2

0 +

(
α1

ρ+ q
+ 2α2

µδ + (1− γ)σcσδ

(ρ+ q)2

)
δ0

+

(
α0

ρ+ q
+ α1

(µδ + (1− γ)σcσδ)

(ρ+ q)2 + α2
2 (µδ + (1− γ)σcσδ)

2 + (ρ+ q)σ2
δ

(ρ+ q)3

)
.

Straightforward algebra finally shows that the right hand side of (44) is equal to this expression.
(Formula 44 is obtained by solving directly the HJB equation for searchers with the relevant bound-
ary conditions at ±∞.) Finally the value of returning to δ∗ (assuming that the optimal impulse

36



control policy is the
{
δ, δ∗, δ̄

}
-policy, see below) is given by

E
[
e−(ρ1+ρ2)τ̂Vi

(
y∗
τ̂
, δ∗
τ̂

)]
=

ˆ ∞
0

qe−qtE0

[
e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtvi (δ∗)

]
dt =

qvi (δ∗)

ρ1 + ρ2 + q − (1− γ)µc − 1
2 (1− γ)2 σ2

c

,

which is the second term of equation (23).

I now define the operators L,M : C2 (R)→ C0 (R) by

Lv (δ) = [µδ + (1− γ)σcσδ] v
′ (δ) +

1

2
σ2
δv
′′ (δ) ,

Mv (δ) =
q

ρ+ q
sup
δ′∈R

v
(
δ′
)

+ v̂s (δ)− κ.

The following Verification Lemma provides sufficient conditions for optimality and characterizes the
optimal policy.

Lemma 1. Suppose we can find a function v : R→ R that satisfies:

v ∈ C1 (R) ∩ C2 (R \ D) , where D = {δ ∈ R : v (δ) >Mv (δ)} , (45)

Lv (δ) + u (δ) ≤ ρv (δ) , ∀δ ∈ R \ ∂D, with equality in D, (46)

Mv (δ) ≤ v (δ) , ∀δ ∈ R. (47)

Suppose moreover that v has locally bounded derivatives near ∂D and for all τ ∈ T , p ∈ P, δ0 ∈ R,

E
[
e−(ρ1+ρ2)τ

∣∣v (δpτ)∣∣+

ˆ ∞
0

e−(ρ1+ρ2)t
∣∣Lv (δpt )∣∣ dt] <∞. (48)

Then v (δ) = vi (δ) andMv (δ) = vs (δ) for all δ ∈ R, where vi and vs are the value functions (42).
Moreover, if {v(δp

∗

τ ) : τ ∈ T } is uniformly integrable the optimal impulse control policy p∗ ∈ P is
given by: for all j ≥ 1,

τ
∗
j = inf

{
t > τ∗j−1 + τ̂j−1 : δ

p∗j−1

t /∈ D
}
, and ∆∗j = sup

δ′∈R
v
(
δ′
)
− v

(
δ
p∗j−1

τ∗j+τ̂
−
j

)
,

where δ
p∗j−1

t is the process resulting from applying p∗j =
(
τ
∗
1, . . . , τ

∗
j−1,∆

∗
1 (τ̂1) , . . . ,∆∗j−1 (τ̂j−1)

)
to δ.

Proof. Fix an impulse control policy p =
(
{τj ,∆j (τ̂j)}j≥1

)
∈ P. By condition (i) and Theorem

2.1. in Øksendal and Sulem (2005), we can assume that v ∈ C2 (R). Hence using condition (iv) we
can apply the localized version of Dynkin’s formula (Theorem 1.24. in Øksendal and Sulem (2005)
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modified to take into account the discounting) to get, for j ≥ 0,

E
[
e−(ρ1+ρ2)(τj+τ̂j)g

(
c∗
τj+τ̂j

)
v
(
δτj+τ̂j

)]
− E

[
e−(ρ1+ρ2)τj+1g

(
c∗τj+1

)
v
(
δτj+1

)]
=− g (c∗0)E

[ˆ τj+1

τj+τ̂j

e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWt (−ρv (δt) + Lv (δt)) dt

]

≥ g (c∗0)E

[ˆ τj+1

τj+τ̂j

e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtu (δt) dt

]
,

where the inequality follows from condition (47), and it becomes an equality if p = p∗. Moreover,
we have

E
[
e−(ρ1+ρ2)τj+1g

(
c∗τj+1

)
v
(
δτj+1

)]
− E

[
e−(ρ1+ρ2)(τj+1+τ̂j+1)g

(
c∗
τj+1+τ̂j+1

)
v
(
δ
τj+1+τ̂

−
j+1

+ ∆j+1 (τ̂j+1)
)]

≥g (c∗0)

{
E
[
e
−(ρ1+ρ2−(1−γ)µc)τj+1+(1−γ)σcWτj+1v

(
δτj+1

)]
− E

[
e
−(ρ1+ρ2−(1−γ)µc)(τj+1+τ̂j+1)+(1−γ)σcWτj+1+τ̂j+1

]
sup
δ′∈R

v
(
δ′
)}

=g (c∗0)E
[
e
−(ρ1+ρ2−(1−γ)µc)τj+1+(1−γ)σcWτj+1

(
v
(
δτj+1

)
−Mv

(
δτj+1

)
+ v̂s

(
δτj+1

)
− κ
)]

≥g (c∗0)E
[
e
−(ρ1+ρ2−(1−γ)µc)τj+1+(1−γ)σcWτj+1

(
v̂s
(
δτj+1

)
− κ
)]
,

where the last equality follows from condition (ii). Both inequalities become equalities if p = p∗.
Thus, we obtain, summing the previous equations from j = 0 to j = N ≥ 1,

g (c∗0) v (δ0)− E
[
e−(ρ1+ρ2)(τN+1+τ̂N+1)g

(
c∗
τN+1+τ̂N+1

)
v
(
δτ̂N+1

)]
≥g (c∗0)E

[
N∑
j=0

ˆ τj+1

τj+τ̂j

e−(ρ1+ρ2−(1−γ)µc)t+(1−γ)σcWtu (δt) dt

+

N∑
j=0

e
−(ρ1+ρ2−(1−γ)µc)τj+1+(1−γ)σcWτj+1

(
v̂s
(
δτj+1

)
− κ
)]

=E

ˆ τN+1+τ̂N+1

0
e−(ρ1+ρ2)tg (c∗t )u

(
δpt
)
dt−

N∑
j=0

e−(ρ1+ρ2)τj+1κg
(
c∗τj+1

) ,
(with equality if p = p∗), where the equality follows from (44). Now, as N →∞, we have τN →∞
so that the second term on the l.h.s. of the previous equation converges to zero. Therefore we
obtain

V (y∗0, δ0) ≥E

ˆ ∞
0

e−(ρ1+ρ2)tU
(
y∗t , δ

p
t

)
dt−

∞∑
j=0

e−(ρ1+ρ2)τj+1κτj+1

 , ∀p ∈ P ,
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with equality if p = p∗. (We restrict the set P of admissible controls to those p that satisfy
E
[´∞

0 e−(ρ1+ρ2)t
∣∣u (δpt )∣∣ dt] <∞.) But the right hand side is the lifetime utility of an individual at

birth, after δ0 has been chosen, under the control policy p (see (6)). This concludes the proof.

Condition (47) is the Hamilton-Jacobi-Bellman Quasi-Variational Inequality (QVI), (46) is the
value-matching QVI, and (45) is the smooth-pasting property.51 The optimal policy is such that
that the agent remains inactive when the state process δ stays within the continuation region D,
and starts searching (by paying the fixed cost) when it attempts to leave D. By Proposition 1, this
solution coincides with the optimal value functions and control policy if vs satisfies (46) on

(
δ, δ̄
)
,

(47) on R \
(
δ, δ̄
)
, and (48). In the case where paying the fixed cost leads to immediate adjustment

(i.e., q =∞), we can verify these conditions directly:

Corollary 1. Let q = ∞, so that v̂s (δ) = 0. Suppose that there exist
(
δ, δ∗, δ̄

)
such that the

function vi : R → R solves the differential equation problem (19), (23), (20), and the conditions
(21) and (22) hold. Suppose finally that v′i (δ) > 0 (resp., v′i (δ) < 0) on an interval δ ∈ (δ, δ + ε)

(resp., δ ∈
(
δ̄ − ε, δ̄

)
). Then vi (δ) is the value function of the individual’s problem and the optimal

individual policy is characterized by the control band
{
δ, δ∗, δ̄

}
.

