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Abstract

This paper considers a monopolist selling two objects to a single buyer with privately

observed valuations. We prove that if each buyer’s type has a non-negative virtual

valuation for each object, then the optimal price schedule is such that the objects

are sold only in a bundle; weaker conditions suffice if valuations are independently

and identically distributed. Under somewhat stronger conditions, pure bundling is

the optimal sale mechanism among all individually rational and incentive compatible

mechanisms.
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1 Introduction

This paper studies the optimal sale mechanism for a monopolist which offers two different

objects to a single buyer who privately observes her own valuations for the objects.1 We

provide sufficient conditions under which the optimal (i.e., profit-maximizing) mechanism

consists in pure bundling (i.e., selling both objects only in a bundle).

Since Myerson (1981) and Riley and Zeckhauser (1983), it is well-known that for the

setting with a single object the optimal mechanism is such that the seller puts the object on

sale at a suitable price, determined by the probability distribution of the buyer’s valuation.

However, the setting with two objects is considerably more difficult and Manelli and Vincent

(2006, 2007, 2012) prove that the form of the optimal mechanism depends on the distribution

of the buyer’s valuations, unlike in the one-object environment. In some cases the optimal

mechanism is characterized by a price schedule which specifies a price for each object and a

price for the bundle of the two objects, but in other cases the optimal mechanism assigns the

objects randomly.2 In general, many different mechanisms can be optimal as the distribution

of valuations varies, and typically not much is known about the optimal mechanism for a

given distribution, except for a few specific settings. For instance, when the valuations are

independently and identically distributed, Manelli and Vincent (2006), Pavlov (2011), and

Giannakopoulos (2014) solve the problem for uniform or exponential distributions; Hart and

Nisan (2014) prove that pure bundling is optimal if the density for each valuation decreases

quickly. Hart and Nisan (2014) also try to bound from below the fraction of the optimal

profit that can be obtained by selling the objects separately (i.e., posting a suitable price

for each object, as in two unrelated one-object settings), or by selling them in a bundle. For

instance, they show that when valuations are i.i.d., separate sales yield at least 73 percent

of the optimal profit. Conversely, when valuations are correlated, separate selling cannot

guarantee any positive fraction of the optimal profit.3

This paper’s main contribution consists in providing sufficient conditions which make it

optimal to sell the objects as a bundle. Precisely, in Section 3, we assume that the seller

1We use "she" for the buyer and "he" for the seller.
2Hart and Reny (2013) prove that the seller’s profit in the optimal mechanism may decrease when the

buyer’s valuations increase in the sense of first order stochastic dominance, another feature which does not

arise in one-object setting.
3Li and Yao (2013) improve some of the lower bounds considered in Hart and Nisan (2014).
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uses price schedules which specify a price for each object and a price for the bundle. In this

setting we show that if the virtual valuation for each object is non-negative for each buyer

type, then the optimal price schedule is such that each buyer type either buys the bundle,

or buys nothing; weaker conditions suffice for this result if the valuations are independently

and identically distributed. More precisely, we prove that for any mixed bundling price

schedule where some types buy only one of the two objects, it is strictly profitable to reduce

the price of the bundle. Such price change induces a fraction of types who buy at most one

object to buy the bundle, which increases the profit because the virtual valuation of a single

object is positive for any type. This result complements McAfee, McMillan, and Whinston

(1989), who prove that selling the objects separately is suboptimal when valuations are

independently distributed, as introducing a small discount for the bundle (mixed bundling)

increases the profit. Under our sufficient conditions, mixed bundling is dominated by pure

bundling.

