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Abstract

In many countries, entry of renewable electricity producers has been supported by subsidies
and financed by a tax on electricity consumed. This article is the first to analytically derive the
dynamics of the generation mix, subsidy, and tax as renewable capacity increases. This enables
us to complement and extend previous work by providing analytical expressions for previously
obtained simulation results, and deriving additional results. The analysis yields three main
findings. First, the subsidy to renewable may never stop, as the value of the energy produced
may decrease faster than the cost as renewable capacity increases. Second, high renewable
penetration leads to a discontinuity in marginal values, after which the subsidy and tax grow
extremely rapidly. Finally, reducing the occurrence of negative prices, for example by providing
renewable producers with financial instead of physical dispatch insurance, yields significant
benefits.
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1 Introduction

In many European countries and American states, support for renewable electricity production has
been an essential energy policy initiative of the last decade. In the United States, 30 states and the
District of Columbia have renewable portfolio standards that require electricity retailers to procure a
minimum percentage of their supplies from renewable generators, while seven states have voluntary
goals. The European Union’s climate-energy package requires 20% of all the energy consumed in the
EU to come from renewable sources in 2020. The most cost-effective way of meeting this goal will be
to source much more than 20% of electricity from renewable generators. As a result of such policies,
the share of non-hydro renewables in world electric power production has grown tremendously, from
1.7% in 2000 to 9.1% in 2014.1

∗Imperial College, London. r.green@imperial.ac.uk
†Corresponding author. Toulouse School of Economics (IAE, IDEI, CRM). thomas.leautier@tse-fr.eu
1http://fs-unep-centre.org/publications/global-trends-renewable-energy-investment-2015.
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Through a variety of mechanisms, governments have subsidized the installation of renewable
production. The simplest justification for subsidizing renewables is that they contribute to reducing
carbon emissions. The correct economic argument is more subtle and relies on learning. The most
efficient approach to reduce carbon emissions is to price carbon, either through a tax or an emissions
market (see Gollier and Tirole, 2015 for a recent and comprehensive discussion of the tax vs. market
debate). However, even with a high carbon tax, the first MW of most types of renewable capacity
costs more to install than the market value of the electricity it produces. On the other hand,
installing that first MW generates a positive externality, since learning-by-doing reduces the cost of
installing the next MW. Furthermore, if equipment manufacturers anticipate that a large volume
of renewables will be installed, they invest in large facilities, which can also significantly reduce the
cost of installing future MW of renewables.

This argument justifies subsidizing at least the first MW of renewable installed capacity. It
is widely anticipated that the required subsidy will decrease over time as costs decrease and if
fuel and (particularly) carbon prices rise over time, and drop to zero when the cost of renewable
capacity is equal to the market value of the electricity produced. Therefore, policy makers in many
jurisdictions have implemented renewable support mechanisms, typically financed through a unit
tax on electricity sales. The magnitude of these subsidies is significant: the International Energy
Agency2 estimates $ 101 billion was spent on renewables subsidies in 2012, including $ 57 billion in
the European Union, and $ 21 billion in the United States, and anticipates subsidies will rise to $
220 billion by 2035. These subsidies are usually financed through a unit tax on power consumed.
For example, the renewable energy levy in Germany is around 62 €/MWh in 2015, 50% higher than
the wholesale power price.

The irruption of renewables has had a significant impact on the electricity industry, and has
generated a rich academic literature, reviewed in Section 2. Despite this wealth of analyses and the
magnitude of the sums involved, this article is the first to derive analytically the joint dynamics
of the generation mix, subsidy, tax, and resulting net surplus. Thus it complements and extends
previous work by providing analytical expressions for previously obtained simulation results, and
deriving additional results. In addition we test these results and provide empirical estimates for the
specific case of Great Britain.

This article produces analytical and policy contributions. Our analytical results fall into three
broad categories. First, we derive the marginal impact of renewables entry. We start by represent-
ing the dominant renewable support regime used in Europe, characterized by fixed-price support
mechanisms (i.e., renewables receive a pre-agreed fixed payment per MWh to cover their cost)
and physical dispatch insurance (i.e., renewables are always dispatched, unless system security is
threatened). We first derive the dynamics of equilibrium conventional capacity (Proposition 1). As
renewable capacity increases, two effects (usually) reduce conventional capacity: (i) renewable ca-
pacity replaces conventional capacity, and (ii) the renewable tax (usually) increases, hence reduces
demand. We then derive the dynamics of the marginal value of renewable capacity (Proposition 2).

2http://www.iea.org/media/files/WEO2013factsheets.pdf
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As the capacity of renewable technology j increases, the marginal value of renewable technology i
decreases proportionally to the covariance between the availabilities of technologies i and j on the
vertical segments of the supply curve.

We then examine the dynamics of renewable subsidies. For a marginal renewable unit, the
subsidy is the difference between its total cost, which is decreasing as renewable capacity increases,
and the value of the energy it produces, which is also decreasing by Proposition 2. As long as the
installed capacity of renewables is small, the cost reduction effect dominates and the subsidy to
the marginal unit decreases. However, when the renewable capacity installed is large enough the
second effect may dominate and the subsidy to the marginal unit may increase, contrary to previous
expectations. This argument is formalized in Proposition 3.

Furthermore, installing a marginal renewable energy unit reduces the value of all (infra-marginal)
energy produced by this technology, and may reduce the value of all energy produced by other
renewable technologies. For example, installing a new off-shore wind farm reduces the market value
of wind energy produced, hence increases the subsidy required by for all wind farms. Therefore,
the tax required must increase to cover the subsidy of the marginal unit as well as the change of
subsidy for all inframarginal units (Proposition 4).

Finally, we derive the marginal net surplus loss (Proposition 5). We prove it is the marginal sub-
sidy, plus the deadweight loss resulting from the marginal demand reduction, and use the previous
results to derive an analytical expression.

Second, we examine cumulative effects. If renewable entry is large enough, the baseload tech-
nology, which usually produces for every hour of the year, may stop doing so. This creates a
discontinuity in the marginal values: for example, the marginal subsidy increases much faster if
the baseload technology no longer produces. We derive this result under two polar situations: (i)
fully inflexible baseload technology, i.e., producers are willing to receive a price lower than marginal
costs for some hours to avoid shut-down and start-up costs, in which case high renewable capacity
may lead baseload technology to disappear from the long-term equilibrium (Proposition 6); and (ii)
fully flexible baseload technology (Proposition 7), in which case high renewable capacity may lead
baseload technology to stop producing, even if it remains included in the long-term equilibrium
generation mix. Ours is the first article to analytically characterize this discontinuity.

Our third analytical result is the impact of financial dispatch insurance, an alternative renewable
support scheme: renewables are always paid for their available output, but only dispatched as long
as the wholesale price is positive. We prove that, by putting a floor under power prices, it increases
the marginal value of renewable capacity and thus reduces the required subsidy and tax (Proposition
8).

Applying this analysis, we compute the impact of renewable subsidies in Great Britain, using
the model developed by Green and Vasilakos (2011), with an updated dataset. It is essential to
specify that the value of renewable generation is boosted by our inclusion of a 70 £/ton carbon price
in the model, reflecting projections which see this price rising significantly from current levels over
the lifetime of power stations now being planned. We include two renewable technologies: onshore
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and offshore wind turbines.
We first consider entry of 30 GW renewable capacity, leading to 25% of electricity being produced

from renewables, the level implied by the more ambitious UK targets for the early 2020s. The market
value of the first increment of onshore wind capacity is 200 £/kW per year, decreasing to 150 £/kW
per year for 30 GW renewable capacity, and 280 £/kW per year decreasing to 220 £/kW per year
for offshore wind capacity.3 The marginal subsidy to onshore wind remains constant around 50
£/kW per year, and decreases from 350 £/kW per year to 150 £/kW per year for offshore wind.
The cumulative subsidy is financed by a unit tax on all MWh sold, that increases to 13 £/MWh.

The inflexible baseload technology (nuclear) is driven out of the market when renewable entry
reaches 45 GW, which corresponds to 38% of electricity produced from renewables. As suggested by
Proposition 6, marginal values are discontinuous when this occurs. For example, when renewable
capacity increases from 40 GW to 50 GW, the marginal subsidy increases from 50 £/kW per year
to 150 £/kW per year for onshore wind, from 130 £/kW per year to 240 £/kW per year for offshore
wind, while the unit tax more than doubles from 17 £/MWh to 38 £/MWh, and continues to
increase to 128 £/MWh for 60 GW. The cumulative loss in net surplus increases to £ 11 billions
per year.

This result shows that the current support mechanism cannot be used to accommodate large
scale renewable entry. Thus, we propose an alternative support policy, financial dispatch insurance:
renewables producers receive a fixed payment for every MWh available, wether it is actually pro-
duced or not. This approach significantly reduces the cost of supporting renewables: for 60 GW of
renewables installed, the required tax is 25 £/MWh, and the net surplus loss £ 6.5 billions per year.

Our policy recommendations are the following. First, to compute renewable subsidies, policy
makers should compare the cost of a renewable unit to the value of the electricity it produces, and
not to the average value of electricity, and incorporate the impact of marginal renewables on the
value of the energy from infra-marginal renewables when designing policies. This is essential to
anticipate the tax that customers will have to pay.

Second, policy makers should design renewable support mechanisms that minimize the impact
of negative prices. Financial dispatch insurance is one such solution, that increases the financial
viability of baseload technologies and reduces the subsidy required for renewables. This is essential
to de-carbonize electricity production, since in many countries the baseload technology is inflexible
low CO2 emitting nuclear generation.

Finally, if renewables are to be subsidized, the renewable capacity target should be set to avoid
the convex part of the welfare loss. This would imply less than 40 GW of total wind capacity in
Great Britain, assuming the current learning rate and the other parameters used here.

This article is structured as follows: Section 2 briefly discusses renewables support policies
implemented in Europe and the United States. Section 3 presents the general model. Section 4
derives the marginal impact of renewables when they are supported through a fixed-price contract

3Market values and subsidies are rounded up to the nearest £10.
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and receive physical dispatch insurance. Section 5 applies the analysis to Great Britain. Section 6
examines different support mechanisms. Technical proofs are presented in the Appendix.

2 Renewable support policies

Hydro-electric generators have been a feature of the electricity industry since its earliest days, but
the large-scale adoption of other types of renewable generator is a relatively recent phenomenon.
It has inspired a very large literature, summarized in Edenhofer et al. (2011) and Bruckner et al.
(2014); we pick out some key themes relevant to this paper.

2.1 Justification for renewable support

Several arguments are used to justify renewable support. While the focus of this work is on the
impact of the support mechanism, not their justification, it is nevertheless worth summarizing
them. The obvious argument is that renewable energy displaces carbon emissions and reduces
the risk of severe climate change. This is in fact a second-best argument, since the effects of
carbon emissions are a negative externality that ought to be corrected directly with a carbon price
arising from a tax or a market for emissions (Gollier and Tirole, 2015). This advice may not
be politically feasible, however, since it would lead to significant increases in the price of energy,
with costs to consumer-voters. Fabra and Reguant (2014) show that the pass-through of emissions
costs in a European electricity market has been close to 100%. The risk of carbon leakage, driving
production to countries that have not imposed carbon prices is also perceived to be significant,
rightly or wrongly. In this paper, however, we assume that a carbon price is in effect and need
other justifications for separately supporting renewable energy. Cullen (2013) found that the cost
of emissions avoided by wind power in Texas was currently greater than most estimates of the cost
of carbon and other pollutants, implying that such support would be needed.

As mentioned in the introduction, the most common argument for supporting renewables in the
presence of a carbon price arises from the magnitude of the learning curve to develop the renewable
technologies (reported for example by Baker et al., 2013, Lindman and Söderholm, 2012, and van
der Zwaan et al., 2012). The first units deployed cost more than the conventional technology, but
as more renewable generators use new technologies, learning by doing and the chance of obtaining
economies of scale means that future units will cost less. Neuhoff (2008) shows that if at some future
date it will be optimal to deploy large amounts of renewable capacity, but that there are limits to
the rate at which investment can rise, a further justification for subsidy now is that this will create
a larger renewable industry, better able to expand production in future.

Proponents of industrial policy argue that supporting renewable energy can create jobs in man-
ufacturing wind turbines or solar panels. This is most likely to be a good policy where a strong
exporting industry can be established, as with the Danish wind turbine company Vestas. Making
renewable generators purely for the domestic market will create jobs in that sector, but the resulting
higher price of power risks destroying jobs in energy-using sectors, and it is unclear whether the net
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gain is positive4.
Another argument for supporting renewable energy is that increased use of domestically-generated

renewable power can reduce the amount of fuel that must be imported from abroad, with benefits
for energy security. This is true, but it is also the case that the availability of many renewable
generators depends on the weather, and this can create a security risk of its own, unless adequate
backup is available.

2.2 Renewable support approaches

There are three main approaches to supporting renewable generation. One is to require the local
grid company (or some other agency) to purchase all the output from a renewable generator at a
fixed price and to sell it on to retailers and ultimately to consumers. The cost of these purchases is
added to consumers’ bills.