Proof. To prove that the conjectured policy is indeed optimal, we need to show that if the value
function satisfies (19,20,21,22,23), then it satisfies the assumptions of the Verification Proposition 1
and the quasi-variational inequalities (46,47). If q = ∞, then the technical conditions required for
the Verification theorem 1 to hold are simpler (see Richard (1977)): v′ must be absolutely continuous
and bounded and v′′ must be in L2 (R); these are easily verified. It remains to check that the QVI
are satisfied.

First, I show that the lower bound of the conjectured inaction region is non-positive, δ ≤ 0,
and the upper bound is non-negative, δ̄ ≥ 0, so that the argmax of the flow utility u (δ) lies within
the inaction region. Note first that v′′

(
δ+
)
> 0, v′′

(
δ̄−
)
< 0 and v′′ (δ∗) ≤ 0, where the first two

inequalities follow from the continuity of v′ and the assumption that v′ > 0 (resp., v′ < 0) in a
neighborhood to the right of δ (resp. to the left of δ̄). Define the first and the last inflection points
of v on [δ, δ∗] by We know that such values exist in [δ, δ∗], because v′′

(
δ+
)
> 0 and v′ (δ∗) = 0.

Since u, v, v′ ∈ C1 ((δ, δ∗)), the HJB equation (19) implies that v′′ is continuously differentiable.
Taking left derivatives of the HJB and evaluating at δ∗M yields

σ2
δ

2
v′′′
(
δ∗−M
)

=ρv′
(
δ∗−M
)
− u′

(
δ∗−M
)
≥ ρv′ (δ∗)− u′ (δ∗M ) = −u′ (δ∗M ) ,

where the inequality follows from the definition of δ∗M and v′′ (δ∗) ≤ 0. Since v′′′
(
δ∗−M
)
≤ 0, we

obtain −u′ (δ∗M ) ≤ 0. But u is concave with a unique global maximum at δ = 0, hence δ∗M ≤ 0 and
u′ (δ) > u′ (δ∗M ) for all δ < δ∗M .

Second, I show that the conjectured value function v is unimodal, that is, v (δ) is strictly
increasing on (δ, δ∗) and strictly decreasing on

(
δ∗, δ̄

)
. If δ∗m = δ∗M , then v′ (δ) > 0 for all δ ∈ (δ, δ∗).

51See Bensoussan et al. (1982).
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Suppose that δ∗m < δ∗M and there exists δ ∈ (δ, δ∗) such that v′ (δ) ≤ 0. Then there exists δ̃ ∈
(δ∗m, δ

∗
M ) which is a local minimizer of v′, with v′

(
δ̃
)
< 0 and v′′′

(
δ̃−
)
≥ 0 . Taking left derivatives

in the HJB equation (19) and evaluating at δ̃ yields:

u′
(
δ̃−
)

=− 1

2

σ2
c

(1− p)2 v
′′′
(
δ̃−
)

+ ρv′
(
δ̃−
)
< 0.

But we saw above that u′ (δ∗M ) ≥ 0, which implies u′
(
δ̃
)
> 0 since δ̃ < δ∗M and u is strictly concave

and unimodal, a contradiction.
I now show that the conjectured value function satisfies the QVI (47), i.e., Lv (δ)−ρv (δ)+u (δ) ≤

0 for all δ ∈ R. The HJB equation (19) and a symmetry argument imply that it is sufficient to
check this inequality on (−∞, δ). Fix δ < δ. We have

[Lv (δ)− ρv (δ) + u (δ)]

=
[
Lv
(
δ+
)
− ρv (δ) + u (δ)

]
− ρ (v (δ)− v (δ))− [µδ + (1− γ)σcσδ]

(
v′ (δ)− v′ (δ)

)
+

1

2
σ2
δ

(
v′′ (δ)− v′′

(
δ+
))

+ (u (δ)− u (δ)) .

The HJB equation (19), the value-matching condition (20) and the smooth-pasting conditions (21)
imply that the first line of the right hand side is equal to zero. Moreover, we saw above that
v′′ (δ) = 0 < v′′

(
δ+
)
and u (δ) ≤ u (δ), which concludes the proof.

Finally, I show that the conjectured value function satisfies the QVI (46), i.e.,Mv (δ)−v (δ) ≤ 0

for all δ ∈ R, whereMv (δ) = v (δ∗) − κ. For δ ∈ R \
(
δ, δ̄
)
, this QVI is satisfied with equality by

construction. For δ ∈ (δ, δ∗), we saw that v′ (δ) > 0 which implies Mv (δ) < v (δ), and a similar
argument applies for δ ∈

(
δ∗, δ̄

)
.

I now provide an intuitive derivation of the QVI of Proposition 1, i.e., of the HJB equation and
the value-matching and smooth-pasting conditions.

Heuristic derivation of equations (46) and (47). Suppose that an optimal policy p∗ exists.
If the individual adopts an arbitrary control for an infinitesimal amount of time and then switches
back to the optimal control p∗, then the resulting value function cannot be better than the optimal
one. If the individual is currently inactive, there are only two possible choices of control during that
infinitesimal period: not impose any control (QVI (47)), and pay the fixed cost to begin a search
period (QVI (46)). Finally, one of the two quasi-variational inequalities must hold with equality,
since one of these two choices of control must be optimal.

Consider an inactive individual with frictionless income and deviation (y∗t , δt), who remains
inactive during the time interval [t, t+ ∆t) for some small ∆t > 0, then reverts back to the optimal
policy p∗. Her value function V (y∗t , δt) satisfies

V (y∗t , δt) ≥U (y∗t , δt) ∆t+
1− ρ2∆t

1 + ρ1∆t
Et [V (y∗t + ∆y∗, δt + ∆δ)] ,
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where ∆δ = − (1−p)ε
1+ε ∆ ln y∗. Multiplying by (1 + ρ1∆t), substracting (1− ρ2∆t)V (y∗t , δt) and di-

viding by ∆t on both sides, we obtain, letting ∆t→ 0,

(ρ1 + ρ2)V (y∗, δ) ≥U (y∗, δ) +
Et [dV (y∗, δ)]

dt
.

Using Itô’s formula and the laws of motion of y∗t and δt, we find

Et [dV (y∗t , δt)]

dt
=

(
µy +

1

2
σ2
y

)
y∗t
∂V
∂y∗

+ µδ
∂V
∂δ

+
1

2
σ2
y (y∗t )

2 ∂2V
∂ (y∗)2 +

1

2
σ2
δ

∂2V
∂δ2

+ σyσδy
∗
t

∂2V
∂y∗∂δ

.

Since the value function is homogeneous in g (c∗), we can replace V (y∗t , δt) with g (c∗t ) v (δy) in the
resulting equation and divide through by g (c∗t ) to obtain ρv (δt) ≥ Lv (δt) + u (δt).

Next suppose that the individual pays the fixed adjustment cost at time t, and hence becomes
a searcher. We have

V (y∗t , δt) ≥ Vs (y∗t , δt)− κg (c∗t ) .

Dividing both sides by g (c∗t ) and using the expression derived above for vs (δ), we thus obtain
v (δt) ≥Mv (δt).

We can similarly derive heuristically the smooth-pasting conditions.

The interpretation of the HJB equation (19) is as follows. Interpreting the entitlement to the
flow of disposable incomes and deviations as an asset, and Vs (y∗, δ) as its value, we can write:

(ρ1 + ρ2)Vi (y∗, δ) = U (y∗, δ) +
Et [dVi (y∗, δ)]

dt
.

The left hand side gives the normal return per unit time that an individual, using (ρ1 + ρ2) as the
discount rate, would require for holding this asset. The right hand side is the expected total return
per unit time from holding the asset. The first term is the immediate payout or dividend from the
asset. The second term is its expected rate of capital gain or loss. The equality is a no-arbitrage
condition, expressing the investor’s willingness to hold the asset. Using Itô’s formula, we can express
the second term in the right hand side as a function of the first and second partial derivatives of
the value function Vi and the drifts and volatilities of the income and deviation processes. We
then obtain the HJB equation (19) for vi (δ) using the homogeneity of the value function shown in
Proposition 1.

Feng and Muthuraman (2010) provide an algorithm to compute numerically the optimal indi-
vidual policy solution to (19,20,20,22), which is easily extended to this paper’s environment.