Our framework can be applied to business-to-business transactions in which a given

seller sells its objects to multiple buyers by applying a third-degree price discrimination:

the seller can offer a different price schedule to each different buyer. In this situation, as

long as buyers do not compete in the same market, each buyer can be treated as a separate

market. The seller should have some precise (albeit imperfect) idea about each business

customer’s valuations for his objects. For instance, the seller can conduct market studies for

this purpose. Our sufficient condition that the virtual valuation is positive for all types is

likely to be met for serious buyers whose minimum valuations are high enough. Then, pure

bundling is the optimal sale strategy. All other things being equal, pure bundling is more

likely to be optimal for objects with lower costs of production implying that when licensing

highly-valued patents, pure bundling is likely to be profit-maximizing.

Since mechanisms based on price schedules are only a subset of the set of all individually

rational and incentive compatible mechanisms, in Section 4, we consider a setting in which

the seller may use any mechanism in the set of individually rational and incentive compat-

ible mechanisms. We give sufficient conditions for pure bundling to be optimal among all

mechanisms in this set. These conditions are unrelated to those in Hart and Nisan (2014),

and can in part be interpreted as a strengthening of the condition of non-negative virtual

valuations.
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2 The model

A monopolist, henceforth denoted by M, owns two indivisible objects which are worthless

to him,4 and faces a buyer interested in these objects.5 M wishes to design a mechanism to

maximize his expected profit (i.e., revenue) from trading with the buyer. The buyer is risk

neutral and privately observes her own valuations for the objects, denoted with v1, v2. Her

payoff from trading with the seller is given by her gross utility minus the payment to M, and

her gross utility is v1 + v2 if she consumes both objects, is vi if she consumes only object i

(for i = 1, 2), is zero if she consumes nothing. The seller views vi as a realization of a random

variable with a c.d.f. Fi and a density fi which is continuous and strictly positive in the

support [vi, v̄i] satisfying 0 < vi < v̄i, for i = 1, 2. Moreover, the distributions of valuations

are stochastically independent. Let V ≡ [v1, v̄1] × [v2, v̄2] denote the set of possible buyer
types.

3 Price schedules

In this section we assume that M offers the objects to the buyer by posting a price schedule

(p1, p2, P ) which specifies a price pi for good i, for i = 1, 2, and a price P for the bundle of the

two objects. Without loss of generality we consider (p1, p2, P ) satisfying p1 ≥ v1, p2 ≥ v2,

P ≥ v1+ v2. After seeing (p1, p2, P ), the buyer chooses the alternative which maximizes her

own payoff. Notice that for each type of buyer, the buyer’s probability to obtain object i, or

the bundle, is in {0, 1}. For this reason this mechanism is said to be deterministic.

Let S1, S2, S12 denote the set of types who, respectively, buy object 1 only, object 2 only,

the bundle. Let μ1, μ2, μ12 denote the measure of S1, S2, S12, respectively. In order to derive

μ1, μ2, μ12 as a function of (p1, p2, P ), we need to distinguish the case of P ≤ p1 + p2 from

the case of P > p1 + p2.6 In this section, we focus on the first case and consider the second

case (for which we obtain the same results) in the appendix.

4Our results extend in a straightforward way to the case in which M has valuations for the objects or

incurs production costs. See extensions in Section 3.
5Alternatively, we can assume that the monopolist sells the two objects to a continuum of buyers.
6Imposing the inequality P ≤ p1+p2 makes sense if the seller is unable to monitor the buyer’s purchases.

That may be the case if the seller faces many anonymous buyers.
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Then, M’s profit is given by:

π = μ1p1 + μ2p2 + μ12P.

A type (v1, v2) belongs to S1 if and only if7 v1 ≥ p1 (i.e., buying only object 1 is better

than buying nothing) and v2 < P − p1 (i.e., buying only object 1 is better than buying the

bundle).8 Hence

μ1(p1, p2, P ) = [1− F1(p1)]F2(P − p1).