The fixed price can be set administratively, or be market-based. The first situation is usually
called a Feed-in Tariff (FiT), and has been the primary support mechanism used in France for
example. A FiT gives price security to the generator, but has often created an open-ended promise
to pay this price to any generator that meets the eligibility conditions. An over-generous price can
lead developers to add a large amount of capacity in a short period of time, risking the affordability
of the scheme. A more market-based approach is to have the fixed-price arise from a competitive
outcome. For example, the UK uses Contracts for Differences for renewable generators which
will make payments that vary inversely with an appropriate wholesale price, so that the contract
payment and the wholesale price together should give a predictable income stream, equivalent to a
FiT. Renewables producers compete5 for these CfDs.

A second approach concentrates on the quantity of renewable power to be procured, rather than
its price. The US Renewable Portfolio Standards require retailers to procure output from renewable
generators but need not lay down any conditions on how this is done. In Europe, tradable green
certificate schemes require retailers to acquire certificates equal to a set proportion of their sales,
or to pay a buy-out fee. Generators are given certificates for each unit of renewable power they
produce, which they can sell to retailers; they also have to sell their power in the wholesale market
or through long-term contracts. Long-term contracts can give revenue security to the renewable
generator, but selling in the wholesale market creates a price risk.

The third approach requires the generator to sell its power in the wholesale market (or via a
contract) but tops up this revenue with additional payments. In Europe, this is typically in the
form of a fixed payment derived from electricity consumers, a premium FiT or Feed-in Premium
(FIP). In the United States, a renewable tax credit gives a rebate on corporate taxes for eachMWh

4For example, a consulting report published in 2009 found an ambiguous impact in Europe http://temis.
documentation.developpement-durable.gouv.fr/documents/Temis/0064/Temis-0064479/17802.pdf

5The Department of Energy and Climate Change published on 26 February 2015 the result of the first
auction , available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/407059/
Contracts_for_Difference_-_Auction_Results_-_Official_Statistics.pdf
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generated, and comes at the expense of taxpayers. In its renewable support guidelines6 published in
2014, the European Commission is recommending a move towards FIP, and many countries, such
as Spain and Germany, already use both FITs and FIPs.

2.3 Impact on electricity markets

Impact on average prices Over the last few years, the rapid rise in renewable capacity in Europe
has depressed market prices. Since the marginal cost of wind (or solar) generation is effectively zero,
it pushes the industry’s supply curve to the right, so that this intersects with demand at a lower
equilibrium price, a feature named the merit-order effect.

The merit-order effect is a disequilibrium phenomenon, however, because the lower prices mean
that some (or all) conventional stations will be unable to recover their full economic costs. This
may lead to retirements, or at the very least a shortage of new investment, and so the industry’s
conventional capacity should fall over time. The capacity mix should also change, with less baseload
capacity (with low variable costs but high fixed costs which are only worth incurring if the station
can run for long periods) and more peaking stations that are cheap to build, but expensive to use
(Green and Vasilakos, 2011).

The time-weighted average price of power in a long-run equilibrium should not depend on the
amount of renewable capacity, since this price will tend to the average cost of a baseload station.
The demand-weighted average price might change. If there is more renewable output, on average,
at times of high demand (for example, solar power in a system with summer-peaking demands) then
the demand-weighted price will be reduced as renewable capacity grows.

Impact on operating reserves Electricity must be generated (or taken from storage) at the ex-
act moment that it is required, but the output of many kinds of renewable generator is intermittent,
depending on the varying strength of the wind or the sun. This means that it is not possible to
retire 1 GW of conventional capacity when 1 GW of wind capacity is added to the industry’s capital
stock, since the wind stations may not generate at the time of peak demand. Furthermore, if the
wind changes over a large area of the country at once, this could lead to a significant and rapid fall
in the amount of wind generation. System Operators (SOs) cope with unpredictable unavailability
by securing operating reserves: they always run some stations part-loaded so that they can increase
output if another station fails.

It is expected that increasing the share of renewables in a market will increase the required
operating reserves. Recent engineering studies (for example, Bertsch et al., 2015) suggest that the
availability of these operating reserves should not be an issue: renewables will lead to a higher share
of mid-merit and peaking-plants, which will be able to provide the required flexibility.

However, the costs of providing these reserves is not negligible. Gowrisankaran et al. (2013)
show that the cost of intermittency for solar power in Arizona is around 12 $/MWh if the SO adjusts
its reserve levels to cope with the fluctuations (particularly short-term changes) in solar output, but

6http://europa.eu/rapid/press-release_IP-14-400_en.htm
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far higher if the SO continues with traditional levels of reserves. A well-connected country like
Denmark can manage this issue by trading power with its neighbors, although at a cost of between
4 and 8 per cent of the value of the energy produced (Green and Vasilakos, 2012).

Impact on the value of renewable generation The reason that Denmark loses money when
trading wind with its neighbors is the negative short-run correlation between wholesale electricity
prices and the amount of wind energy generated. If renewable generation is above average for
the time of day and the season, then the market price will be below average (ceteris paribus),
creating this negative correlation. The greater the renewable capacity, the stronger this effect will
be (Twomey and Neuhoff, 2010).

The pattern of average output may counteract this correlation for small amounts of renewable
capacity. For example, the average wind speed in Great Britain is higher in the winter than in the
summer, and so are average electricity prices, so that the average price received by a wind farm will
be higher than the time-weighted average wholesale price - as long as there is not too much renewable
capacity. As the level of capacity grows, however, the negative correlation brought about by short-
run variations around the seasonal average becomes more important and the wind farms’ average
revenues will fall. Joskow (2011) points out that these interactions between the time of generation
and the value of the electricity produced mean that their levelized costs of generation are a very
poor measure of the relative competitiveness of different technologies. Numerical estimates of the
size of these effects have been estimated for California by Mills and Wiser (2012) and for Germany
by Hirth (2013), among other studies.

Whether it starts above or below the time-weighted average price, the average market price
weighted by renewable output will fall as renewable capacity increases. A rich literature, reviewed
for example by Hirth (2015) has characterized this value drop of renewables as their penetration
increases. These works differ from ours in several important dimensions: (i) they rely on numerical
simulations, while we provide analytical results, (ii) most consider inelastic demand, hence minimize
generation costs, while we consider elastic demand, hence maximize net surplus and include the
impact of the renewable tax, and (iii) most do not include learning-by-doing, while we do.

3 A model of the electric power market with renewables

3.1 Demand

All customers are homogenous. Individual demand isD (p+ τ, θ), where p is the wholesale electricity
price, τ ≥ 0 is a per-unit tax levied to cover the cost of subsidizing renewable generators, and θ

is the state of the world, distributed on R+ according to cumulative densify function F (.), and
probability density function f (.) = F

′
(.). The distribution of states of the world combines two

effects. First, demand varies across the year: demand is higher during the week than during the
weekend, higher in the winter than in the summer in Europe due to electric heating, higher in the
summer than in the winter in the United States due to air conditioning. Second, demand for a given
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hour varies randomly, for example due to temperature variations.
Inverse demand P (Q, θ) is assumed to be downward sloping: ∀θ ≥ 0, ∀Q, Pq (Q, θ) < 0. This

condition is met for example if inverse demand is linear with constant slope P (Q, θ) = a (θ)− bQ,
with b > 0.

3.2 Supply

(N + I) generation technologies are available: N conventional technologies indexed by n ∈ [1, N ],
and I renewable technologies corresponding to n = 0 and indexed by i ∈ [1, I]. For n ≥ 1, cn is the
constant marginal operating cost and rn is the constant hourly marginal fixed cost of technology
n (i.e., annual marginal annuitised capital cost plus fixed annual operating and maintenance costs
expressed in £/MW/year divided by 8, 760 hours per year), both expressed in £/MWh. Without
loss of generality, conventional generation technologies are ordered by increasing operating cost:
cn > cm ∀ n ≥ m. There is a trade-off between capital and operating costs: if a technology requires
lower capital cost, it then produces at higher operating cost, i.e., rn < rm ∀ n ≥ m. In general,
not all available technologies are present at the long-term equilibrium. To simplify the exposition,
n = 1 (resp. n = N) denotes the first (resp. the last) conventional technology before renewables
are introduced.

For conventional technologies n ≥ 1, kn is the installed capacity of technology n, and Kn =∑n
m=1 km is the cumulative installed conventional capacity up to technology n.
In practice, the base load technology 1 has often very high startup costs, which reduces its

startup and shutdown flexibility. For example, nuclear units are extremely costly to start up after
shutting down, hence their operators attempt to run them permanently. A full representation of
these startup costs requires complex modeling. Green and Vasilakos (2011) propose a simplifying
approach: inflexibility is represented by a minimum production level m1k1. This article follows
the same approach. The base case is no baseload flexibility, i.e., m1 = 1. This reflects the past
situation in the UK, when it was difficult to operate gas-cooled reactors at less than full capacity. On
the other hand, pressurized water reactors, as used in France (and the likely candidates for future
UK stations) can be ramped down to relatively low levels of output. The cost of doing so is an
incomplete fuel “burn”, reducing the total output available from a given set of fuel rods. We have no
data on the size of this effect, which would tend to reduce the marginal cost of generation and raise
the fixed cost by an offsetting amount. We choose to model the case of full flexibility, i.e., m1 = 0,
with no change in costs, even though we are aware that this over-estimates the actual situation.
Since reality is somewhere between the two extremes we consider, we are therefore confident that
our results are robust.

3.3 Renewable generators

We consider I renewable technologies, for example onshore wind, offshore wind, and photovoltaic
panels. For i = 1, ..., I, denote by Ki

0 the installed capacity of renewable technology i, K0 ∈ RI

the vector of installed renewable capacities Ki
0, ri0

(
Ki

0

)
the marginal capital cost of renewable
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technology i, Ri0
(
Ki

0

)
=
´Ki

0
0 ri0 (x) dx the cumulative capital cost of renewable capacity Ki

0, and
R0 (K0) =

∑I
i=1R

i
0

(
Ki

0

)
the aggregate cumulative capital cost of renewable capacities K0.

For all renewable technologies, variable operating cost is negligible, i.e., ci0 = 0. Learning by
doing and economies of scale imply that ri0 (.) is decreasing in Ki

0: installing an additional offshore
wind turbine reduces the cost of the next offshore wind turbine. We assume that there are no
cross-technology externalities from learning or economies of scale: installing an additional onshore
wind turbine does not significantly reduce the cost of the next offshore wind turbine. Thus,

R0 (K0) =
I∑
i=1

ˆ Ki
0

0
ri0 (x) dx⇔ ∂R0

∂Ki
0

= ri0
(
Ki

0

)
.

This assumption can be relaxed in further work, should empirical evidence prove it does not hold.
Renewable technology is often intermittent (e.g., wind and solar). Availability of renewable

technology i in state θ is αi (θ) ∈ [0, 1], hence available production from renewable technology i in
state θ is αi (θ)Ki

0. This could reflect two dimensions of intermittency. First, renewables can be
predictably unavailable, for example, the sun does not shine at night, or the wind is forecast to be
low. The impact on the residual demand, i.e., demand net of renewable production, varies with
the type of renewables available and the shape of the demand curve. For example, in California
or Arizona, demand is highest when the sun shines and Air Conditioning is on, which precisely
coincides with the highest production from solar panels (Gowrisankaran et al., 2013). This is not
the case in northern Europe, where most (installed) renewables are wind turbines, which produce
more in winter than in summer (with higher average wind speeds then) but generate very little on
the cold, calm days which often see the very highest demands (Oswald et al., 2008 ).

This implies that adding 1 MW of renewable capacity does not lead to a E
[
αi (θ)

]
MW reduc-

tion in conventional generation capacity (let alone a 1 MW reduction). This substitution effect is
captured in equations (5) below.

Second, renewables may be unpredictably unavailable to an extent which requires the SO to
procure additional flexibility. This aspect is not included in the model, given that doing so would
add significant complexity and that the long-term cost of providing this may be small, as discussed
in Section 2.3.

3.4 Wholesale market structure and equilibrium

We suppose the market is centralized, i.e., an SO receives bids from all producers and consumers,
selects the optimal dispatch (defined later), and declares a unique market price. This constitutes an
adequate description of US markets. European markets are decentralized, hence buyers and sellers
transact either in power exchanges or bilaterally, then communicate their negotiated transactions to
the SO, who takes any actions needed to ensure a feasible and secure dispatch. Since we focus this
analysis on the distortions caused by renewables support policy, we assume competition is perfect,
hence both approaches are equivalent. We also abstract from transmission constraints.
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Thus, in every state of the world, the SO assigns the dispatch rate un (θ) ∈ [0, 1] to each
technology n ≥ 0. Production from technology n ≥ 1 is un (θ) kn, and production from renewable
technology i is ui0 (θ)αi (θ)Ki

0. If technology 1 inflexible, u1 (θ) = 1 . Up until Section 6, renewable
technologies receive physical dispatch insurance. They have dispatch priority, i.e., ui0 (θ) = 1. This
is the case in most jurisdictions, where the SO can cut renewables off only when the operational
security of the system is threatened, a situation we do not model. Section 6 discusses an alternative
approach, that allows the SO to cut renewables off when price drops down to zero, while still paying
for the energy they would have produced.

The supply curve is a "staircase" (Figure 1): on the horizontal portions, the wholesale price
is the marginal cost of the marginal technology producing; on the vertical portions, the marginal
technology produces at capacity, and the wholesale price is set by the intersection of the demand
curve and the vertical supply curve, minus the tax.