Figure 3 shows the value functions vi (δ) and vs (δ) of inactives (in blue) and searchers (in red)
along with the optimal thresholds δ, δ∗, δ̄, as well as the function vs (δ) − κ (dashed red), which
illustrates the value-matching and smooth-pasting conditions.
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Figure 3: Value functions vi (δ) , vs (δ)
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Figure 4 shows graphically the value functions v̂i (δ) , v̂s (δ) conditional on (actual) income y (left
panel) and the effects of perturbing the progressivity of the tax schedule on the optimal inaction
region and on the value of inactives v̂i (right panel). These figures show that (both inactive and
searching) individuals with higher deviation but the same income are worse off (i.e., individuals who
work more hours but earn the same income, and hence have a lower wage, reach a lower level of
utility), and that within the inaction region the value of searching is always strictly higher than the
value of inactivity. The right panel shows that as the progressivity of the tax schedule decreases,
the inaction region widens, and the distribution of individual utilities v̂i (·) adjusts endogenously
within the new bands.
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Figure 4: Value functions conditional on observed income v̄ (δ) and effects of progressivity p
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I now characterize the stationary income and deviation distributions, assuming their existence.
I derive the KFE equations (27) and show that their boundary conditions are the following. First,
the density functions f iln y∗,δ and f

s
ln y∗,δ are continuous in δ∗ and

{
δ, δ̄
}
respectively: for all u ∈ R,

f i,sln y∗,δ

(
u, δ−

)
= f i,sln y∗,δ

(
u, δ+

)
, for δ ∈

{
δ, δ∗, δ̄

}
. (49)

Second, the boundaries δ and δ̄ are absorbing for f iln y∗,δ, so that there is no mass of inactive
individuals at the edges of the inaction region: for all u ∈ R,

f iln y∗,δ (u, δ) = f iln y∗,δ
(
u, δ̄
)

= 0. (50)

Intuitively, this is because individuals who reach a boundary of their inaction region immediately
start searching and leave the inaction state. Third, the density of searchers in a given job converges
to zero as δ → ±∞: for all u ∈ R,

lim
δ→±∞

fsln y∗,δ

(
u− σy

σδ
δ, δ

)
= 0. (51)

Fourth, total flows in and out of δ, δ∗, δ̄ must balance, which yields three functional equations linking
the density functions f iln y∗,δ and fsln y∗,δ. Letting f̂x denote the function σy

σδ
fx1 + fx2 for x ∈ {i, s},

these conditions write: for all u ∈ R,

f̂ i
(
u, δ∗+

)
− f̂ i

(
u, δ∗−

)
=

2

σ2
δ

(
ρ2fln y∗0

(u) + qfsln y∗ (u)
)
, (52)

f̂ i
(
u, δ+

)
+ f̂s

(
u, δ+

)
− f̂s

(
u, δ−

)
= 0, (53)

f̂ i
(
u, δ̄−

)
+ f̂s

(
u, δ̄−

)
− f̂s

(
u, δ̄+

)
= 0. (54)

These equations equate the inflows and outflows of individuals going from one state (inaction,
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search, non-participation) into another, following a change in their wage and hence desired hours,
the reception of a new job opportunity, or a “birth”. Finally, a normalizing condition imposing that
the total mass of individuals in the population is equal to 1 completes the full characterization of
the economy’s steady-state:

ˆ ∞
−∞

ˆ ∞
−∞

[
f iln y∗,δ (u, δ) + fsln y∗,δ (u, δ)

]
dudδ = 1. (55)

Proof of Proposition 4. To derive the KFE equations (27) that must be satisfied by the station-
ary joint distributions f iln y∗,δ and fsln y∗,δ, discretize the processes (ln y∗, δ) on a two-dimensional

grid with size
(

∆h, 1−p
1+1/ε∆h

)
. In the time unit ∆t, ln y∗ moves up by ∆h = σy

√
∆t and δ moves

down by 1−p
1+1/ε∆h with probability 1

2

(
1 +

µy
σ2
y
∆h
)
. The balanced flow equations for f iln y∗,δ at point

(u, δ) ∈ R×
{

(δ, δ∗) ∪
(
δ∗, δ̄

)}
write:

f iln y∗,δ (u, δ) = (1− ρ2∆t)

{
1

2

(
1 +

µy
σ2
y

∆h

)
f iln y∗,δ

(
u−∆h, δ +

1− p
1 + 1/ε

∆h

)

+
1

2

(
1− µy

σ2
y

∆h

)
f iln y∗,δ

(
u+ ∆h, δ − 1− p

1 + 1/ε
∆h

)}
.

Taking a second-order Taylor expansion in ∆h of this equation around 0 and rearranging terms
easily yields (27). We also have f iln y∗,δ = 0 if δ /∈

(
δ, δ̄
)
. The balanced flow equations for fsln y∗,δ at

point (u, δ) ∈ R ×
{

(−∞, δ) ∪
(
δ, δ̄
)
∪
(
δ̄,∞

)}
write identically, except that the right hand side is

multiplied by the probability (1− q∆t) of exiting the search region in [t, t+ ∆t) due to the arrival
of an adjustment opporturnity.

The boundary conditions (50) to (54) can be derived as follows. The balanced-flow equation for
f iln y∗,δ at the point

(
u, δ̄
)
writes:

f iln y∗,δ
(
u, δ̄
)

= (1− ρ2∆t)

{
1

2

(
1− µy

σ2
y

∆h

)
f iln y∗,δ

(
u+ ∆h, δ̄ − 1− p

1 + 1/ε
∆h

)}
.

A first-order Taylor expansion in ∆h around 0 yields f iln y∗,δ
(
u, δ̄
)

= 0, and similarly f iln y∗,δ (u, δ) =

0. Similarly, the balanced flow condition at the boundaries ±∞ for fsln y∗,δ writes

lim
δ→±∞

fs (u, δ)|h constant = 0.

Noting that the condition “h constant” is equivalent to “ (1−p)ε
1+ε ln y∗ + δ constant”, we obtain (51).
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The balanced-flow equation for f iln y∗,δ at the point (u, δ∗) writes:

f i (u, δ∗) = (1− ρ2∆t)

{
1

2

(
1 +

µy
σ2
y

∆h

)
f i
(
u−∆h, δ∗ +

1− p
1 + 1/ε

∆h

)

+
1

2

(
1− µy

σ2
y

∆h

)
f i
(
u+ ∆h, δ∗ − 1− p

1 + 1/ε
∆h

)}

+ (1− ρ2∆t) (q∆t)

{
1

2

(
1 +

µy
σ2
y

∆h

)∑
δ∈G

f s (u−∆h, δ)

+
1

2

(
1− µy

σ2
y

∆h

)∑
δ∈G

fs (u+ ∆h, δ)

}

+ (ρ2∆t)

(
1− p

1 + 1/ε
∆h

)−1

fln y∗0
(u) ,

where G denotes the grid of δ and fln y∗0
denotes the density of frictionless log-incomes at birth.

Taking a first-order Taylor expansion in ∆h around 0 using

∑
δ∈G

fsln y∗,δ (ln y∗, δ) −−−−→
∆h→0

(
1− p

1 + 1/ε
∆h

)−1

fsln y∗ (ln y∗)

yields (52). Finally, the balanced flow condition at the boundary δ̄ for fsln y∗,δ writes:

fs
(
u, δ̄
)

= (1− ρ2∆t) (1− q∆t)

{
1

2

(
1 +

µy
σ2
y

∆h

)
fs
(
u−∆h, δ̄ +

1− p
1 + 1/ε

∆h

)

+
1

2

(
1− µy

σ2
y

∆h

)
fs
(
u+ ∆h, δ̄ − 1− p

1 + 1/ε
∆h

)}

+ (1− ρ2∆t)

{
1

2

(
1− µy

σ2
y

∆h

)
f i
(
u+ ∆h, δ̄ − 1− p

1 + 1/ε
∆h

)}
.

A first-order Taylor expansion in ∆h yields (54). Equation (53) is obtained similarly.
Note that changing variables and defining the density

gi (u, δ) =
1− p

1 + 1/ε
f iln y∗,δ

(
u− 1− p

1 + 1/ε
δ, δ

)
implies that gi satisfies the PDE

1

2
σ2
δg
i
22 + µδg

i
2 − ρ2g

i = 0 on R×
{

(δ, δ∗) ∪
(
δ∗, δ̄

)}
.