Notice that if p1 > v̄1 and/or p1 > P − v2, then S1 = ∅ and μ1 = 0 since for each type,

v1 < p1 and/or v2 > P − p1. However, π remains unchanged if M lowers p1 to satisfy

p1 = min{v̄1, P − v2}, since then still μ1 = 0.9 Therefore, without loss of generality, we

assume that M chooses p1 satisfying p1 ≤ min{v̄1, P − v2}.
Likewise, (v1, v2) ∈ S2 if and only if v2 ≥ p2 and v1 < P − p2. Hence

μ2(p1, p2, P ) = [1− F2(p2)]F1(P − p2),

and we assume without loss of generality that M chooses p2 such that p2 ≤ min{v̄2, P−v1}.10

Finally, (v1, v2) ∈ S12 if and only if v1 + v2 − P ≥ max{0, v1 − p1, v2 − p2}, which is
equivalent to v1 + v2 ≥ P , v1 ≥ P − p2, v2 ≥ P − p1: see Figure 1(a) below. Hence

μ12(p1, p2, P ) =

Z p2

P−p1
[1− F1(P − v2)]f2(v2)dv2 + [1− F1(P − p2)][1− F2(p2)].

We define a mixed bundling schedule and a pure bundling schedule as follows.

Definition 1 We say that (p1, p2, P ) is a mixed bundling schedule if μ1(p1, p2, P ) > 0 and/or

μ2(p1, p2, P ) > 0; it is a pure bundling schedule if μ1(p1, p2, P ) = μ2(p1, p2, P ) = 0.

In particular, (p1, p2, P ) is a pure bundling schedule if P = min {p1 + v2, p2 + v1}.
7As a tie-breaking rule we assume that each buyer who is indifferent between two or more alternatives

chooses the alternative which maximizes her gross utility. However, since the distribution of types is atomless,

how indifferences are broken does not affect the results.
8These two inequalities, jointly with P ≤ p1+ p2, imply v1− p1 ≥ 0 > v2− p2. Hence buying only object

1 is better than buying only object 2.
9This reduction of p1 does not affect neither μ2 nor μ12 since, given p1 ≥ min{v1, P − v2}, p1 does not

affect any type’s preferred alternative among buying only object 2, buying the bundle, and buying nothing.
10Notice that p1 ≤ v̄1, p2 ≤ v̄2 and P ≤ p1 + p2 imply P − p1 ≤ v̄2 and P − p2 ≤ v̄1.
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As a benchmark, consider a single-object monopolist facing a buyer whose valuation for

the object has a c.d.f. F and a density f which is continuous and positive in the support

[v, v̄] satisfying 0 < v < v̄. Then it is well known that the profit-maximizing price is either

v, or solves the equation J(x) = 0 with J(x) ≡ x − 1−F (x)
f(x)

for x ∈ [v, v̄]. In particular, the
optimal price is equal to v if J(x) ≥ 0 for each x ∈ [v, v̄]. J(x) is often called the “virtual
valuation” of type x (Myerson, 1981) and represents the marginal contribution to M’s profit

made by the sale of the object to a buyer with valuation x, taking into account a negative

effect on the payment the seller obtains from each type with valuation greater than x.

In our two-object setting, the virtual valuation for object i of a type (v1, v2) is Ji(vi) ≡
vi − 1−Fi(vi)

fi(vi)
for vi ∈ [vi, v̄i] and i = 1, 2. Let Jm

i ≡ minx∈[vi,v̄i] Ji(x). Hence, J
m
i ≥ 0 is

equivalent to Ji(vi) ≥ 0 for any vi ∈ [vi, v̄i]. The next proposition establishes that the
optimal pricing schedule for M consists in pure bundling when the virtual valuation for each

object is non-negative for all types.

Proposition 1 Suppose that v1 and v2 are independently distributed. If Jm
1 ≥ 0 and Jm

2 ≥ 0,
then for any given mixed bundling schedule, there is a pure bundling schedule satisfying

P = min{p1+ v2, p2+ v1} which gives M a higher profit. Therefore, M’s profit is maximized

by a pure bundling schedule.