Figure 1 about here

The long-run equilibrium wholesale price in state θ when K0 has already been installed is
p (K0, θ). Recalling that c0 = 0 and using the convention cN+1 → +∞, the steps of the staircase are
formally defined for 0 ≤ n ≤ N by vn = {θ : cn < p (K0, θ) < cn+1} and hn = {θ : p (K0, θ) = cn}.
The sets vn and hn are functions of K0. To simplify the notation, the reference is omitted.

While technology 1 earns a negative operational margin when p (K0, θ) < c1, it still produces
since it cannot reduce its output. As we will see below, invested capacity in technology 1 is de-
termined to precisely balance the positive and negative margins. When baseload generation is
inflexible, h1 = Ø since price is never set at c1. Similarly, when renewables receive physical dispatch
insurance, h0 = Ø since price is never set at 0.

On hn for n ≥ 2 technology n produces at the margin, and

Kn−1 + un (θ) kn +

I∑
i=1

αi (θ)Ki
0 = D (cn + τ, θ) .

On vn, technology n ≥ 1 produces at capacity and technology (n+ 1) does not produce, price is
determined by the intersection of the vertical supply curve and the demand curve:

Kn +

I∑
i=1

αi (θ)Ki
0 = D (p (K0, θ) + τ, θ)⇔ p (K0, θ) = P

(
Kn +

I∑
i=1

αi (θ)Ki
0, θ

)
− τ.

Finally, in a competitive equilibrium, investors in non-renewable generators invest until their
marginal profit is equal to zero, which yields

E [(p (K0, θ)− cn)un (θ)] = rn, for n ≥ 1. (1)

In the long-term equilibrium, the conventional generation mix optimally adapts to renewable
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technology installed capacities K0.

3.5 Renewable support policy

The market value of energy produced by renewable technology i is E
[
αi (θ) p (K0, θ)

]
. In many cases,

it is less than the generator’s cost, and it would not be viable without some kind of state support.
The simplest method, used in many markets, is for policy makers to commit to purchase power
generated by renewables at a pre-agreed rate, which insulates them from the wholesale market and
its price risk. We assume that this rate can be exactly adjusted as capacity is added and renewable
costs fall, so that the fixed price f i

(
Ki

0

)
for the marginal investor is the minimum required amount

to precisely cover the marginal capital cost:

f i
(
Ki

0

)
E
[
αi (θ)

]
= ri0

(
Ki

0

)
.

This approach constitutes a first-best benchmark. For example, the SOs (or a government
agency) runs a series of calls for tenders until cumulative capacity is K0, and competition among
developers is perfect, hence the price is driven down to the cost. When FITs are used, policy makers
find it hard to control capacity increments. If the FIT is set to cover ri0 (0), a very large number of
producers will wish to enter, since by construction ri0

(
Ki

0

)
< ri0 (0). This creates rents for renewable

investors who can add capacity before the FIT is reduced, which reduce net surplus, since the taxes
to pay for them create a Dead Weight Loss. We therefore estimate a lower bound of the net surplus
loss from subsidizing renewables.

For installed renewable capacity Ki
0, the cumulated expected revenues from the fixed price

contracts cover exactly the cumulative capital cost

ˆ Ki
0

0
f j (x)E

[
αi (θ)

]
dx = Ri0

(
Ki

0

)
.

The subsidy required by a marginal unit of technology i when K0 has been installed, denoted
ϕi (K0), is the difference, when positive, between the marginal cost and the marginal value:

ϕi (K0) = max
(
ri0
(
Ki

0

)
− E

[
αi (θ) p (K0, θ)

]
, 0
)
. (2)

For technology i, the cumulative subsidy up to Ki
0, denoted Φi (K0), is the difference between the

fixed payments to producers and the revenues from sale of renewable energy:

Φi (K0) = Ri0
(
Ki

0

)
− E

[
αi (θ) p (K0, θ)

]
Ki

0.

This relation can be aggregated over all renewable technologies. The cumulative subsidy up to K0

is the difference between the fixed payments to producers and the revenues from sale of renewable
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energy:

Φ (K0) = R0 (K0)−
I∑
i=1

E
[
αi (θ) p (K0, θ)

]
Ki

0. (3)

This subsidy is financed through a unit tax on the retail power price of τ paid by all users. Denoting
the expected demand by D̄ (K0) = E [D (p (K0, θ) + τ (K0) , θ)], the unit tax is determined by

τ (K0)E [D (p (K0, θ) + τ (K0) , θ)] = Φ (K0) . (4)

In practice, the realized availability rate and demand may be higher or lower than expected, and the
tax may adjust for the previous year’s out-turn. We abstract from this issue, as we ignore potential
risk aversion.

Even with a carbon tax, the first MW of renewable production must be subsidized: ϕi (0) > 0

for all i. However, it is widely believed that ri0 (.) is decreasing sufficiently rapidly that ϕi (.) is
decreasing, and there exists K̄0 > 0 such that ϕi

(
K̄0

)
= 0, hence subsidies will no longer be

required for all Ki
0 ≥ K̄i

0. Expression (2) illustrates that this common wisdom may not stand up
to rigorous economic analysis. There may exist a K̄0 > 0 such that ϕi

(
K̄0

)
= 0. However, as Ki

0

increases, p (K0, θ) decreases (as will be proven below), and so ϕi (K0) may become negative again.
This article precisely explores this dynamic.

In the remainder of this article, we assume that costs are such that all technologies must be
subsidized, i.e., ϕi (K0) > 0. This simplifies the notation without altering the economic insights. It
is verified empirically on the examples we consider.

We present a static model: policy makers set a target renewable capacity K0, and perfectly
adjust the subsidy to cover the marginal investment cost ri0 (x) for all x ≤ Ki

0. Thus, we ignore the
temporal dimension: all periods are collapsed into one. Extending the model to different periods
would simply make the notation more complex, and lead to the same economic intuition.

4 Marginal impact of renewables

This Section derives the marginal impact of renewable capacity on conventional capacities, subsidies,
taxes, and welfare. The analysis follows the standard peak load pricing model (see for example
Boiteux, 1949). For the reader’s convenience, the derivations are presented in Appendix A.

The main difference with the standard model is that a tax on the electricity price is levied to
finance the subsidy. The tax covers only the cost of the renewable production. The cost of grid
enhancements required to accommodate renewables are included in the grid rate, hence not covered
by this analysis.

The economic optimum would be for the SO to set the retail price (which determines consump-
tion) equal to the marginal cost of power. The wholesale price would then be the retail price minus
the tax, lower than the short-term marginal cost cn when technology n is marginal. This is unreal-
istic. Producers are unwilling to participate in a market that guarantees price lower than cn when
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they are marginal. Therefore we include a producers’ participation constraint. Denote un (θ) ∈ [0, 1]

the utilization factor of technology n. For n > 1, the participation constraint for producer n is

(p (K0, θ)− cn)un (θ) ≥ 0.

Inflexible technology 1 is slightly different, for it faces significant startup costs. To avoid shutting
down, producer 1 is willing to accept a price lower than c1 for a few hours. Therefore, the partici-
pation constraint for producer 1 is that average profit is equal to zero, as will later be discussed.

Two mutually exclusive situations are possible: positive investment in the baseload technology
occurs at the long-term equilibrium, or renewables entry is so large that no baseload technology
is present at the long-term equilibrium. The economic intuition is identical, but the details of the
analysis are slightly different for each case. For ease of exposition, we examine each in turn. Finally,
we extend the results to flexible baseload.

4.1 Baseload technology present at the long-term equilibrium

Throughout this subsection, renewable capacity is assumed to be small enough that baseload tech-
nology is present at the equilibrium. We first establish the following:

Lemma 1. The expected price on the vertical segments of the supply curve does not vary with
installed renewable capacity. Specifically, for all i ≥ 1

E
[
∂p (K0, θ)

∂Ki
0

|p (K0, θ) < c2

]
= 0,

and for all n ≥ 2,

E
[
∂p (K0, θ)

∂Ki
0

|vn
]

= 0.

The time weighted average price is constant:

∂

∂Ki
0

E [p (K0, θ)] = 0.

Proof. The results are standard in the peak load pricing literature. At the long-run equilibrium, the
expected price on the vertical segments of the supply curve is set to yield profits equal to the capital
cost of the marginal technology, and hence does not depend on the renewable capacity. Similarly,
since the baseload technology cannot be turned off, it produces all the time. At the long-run
equilibrium, the time-weighted average price is equal to the long-run marginal cost of the baseload
technology, hence does not depend on the renewable capacity. For the reader’s convenience, formal
proofs are presented in Appendix B.1.
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4.1.1 Marginal impact on conventional capacity

Proposition 1. Installed conventional capacity changes as renewable capacity increases for two
reasons: demand changes through the change in unit tax, and renewable capacity substitutes for
conventional capacity. Specifically,

∂K1

∂Ki
0

=

∂τ
∂Ki

0
− E

[
Pqα

i (θ) |p (K0, θ) < c2

]
E [Pq |p (K0, θ) < c2 ]

,

and for n ≥ 2,
∂Kn

∂Ki
0

=

∂τ
∂Ki

0
− E

[
Pqα

i (θ) |vn
]

E [Pq |vn ]
. (5)

Proof. For n ≥ 2, E
[
∂p
∂Ki

0
|vn
]

= 0 yields

E

Pq
Kn +

I∑
j=1

αj (θ)Kj
0 , θ

× (∂Kn

∂Ki
0

+ αi (θ)

)
− ∂τ

∂Ki
0

 |vn
 = 0.

Rearranging yields equations (5). The same argument applies for n = 1 on the vertical {θ : p (K0, θ) < c2}.

Intuition for equation (5) is easier to obtain when assuming inverse demand is linear with
constant slope, P (Q, θ) = a (θ)− bQ, in which case it simplifies to

∂Kn

∂Ki
0

= −1

b

∂τ

∂Ki
0

− E
[
αi (θ) |vn

]
for n ≥ 2, and

∂K1

∂Ki
0

= −1

b

∂τ

∂Ki
0

− E
[
αi (θ) |p (K0, θ) < c2

]
.

The change in Kn is the sum of two effects. First, the tax usually increases, hence demand de-
creases, and so does Kn. Second, technology n is replaced by the renewable technology. Cumulative
capacity is determined by the expected margin when the technologies produce at capacity. If αi (θ)

is constant on vn, increasing K0 by 1 reduces Kn by αi. If αi (θ) is not constant, increasing K0 by
1 reduces Kn by the expectation of αi (θ), conditional on Kn being at capacity.

If demand is not linear with constant slope, these substitution effects are weighted by the slope
of the demand function.

If renewable capacity is very large, we may reach a point where Kn (K0) = 0. This is examined
in Section 4.2.

Finally, Proposition 1 enables us to determine the impact of renewable capacity on expected
demand D̄ (K0):
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Corollary 1. The marginal impact of Ki
0 on expected demand D̄ (K0) is

∂D̄

∂Ki
0

= − 1

B

∂τ

∂Ki
0

+ Γi, (6)

where
1

B
= −

N∑
n=2

(
E
[
∂D (cn + τ, θ)

∂p
|hn
]
× Pr (hn) +

Pr (vn)

E [Pq |vn ]

)
− Pr (p < c2)

E [Pq |p < c2 ]
,

and

Γi =
N∑
n=2

(
E
[
αi (θ) |vn

]
−

E
[
αi (θ)Pq |vn

]
E [Pq |vn ]

)
Pr (vn)

+

(
E
[
αi (θ) |p < c2

]
−

E
[
αi (θ)Pq |p < c2

]
E [Pq |p < c2 ]

)
Pr (p < c2) .

Proof. The proof is presented in Appendix B.2.

Suppose again inverse demand is linear with constant slope P (Q, θ) = a (θ)− bQ. Then, B = b,
Γi = 0, and equation (6) simplifies to

∂D̄

∂Ki
0

= −1

b

∂τ

∂Ki
0

.

An increase in Ki
0 leads to a change in tax. If demand is linear with constant slope, this leads to

a proportional change in expected demand. As will be shown later, under reasonable assumptions,
∂τ
∂Ki

0
≥ 0: the tax increases to finance an increase in renewable target capacity. The tax effect is

thus negative: as renewable capacity increases, so does the tax, and demand decreases.

4.1.2 Marginal impact on the value of renewable capacity

We now determine the impact of the level of renewable capacity on its marginal value:

Proposition 2. The marginal impact of Ki
0 on the marginal value of renewable technology j is

∂

∂Ki
0

E
[
αj (θ) p (θ,K0)

]
= E

[
αj (θ)

∂p

∂Ki
0

]
= −Γj

∂τ

∂Ki
0

− Eij , (7)

where

Eij =
N∑
n=2

(
E
[
Pqα

i |vn
]
E
[
Pqα

j |vn
]

E [Pq |vn ]
− E

[
Pqα

i, αj |vn
])

Pr (vn)

+

(
E
[
Pqα

i |p < c2
]
E
[
Pqα

j |p < c2
]

E [Pq |p < c2 ]
− E

[
Pqα

i, αj |p < c2
])

Pr (p < c2) .