Imposing the boundary conditions above on the explicit solution to this differential equation yields,
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after tedious algebra and letting ∆ ≡ δ∗ − δ and ∆̄ ≡ δ̄ − δ∗,

f iln y∗,δ (u, δ) =
f̃
(
u+ 1+1/ε

1−p δ
)

rρ2

2,δ − r
ρ2

1,δ

{
e−r

ρ2
1,δ(δ−δ) − e−r

ρ2
2,δ(δ−δ)

e−r1,δ(ρ2)∆ − e−r2,δ(ρ2)∆
I[δ,δ∗] +

er
ρ2
1,δ(δ̄−δ) − er

ρ2
2,δ(δ̄−δ)

er
ρ2
1,δ∆̄ − er

ρ2
2,δ∆̄

I(δ∗,δ̄]

}

fsln y∗,δ (u, δ) =
f̃
(
u+ 1+1/ε

1−p δ
)

rρ2+q
2,δ − rρ2+q

1,δ

e
(
r
ρ2+q
1,δ I(−∞,δ]+r

ρ2+q
2,δ I(δ,∞)

)
(δ−δ)

e−r
ρ2+q
1,δ ∆ − e−r

ρ2+q
2,δ ∆

− e

(
r
ρ2+q
1,δ I(−∞,δ̄]+r

ρ2+q
2,δ I(δ̄,∞)

)
(δ̄−δ)

er
ρ2+q
1,δ ∆̄ − er

ρ2+q
2,δ ∆̄


where the function f̃ (·) satisfies the normalization (55) and the integral equation

f̃ (u) =

(
e−r

ρ2
1,δ∆ − e−r

ρ2
2,δ∆

)(
er
ρ2
1,δ∆̄ − er

ρ2
2,δ∆̄

)
er
ρ2
2,δ∆̄e−r

ρ2
1,δ∆ − e−r

ρ2
2,δ∆er

ρ2
1,δ∆̄

{ 2ρ2

σ2
δ
fln y∗0

(
u− 1+1/ε

1−p δ
∗
)

rρ2

1,δ − r
ρ2

2,δ

+ . . .

. . .+

2q
σ2
δ

rρ2+q
1,δ − rρ2+q

2,δ

ˆ ∞
−∞

f sln y∗,δ

(
u− 1 + 1/ε

1− p
δ∗, δ

)
dδ

}

for all u ∈ R. Now suppose q =∞. The functional equation satisfied by f̃ is simpler:

2ρ2

σyσδ

1+1/ε
1−p

rρ2

2,δ − r
ρ2

1,δ

fln y∗0
(u) =

f̃
(
u+ 1+1/ε

1−p δ
)

e−r
ρ2
2,δ∆ − e−r

ρ2
1,δ∆
−
f̃
(
u+ 1+1/ε

1−p δ̄
)

er
ρ2
2,δ∆̄ − er

ρ2
1,δ∆̄

−

rρ2

2,δe
−rρ22,δ∆ − rρ2

1,δe
−rρ21,δ∆

e−r
ρ2
2,δ∆ − e−r

ρ2
1,δ∆

−
rρ2

2,δe
r
ρ2
2,δ∆̄ − rρ2

1,δe
r
ρ2
1,δ∆̄

er
ρ2
2,δ∆̄ − er

ρ2
1,δ∆̄

 f̃

(
u+

1 + 1/ε

1− p
δ∗
)
.

Letting f̃ (u) = e
1−p

1+1/ε
r
ρ2
1,δug (u), it is easy to check that the solution g (u) to the equation converges

to a constant as u→∞. This implies that

f iln y∗ (u) =

ˆ δ̄

δ
f iln y∗,δ (u, δ) dδ ∼

u→∞
er
ρ2
1,yu,

i.e., that the stationary income distribution has a Pareto right tail with coefficient rρ2
1,y.

Equation (27) has the following interpretation. At a given point (ln y∗, δ), the density is reduced
by the agents who move away from there, and is increased by those who move there from a former
deviation δ′, following an increase (resp., decrease) in their wage if δ′ > δ (resp., δ′ < δ). These flows
occur both because of the drift µw (second and third terms of (27)) and the volatility σw (fourth to
sixth terms of (27)) of individual productivities. Moreover, the distribution loses mass at the death
rate ρ2, plus the hours adjustment rate q for the searchers. In the steady-state, these flows in and
out of (ln y∗, δ) must balance on net and are thus equal to zero. Note that these equations do not
hold at δ∗ for f iln y∗,δ, and at

{
δ, δ̄
}
for f sln y∗,δ, where the inflows from births and from endogenous

adjustments produce kinks in the densities.
The top two graphs of Figure 5 show the distribution of taxable incomes (left panel) and dis-
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posable incomes (right panel), and how they change when the tax schedule goes from the U.S. rate
of progressivity to a linear tax rate. The mean and variance of both distributions are lower when p
is higher; the tails are thinner, to a much larger extent in the case of the disposable income distri-
bution than of the pre-tax income distribution. The bottom left panel of Figure 5 shows the wage,
taxable income and disposable income distributions in log-log scale. This representation illustrates
clearly the fact that those distributions all have left and right Pareto tails, corresponding to the
asymptotic straight lines whose slopes are equal to the Pareto coefficients. The smaller the slopes
in absolute value, the more unequal the distribution: the wage (or productivity) distribution is the
most equal, the taxable income distribution is the most unequal (due to the positive labor supply
elasticity); the inequality of disposable incomes is smaller than that of taxable incomes and closer
to that of wages due to the positive rate of progressivity. Finally, the bottom right panel of Figure
5 shows the inactive individuals’ stationary distributions of deviations δ conditional on income y
for several values of y, along with the boundaries of the optimal inaction region

(
δ, δ∗, δ̄

)
.

Figure 5: Stationary income distributions
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A.2 Proofs and additional results for Sections 4 and 5

I first derive the formulas (39) and (40) characterizing the optimal taxes in the frictionless model.

Proof of equations (39) and (40). Consider a perturbation (dτ, dp) of the baseline tax system.
The first-order change in the tax liability at income y is, to a first-order in (dτ, dp) (ignoring the
term o (dτ, dp)),

T̃ (y)− T (y) =

(
y − 1− τ − dτ

1− p− dp
y1−p−dp

)
−
(
y − 1− τ

1− p
y1−p

)
=

1

1− p
y1−pdτ +

(
ln y − 1

1− p

)
1− τ
1− p

y1−pdp = ∂τ (y) dτ + ∂p (y) dp,

and the first-order change in the marginal tax rate at income y is

T̃ ′ (y)− T ′ (y) =y−pdτ + (1− τ) y−p ln ydp = ∂′τ (y) dτ + ∂′p (y) dp.

Thus, letting fy (y) denote the stationary density of incomes, we have

ˆ ∞
0

[
∂τ (y)− T ′ (y)

1− T ′ (y)

ε

1 + pε
y∂′τ (y)

]
fy (y) dy =

1

1− τ

{
1 + ε

1 + pε

1− τ
1− p

E
[
y1−p]− ε

1 + pε
E [y]

}
,

ˆ ∞
0

[
∂p (y)− T ′ (y)

1− T ′ (y)

ε

1 + pε
y∂′p (y)

]
fy (y) dy =− 1

1− p
1− τ
1− p

E
[
y1−p]− ε

1 + pε
E [y ln y]

+
1 + ε

1 + pε

1− τ
1− p

E
[
y1−p ln y

]
.

In the frictionless model, the income distribution fy (y) is double-Pareto-lognormal with param-
eters

(
rρ2

1,y, r
ρ2
2,y,my, s

2
y

)
, where my = 1+ε

1+pεmw + ε ln(1−τ)
1+pε and sy = 1+ε

1+pεsw. We can thus derive
directly formulas (39) and (40). The parameters of the economy are affected by the perturbation
in the following way:

dmy

dτ
= − 1

1− τ
ε

1 + pε
,

d

dτ

{
sy, µy, σy, r

ρ2
1,y, r

ρ2
2,y

}
= 0,

d

dp

{
my, sy, µy, σy, r

ρ2
1,y, r

ρ2
2,y

}
=

ε

1 + pε

{
−my,−sy,−µy,−σy, rρ2

1,y, r
ρ2
2,y

}
.