Let P ∗ denote the optimal pure bundling price, i.e. the solution to the problem of

maxP P Pr{v1 + v2 ≥ P}. Proposition 1 establishes that if Jm
1 ≥ 0 and Jm

2 ≥ 0, then P ∗,

jointly with p1 = min{v̄1, P ∗−v2} and p2 = min{v̄2, P ∗−v1}, is the optimal pricing schedule
since each mixed bundling schedule is suboptimal.11

In order to illustrate the main ideas of the proof of Proposition 1, we consider a mixed

bundling schedule (p1, p2, P ) satisfying p1 < v̄1, p2 < v̄2, p2 + v1 < p1 + v2 < P where

we assume p2 + v1 < p1 + v2 only to fix the ideas. With the help of Figure 1(a)-(b),

we show that a small reduction in the price of the bundle from P to P 0 = P − ε (with

ε > 0 and small) is profitable. Figure 1(a) represents the sets S1, S2, S12 given the initial

mixed bundling schedule. In Figure 1(b), we consider the reduction in the price of the

bundle and partition V into three subsets X,Y,Z such that X ≡ {(v1, v2) ∈ V : v2 ≥ p2},
11We specify p1 = min{v̄1, P ∗ − v2} and p2 = min{v̄2, P ∗ − v1} because of the restriction on (p1, p2) that

we previously imposed without loss of generality, i.e., p1 ≤ min{v̄1, P − v2} and p2 ≤ min{v̄2, P − v1}. More
generally, P ∗ together with p1 ≥ min{v̄1, P ∗ − v2} and p2 ≥ min{v̄2, P ∗ − v1} is optimal.
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Y ≡ {(v1, v2) ∈ V : v2 ∈ [P − p1, p2)}, Z ≡ {(v1, v2) ∈ V : v2 < P − p1}. We now prove that
the reduction in the price of the bundle is profitable in each of the three regions X, Y , Z.

[Please put Figure 1 about here]

Caption for Figure 1: Illustration of the proof of Proposition 1

First, regarding the region Z, it is straightforward to see that the reduction in the price

of the bundle is profitable because it induces some types in Z to buy the bundle rather than

buying nothing, or buying only object 1. Second, regarding the region X, notice that every

type in this set buys at least object 2 under (p1, p2, P ). For any type buying object 2, the

implicit price of object 1 is P − p2; therefore a type in X buys also object 1 (i.e., buys the

bundle) if and only if v1 ≥ P − p2. Hence, for the types in X, the reduction in the price of

the bundle has the effect of reducing the (implicit) price of object 1 and J1(P−p2) ≥ Jm
1 ≥ 0

implies that the reduction increases M’s profit from the types in X. Last, regarding Y , for

each given v2 ∈ [P − p1, p2), let Y (v2) = {(v1, v2) such that v1 ∈ [v1, v̄1]} be the horizontal
segment in V such that the valuation for object 2 is equal to v2; thus Y = ∪v2∈[P−p1,p2)Y (v2).
Each type in Y (v2) buys the bundle if v1 ≥ P − v2, buys nothing if v1 < P − v2. Reducing

the price of the bundle from P to P 0 has an effect on the types in Y (v2) similar to the effect

on the types in region X, but the profit increase from the types in Y (v2) who buy the bundle

under (p1, p2, P 0) but buy nothing under (p1, p2, P ) is P 0, which is larger than P 0 − p2, the

profit increase from the types inX who buy the bundle under (p1, p2, P 0) but buy only object

2 under (p1, p2, P ).

Formally, we find that

∂π

∂P
= [1− F2(p2)][1− F1(P − p2)− (P − p2)f1(P − p2)] (1)

+

Z p2

P−p1
[1− F1(P − v2)− Pf1(P − v2)]f2(v2)dv2 − (P − p1)[1− F1(p1)]f2(P − p1),

where each of the first, the second, the third terms refers, respectively, to region X,Y,Z.