Proof. The proof is presented in Appendix B.3.
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If demand is linear with constant slope,

Eij = b

(
N∑
n=2

cov
[
αi, αj |vn

]
Pr (vn) + cov

[
αi, αj |p < c2

]
Pr (p < c2)

)
= bĉovK0

[
αi (θ) , αj (θ)

]
,

hence equation (7) simplifies to

E
[
αj (θ)

∂p

∂Ki
0

]
= −bĉovK0

[
αi (θ) , αj (θ)

]
. (8)

An increase inKi
0 has two impacts on the amount of capacity producing on vn: it increases renew-

able output by αi (θ) in state θ, and it reduces cumulative conventional capacity by E
[
αi (θ) |vn

]
.

Multiplying by αj (θ) and taking the expectation yields the covariance. The result follows since
inverse demand is linear with constant slope. The subscript K0 is added since vn depends on K0.

If demand is not linear with constant slope, additional terms corresponding to the variation of
the slope are added to equations (6) and (7).

4.1.3 Subsidy for the marginal unit

Proposition 2 leads to the following:

Proposition 3. If demand is linear with constant slope, the subsidy required by a marginal unit
of technology i may increase as renewable capacity i increases, and increases as renewable capacity
j increases if and only if availabilities on the vertical segments of the supply curve are positively
correlated .

Proof. The subsidy to the marginal unit is

ϕi (K0) = ri0
(
Ki

0

)
− E

[
αi (θ) p (K0, θ)

]
,

hence
∂ϕi (K0)

∂Ki
0

=
d

dKi
0

ri0
(
Ki

0

)
+ bv̂arK0

[
αi (θ)

]
.

The first term is negative since marginal cost is decreasing, while the second is positive. This proves
the first point. Then,

∂ϕi (K0)

∂Kj
0

= bĉovK0

[
αj (θ) , αi (θ)

]
proves the second point.

The first point of Proposition 3 illustrates the race between falling costs and falling prices. For
low capacity, significant learning effects are present, hence falling costs probably outweigh falling
prices. As capacity increases, costs fall much more slowly, and maybe not sufficiently to compensate
the price decrease. The subsidy will then increase.
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The second point of Proposition 3 illustrates the complementarity and substitutability of tech-
nologies: if the outputs from two technologies are positively correlated, increasing the capacity of
one increases the supply and hence reduces the price available to the other one, and so increases
the required subsidy.

4.1.4 Marginal impact on tax

Differentiation of equation (4) with respect to Ki
0 yields

∂τ

∂Ki
0

D̄ (K0) + τ
∂D̄

∂Ki
0

= ri0
(
Ki

0

)
− E

[
αi (θ) p (K0, θ)

]
−

I∑
j=1

E
[
αj (θ)

∂p

∂Ki
0

]
Kj

0

⇔
∂τ

∂Ki
0

D̄ (K0) = ϕi
(
Ki

0

)
− τ ∂D̄

∂Ki
0

−
I∑
j=1

E
[
αj (θ)

∂p

∂Ki
0

]
Kj

0 . (9)

To finance incremental renewable capacity, the gross tax receipts ∂τ
∂Ki

0
D̄ (K0) must change to

cover the subsidy to the marginal unit ϕi
(
Ki

0

)
and the reduction in tax receipts, due to the demand

reduction τ ∂D̄
∂Ki

0
. If increasing renewable capacity i decreases the value of all inframarginal units, a

third cost is added: the reduction in market value of all inframarginal renewables benefitting from
the feed-in tariff.

While the decreasing market value of renewables has been observed in practice and discussed in
the literature, we believe the link to the subsidy dynamics is original to this work. When granting
a fixed price contract, policy makers commit the customers to a fixed payment to a renewable
producer, hence their net liability is this payment minus the market value of this renewable capacity.
As more fixed price contracts are granted, the market value of renewable energy (usually) decreases,
and the liability (usually) increases.

Using previous results, we now establish the following:

Proposition 4. The marginal change in tax is

∂τ

∂Ki
0

=
B
(
ϕi (K0) +

∑I
j=1E

ijKj
0 + τ (K0) Γi

)
BD̄ (K0)− τ (K0) +B

∑I
j=1 ΓjKj

0

. (10)

Proof. Inserting equations (6) and (7) into expression (9) yields

∂τ

∂Ki
0

D̄ − τ

B
+

I∑
j=1

ΓjKj
0

− Γiτ + E
[
p (K0, θ)α

i (θ)
]
−

I∑
j=1

EijKj
0 = ri0

(
Ki

0

)
which leads to equation (10).
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If demand is linear with constant slope, equation (10) yields

D̄ (K0)
∂τ

∂Ki
0

=
1

1− τ(K0)
bD̄(K0)

ϕi (K0) + b

I∑
j=1

ĉovK0

[
αi (θ) , αj (θ)

]
Kj

0

 ,

which illustrates the marginal impact of Ki
0 on tax. First, the tax must increase to cover the

marginal subsidy ϕi (K0). Second, the tax must change to cover the changes in the value of all
other renewable capacity. Finally, this change is magnified by the factor 1

1− τ(K0)

bD̄(K0)

> 1 to account

for the deadweight loss from taxes.

4.1.5 Marginal impact on net surplus

We now compute the change in net surplus caused by a marginal increase in renewable capacity.
Since this analysis focusses on net surplus, and not overall welfare, it ignores distributional issues.
Significant rents are being created and destroyed by the rapid and large increase of renewable
capacity in Europe. Renewable generators and equipment manufacturers share rents when the
prices paid for their output exceed the true cost of production. Conventional generators have lost
a significant amount of money when the expansion of renewable capacity has depressed wholesale
market prices and forced them to close existing capacity before the end of its technical lifetime. In a
few cases, of course, the same person or company may own both conventional and renewable assets.
These effects (and the externalities created for those who live near wind farms) are very important
for the political economy of renewable energy, but are not the primary focus of this analysis.

Proposition 5. The marginal net hourly surplus, including investment cost, is

∂H

∂Ki
0

= −

ϕi (K0) + τ (K0) Γi +
τ (K0)

(
ϕi (K0) +

∑I
j=1E

ijKj
0 + τ (K0) Γi

)
BD̄ (K0)− τ (K0) +B

∑I
j=1 ΓjKj

0

 . (11)

Proof. The full proof is presented in Appendix B.4. The envelope theorem (and a bit of algebra)
yields

dH

∂Ki
0

= −ϕi (K0) + τ
∂D̄

∂Ki
0

.

A marginal increase in renewable capacity reduces the surplus by the subsidy ϕi (K0), and, since
the subsidy leads to a tax increase, by a deadweight loss

(
τ ∂D̄
∂Ki

0
< 0
)
. Then, inserting equations

(6) and (10) leads to equation (11).

4.2 Conventional technologies disappearing at the long-term equilibrium

As indicated by Proposition 1, conventional capacity is likely to decrease as renewable capacity
increases. How are the previous results modified when technology n is no longer present at the
long-term equilibrium?
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Proposition 6. If technology n ≥ 2 is no longer present at the long-term equilibrium, the above
results still hold, with the convention that vn = hn = Ø. Marginal value is continuously differentiable
everywhere (i.e., ∂

∂Ki
0
E
[
αj (θ) p (θ,K0)

]
is continuous for K0 such that Kn (K0) = 0).

If technology n = 1 is no longer present at the equilibrium, an additional term is included in all
expressions. For example, the general expression for the marginal impact of renewables on expected
price is

∂

∂Ki
0

E [p (K0, θ)] = E
[(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

]
I{K1=0},

where I{x≥0} is the indicator function that takes the value 1 if x ≥ 0, and 0 otherwise. The general
expression for the slope of the marginal value of renewable capacity is

E
[
aj (θ)

∂p

∂Ki
0

]
= Γj

∂τ

∂Ki
0

−Eij+

(
E
[
Pqα

j (θ) |p < c2
]

E [Pq |p < c2 ]
E
[(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

])
I{K1=0}.

(12)

Proof. The proof is presented in Appendix C.1.

The first result confirms the intuition that there is nothing unique about the technologies in-
cluded in the dispatch. In other words, more (or fewer) technologies can be included, without
modifying the expressions. Continuity of the derivatives when one technology disappear arises
because the supply curve is continuous.

A baseload technology that always run at full capacity is different. When K1 > 0, the decrease
in K1 mitigates the supply effect of increasing Ki

0. When K1 = 0, this mitigating effect disappears,
and the price decrease on v1 is larger by a factor

(
−E

[
Pqα

i (θ) |v1

]
+ ∂τ

∂Ki
0

)
.

The marginal value is no longer continuous at the boundary K1 = 0. Since it decreases faster
for K1 = 0, the subsidy for the marginal unit, the unit tax, and the marginal welfare loss increase
faster. This is verified empirically by the simulation for Great Britain presented in Section 5.

4.3 Flexible baseload technology

One could conclude from the previous analysis that the simplicity of the expressions previously ob-
tained is mostly attributable to the assumption that the baseload technology is completely inflexible.
This is not accurate, as shown below:

Proposition 7. Suppose the baseload technology is flexible. The average price is no longer constant:

∂

∂Ki
0

E [p (K0, θ)] = E

Pq
 I∑
j=1

αj (θ)Kj
0 , θ

αi (θ)− ∂τ

∂Ki
0

 I{p(K0,θ)<c1}

 .
The slope of the value of renewable technology j is:

E
[
aj (θ)

∂p

∂Ki
0

]
= Γj

∂τ

∂Ki
0

−Eij+
E
[
αj (θ)Pq |p (K0, θ) < c1

]
E [Pq |p (K0, θ) < c1 ]

E
[
αj (θ)

(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c1}

]
.

(13)
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Proof. The proof is presented in Appendix C.2.

When the baseload technology is inflexible, average price is constant, equal to the long-run
marginal cost of this baseload technology. When the baseload technology is flexible, it stops pro-
ducing if p < c1. On this set, increasing renewable capacity (usually) reduces price. Hence, average
price (usually) decreases as renewable capacity increases. The same effect explains why the marginal
value of renewable technology j decreases faster when p < c1.

The flexible baseload technology is equivalent to the other technologies, hence, once the new
definition of the supply curve is used, the expression of ∂K1

∂Ki
0
is formally identical to any ∂Kn

∂Ki
0
.

Expressions in Propositions 6 and 7 share the same structure. If nuclear is inflexible, Proposition
6 shows that average price decreases with Ki

0 when the baseload technology is no longer included
in the long-term equilibrium. If demand is linear with constant slope b, the average price’s slope is

∂

∂Ki
0

E [p (K0, θ)] = −E
[(
bαi (θ) +

∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

]
.

If nuclear is flexible, the average price starts to decrease when p < c1. When this occur, the
slope (for linear demand) is

∂

∂Ki
0

E [p (K0, θ)] = −E
[(
bαi +

∂τ

∂Ki
0

)
I{p(K0,θ)<c1}

]
.

In both cases, the baseload technology is no longer present on the first vertical segment of the
supply curve (p < c2 when baseload has disappeared, p < c1 when baseload is flexible), hence the
average price is longer held at (c1 + r1).

A similar argument explains the evolution of marginal values of renewables. When baseload
technology is no longer present in the long-term equilibrium (and demand linear with constant
slope),

E
[
aj (θ)

∂p

∂Ki
0

]
= −Eij − E

[
Pqα

j (θ) |p < c2
]
E
[(
bαi (θ) +

∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

]
,

while when baseload technology is flexible,

E
[
aj (θ)

∂p

∂Ki
0

]
= −Eij − E

[
Pqα

j (θ) |p < c1
]
E
[(
bαi (θ) +

∂τ

∂Ki
0

)
I{p(K0,θ)<c1}

]
.

Since c1 < c2, average price and marginal value of renewable start to decrease for lower renewable
penetration when nuclear technology is flexible than when it is not. However, when inflexible nuclear
is no longer present at the equilibrium, average price and marginal value of renewable decreases
faster. Inflexible nuclear generates negative operating margins as renewable penetration increases,
hence we expect it to decrease rapidly. Thus, the sets {θ : p (K0, θ) < c2} and {θ : p (K0, θ) < c1}
should rapidly be close, and converge when inflexible nuclear is absent of the long-term equilibrium.
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Thus, we expect baseload flexibility does not have a significant impact on the marginal value of
renewables, hence on the subsidies and tax. This result is confirmed by the numerical simulations
conducted for the UK presented in Section 5.

5 Application to the case of Great Britain

To illustrate these effects in practice, we present a simulation of the electricity industry in Great
Britain, calibrated for the 2020s.

5.1 Data

Wind data The values of α (θ) are clearly vital for the numerical results that we will obtain; we
are fortunate to have some excellent data for wind output patterns. Staffell and Green (2014) use
wind speed estimates from NASA′s MERRA data set to simulate the hourly output of every wind
farm in Great Britain. We use 18 years of their data and match it to the actual hourly demands
over the same period. This gives us 157,680 observations from which to calculate the relationship
between the level of demand and the load factors of onshore and offshore wind stations, the two
renewable technologies that we consider.