Thus the density of incomes satisfies, letting Φi ≡ Φ
(

ln y−my
sy

+ rρ2
i,ysy

)
for i ∈ {1, 2} with similar
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definitions of Φc
i and ϕi, and ei ≡

|rρ21,y|rρ22,y

|rρ21,y|+rρ22,y

e
1
2(rρ2i,y)

2
s2y−r

ρ2
i,ymy ,

fy (y) =

∣∣∣rρ2
1,y

∣∣∣ rρ2
2,y∣∣∣rρ2

1,y

∣∣∣+ rρ2
2,y

{
e

1
2(rρ21,y)

2
s2y−r

ρ2
1,ymyyr

ρ2
1,y−1Φ1 + e

1
2(rρ22,y)

2
s2y−r

ρ2
2,ymyyr

ρ2
2,y−1Φc

2

}
,

dfy (y)

dτ
=

1

1− τ
ε

1 + pε

∣∣∣rρ2
1,y

∣∣∣ rρ2
2,y∣∣∣rρ2

1,y

∣∣∣+ rρ2
2,y

{
e

1
2(rρ21,y)

2
s2y−r

ρ2
1,ymyyr

ρ2
1,y−1

[
rρ2

1,yΦ1 +
1

sy
ϕ1

]

+e
1
2(rρ22,y)

2
s2y−r

ρ2
2,ymyyr

ρ2
2,y−1

[
rρ2

2,yΦ
c
2 −

1

sy
ϕ2

]}
,

dfy (y)

dp
=

ε

1 + pε

∣∣∣rρ2
1,y

∣∣∣ rρ2
2,y∣∣∣rρ2

1,y

∣∣∣+ rρ2
2,y

{
e

1
2(rρ21,y)

2
s2y−r

ρ2
1,ymyyr

ρ2
1,y−1

[(
1 + rρ2

1,y ln y
)

Φ1 + ln y
ϕ1

sy

]

+e
1
2(rρ22,y)

2
s2y−r

ρ2
2,ymyyr

ρ2
2,y−1

[(
1 + rρ2

2,y ln y
)

Φc
2 − ln y

ϕc2
sy

]}
.

The first-order change in tax revenue due to a perturbation dτ in the frictionless model, dR
∗(T )
dτ , is

given by
dR∗

dτ
=
d

dτ

{ˆ ∞
0

(
y − 1− τ

1− p
y1−p

)
fy (y) dy

}
=

1

1− p

ˆ ∞
0

y1−pfy (y) dy +

ˆ ∞
0

(
y − 1− τ

1− p
y1−p

)
dfy (y)

dτ
dy

=− 1

1− τ
ε

1 + pε
E [y] +

1

1− τ
1 + ε

1 + pε

1− τ
1− p

E
[
y1−p] ,

where the last line is obtained by integrating by parts to compute the integrals of the form´∞
0 e(r

ρ2
i,y−1+α) ln y 1

sy
ϕidy with rρ2

i,y + α < 0. Similarly, the effect of a perturbation dp is given
by

dR∗

dp
=

ˆ ∞
0

(
− 1

1− p
1− τ
1− p

y1−p +
1− τ
1− p

y1−p ln y

)
fy (y) dy +

ˆ ∞
0

(
y − 1− τ

1− p
y1−p

)
dfy (y)

dp
dy

=− 1

1− p
1− τ
1− p

E
[
y1−p]− ε

1 + pε
E [y ln y] +

1 + ε

1 + pε

1− τ
1− p

E
[
y1−p ln y

]
,

again integrating by parts to compute the integrals of the form
´∞

0 e(r
ρ2
i,y−1+α) ln y ln y 1

sy
ϕidy. Note

that a different way of showing these results is to use the KFE characterization of the income
distribution to deduce that

f ,τ+dτ
y (y) =

dτ→0

(
1 +

ε

1 + pε

dτ

1− τ

)
f τy

((
1 +

ε

1 + pε

dτ

1− τ

)
y

)
+ o (dτ) ,

f ,p+dpy (y) =
dp→0

(
1 +

ε

1 + pε
dp

)
y

ε
1+pε

dp
fpy

(
y

1+ ε
1+pε

dp
)

+ o (dp) ,

which mean that the individuals with income y before the perturbation dτ (resp., dp) end up
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earning y′ =
(

1− ε
1+pε

dτ
1−τ

)
y (resp., y′ = y

1− ε
1+pε

dp) after the perturbation, so that f τ+dτ
y (y′) dy′ =

f τy (y) dy (resp., fp+dpy (y′) dy′ = fpy (y) dy). It is then straightforward (with a change of variables in
the integral) to obtain the formulas above:

dR∗

dτ
=

1

dτ

{(
1 +

ε

1 + pε

dτ

1− τ

) ˆ ∞
0

(
y − 1− τ − dτ

1− p
y1−p

)
f τ+dτ
y

((
1 +

ε

1 + pε

dτ

1− τ

)
y

)
dy −R

}
=

1

dτ

{(
− ε

1 + pε

dτ

1− τ

) ˆ ∞
0

yf τy (y) dy +

(
1 + ε

1 + pε

dτ

1− τ

) ˆ ∞
0

1− τ
1− p

y1−pf τy (y) dy

}
,

and similarly for a perturbation dp.
The first-order change in the government objective due to a perturbation dτ in the frictionless

model is given by:

dW ∗ (T )

dτ
=
d

dτ

{ˆ ∞
0
V (y) fy (y) dy

}

=
1

dτ

{ˆ ∞
0

1
1−γ

(
1+pε
1+ε

1−τ−dτ
1−p y1−p

)1−γ

ρ+ β − (1− γ)µc − 1
2 (1− γ)2 σ2

c

f τ+dτ
y (y) dy −

ˆ ∞
0
V (y) fy (y) dy

}

=
1

dτ

ˆ ∞
0

{ 1
1−γ

(
1+pε
1+ε

1−τ
1−p

{(
1− dτ

1−τ

)(
1− ε

1+pε
dτ

1−τ

)1−p
}
y1−p

)1−γ

ρ+ β − (1− γ)µc − 1
2 (1− γ)2 σ2

c

−
1

1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ+ β − (1− γ)µc − 1
2 (1− γ)2 σ2

c

}
fy (y) dy

=−
ˆ ∞

0

(
1+pε
1+ε

)−γ (
1−τ
1−py

1−p
)−γ

ρ+ β − (1− γ)µc − 1
2 (1− γ)2 σ2

c

y1−p

1− p
fy (y) dy

=− λ∗
ˆ ∞

0
ω∗ (y) ∂τ (y) fy (y) dy,
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and similarly for a perturbation dp:

dW ∗ (T )

dp
=

1

dp

{ˆ ∞
0

1
1−γ

(
1+(p+dp)ε

1+ε
1−τ

1−(p+dp)y
1−(p+dp)

)1−γ

ρ+ β − (1− γ)
(

1− 1
1−p

1+ε
1+pεdp

)
µc − 1

2 (1− γ)2
(

1− 1
1−p

1+ε
1+pεdp

)2
σ2
c

×

. . .× fp+dpy (y) dy −W ∗ (T )

}

=
1

dp

{1 +
1− γ
1− p

1 + ε

1 + pε
dp−

1
1−p

1+ε
1+pε

(
(1− γ)µc + (1− γ)2 σ2

c

)
ρ+ β − (1− γ)µc − 1

2 (1− γ)2 σ2
c

dp

× . . .
. . .×

ˆ ∞
0

1
1−γ

((
1− 1+ε

1+pε ln ydp
)

1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ+ β − (1− γ)µc − 1
2 (1− γ)2 σ2

c

fy (y) dy −W ∗ (T )

}

=− λ∗
ˆ ∞

0
ω∗ (y) ∂p (y) fy (y) dy − λ∗

ˆ ∞
0

dρ

dp
ω̂∗ (y) fy (y) dy.

We finally obtain the optimal tax schedule by imposing that

0 =
dW ∗

dτ
+ λ∗

dR∗

dτ
=
dW ∗

dp
+ λ∗

dR∗

dp
,

which proves formulas (39) and (40) in the frictionless model.

Next I first formulas (31) and (39) in the frictional model.

Proof of Propositions 5 and 6. I show that a perturbation dτ of the tax schedule has the fol-
lowing first-order effects on the density functions in the frictional model: for all u, δ,

fx,τ+dτ
ln y∗,δ (u, δ) = fx,τln y∗,δ

(
u+

ε

1 + pε

dτ

1− τ
, δ

)
i.e., fx,τ+dτ

y∗,δ (y, δ) =
dτ→0

(
1 +

ε

1 + pε

dτ

1− τ

)
fx,τy∗,δ

((
1 +

ε

1 + pε

dτ

1− τ

)
y, δ

)
, (56)

for x ∈ {i, s}. To see this, consider the functions

gx (u, δ) ≡ fx,τln y∗,δ

(
u+

ε

1 + pε

dτ

1− τ
, δ

)
.