Notice that Jm
1 ≥ 0 implies 1− F1(P − p2)− (P − p2)f1(P − p2) ≤ 0 and

R p2
P−p1 [1− F1(P −

v2) − Pf1(P − v2)]f2(v2)dv2 ≤ 0. Therefore ∂π
∂P

< 0 since the third term term is strictly

negative.

If we consider a mixed bundling schedule such that p1 < v̄1, p2 < v̄2, and p2 + v1 < P =

p1 + v2 instead of p2 + v1 < p1 + v2 < P , we find again that a reduction in the price of the

bundle is profitable because (i) region Z is empty in this case; (ii) in regions X and Y the

6



previous arguments still apply (in the proof of Proposition 1 we take care of an extreme case

in which ∂π
∂P
= 0).12

We note that the optimal pure bundling price P ∗ is larger than v1 + v2, as is shown by

Armstrong (1996), even when Jm
1 ≥ 0 and Jm

2 ≥ 0 hold. In fact, if we let G and g denote

the c.d.f. and the density of v1 + v2, then g(v1 + v2) = 0. Therefore, under pure bundling,

the virtual valuation for the bundle of a type with v1 + v2 close to v1 + v2 is negative, and

P ∗ > v1 + v2. This implies that there always exists a positive measure of types who buy

nothing in the optimal pure bundling schedule.

Remarks on non-negative virtual valuations Given the assumptions in Proposition

1, here we provide two remarks about distributions such that. Jm
1 ≥ 0.

First, suppose that (i) G1 is the c.d.f. of a random variable with support [ν1, ν̄1] and a

strictly positive and continuous density g1; (ii) v1 has support [v1, v̄1] such that v1 = ν1+ω,

v̄1 = ν̄1 + ω for some ω > 0, and has a c.d.f. F1 which is a ω-rightward shift of G1.

Then Jm
1 ≥ 0 if ω is larger than −minx∈[ν1,ν̄1]

³
x− 1−G1(x)

g1(x)

´
. In words, a sufficiently large

rightward shift makes positive the virtual valuation for object 1. An intuition for this result

is immediate. First notice that x − 1−G1(x)
g1(x)

≥ 0 is equivalent to xg1(x) ≥ 1− G1(x), which

compares the gain from selling the object to a type with valuation x, which is xg1(x), with

the loss from types with higher valuation, which is 1−G1(x). Then we observe that after an

ω-rightward shift in the distribution, the virtual valuation of a type ω+x (with x ∈ [ν1, ν̄1])
is non-negative if and only if (ω + x)f1(x + ω) ≥ 1 − F1(x + ω), that is if and only if

(ω + x)g1(x) ≥ 1 − G1(x), which is definitely satisfied for a large ω. Essentially, an ω-

rightward shift increases the gain from selling the object to any type without affecting the

loss from types with higher valuation.

Second, in a certain sense it is simpler to satisfy the inequality Jm
1 ≥ 0 if the density is

decreasing than if it is increasing. Precisely, suppose that f1 is increasing, and that Jm
1 ≥ 0,

which is equivalent to v1f1(v1) ≥ 1. Then consider the density g1 with support [v1, v̄1] and

12Notice that we have used only the assumption Jm1 ≥ 0, and not Jm2 ≥ 0, because the initial mixed

bundling schedule is such that p2 + v1 ≤ p1 + v2. Conversely, if p1 + v2 < p2 + v1, then Jm1 ≥ 0 (without
Jm2 ≥ 0) implies that P can be profitably reduced to p2+v1 (hence μ2 = 0), but not that P should be reduced
to p1+v2. For instance, if (v1, v2) is uniformly distributed over [6, 7]× [0, 10], then Jm1 = 5 > 0 > −10 = Jm2

and the maximal profit under pure bundling is 6.806 (with P = 8.25), but the schedule p1 = 6, p2 = 5,