The MERRA dataset estimates the wind speed at several heights above ground at a grid of
points covering the entire globe, using computer modeling to match observations from satellites and
weather stations. The Virtual Wind Turbine model (Staffell and Green, 2014) interpolates between
these points to the location of any chosen wind farm, and extrapolates the wind speed to the height
of its turbines. The manufacturer’s power curve for the type of turbine used at the farm (where
known) gives the relationship between the estimated wind speed and the station’s output. The
hourly output for a given wind farm is estimated with a degree of error, but the monthly output
for a farm, or the hourly output for a fleet of turbines spread across Great Britain, is remarkably
close to actual values. We have estimated the load factors for fleets of onshore and offshore stations
equivalent to those in the "Gone Green" scenario published by National Grid, the System Operator
for Great Britain.

We assume that these load factors do not change as more capacity is added, even though it
would be natural to expect the best sites to be developed first (an effect which might be offset by
technical progress and the gradual move to larger turbines on taller masts, which capture more of
the wind). In the Figures below, many of our results are plotted against the total amount of wind
capacity installed. Our minimum capacity is 4 GW, made up of 3 GW onshore and 1 GW offshore
(the situation in 2009). By 2014, 8 GW of onshore wind and 4 GW of offshore capacity had been
installed. As capacity grows beyond this point, we assume that more will be added offshore than
onshore, so that 30 GW would consist of 14 GW onshore and 16 GW offshore. The highest level that
we consider is 60 GW, made up of 20 GW onshore and 40 GW offshore, a “round numbers” variant
of the Medium case for the level of deployment in 2030, as reported by a study commissioned by
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the Department of Energy and Climate Change.7 This is enough to generate 52% of the industry’s
total output.

Demand data We matched these estimated hourly load factors to 18 years of actual demand
data. Because electricity demand has grown significantly over this period, each year’s observations
were scaled to a common level of underlying demand, 350 TWh a year. This was done by multiplying
every hourly observation by the ratio of the year’s weather-corrected demand (published by National
Grid) to the underlying level. In other words, if the weather-corrected demand in 1995 was 280

TWh, every observation for that year was multiplied by 1.25 when creating our scaled demand.
If 1995 had in fact been a cold year with more above-average demands than usual, this would be
preserved in our dataset and the modeled demand would exceed 350 TWh. The demand is scaled to
give an annual total of 350 TWh, with a peak of around 60 GW and a minimum of 25 GW . Demand
is assumed to be linear, with constant slope b = 100 £/MWh per GW change in consumption.

To make our modeling calculations more tractable than using all 157, 680 observations, we
grouped our data points into bins of equal width. Each hour was allocated to one of 20 bins for
demand, 10 for the onshore load factor and 10 for the offshore load factor. This gave 2, 000 possible
states of the world, each represented by the average demand and load factors for the hours within
that set of bins. In practice, the probability of many of these states was zero - it would be an
extraordinary weather pattern that gave a load factor of less than 10 per cent for onshore wind
farms and one of more than 90 per cent for offshore farms at the same time, for example. The
model therefore used the 1268 combinations of bins that actually arose over the period as our states
of the world, with probabilities based on their relative frequencies.

Wind turbine costs The marginal cost of wind turbines is derived from a learning curve model.
Currently, around 10 GW of wind turbines are installed in Great Britain. Their marginal cost is 210
£/kW per year for onshore, and 455 £/kW per year for offshore. Assuming exponential learning,
the marginal cost of wind turbines is

ri0
(
Ki

0

)
= ri0

(
K̄i

0

)
×

(
K̄i

0

Ki
0

)β

where β is a measure of the learning rate, and K̄i
0 the current renewable capacity. Learning is

typically measured by the reduction in costs achieved for a doubling of production. The IEA’s Blue
Map scenario (quoted in the DECC study mentioned above) observes that a doubling of onshore
wind turbine capacity leads to a 7% reduction in cost. This leads to

r0 (2K0)

r0 (K0)
=

(
1

2

)β
= 0.93⇔ β = − ln (0.93)

ln (2)
= 0.104.

7https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/66176/Renewables_
Obligation_consultation_-_review_of_generation_costs_and_deployment_potential.pdf
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For offshore wind, the same study proposes an estimate of a 12% reduction in costs with each
doubling of UK capacity, which gives β = 0.184. These estimates of the learning rate are in line
with the literature (for example by Baker et al., 2013, Lindman and Söderholm, 2012, and van der
Zwaan et al., 2012).

Conventional generation technologies We consider three investment options apart from wind
power: nuclear power, combined cycle gas turbines (CCGTs) and open cycle gas turbines (OCGTs)
for peaking use.

We assume carbon is priced at £70/tonne, the level that the government’s Carbon Price Support
is due to reach in 2030. In looking for a long-run equilibrium, we disregard existing capacity,
observing that the UK’s remaining coal and oil stations will be uneconomic with such a carbon
price. The cost estimates are taken a report on generation costs prepared by the Department of
Energy and Climate Change 8. Inflexible nuclear stations have a fixed cost of £575/kW/year

and a variable cost of £8/MWh. We also model flexible nuclear technology, with the same costs,
as discussed above. CCGT stations have a fixed cost of £106/kW/year and a variable cost of
£73/MWh, while the peaking OCGT stations have a fixed cost of £50/kW/year and a variable
cost of £109/MWh. It should be noted that these costs are based on the value of fuel and carbon
prices over the station’s lifetime, according to DECC’s central scenario, rather than predictions for
a particular year in the 2020s. This lifetime perspective is the appropriate one when considering
investment decisions, but the resulting electricity prices are greater than those likely to be seen in
the near future.

Given these costs, nuclear stations are the most effective option if they can operate for at least
8,000 hours a year. OCGT stations are the cheapest way of meeting demands that last for less
than 1,700 hours a year. With no wind stations, the optimal mix of thermal capacity contains 30
GW of nuclear stations, 21 GW of CCGTs and 8 GW of OCGT peaking plant. The time-weighted
electricity price is equal to 81 £/MWh, while the demand-weighted price is 87 £/MWh.

5.2 Closing the model for any vector of renewables capacities

As previously discussed, the expressions simplify significantly if inverse demand is linear with con-
stant slope P (Q, θ) = a (θ)− bQ. Equation (6) leads to

∂D̄

∂Ki
0

= −1

b

∂τ

∂Ki
0

⇔ D̄ (K0)− D̄ (0) = −1

b
τ (K0)

since τ (0) = 0.
8https://www.gov.uk/government/publications/decc-electricity-generation-costs-2013
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Combining equations (3) and (4) then yields

τ (K0)

(
D̄ (0)− 1

b
τ (K0)

)
= R0 (K0)−

I∑
j=1

E
[
αj (θ) p (K0, θ)

]
Kj

0 .

Since p (K0, θ) also depends on τ (K0) on the vertical segments of the supply curve, the above
equation is a fixed point problem, which is solved iteratively using the following simple algorithm,
equivalent to one described by Borenstein (2005). For a given tax rate, we first set the cumulative
capacity of all N generators. Profits are monotonically decreasing in capacity, and so if the peaking
generators are making an economic profit, the industry’s capacity must be increased. Once the
profits of OCGT stations are zero, we adjust the cumulative capacity of generators 1 to (N − 1)

(in this case, nuclear and CCGT stations) until the profits of type (N − 1) are zero. We continue
in the same way until all generators are making zero profits. We then check how much revenue the
tax is raising, and if this is less than the cost of the renewable subsidy, we increase the tax rate and
re-optimize the capacity levels. In practice, the model can be solved quickly in an excel spreadsheet
using V BA macros.

As indicated above, exactly closing the model requires a robust and detailed long-term model of
a power market. Alternatively, a simple linear approximation is available, presented in Appendix
D.

5.3 Results

5.3.1 Ambitious renewable penetration

As renewable penetration increases, the capacity mix changes, as illustrated on Figure 2. With
30 GW of wind capacity, corresponding to 25% of electricity being produced from renewables, the
level implied by the more ambitious UK targets for the early 2020s, the capacity of nuclear stations
would decrease to around 13 GW. The capacity of CCGT stations would increase to 29 GW, while
that of OCGT plant would increase to 10 GW.

Figure 2 about here

The reduction in inflexible nuclear capacity is a direct consequence of Proposition 1: renewable
producing at zero marginal costs replace existing technologies. Nuclear capacity has to fall if the
industry is not to suffer from many periods of negative prices, which would make those stations
(forced to generate at those times) unprofitable.

On the other hand, gas-fired capacity increases, which may seem counter-intuitive. Equation
(5) provides an explanation: the difference between the marginal reduction in nuclear capacity K1

and the marginal reduction in cumulative conventional capacity K3 is the difference between the
expected amounts of renewable output on the vertical segment of the supply curve v1, corresponding
to prices lower than 73 £/MWh, and segment v3, corresponding to prices higher than 109 £/MWh.
The results suggest that the former is larger than the later i.e., that the wind is stronger when the
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price is low than when it is high, or equivalently the wind is stronger when residual demand (i.e.,
total demand less renewable production) is low than when it is high.

When little renewable capacity has been installed, residual demand is very close to actual de-
mand. Nuclear capacity K1 and cumulative conventional capacity K3 decrease at about the same
rate, consistent with a small correlation between wind availability and electricity demand. As re-
newable capacity increases, residual demand differs from actual demand, and decreases significantly
with wind availability. Then, nuclear capacity K1 decreases at a faster rate than cumulative con-
ventional capacity K3. The split between CCGT and OCGT capacity can be similarly explained.

Would this result still hold if renewable was strongly positively correlated to electricity demand,
for example when solar panels are added into a market where air conditioning represents a significant
share of the load? In that case, solar panels would initially substitute for gas fired plants, as
both technologies would produce mostly on-peak. When significant solar panel capacity has been
installed, the residual demand effect would become significant, and solar panels would also compete
with baseload technologies. Quantifying this effect in an important avenue for further work.

The substitution of natural gas for nuclear production raises the question of the evolution of CO2

emissions. It is important to note that we are modeling a carbon price which is high enough to give
a relatively low-carbon electricity system, even with very low levels of renewable output - we obtain
emissions of 38 million tonnes of CO2 with 4 GW of wind capacity, compared to actual emissions of
147.9 million tonnes CO2 equivalent in 2013.9 Adding renewable capacity to this low-carbon system
has the counter-intuitive effect of increasing emissions at first, because they displace more nuclear
output than they generate themselves. At the first point where nuclear stations are fully crowded
out of the market, with 45 GW of renewable capacity, emissions have risen to 76 million tonnes of
CO2. Beyond this point, however, the wind output is entirely crowding out gas-fired generation,
and with our maximum deployment of 60 GW, emissions have fallen back to 60 million tonnes of
CO2. If the additional gas-fired stations were fitted with carbon capture and storage (CCS), their
emissions would be far lower; it is also worth pointing out that the 30 GW of nuclear capacity
assumed in the absence of wind generation is well above the levels currently being discussed for the
UK. With less nuclear capacity on the system, renewable generators would be crowding out gas- or
coal-fired stations and cutting emissions.

The time-weighted wholesale price remains at 81 £/MWh, but the demand-weighted price falls
slightly, to 85 £/MWh (Figure 3). What is driving these changes? In states of the world with high
levels of available wind, the electricity price will be reduced if K0 is large. However, as shown in
Lemma 1, capacity adjusts until the time-weighted price covers the average cost of a nuclear station
running continuously on base load. The states in which less wind is available must therefore see
higher prices in order to maintain this average. If there was no relationship between wind speeds
and demand, the demand-weighted price would be unaffected by the level of wind capacity in long-

9https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/407432/20150203_2013_
Final_Emissions_statistics.pdf
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run equilibrium, like the time-weighted price. In Great Britain, however, wind speeds are higher,
on average, in the winter months than in the summer, and this is also the pattern of electricity
demand. In other words, the states of the world with high levels of wind availability and hence in
which prices will fall if wind capacity is built tend to be those in which demand is high. Since this
means that wind generation tends to reduce prices during high-demand hours, the demand-weighted
price will fall as wind capacity is added, even when the time-weighted price is constant.

Figure 3 about here

The market value of the first increment of onshore wind capacity is 200 £/kW per year, decreasing
to 150 £/kW per year for 30 GW renewable capacity (Figure 4), and 280 £/kW per year decreasing
to 220 £/kW per year for offshore wind capacity (Figure 5). Comparing Figures 3, 4 and 5, note
that the marginal value of renewable capacity becomes negative at a point when its average value
(as measured by its output-weighted wholesale price) is still positive.

Figure 4 and 5 about here

This decrease is almost linear, as predicted by Proposition 2. The average slope is b times the
average variance-covariance matrix of the availabilities on the vertical segments of the supply curve:[

1.6 1.5

1.5 3.2

]
.

Thus, a 1 GW increase in onshore wind capacity decreases the marginal value of onshore wind by
1.6 £/kW per year, and the marginal value of offshore wind by 1.5 £/kW per year, while a similar
increase in offshore wind capacity decreases the marginal value of offshore wind by 3.2 £/kW per
year, and the marginal value of onshore wind by 1.5 £/kW per year.

Given the structure of our learning curve, the cost of the first kW of renewable capacity, hence
the subsidy, is infinite. We therefore start computing the marginal subsidy from the 2009 values: 3
GW onshore and 1 GW offshore. Over this interval, the marginal subsidy to onshore wind remains
constant around 50 £/kW per year (Figure 6): the cost reduction from learning is not sufficient to
compensate the reduction in value of the energy produced. For offshore, wind the subsidy decreases
from 350 £/kW per year to 150 £/kW per year (Figure 7), suggesting that the gains from learning
outweigh the loss of value of the energy produced.