I show that gi, gs satisfy the KFE and boundary conditions that define the functions f i,τ+dτ
ln y∗,δ and

fs,τ+dτ
ln y∗,δ , respectively, which will imply the result. First, note that µy, σy, µδ, σδ, δ, δ∗, δ̄ do not depend
on τ . We have, for all u ∈ R, all δ ∈ (δ, δ∗) ∪

(
δ∗, δ̄

)
if x = i, and all δ ∈ R \

{
δ, δ̄
}
if x = s, letting
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û ≡ u+ ε
1+pε

dτ
1−τ ,

− (β + qIf s) g (u, δ)− µyg1 (u, δ) + µδg2 (u, δ) +
1

2
σ2
yg11 (u, δ) +

1

2
σ2
δg22 (u, δ)− σyσδg12 (u, δ)

=− (β + qIf s) fx,τln y∗,δ (û, δ)− µy∂1f
x,τ
ln y∗,δ (û, δ) + µδ∂2f

x,τ
ln y∗,δ (û, δ)

+
1

2
σ2
y∂11f

x,τ
ln y∗,δ (û, δ) +

1

2
σ2
δ∂22f

x,τ
ln y∗,δ (û, δ)− σyσδ∂12f

x,τ
ln y∗,δ (û, δ) = 0,

where the last equality follows from the KFE solved by fx,τln y∗,δ, evaluated at (û, δ). Next, note that
the density of incomes at birth satisfies

f τ+dτ
ln y∗0

(u) =
1

sy
√

2π
e
− 1

2s2y

(
u− ε

1+pε
ln(1−τ−dτ)− 1+ε

1+pε
mw

)2

= f τln y∗0

(
u+

ε

1 + pε

dτ

1− τ

)
.

Thus we have

gs1
(
u, δ̄+

)
− gs1

(
u, δ̄−

)
− 1− p

1 + 1/ε

(
gs2
(
u, δ̄+

)
− gs2

(
u, δ̄−

))
−
(
gi1
(
u, δ̄−

)
− 1− p

1 + 1/ε
gi2
(
u, δ̄−

))
=∂1f

s,τ
ln y∗,δ

(
û, δ̄+

)
− ∂1f

s,τ
ln y∗,δ

(
û, δ̄−

)
− 1− p

1 + 1/ε

(
∂2f

s,τ
ln y∗,δ

(
û, δ̄+

)
− ∂2f

s,τ
ln y∗,δ

(
û, δ̄−

))
−
(
∂1f

i,τ
ln y∗,δ

(
û, δ̄−

)
− 1− p

1 + 1/ε
∂2f

i,τ
ln y∗,δ

(
û, δ̄−

))
= 0,

where the last equality follows from equation (54) satisfied by f τln y∗,δ, evaluated at (û, δ). The
corresponding equation (53) for gi, gs is shown in the same way. Similarly,

gi1
(
u, δ∗+

)
− gi1

(
u, δ∗−

)
− 1− p

1 + 1/ε

(
gi2
(
u, δ∗+

)
− gi2

(
u, δ∗−

))
− 2

σyσδ

(
βf τln y∗0 (û) + qfs,τ (û)

)
=∂1f

i,τ
ln y∗,δ

(
û, δ∗+

)
− ∂1f

i,τ
ln y∗,δ

(
û, δ∗−

)
− 1− p

1 + 1/ε

(
∂2f

i,τ
ln y∗,δ

(
û, δ∗+

)
− ∂2f

i,τ
ln y∗,δ

(
û, δ∗−

))
− 2

σyσδ

(
βf τln y∗0 (û) + qfs,τ (û)

)
= 0,

where the last equality follows from the third conservation law satisfied by f τln y∗,δ, evaluated at
(û, δ). Finally check the other boundary conditions: we have gi

(
u, δ̄
)

= f i,τln y∗,δ

(
û, δ̄
)

= 0 and
similarly gi (u, δ) = 0, where the last equalities follow from the corresponding boundary conditions
of f i. Similarly, we have, for all h ∈ R,

lim
δ→±∞

gs
(
h− 1 + 1/ε

1− p
δ, δ

)
= fsln y∗,δ

(
h+

ε

1 + pε

dτ

1− τ
− 1 + 1/ε

1− p
δ, δ

)
= 0.

Finally, we have
´∞
−∞
´∞
−∞

{
gi + gs

}
(u, δ) dudδ = 1, which completes the proof that gi = f i,τ+dτ

ln y∗,δ

and gs = fs,τ+dτ
ln y∗,δ .
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Equation (56) implies that, for x ∈ {i, s}, for all v, δ,

fx,τ+dτ
ln y,δ (v, δ) =fx,τ+dτ

ln y∗,δ (v − δ, δ) = fx,τln y∗,δ

(
v +

ε

1 + pε

dτ

1− τ
− δ, δ

)
= fx,τln y,δ

(
v +

ε

1 + pε

dτ

1− τ
, δ

)
,

and thus the following relationship between the marginal densities of income given taxes τ and
τ + dτ holds:

f τ+dτ
ln y (v) =

ˆ ∞
−∞

{
f i,τ+dτ

ln y,δ (v, δ) + fs,τ+dτ
ln y,δ (v, δ)

}
dδ

=

ˆ ∞
−∞

{
f i,τln y,δ

(
v +

ε

1 + pε

dτ

1− τ
, δ

)
+ fs,τln y,δ

(
v +

ε

1 + pε

dτ

1− τ
, δ

)}
dδ = f τln y

(
v +

ε

1 + pε

dτ

1− τ

)
.

We therefore find, with the same change of variables as in the previous proof:

dR

dτ
=
d

dτ

{ˆ ∞
−∞

(
eu − 1− τ

1− p
e(1−p)u

)
fln y (u) du

}
=

1

dτ

{ˆ ∞
−∞

(
eu − 1− τ − dτ

1− p
e(1−p)u

)
fln y

(
u+

ε

1 + pε

dτ

1− τ

)
du−R

}
=

ˆ ∞
−∞

(
− ε

1 + pε

1

1− τ
eu +

1

1− p
1 + ε

1 + pε
e(1−p)u

)
fln y (u) du

=− ε

1 + pε

1

1− τ
E [y] +

1

1− p
1 + ε

1 + pε
E
[
y1−p] .

Note that the same computations (keeping only the term eu in the integral) imply that d
dτE [y] =

− ε
1+pε

1
1−τE [y], proving equation (31). Finally,

dW

dτ
=
d

dτ

{ˆ ∞
−∞

ˆ ∞
−∞
Vi (eu, δ) f iln y∗,δ (u, δ) dudδ +

ˆ ∞
−∞

ˆ ∞
−∞
Vs (eu, δ) fsln y∗,δ (u, δ) dudδ

}
=
∑

x∈{i,s}

1

dτ

ˆ ∞
−∞

ˆ ∞
−∞

{
V∗,τ+dτ

(
e
v− ε

1+pε
dτ

1−τ
)
− V∗,τ (ev)

}
ṽx (δ) f

x,(τ)
ln y,δ (v, δ) dvdδ

=− λ
ˆ ∞

0
ω (y) ∂τ (y) fy (y) dy.

This concludes the proof of Proposition 6.

I finally prove equation (41).

Proof of Proposition 7. Suppose first that the following assumption (∗) holds:

{
δ, δ∗, δ̄

}
(p+ dp) =

(
1− 1

1− p
1 + ε

1 + pε
dp

){
δ, δ∗, δ̄

}
=
σδ (p+ dp)

σδ

{
δ, δ∗, δ̄

}
.
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Then the perturbation dp affects the densities of income as follows:

fx,p+dpln y∗,δ (u, δ) =

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
× . . .

fx,pln y∗,δ

((
1 +

ε

1 + pε
dp

)
u,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
≡ gx (u, δ) ,

(57)

for x ∈ {i, s}. To see this, I show that gi, gs satisfy the KFE and boundary conditions that define
the functions f i,p+dpln y∗,δ and fs,p+dpln y∗,δ , respectively.