The cumulative subsidy is financed by a unit tax on all MWh sold, that increases to 13 £/MWh
(Figure 8).

Figures 6, 7 and 8 about here

The marginal surplus loss is almost exactly equal to the opposite of the subsidy over the interval.
For example, for 30 GW of renewables, 1 MW of offshore wind reduces net surplus by 103,000 £
per year. The cumulative loss in net surplus is £ 3.4 billions per year (Figure 9).

Figure 9 about here
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5.3.2 Disappearing nuclear technology

If the wind capacity reaches 45 GW, the inflexible nuclear technology is pushed out of the market.
This result is not just theoretical, since 45 GW of wind capacity implies that it produces 38% of
electricity, well within the reasonable range for renewable deployment.

As suggested by Proposition 6, marginal values are discontinuous when nuclear disappears. For
example, the value of wind-turbines, that decreased slowly as long as nuclear was present, decreases
abruptly when nuclear disappears: when renewable capacity increases from 40 GW and 50 GW, the
marginal value decreases from 150 £/kW per year to 50 £/kW per year for onshore wind (Figure
4), and from 210 £/kW per year to 180 £/kW per year for offshore wind (Figure 5).

Over the same interval, the marginal subsidy increases from 50 £/kW per year to 150 £/kW
per year for onshore wind (Figure 6), and from 130 £/kW per year to 240 £/kW per year for
offshore wind (Figure 7), while the unit tax more than doubles from 17 £/MWh to 38 £/MWh, and
continues to increase to 128 £/MWh for 60 GW (Figure 8). The marginal surplus loss increases
slightly faster than the marginal subsidy, as the deadweight loss associated with demand reduction
starts to matter. For example, if renewable installed capacity is 60 GW, the marginal surplus loss
is 710 £/kW per year, while the marginal subsidy is 680 £/kW per year. The cumulative loss in net
surplus increases to £ 11 billions per year (Figure 9).

This result matters for two reasons. First, it shows that the current renewable support mecha-
nism cannot be used to support for large scale entry, as it would lead average electricity prices to
become negative, which is clearly not realistic. Thus, renewable support policies must evolve, as
discussed in Section 6.

Second, the previous illustrates that nuclear and wind, which are essential components of a
low CO2 emitting electricity production fleet, do not coexist well. Significant wind turbines entry
produces periods of low residual demand, hence low prices, which reduces long-term equilibrium
installed nuclear capacity. This effect is particularly strong for Great Britain, where renewable
will almost exclusively be wind, raising the question of the feasibility (and the cost) of Britain’s
decarbonization objectives.

One could object that nuclear in Great Britain will not disappear, since new plants are covered
by Contracts for Difference, which guarantee a fixed price. The analysis presented here suggests the
liability generated by these contracts will increase as renewable capacity increases, and will increase
significantly after 40 GW of renewable has been installed.

Finally, this result shows that the dynamics of renewables entry are non linear.

5.3.3 Flexible nuclear technology

We now consider the other polar case: fully flexible nuclear technology. First, for a high renewable
penetration, flexible baseload capacity is much larger at equilibrium: for example if renewable
capacity is 40 GW, flexible baseload is 13 GW, while it is only 4 GW if nuclear is inflexible (Figure
10).
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Figure 10 about here

Second, baseload flexibility has a small effect on the (time-weighted) average price, the marginal
value of renewables (Figures 4 and 5), hence on the required subsidies (Figures 6 and 7) and tax
(Figure 8), at least as long as renewable capacity is not too great. This result may appear surprising,
as one would expect that flexible baseload would lead to fewer instances of negative prices, hence
higher average prices and marginal value of renewables. However, it was predicted by Propositions
6 and 7 - the capacity mix adjusts so that all kinds of station receive zero profits. As long as there
are nuclear stations in the mix, their output-weighted price has to equal their average cost.

Third, once renewable capacity exceeds 35 GW, however, there are many hours in which nuclear
output is completely crowded out of the market by renewables and prices are negative. The time-
weighted price can fall below the average cost of nuclear stations and does so, as expected from
Proposition 7.

In summary, nuclear flexibility has a significant impact on the long-term compatibility of nuclear
with renewables, but does not significantly reduce the required tax. To achieve that goal, changes
to the support mechanism are required, which are discussed next.

6 Alternative support mechanisms

The previous Sections have examined the most commonly used renewable support mechanism: a
fixed-price contract coupled with physical dispatch insurance. In this Section, we analyze two
possible modifications: a Feed-in Premium (FiP) to replace the fixed-price contract, and a financial
dispatch insurance to replace the physical dispatch insurance.

6.1 Feed-in Premium

Faced with strongly increasing cost of renewables support, policy makers are exploring various alter-
native mechanisms. One specific proposal is to replace fixed-price contracts by a Feed-in Premium
(FiP)‡: each MWh produced by renewable producers receives the market price plus a fixed premium.

While a FiP is intuitively appealing, it raises a series of issues. First, investors have objected
that, since renewable producers will be exposed to market prices, their risk level, hence their cost
of capital, will increase.

Second, a FiP does not completely resolve the issue of negative prices. Renewable producers
bid up to minus their FiP in the wholesale market, hence negative prices will still occur, (usually)
bounded by the FiP granted.

Finally, the analysis conducted in the previous Sections highlights the complexity of computing a
fair FiP. To simplify the discussion, suppose FiPs are subject to tenders. Learning-by-doing implies
that costs, hence the required FiP, are reduced as renewable capacity increases. The previous
analysis has shown that the marginal value of a technology is a function of the cumulative renewable
capacity installed. Thus, to compute their fair FiP, market participants need to know the aggregate
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renewable capacity that will be installed. This requires policy makers to issue a credible target, and
to hold on to it, which has proven challenging at best in many jurisdictions.

Even if the target is known and credible, another challenge arises from the shape of the supply
curve. Renewable producers receiving a FiP are willing to produce up to a price equal to minus
their FiP. Thus, the effective supply curve has a upward sloping portion on its left, corresponding
to the values of the FiP (Figure 11). When demand intersects with this portion of the supply
curve, a renewable producer’s profit will be determined by the FiP of the more efficient renewable
producers. Thus, to compute their fair FiP, market participants need to compute the fair FiP of
all more efficient renewable producers. This appears quite a challenging process, hence is likely to
result in producers requesting a very high FiP.

Figure 11 about here

A complete analysis of FiP is left for further work. At this stage, it is fair to say that, for reasons
highlighted above, the net gains from replacing fixed-price contracts with FiP are probably lower
than expected.

6.2 Financial dispatch insurance

Concept As was previously discussed, the physical dispatch insurance granted to renewables leads
to more frequent occurrences of negative prices, which cannot be welfare improving. Negative prices
are particularly damaging for inflexible nuclear power producers, and almost drive them out of the
market. Since nuclear plants generate electricity without emitting CO2, this is not consistent with
the goal of decarbonizing electricity generation. Thus, SOs and policy makers have incentives to
reduce the occurrence of negative prices.

One possible reform is to replace the physical dispatch insurance by a financial one: renewable
producers receive payment f i (K0) per MWh available, whether it is actually produced or not.
In that case, the SO values renewable energy at its true marginal cost, and starts reducing the
renewable dispatch rate when the price falls to zero. Perfectly implementing this policy requires (i)

the SO be able to determine precisely the available production from each renewable facility, even if
it is not actually producing, and, (ii) the producers be able to shut down their facilities remotely.
These conditions appear more likely to be met for large wind farms than for individual solar panels.

Financial dispatch insurance does not modify expected revenues for renewables producers, nor
does it expose them to additional risk. Hence it does not increase their cost of capital, and can
be substituted to physical dispatch insurance for existing renewable assets. The main drawback
of financial insurance of course is that producers are paid not to produce, hence it may not be
politically acceptable. Still, we conduct the analysis to get a sense for the impact of eliminating (or
at least greatly reducing) the occurrence of negative prices.

Analysis The shape of the supply curve is unchanged for p (K0, θ) > 0. When p (K0, θ) = 0, the
SO reduces renewable production to meet demand at a retail price of τ . Negative prices occur if
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and only if there exists states of the world for which demand at price τ is lower than the capacity
of inflexible baseload production. This should produce two changes. First, since negative prices are
less frequent, the market value of renewable energy increases, which reduces the required subsidy.
Second, for the same reason, equilibrium inflexible baseload capacity also increases. Cumulative
capacities for technologies 2 and above are not impacted.

Our analytical model enables us to confirm analytically this intuition. The analysis presented in
Sections 3 and 4 applies with the new supply curve (Figure 12). To shorten the notation, introduce
u2 = {θ : 0 < p (K0, θ) < c2}.

Figure 12 about here

We then have:

Proposition 8. If financial dispatch insurance is implemented, the marginal impact on baseload
technology is
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Proof. The derivations are presented in Appendix E. Intuition is as follows. There could be instances
when baseload capacity exceeds demand at price 0, in which case p (K1, θ) < 0. If this never occurs,
µ = 0, and ∂K1
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0
takes the familiar form:
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Capacities Kn for n ≥ 2 depend only on prices higher than cn, hence are unchanged by the in-
troduction of financial dispatch insurance. Then if µ = 0, E
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Additional terms are included if µ > 0.

To better understand the impact of financial dispatch insurance, consider the case of linear
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demand with constant slope. Then,
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Excluding the effect of taxes, ∂K1
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is proportional to E
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under physical dispatch

insurance, and to E
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under financial dispatch insurance. If availability of renew-

able technology i and prices are negatively correlated, at least when prices are very low, ceteris
paribus, the former is larger than the latter, hence financial insurance leads to a slower decrease in
baseload capacity.

We should also expect that the marginal value of renewables is decreasing more slowly under
financial insurance. The difference in slopes is proportional to the difference
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There is a priori no reason why the conditional covariance would differ markedly on the different
verticals, however, ceteris paribus, Pr (p < c2) > Pr (0 < p < c2), hence marginal values should
decrease faster under physical insurance, in particular when negative prices arise.

Application to the case of Great Britain The numerical analysis confirms the predictions of
Proposition 8. The financial dispatch insurance alleviates the negative impact of renewables on the
value of nuclear generation: while nuclear capacity is reduced, it remains present in the long-term
equilibrium until more than 50 GW of renewables have entered (Figure 13).

Figure 13 about here

Financial insurance, by almost eliminating the occurrence of negative prices, also significantly
improves the economics of renewables: their marginal value decreases, but at a much lower rate. For
60 GW of renewables installed, the marginal value of onshore wind is 140 £/kW per year (Figure
4), 200 £/kW per year for offshore wind (Figure 5), the marginal subsidy is 50 £/kW per year for
onshore wind (Figure 6), and 110 £/kW per year for offshore wind (Figure 7), while the required
tax is 25 £/MWh (Figure 8), and the net surplus loss £ 6.5 billions per year (Figure 9).

Again, this result has significant policy implications. Given the magnitude of the gains generated,
policy makers should design and implement support mechanisms that reduce the impact of negative
prices, such as financial dispatch insurance.
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7 Conclusion

In many countries, entry of renewable electricity producers has been supported by subsidies and fi-
nanced by a tax on electricity consumed. This article is the first to analytically derive the dynamics
of the long-term equilibrium generation mix, subsidy, and tax as renewable capacity increases. This
enables us to complement and extend previous work by providing analytical expressions for previ-
ously obtained simulation results, and deriving additional results. The analysis yields three main
findings. First, the subsidy to renewable may never stop, as the value of the energy produced may
decrease faster than the cost as renewable capacity increases. Second, high renewable penetration
leads to a discontinuity in marginal values, after which the subsidy and tax grow extremely rapidly.
Finally, reducing the occurrence of negative prices, for example by providing renewable producers
with a financial instead of physical dispatch insurance, yields significant benefits.

This article can be expended in several directions. First, we will derive the dynamics of Feed-
in Premia. As indicated earlier, preliminary analysis suggests that their impact on net surplus is
ambiguous, yet there are pursued in many jurisdictions. It is therefore essential to analyze them
formally.

Second, we will apply our results to other markets, where renewables are differently correlated
to load and prices, for example states in the Southwest of the United States or the South of Europe,
where air conditioning demand is strongly correlated to solar panels availability. A striking result
from this analysis is the substitutability of nuclear power and wind production, which renders the
“decarbonization challenge” harder to meet. It is therefore essential to test this result in other
markets, so as to better guide public policies.
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A Optimal production, prices, and investment

Taking into account the constraint un (θ) = 1 and the unit tax τ , the SO dispatch program is

max
p(θ),{un(θ)}n≥2

E
[
S (p (θ) + τ, θ)−

∑N
n=1 cnun (θ) kn

]
st : D (p (θ) + τ, θ) ≤

∑N
n=1 un (θ) kn +

∑I
j=1 α

j (θ)Kj
0 λ (θ)

.

The Lagrangian is

L = E

S (p (θ) + τ, θ)−
N∑
n=1

cnun (θ) kn + λ (θ)

 N∑
n=1

un (θ) kn +

I∑
j=1

αj (θ)Kj
0 −D (p (θ) + τ, θ)

 .
The first-order condition for price is

∂L
∂p (θ)

= (p (θ) + τ − λ (θ))
∂D (p (θ) + τ, θ)

∂p
= 0⇔ p (θ) + τ = λ (θ) :

price paid by consumers is equal to the opportunity cost of power. For n ≥ 2, the first-order
derivative with respect to dispatch rate is

∂L
∂un

= (λ (θ)− cn) kn.

The opportunity cost of power on the horizontal portions of the supply curve is equal to the marginal
cost of production. This yields the dispatch

un ≥ 0⇔ λ (θ)− cn ≥ 0⇔ p (θ) ≥ cn − τ

which violates the producers’ participation constraint. The tax creates a wedge between retail and
wholesale prices. To account for the constraint p (θ) ≥ cn when producer n is dispatched, the SO
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adds the unit tax τ to the opportunity cost of power. The Lagrangian becomes

L = E

S (p (θ) + τ, θ)−
N∑
n=1

(cn + τ)un (θ) kn + λ (θ)

 N∑
n=1

un (θ) kn +

I∑
j=1

αj (θ)Kj
0 −D (p (θ) + τ, θ)

 .
The first-order condition with respect to price is unchanged. For n ≥ 2, the first-order derivative
with respect to dispatch rate is

∂L
∂un

= (λ (θ)− (cn + τ)) kn = (p (θ)− cn) kn,

which is consistent with the producers’ participation constraint.
When technology n ≥ 2 is marginal, the wholesale price is p (θ) = cn and un (θ) > 0 is determined

to balance supply and demand:

Kn−1 + un (θ) kn +

I∑
j=1

αj (θ)Kj
0 = D (cn + τ, θ) .

When technology n ≥ 1 produces at capacity and technology (n+ 1) does not produce, the wholesale
price is determined by the intersection of the vertical supply curve and the demand curve:

Kn +

I∑
j=1

αj (θ)Kj
0 = D (p (K0, θ) + τ, θ)⇔ p (K0, θ) = P

Kn +

I∑
j=1

αj (θ)Kj
0 , θ

− τ.
This includes states of the world for which the price is lower than c1.

B Marginal impact of renewables

B.1 Proof of Lemma 1: impact on prices

For n ≥ 2, equations (1) can be rewritten as:

E
[
(p (K0, θ)− cn) I{p(K0,θ)≥cn}

]
= rn.

For n = N , differentiation yields

∂

∂Ki
0

E
[
(p (K0, θ)− cN ) I{p(K0,θ)≥cN}

]
= E

[
∂p

∂Ki
0

I{p(K0,θ)≥cN}

]
= 0

since by construction the integrand is equal to zero at the lower bound: p (K0, θ) = cN .
For 1 < n < N , subtractions yields

E
[
(p (K0, θ)− cn) I{p(K0,θ)≥cn}

]
− E

[
(p (K0, θ)− cn+1) I{p(K0,θ)≥cn+1}

]
= rn − rn+1.
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Differentiating with respect to Ki
0 yields:

E
[
∂p

∂Ki
0

I{p(K0,θ)≥cn}

]
− E

[
∂p

∂Ki
0

I{p(K0,θ)≥cn+1}

]
= E

[
∂p

∂Ki
0

I{cn≤p(K0,θ)<cn+1}

]
= E

[
∂p

∂Ki
0

|vn
]
× Pr (vn) = 0.

For n = 1, equation (1) yields

E [(p (K0, θ)− c1)] = r1 ⇔ E [p (K0, θ)] = c1 + r1.

Average price is constant. Then, by subtraction

E [(p (K0, θ)− c1)]− E
[
(p (K0, θ)− c2) Ip(K0,θ)≥c2

]
= r1 − r2.

Differentiation yields

E
[
∂p

∂Ki
0

|p (K0, θ) < c2

]
= 0.

B.2 Proof of Corollary 1: impact on expected demand

Start with

∂

∂Ki
0

E [D (p+ τ, θ)] = E
[
∂

∂Ki
0

D (p+ τ, θ)

]
= E

[
∂D

∂p

(
∂p

∂Ki
0

+
∂τ

∂Ki
0

, θ

)]
=

N∑
n=2

(
∂τ

∂Ki
0

E
[
∂D

∂p
|hn
]

Pr (hn) + E
[(

∂Kn

∂Ki
0

+ αi (θ)

)
|vn
]

Pr (vn)

)
+E

[(
∂K1

∂Ki
0

+ αi (θ)

)
|p < c2

]
Pr (p < c2)

since price is constant on hn and D (p+ τ, θ) = Kn +
∑I

j=1 α
j (θ)Kj

0 on vn. For n ≥ 2

∂Kn

∂Ki
0

+ αi (θ) =

∂τ
∂Ki

0
+ αi (θ)E [Pq |vn ]− E

[
αi (θ)Pq |vn

]
E [Pq |vn ]

,

thus

E
[
∂Kn

∂Ki
0

+ αi (θ) |vn
]

=
∂τ

∂Ki
0

1

E [Pq |vn ]
+

(
E
[
αi (θ) |vn

]
−

E
[
αi (θ)Pq |vn

]
E [Pq |vn ]

)
.

Deriving a similar expression for n = 1 yields:

E
[
∂K1

∂Ki
0

+ αi (θ) |p < c2

]
=

∂τ

∂Ki
0

1

E [Pq |p < c2 ]
+

(
E
[
αi (θ) |p < c2

]
−

E
[
αi (θ)Pq |p < c2

]
E [Pq |p < c2 ]

)

Then, summing over all intervals yields equation (6).
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B.3 Proof of Proposition 2: impact on marginal value of renewable capacity

We have:

E
[
αj (θ)

∂p

∂Ki
0

]
=

N∑
n=2

E
[
αj (θ)

(
Pq ×

(
∂Kn

∂Ki
0

+ αi (θ)

)
− ∂τ

∂Ki
0

)
|vn
]

Pr (vn) .

+E
[
αj (θ)

(
Pq ×

(
∂K1

∂Ki
0

+ αi (θ)

)
− ∂τ

∂Ki
0

)
|p < c2

]
Pr (p < c2)

For n ≥ 2,

E
[
Pq ×

(
∂Kn

∂Ki
0

+ αi (θ)

)
αj (θ) |vn

]
=

1

E [Pq |vn ]

(
∂τ
∂Ki

0
E
[
Pqα

j |vn
]
− E

[
Pqα

i |vn
]
E
[
Pqα

j |vn
]

+E
[
Pqα

iαj |vn
]
E [Pq |vn ]

)

=
E
[
Pqα

j |vn
]

E [Pq |vn ]

∂τ

∂Ki
0

+

(
E
[
Pqα

i, αj |vn
]
−

E
[
Pqα

i |vn
]
E
[
Pqα

j |vn
]

E [Pq |vn ]

)
.

A similar derivation obtains for p (K0, θ) < c2. Summing over all vertical segments of the supply
curve yields

E
[
aj (θ)

∂p

∂Ki
0

]
= −Γj

∂τ

∂Ki
0

− Eij ,

which is equation (7).

B.4 Proof of Proposition 5: impact on net surplus

The expected net hourly surplus is

H (K0) = E

[
S (p (K0, θ) + τ, θ)−

N∑
n=1

cnun (θ) kn

]
−

N∑
n=1

rnkn −R0 (K0) .

As usual, we introduce the first order conditions (1) to simplify the expression of the net surplus.
Multiplying by kn, then summing first-order conditions (1) yields

N∑
n=1

(E [cnun (θ)] + rn) kn =
N∑
n=1

E [p (K0, θ)un (θ) kn] .

Equation (4) can be rewritten as

R0 (K0) = E [(p (K0, θ) + τ)D (p (K0, θ) + τ, θ)]− E

[
p (K0, θ)

(
D (p (K0, θ) + τ, θ)

−
∑I

j=1 α
j (θ)Kj

0

)]

= E [(p (K0, θ) + τ)D (p (K0, θ) + τ, θ)]−
N∑
n=1

E [p (K0, θ)un (θ)] kn
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⇔

R0 (K0) +

N∑
n=1

E [p (K0, θ)un (θ)] kn = E [(p (K0, θ) + τ)D (p (K0, θ) + τ, θ)] .

hence the expected net surplus is

H (K0) = E [S (p (K0, θ) + τ, θ)− (p (K0, θ) + τ)D (p (K0, θ) + τ, θ, )] .

The net surplus is the "standard" net surplus from consumption, including the distortion caused
by the tax. Then,

∂H

∂Ki
0

= −
(
E
[(

∂p

∂Ki
0

+
∂τ

∂Ki
0

)
D (p (K0, θ) + τ, θ)

])
.

Since ∂p
∂Ki

0
6= 0 only when each technology produces at capacity,

E
[
∂p

∂Ki
0

D (p (K0, θ) + τ, θ)

]
=

N∑
n=2

E

 ∂p

∂Ki
0

×

Kn +

I∑
j=1

αj (θ)Kj
0

 |vn
Pr (vn)

+E

 ∂p

∂Ki
0

K1 +

I∑
j=1

αj (θ)Kj
0

 |p < c2

Pr (p < c2)

=

N∑
n=2

E
[
∂p

∂Ki
0

|vn
]
Kn +

I∑
j=1

E
[
∂p

∂Ki
0

αj (θ) |vn
]
Kj

0

Pr (vn)

+

E
[
∂p

∂Ki
0

|p < c2

]
K1 +

I∑
j=1

E
[
∂p

∂Ki
0

αj (θ) |p < c2

]
Kj

0

Pr (p < c2)

=

I∑
j=1

 ∑N
n=2 E

[
∂p
∂Ki

0
αj (θ) |vn

]
Pr (vn)

+E
[
∂p
∂Ki

0
αj (θ) |p < c2

]
Pr (p < c2)

Kj
0

=
I∑
j=1

E
[
∂p

∂Ki
0

αj (θ)

]
Kj

0 ,

since E
[
∂p
∂Ki

0
|vn
]

= E
[
∂p
∂Ki

0
|p < c2

]
= 0. Thus,

∂H

∂Ki
0

= −

 ∂τ

∂Ki
0

D̄ (K0) +
I∑
j=1

E
[
∂p

∂Ki
0

αj (θ)

]
Kj

0


= −ϕ (K0) + τ

∂D̄

∂Ki
0
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by inserting equation (9). Observing that

∂D̄

∂Ki
0

= − 1

B

∂τ

∂Ki
0

− Γi = −
ϕi (K0) +

∑I
j=1E

ijKj
0 + τΓi

BD̄ (K0)− τ +B
∑I

j=1 ΓjKj
0

− Γi

yields
∂H

∂Ki
0

= −

(
ϕi (K0) + τ

ϕi (K0) +
∑I

j=1E
ijKj

0 + τΓi

BD̄ (K0)− τ +B
∑I

j=1 ΓjKj
0

+ τΓi

)
which is equation (11).

C Changes in baseload technology

C.1 Proof of Proposition 6: conventional technology disappearing at equilib-
rium

Suppose first that technology m ≥ 2 is no longer present at the long-term equilibrium, i.e., km = 0.
Denote ṽn the vertical segments of the new supply curve. Since km = 0, ṽm = ∅ and ṽm−1 =

{θ : cm−1 < p (K0, θ) < cm+1}. Derivations similar to the previous case prove that

E
[
αj (θ)

∂p

∂Ki
0

]∣∣∣∣
km=0

= Γ̃j
∂τ

∂Ki
0

− Ẽij ,

where

Γ̃j =
∑

2≤n≤N
n6=m

(
E
[
αj |ṽn

]
−

E
[
Pqα

j |ṽn
]

E [Pq |ṽn ]

)
Pr (ṽn)

+

(
E
[
αj |p < c2

]
−

E
[
Pqα

j |p < c2
]

E [Pq |p < c2 ]

)
Pr (p < c2) ,

and

Ẽij =
∑

2≤n≤N
n6=m

(
E
[
Pqα

i |ṽn
]
E
[
Pqα

j |ṽn
]

E [Pq |ṽn ]
− E

[
Pqα

i, αj |ṽn
])

Pr (ṽn)

+

(
E
[
Pqα

i |p < c2
]
E
[
Pqα

j |p < c2
]

E [Pq |p < c2 ]
− E

[
Pqα

i, αj |p < c2
])

Pr (p < c2) .

Since vm−1 ∪ vm = {θ : cm−1 < p (K0, θ) < cm+1} and p (K0, θ) is continuous in its arguments,

lim
km→0

(vm−1 ∪ vm) = ṽm−1.
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Thus,
lim
km→0

Γj = Γ̃j and lim
km→0

Eij = Ẽij .

Inserting in the other expressions proves that all derivatives are continuous.

Suppose now the baseload technology is no longer present at the equilibrium, i.e., K1 = 0. The
free entry condition for technology 2 is

E
[
(p (K0, θ)− c2) I{p(K0,θ)≥c2}

]
= r2 ⇔ E [p (K0, θ)] = c2 + r2 + E

[
(p (K0, θ)− c2) I{p(K0,θ)<c2}

]
.

Thus,

∂

∂Ki
0

E [p (K0, θ)] = E
[
∂p (K0, θ)

∂Ki
0

I{p(K0,θ)<c2}

]
= E

[(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

]
as indicated.