For any δ, u, let δ̌ ≡
(

1− 1
1−p

1+ε
1+pεdp

)
δ, δ̂ ≡

(
1− 1

1−p
1+ε
1+pεdp

)
δ, and û =

(
1 + ε

1+pεdp
)
u. First,

we have, for all u ∈ R, all δ ∈
(
δ̌, δ̌∗

)
∪
(
δ̌∗, ˇ̄δ

)
if x = i, and all δ ∈ R \

{
δ̌, ˇ̄δ
}

if x = s,

− (β + qIfs) gx −
(

1− ε

1 + pε
dp

)
µyg

x
1 +

1− p
1 + 1

ε

(
1− 1

1− p
dp

)(
1− ε

1 + pε
dp

)
µyg

x
2

+
1

2

(
1− ε

1 + pε
dp

)2

σ2
yg
x
11 +

1

2

(
1− p
1 + 1

ε

)2(
1− 1

1− p
dp

)2(
1− ε

1 + pε
dp

)2

σ2
yg
x
22

− 1− p
1 + 1

ε

(
1− 1

1− p
dp

)(
1− ε

1 + pε
dp

)2

σ2
yg
x
12

=

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

){
− (β + qIf s) f

i,(p)
ln y∗,δ − µy

∂fpln y∗,δ
∂u

+
1− p
1 + 1

ε

µy
∂fpln y∗,δ
∂δ

. . .+
1

2
σ2
y

∂2fpln y∗,δ
∂u2

+
1

2

(
1− p
1 + 1

ε

)2

σ2
y

∂2fpln y∗,δ
∂2δ

− 1− p
1 + 1

ε

σ2
y

∂2fpln y∗,δ
∂δ∂u

}∣∣∣∣∣∣
(û,δ̂)

= 0,

where the last equality follows from the KFE solved by fpln y∗,δ, evaluated at
(
û, δ̂
)
. Thus gx satisfies

the KFE of fp+dpln y∗,δ for all δ̂ ∈ (δ, δ∗) ∪
(
δ∗, δ̄

)
if x = i and δ̂ ∈ R \

{
δ, δ̄
}
if x = s, i.e. the same

domains as those of fp+dpln y∗,δ. Next, we have, for δ ∈
{
δ̄, δ
}
,

gs1
(
u, δ+

)
− gs1

(
u, δ−

)
− 1− p

1 + 1/ε

(
1− dp

1− p

)(
gs2
(
u, δ+

)
− gs2

(
u, δ−

))
−
(
gi1
(
u, δ−

)
− 1− p

1 + 1/ε

(
1− dp

1− p

)
gi2
(
u, δ−

))
=

(
1 +

ε

1 + pε
dp

)2(
1 +

1

1− p
1 + ε

1 + pε
dp

){
∂fs,pln y∗,δ

∂u

(
û, δ̂+

)
−
∂fs,pln y∗,δ

∂u

(
û, δ̂−

)}

− 1− p
1 + 1/ε

(
1− dp

1− p

)(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)2
{
∂fs,pln y∗,δ

∂δ

(
û, δ̂+

)
−
∂fs,pln y∗,δ

∂δ

(
û, δ̂−

)}

−
(

1 +
ε

1 + pε
dp

)2(
1 +

1

1− p
1 + ε

1 + pε
dp

){
∂f i,pln y∗,δ

∂u

(
û, δ̂−

)
− 1− p

1 + 1/ε

∂f i,pln y∗,δ

∂δ

(
û, δ̂−

)}
= 0,

where the last equality follows from the corresponding conservation law satisfied by fpln y∗,δ, evaluated
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at
(
û, δ̂
)
, and, noting that

βfp+dpln y∗0
(u) + qfs,p+dpln y∗ (u) =

β(
1− ε

1+pεdp
)
sy
√

2π
e
− 1

2(1− ε
1+pε dp)

2
s2y

(
u−
(

1− ε
1+pε

dp
)
my
)2

+ q

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)ˆ δ̄(p+dp)

δ(p+dp)
fs,pln y∗,δ

(
û, δ̂
)
dδ,

we obtain

gi1
(
u, δ∗+

)
− gi1

(
u, δ∗−

)
− 1− p

1 + 1/ε

(
1− dp

1− p

)(
gi2
(
u, δ∗+

)
− gi2

(
u, δ∗−

))
−−

2
σyσδ(

1− 1
1−p

1+ε
1+pεdp

)(
1− ε

1+pεdp
)2

{
β

sy
√

2π
e
− 1

2s2y
(û−my)2

+ q

ˆ δ̄

δ
fs,pln y∗,δ (û, δ) dδ

}

=

(
1 +

ε

1 + pε
dp

)2(
1 +

1

1− p
1 + ε

1 + pε
dp

){
∂f i,pln y∗,δ

∂u

(
û, δ̂∗+

)
−
∂f i,pln y∗,δ

∂u

(
û, δ̂∗−

)}

− 1− p
1 + 1/ε

(
1 +

ε

1 + pε
dp

)2(
1 +

1

1− p
1 + ε

1 + pε
dp

){
∂f i,pln y∗,δ

∂δ

(
û, δ̂∗+

)
−
∂f i,pln y∗,δ

∂δ

(
û, δ̂∗−

)}

− 1(
1− dp

1−p

)(
1− ε

1+pεdp
)(

1− ε
1+pεdp

)2

2

σyσδ

{
β

sy
√

2π
e
− 1

2s2y
(û−my)2

+ qfs,pln y∗ (û)

}
= 0,

where the last equality follows from the corresponding conservation law satisfied by fpln y∗,δ, evaluated

at
(
û, δ̂∗

)
. The remaining boundary conditions are proved similarly, which concludes the proof.

Note that equation (57) implies

f
(p+dp)
y,δ (y, δ) = e−δf

(p+dp)
y∗,δ

(
ye−δ, δ

)
=

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp × . . .

× . . . e
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
f

(p)
y,δ

(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
.

Second, I compute the effect of a perturbation dp on government revenue:

dR

dp
=
d

dp

{ˆ ∞
0

(
y − 1− τ

1− p
y1−p

)
fpy (y) dy

}
=

ˆ ∞
0

(
ln y − 1

1− p

)
1− τ
1− p

y1−pfpy (y) dy +
1

dp

ˆ ∞
0

(
y − 1− τ

1− p
y1−p

){
fp+dpy (y)− fpy (y)

}
dy.

The first term in the right hand side is the standard mechanical effect M of the perturbation,
as in the frictionless model. I now decompose the second integral into three parts: dR

dp = M +
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1
dp (B1 +B2 +B3), where

B1 =

ˆ ∞
0

ˆ ∞
−∞

T (y)

{(
1 +

ε

1 + pε
dp

)2

y
ε

1+pε
dp
fpy,δ

(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)
− . . .

. . .− fpy,δ (y, δ)

}
dydδ

B2 =

ˆ ∞
0

ˆ ∞
−∞

T (y)

{(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp
e

[
1

1−p
1+ε
1+pε

− ε
1+pε

]
δdp × . . .

. . .× fpy,δ

(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
−
(

1 +
ε

1 + pε
dp

)2

y
ε

1+pε
dp
fpy,δ

(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)}
dydδ

B3 =

ˆ ∞
0

ˆ ∞
−∞

T (y)

{
fp+dpy,δ (y, δ)−

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp × . . .

×e
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
fpy,δ

(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)}
dydδ,

and I compute each term in turn.
[B1] : We have

B1 =

ˆ ∞
0

((
1− ε

1 + pε
ln ydp

)
y − 1− τ

1− p

(
1− ε (1− p)

1 + pε
ln ydp

)
y1−p

)
fpy (y) dy

−
ˆ ∞

0

(
y − 1− τ

1− p
y1−p

)
fpy (y) dy

=− ε

1 + pε
dp

ˆ ∞
0

(
y − (1− τ) y1−p) ln yfpy (y) dy

=− ε

1 + pε
dp

ˆ ∞
0

T ′ (y)

1− T ′ (y)
y∂′p (y) fpy (y) dy,

which is the standard behavioral effect found in frictionless models.
[B2] : We have

B2 =

ˆ ∞
0

ˆ ∞
−∞

{
T

(
y

1− ε
1+pε

dp
e
−
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
)
− T

(
y

1− ε
1+pε

dp
)}

fpy,δ (y, δ) dydδ

=−
(

1

1− p
1 + ε

1 + pε
− ε

1 + pε

)
dp

ˆ ∞
0

T ′ (y)

[ˆ ∞
−∞

δfδ|y (δ |y ) dδ

]
yfy (y) dy.