Consider now the marginal impact of renewable capacity on the availability weighted price when
p (K0, θ) < c2 .

Since K1 = 0, the term ∂K1

∂Ki
0
no longer appears in the derivations:

E
[
αj (θ)

∂p

∂Ki
0

|p < c2

]
= E

[
αj (θ)×

(
Pqα

i (θ)− ∂τ

∂Ki
0

)
|p < c2

]
= −E

[
αj (θ) |p < c2

] ∂τ

∂Ki
0

+ E
[
Pqα

j (θ)αi (θ) |p < c2
]

=

(
E
[
Pqα

j (θ) |p < c2
]

E [Pq |p < c2 ]
− E

[
αj (θ) |p < c2

]) ∂τ

∂Ki
0

−

(
E
[
Pqα

j (θ) |p < c2
]
E
[
Pqα

i (θ) |p < c2
]

E [Pq |p < c2 ]
− E

[
Pqα

j (θ)αi (θ) |p < c2
])

+
E
[
Pqα

j (θ) |p < c2
]

E [Pq |p < c2 ]

(
E
[
Pqα

i (θ) |p < c2
]
− ∂τ

∂Ki
0

)
.

Thus,

E
[
aj (θ)

∂p

∂Ki
0

]
= Γj

∂τ

∂Ki
0

− Eij +

(
E
[
Pqα

j (θ) |p < c2
]

E [Pq |p < c2 ]
E
[(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c2}

])
.

C.2 Proof of proposition 7: flexible baseload technology

When the baseload technology is flexible, the expected price is no longer equal to the long-term
marginal cost of baseload technology. Instead, the expected price is computed as follows:

E [p (K0, θ)− c1] = E
[
(p (K0, θ)− c1) I{p(K0,θ)<c1}

]
+ E

[
(p (K0, θ)− c1) I{p(K0,θ)≥c1}

]
= E

[
(p (K0, θ)− c1) I{p(K0,θ)<c1}

]
+ r1
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⇐⇒
E [p (K0, θ)] = c1 + r1 + E

[
(p (K0, θ)− c1) I{p(K0,θ)<c1}

]
≤ c1 + r1.

Then,

∂

∂Ki
0

E [p (K0, θ)] =
∂

∂Ki
0

E
[
(p (K0, θ)− c1) I{p(K0,θ)<c1}

]
= E

[(
Pqα

i (θ)− ∂τ

∂Ki
0

)
I{p(K0,θ)<c1}

]
.

For n ≥ 2, the derivation of ∂Kn
∂Ki

0
is unchanged. For n = 1, the expression of ∂K1

∂Ki
0
is formally

identical to the other ∂Kn
∂Ki

0
. As usual when technologies are flexible, only states in which p > c1 have

an impact on K1.

The impact of renewable capacity i on the marginal value of renewable technology j is

E
[
αj (θ)

∂p

∂Ki
0

]
=

N∑
n=1

E
[
αj (θ)

(
Pq ×

(
∂Kn

∂Ki
0

+ αi (θ)

)
− ∂τ

∂Ki
0

)
|vn
]

Pr (vn)

+E
[
αj (θ)

(
Pqα

i (θ)− ∂τ

∂Ki
0

)
|p < c1

]
Pr (p < c1) .

Derivations similar to the no baseload technology case show that

E
[
αj (θ)

∂p

∂Ki
0

|p < c1

]
=

(
E
[
Pqα

j (θ) |p < c1
]

E [Pq |p < c1 ]
− E

[
αj (θ) |p < c1

]) ∂τ

∂Ki
0

−

(
E
[
Pqα

j (θ) |p < c1
]
E
[
Pqα

i (θ) |p < c1
]

E [Pq |p < c1 ]
− E

[
Pqα

j (θ)αi (θ) |p < c1
])

+
E
[
Pqα

j (θ) |p < c1
]

E [Pq |p < c1 ]

(
E
[
Pqα

i (θ) |p < c1
]
− ∂τ

∂Ki
0

)
.

Thus,

E
[
aj (θ)

∂p

∂Ki
0

]
= Γj

∂τ

∂Ki
0

− Eij +
E
[
Pqα

j (θ) |p < c1
]

E [Pq |p < c1 ]

(
E
[
Pqα

i (θ) |p < c1
]
− ∂τ

∂Ki
0

)
Pr (p < c1) .

D Linear approximation

Suppose ĉovK0

[
αi (θ) , αj (θ)

]
remains constant (or at least does not vary too much) as K0 changes,

i.e., the conditional covariances are not too affected by the level of renewable: ĉovK0

[
αi (θ) , αj (θ)

]
=

ĉov
[
αi (θ) , αj (θ)

]
. Since most expressions are linear, it is helpful to use vectorial notation. For any

matrix M, denote Mij the element located on line i, column j. Introduce C ∈RI × RI the matrix
of covariances, i.e., Cij = ĉov

[
αi (θ) , αj (θ)

]
, and V (K0)∈RI the vector of marginal values, i.e.,

Vi (K0) = E
[
αi (θ) p (K0, θ)

]
.

From equation (8), the vector of marginal values is a linear function of the vector of renewable
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capacities:
V (K0) = V (0)− bC ·K0.

The slope of the own effect is the opposite of the variance of availability, restricted to being on
the vertical portions of the supply curve. The slope of the cross effect is the covariance between
availabilities (also restricted to being on the vertical portions of the supply curve).

Then, the vector of marginal subsidies ϕ (K0)∈RI is

ϕ (K0) = r0 (K0)−V (0) + bC ·K0,

and the cumulative total subsidy Φ (K0) ∈ R is

Φ (K0) = R0 (K0) + KT
0 · (bC ·K0 −V (0)) .

Since we obtain a closed form expression of R0 (K0), the linear approximation yields a closed form
expression of Φ (K0). The marginal subsidy ϕ (.) and the cumulative subsidy Φ (.) are respectively
linear and a quadratic functions of the capacity vector K0.

We derive a closed form solution for τ (K0). As previously,

τ (K0)

(
D̄ (0)− 1

b
τ (K0)

)
= Φ (K0) .

With the linear approximation, C no longer varies with τ , hence the fixed point problem disappears.
Thus,

bD̄ (0) τ − τ2 = bΦ (K0)⇔ τ2 − bD̄ (0) τ + bΦ (K0) = 0.

The discriminant of the quadratic equation is

∆ (K0) =
(
bD̄ (0)

)2 − 4bΦ (K0) .

We assume (and shall verify later) that ∆
(
K̄0

)
> 0. The quadratic equation admits two roots. We

choose the root increasing in each Ki
0

τ (K0) =
bD̄ (0)−

√
∆ (K0)

2
=
bD̄ (0)−

√(
bD̄ (0)

)2 − 4bΦ (K0)

2
.

The tax is an “approximately” linear function of the capacity vector K0, since it is the square
root of a quadratic form.

This expression of τ (K0) enables us to obtain a "simple" expression for the marginal welfare
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change:

∂H

∂Ki
0

= −

(
ϕi (K0) +

τ (K0)
(
ϕi (K0) + bC ·K0

)
bD̄ (K0)− 2τ (K0)

)

= −

(
bD̄ (0) +

√
∆ (K0)

)
ϕi (K0) + b

(
bD̄ (0)−

√
∆ (K0)

)
C ·K0

2
√

∆ (K0)

Finally, we obtain a closed form expression of the welfare loss:

H (0)−H (K0) = R0 (K0) + KT
0 ·
(
b

2
C ·K0 −V (0)

)
+

1

2b
τ2 (K0) .

Of course, the linear approximation is not exact, and the analyst must trade-off simplicity against
precision. The numerical analysis conducted for the UK shows that the actual marginal values and
their linear approximation are reasonably close as long as the baseload technology produces every
hour.

E Proof of Proposition 8: financial dispatch insurance

The free entry conditions, hence marginal price and capacity impact conditions are unchanged for
n ≥ 2. Similarly, the time-weighted average price is still equal to the long-run marginal cost of the
baseload technology, (c1 + r1):

E [p (K0, θ)] = c1 + r1.

For n ≥ 2, we start from

E [p (K0, θ)] = c1 + r1 and E
[
(p (K0, θ)− c2) Ip(K0,θ)≥c2

]
= r2.

Differentiating the difference with respect to Ki
0 yields

E
[
∂p

∂Ki
0

]
− E

[
∂p

∂Ki
0

Ip(K0,θ)≥c2

]
= E

[
∂p

∂Ki
0

Ip(K0,θ)<c2

]
= 0

⇐⇒
E
[
∂p

∂Ki
0

|0 < p < c2

]
Pr (0 < p < c2) + E

[
∂p

∂Ki
0

|p < 0

]
Pr (p < 0)

⇐⇒

E
[
Pq

(
∂K1

∂Ki
0

+ αi (θ)

)
− ∂τ

∂K0
|u2

]
Pr (u2) + E

[
Pq
∂K1

∂Ki
0

− ∂τ

∂K0
|p < 0

]
Pr (p < 0) = 0
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⇐⇒

∂K1

∂Ki
0

=

∂τ
∂Ki

0
− Pr(u2)

Pr(u2)+Pr(p<0)E
[
Pqα

i (θ) |u2

]
E[Pq |u2 ] Pr(u2)+E[Pq |p<0 ] Pr(p<0)

Pr(u2)+Pr(p<0)

=

∂τ
∂Ki

0
− (1− µ)E

[
Pqα

i (θ) |u2

]
E [Pq |u2 ] (1− µ) + E [Pq |p < 0]µ

.

We now derive the (marginal) change in the marginal value of energy produced by the j renewable
technology, ∂

∂Ki
0
E
[
p (K0, θ)α

j (θ) Ip(K0,θ)≥0

]
. Since the expectation is taken on the subset of the

states of the world such that p (K0, θ) ≥ 0, we need to account for the the boundary term when
differentiating. However, since by construction p (K0, θ) = 0 at the boundary, the boundary term
is equal to zero, and

∂

∂Ki
0

E
[
p (K0, θ)α

j (θ) Ip(K0,θ)≥0

]
= E

[
αj (θ)

∂p

∂Ki
0

Ip(K0,θ)≥0

]
=

N∑
n=2

E
[
∂p

∂Ki
0

αj (θ) |vn
]

Pr (vn) + E
[
∂p

∂Ki
0

αj (θ) |u2

]
Pr (u2) .

Derivations are unchanged for n ≥ 2. For 0 < p < c2,

E
[
∂p

∂Ki
0

αj (θ) |u2

]
= E

[
αj (θ)

(
Pq ×

(
∂K1

∂Ki
0

+ αi (θ)

)
− ∂τ

∂Ki
0

)
|u2

]
= E

[
Pqα

j (θ) |u2

] ∂K1

∂Ki
0

+ E
[
Pqα

j (θ)αi (θ) |u2

]
− ∂τ

∂Ki
0

E
[
αj (θ) |u2

]
=

(
E
[
Pqα

j (θ) |u2

]
E [Pq |u2 ] (1− µ) + E [Pq |p < 0]µ

− E
[
αj (θ) |u2

]) ∂τ

∂Ki
0

+

(
E
[
Pqα

j (θ)αi (θ) |u2

]
−

E
[
Pqα

i (θ) |u2

]
E
[
Pqα

j (θ) |u2

]
E [Pq |u2 ] + E [Pq |p < 0] µ

1−µ

)
.
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D(p,θ)	  D(p,θ)	  –	  αi(θ)Ki0	  

Figure	  1:	  Demand	  and	  Costs,	  Base	  Case	  

Nuclear	  sta9ons	  fully	  inflexible;	  Physical	  dispatch	  insurance	  
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Figure	  2:	  Capaci9es	  (status	  quo)	  
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Figure	  3:	  Average	  Prices	  (status	  quo)	  
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Figure	  4:	  Marginal	  value	  of	  onshore	  wind	  under	  different	  scenarii	  
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Figure	  5:	  Marginal	  value	  of	  offshore	  wind	  under	  different	  scenarii	  
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Figure	  6:	  Marginal	  subsidy	  to	  onshore	  wind	  under	  different	  scenarii	  
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Figure	  7:	  Marginal	  subsidy	  to	  offshore	  wind	  under	  different	  scenarii	  
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Figure	  8:	  Tax	  Required	  
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Figure	  9:	  Net	  surplus	  loss	  
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Figure	  10:	  Capaci9es	  (flexible	  nuclear;	  physical	  renewables	  insurance)	  

0	  

20	  

40	  

60	  

80	  

100	  

0	   10	   20	   30	   40	   50	   60	  

Offshore	  wind	  

Onshore	  wind	  

OCGT	  

CCGT	  

Nuclear	  

GW	  

GW	  

Wind	  capacity	  

Cumula9ve	  capacity:	  



k1	   K2	   K3	  

c1	  

c2	  

c3	  

D(p,θ)	  

D(p,θ)	  –	  ui(θ)αi(θ)Ki0	  

Figure	  11:	  Demand	  and	  Costs,	  Feed-‐in	  Premium	  
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Figure	  12:	  Demand	  and	  Costs,	  Financial	  insurance	  

Nuclear	  sta9ons	  fully	  inflexible;	  Physical	  dispatch	  insurance	  
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Figure	  13:	  Capaci9es	  (financial	  renewables	  insurance)	  
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