We can show that this term is related to the elasticity of income with respect to a proportional
change in the parameters Y = {µy, σy,my, sy} (which all have elasticity − ε

1+pε with respect to p),

keeping the parameters D =
{
µδ, σδ, δ, δ

∗, δ̄
}
constant, i.e., 1−Fy(y)

yfy(y)
∂ ln(1−Fy(y))

∂ lnY

∣∣∣
D

= ∂ ln y
∂ lnY .
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[B3] : We have

B3 =

ˆ ∞
0

ˆ ∞
−∞

T (y)

{
f

{
δ̃,δ̃∗,˜̄δ

}
y,δ (y, δ)− fpy,δ (y, δ)

}
dydδ

=

ˆ ∞
0

ˆ ∞
−∞

T (y)

{(
δ̃ − δ

) ∂fy,δ (y, δ)

∂δ
+
(
δ̃∗ − δ∗

) ∂fy,δ (y, δ)

∂δ∗
+
(

˜̄δ − δ̄
) ∂fy,δ (y, δ)

∂δ̄

}
dydδ

=dp

ˆ ∞
0

ˆ ∞
−∞

T (y)

{ ∑
δi∈{δ,δ∗,δ̄}

δi

(
∂ ln |δi|
∂p

−
(
− 1

1− p
1 + ε

1 + pε
dp

))
∂fy,δ (y, δ)

∂δi

}
dydδ,

where the first equality follows from the observation that the KFE and boundary conditions defining
the density fx,p+dpln y∗,δ (u, δ) is solved by the function

fx,p+dpln y∗,δ (u, δ) =

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
f
x,
{
δ̃,δ̃∗,˜̄δ

}
ln y∗,δ

(
û, δ̂
)
,

where the r.h.s. is the density given the progressivity p and the parameters{
δ̃, δ̃∗, ˜̄δ

}
≡
(

1 +
1

1− p
1 + ε

1 + pε
dp

){
δ (p+ dp) , δ∗ (p+ dp) , δ̄ (p+ dp)

}
,

which implies that

fx,p+dpy,δ (y, δ) =

(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp × . . .

. . .× e
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
f
x,
{
δ̃,δ̃∗,˜̄δ

}
y,δ

(
e

(
1+ ε

1+pε
dp
)

ln y
e

[
1

1−p
1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
and leads to the expression above after a change of variables. Gathering all the terms, we obtain

dR

dp
=

ˆ ∞
0

(
ln y − 1

1− p

)
1− τ
1− p

y1−pfy (y) dy

−
(

1

1− p
1 + ε

1 + pε
− ε

1 + pε

) ˆ ∞
0

T ′ (y) yE [δ |y ] fy (y) dy

− ε

1 + pε

ˆ ∞
0

T ′ (y)

1− T ′ (y)
y∂′p (y) fy (y) dy

+

ˆ ∞
0

T (y)

[
3∑
i=1

(
d ln |δi|
dp

− d ln |σδ|
dp

)
Ξi

]
fy (y) dy
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Third, I compute the effect of a perturbation dp on the government objective:

dW

dp
=
∑

x∈{i,s}

d

dp

{ˆ ∞
0

ˆ ∞
−∞
V∗ (y) v̄x (δ) fx,py,δ (y, δ) dydδ

}

=
d

dp


ˆ ∞

0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

v̄p (y, δ) fpy,δ (y, δ) dydδ

 .

I now decompose the integral into three parts: dW
dp = 1

dp (W1 +W2 +W3 +W4), where

W1 =

ˆ ∞
0

ˆ ∞
−∞

[ 1
1−γ

(
1+(p+dp)ε

1+ε
1−τ

1−p−dpy
1−p+dp

)1−γ

ρ1 + ρ2 − (1− γ)
(

1− 1
1−p

1+ε
1+pε

dp
)
µc − 1

2
(1− γ)2

(
1− 1

1−p
1+ε
1+pε

dp
)2

σ2
c

−
1

1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

]
v̄p (y, δ) fpy,δ (y, δ) dydδ

W2 =

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

{
v̄p
(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)
× . . .

. . .×
(

1 +
ε

1 + pε
dp

)2

y
ε

1+pε
dp
fpy,δ

(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)
− v̄p (y, δ) fpy,δ (y, δ)

}
dydδ

W3 =

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

{
v̄p
(
y

1+ ε
1+pε

dp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
× . . .

. . .×
(

1 +
ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp
e

[
1

1−p
1+ε
1+pε

− ε
1+pε

]
δdp × . . .

. . .× fpy,δ
(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)
− v̄p

(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)(
1 +

ε

1 + pε
dp

)2

y
ε

1+pε
dp
fpy,δ

(
y

1+ ε
1+pε

dp
,

(
1 +

ε

1 + pε
dp

)
δ

)}
dydδ

W4 =

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

{
v̄p+dp (y, δ) fp+dpy,δ (y, δ)− . . .

. . .− v̄p
(
y

1+ ε
1+pε

dp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)(
1 +

ε

1 + pε
dp

)(
1 +

1

1− p
1 + ε

1 + pε
dp

)
e

ε
1+pε

ln ydp × . . .

. . .× e
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
fpy,δ

(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
,

(
1 +

1

1− p
1 + ε

1 + pε
dp

)
δ

)}
dydδ

and I compute each term in turn. First, we easily find

W1 +W2 =λ

ˆ ∞
0

[
∂p (y)ω (y) +

d lnρ

dp
ω̂ (y)

]
fpy (y) dy,

which are the standard (static and dynamic) terms already present in the frictionless formula. Next,
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we have

W3 =

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

× . . .

. . .×
{
e−(1−γ)δdpv̄

(
ye
− 1

1−p δdp, δ
)
− v̄ (y, δ)

}
fpy,δ (y, δ) dydδ

=− dp

1− p

ˆ ∞
0

ˆ ∞
−∞

yδ
∂

∂y


1

1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

v̄ (y, δ)

 fpy,δ (y, δ) dydδ

=−
[

1

1− p
1 + ε

1 + pε
− ε

1 + pε

]
dp

ˆ ∞
0

{ˆ ∞
−∞

δ
∂V̄ (y, δ)

∂ ln y
fδ|y (δ |y ) dδ

}
fy (y) dy.

Finally, we have

W4 =

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

v̄p (y, δ)

{
fp+dpy,δ (y, δ)− . . .

. . .−
(

1 +
ε

1 + pε
dp

)
e

ε
1+pε

ln ydp
e

[
1

1−p
1+ε
1+pε

− ε
1+pε

]
δdp
fpy,δ

(
e

(
1+ ε

1+pε
dp
)

ln y+
[

1
1−p

1+ε
1+pε

− ε
1+pε

]
δdp
, δ

)}
dydδ

+

ˆ ∞
0

ˆ ∞
−∞

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2

(1− γ)2 σ2
c

{
v̄p+dp (y, δ)− v̄p

(
y

1+ ε
1+pε

dp
, δ
)}

fpy,δ (y, δ) dydδ

=

ˆ ∞
0

ˆ ∞
−∞
V̄p (y, δ)

∑
δi∈{δ,δ∗,δ̄}

{(
∂ ln |δi|
∂p

− d lnσδ
dp

)
∂ ln fy,δ (y, δ)

∂ ln δi
fδ|y (δ |y )

}
fy (y) dydδ

+

ˆ ∞
0

ˆ ∞
−∞
V̄p (y, δ)

{
∂ ln v̄p (y, δ)

∂p
− ε

1 + pε
ln y

∂ ln v̄p (y, δ)

∂ ln y

}
fδ|y (δ |y ) fy (y) dydδ,

where the first equality uses the fact that f iδ|y (δ |y ) = f iδ|y
(
δ̄ |y
)

= 0, and the second equality is
obtained similarly as the extensive elasticity term on government revenue above.

Figure 6 plots the extensive margin elasticities
(
d ln|δ|
dp −

d ln|σδ|
dp

)
Ξ (y) and

(
d ln δ̄
dp −

d ln|σδ|
dp

)
Ξ̄ (y)

for ε = 0.33 (left panel) and ε = 1 (right panel).

Figure 6: Extensive margin elasticities: ε = 0.33 and ε = 1
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Figure 7 plots the revenue effects of the tax reform disaggregated by income, that is,

−T ′ (y)
yε∗ (y)

1− T ′ (y)
Ψ′p (y) + T (y)

 3∑
i=1

d ln |δi||σδ|

dp
Ξi (y)

 ,
for ε = 0.33 (left panel) and ε = 1 (right panel) in the frictionless and the frictional models.

Figure 7: Revenue effects of tax reforms
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Figure 8 plots the welfare effects of increasing progressivity disaggregated by income for ε = 0.33

and ε = 1, that is, −
[
ω (y) Ψp (y) + d lnρ

dp ω̂ (y)
]

+

[∑3
i=1

d ln
|δi|
|σδ|
dp Ωi (y) + Ω̃ (y)

]
.

Figure 8: Welfare effects of tax reforms
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