P = 11 implies μ1 =
1
2 , μ2 = 0, μ12 =

1
2 and therefore the profit is 8.5 (> 6.806).
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such that g1(x) = f1(v1+v̄1−x) for each x ∈ [v1, v̄1]; therefore g1 is decreasing and its graph is
the mirror image of the graph of f1 with respect to the vertical line x = 1

2
(v1 + v̄1). Letting

G1(x) =
R x
v1
g1(z)dz, we find that x − 1−G1(x)

g1(x)
≥ 0 is equivalent to xg1(x) ≥ 1 − G1(x),

and xg1(x) ≥ v1g1(v̄1) = v1f1(v1) ≥ 1. Thus Jm
1 ≥ 0 with an increasing f1 implies that

minx∈[ν1,ν̄1]

³
x− 1−G1(x)

g1(x)

´
≥ 0, for a distribution with a density which is the mirror image of

f1 (and thus decreasing). This occurs since Jm
1 ≥ 0 is equivalent to xf1(x) ≥ 1− F1(x) for

each x ∈ [v1, v̄1], which holds if and only if the gain v1f1(v1) from selling to type v1 is larger
than 1. The gain from selling to low types (like v1) is larger for density g1 than for f1: in fact

with density g1, for any x in [v1, v̄1] the gain from selling to type x cannot be smaller than

v1f1(v1), which we know to be at least one. Furthermore, the information rent given to the

types with valuation higher than x is greater with F1 than with G1: 1− F1(x) > 1−G1(x).

Extensions If M has valuations (or production costs) c1, c2 for the two objects, then the

result in Proposition 1 holds if Jm
1 ≥ c1 and Jm

2 ≥ c2.

If v1, v2 are not independently distributed, then Proposition 1 extends in a natural way.

Precisely, letting fi|j and Fi|j denote the conditional density and the conditional c.d.f. of vi

given vj (for i, j = 1, 2, i 6= j), mixed bundling is suboptimal if vi −
1−Fi|j(vi|vj)
fi|j(vi|vj)

≥ 0 for any
(vi, vj) ∈ V , for i, j = 1, 2, i 6= j.

Relationship with McAfee, McMillan and Whinston (1989) McAfee et al. (1989)

consider the same model we have studied (allowing for correlated valuations). Their main

result is that any independent pricing schedule (i.e., such that P = p1 + p2) is suboptimal

under a suitable restriction on the distribution of v1, v2, which is always satisfied by indepen-

dent distributions. But they do not study conditions under which pure bundling generates

the highest profit. Precisely, let p∗1, p
∗
2 denote the optimal prices under independent pricing.

Then, they show that the schedule (p∗1, p
∗
2, p

∗
1+ p∗2− ε) is superior to (p∗1, p

∗
2, p

∗
1+ p∗2). Hence,

any independent pricing schedule is inferior to a suitable mixed bundling schedule. An im-

plicit assumption in their analysis is that p∗1 and p∗2 are such that, in our notation, p
∗
1 > v1

and p∗2 > v2. Conversely, our assumptions J
m
1 ≥ 0 and Jm

2 ≥ 0 imply p∗1 = v1 and p∗2 = v2,

and hence, in our setting, reducing P below p∗1 + p∗2 definitely reduces M’s profit. Rather,

Proposition 1 proves that M should choose the optimal pure bundling price and combine it

with p1, p2 sufficiently high to make μ1 = μ2 = 0.
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The case of i.i.d. valuations Here we consider the case in which v1 and v2 are i.i.d.,

each with support [v, v̄], c.d.f. F , and density f ; hence M can focus on (p1, p2, P ) satisfying

p1 = p2 ≡ p. We define J(x) ≡ x− 1−F (x)
f(x)

and Jm ≡ minx∈[v,v̄] J(x).

Proposition 2 Suppose that v1 and v2 are independently distributed with v1 = v2 ≡ v,

v̄1 = v̄2 ≡ v̄, and F1 = F2 ≡ F . If v + Jm ≥ 0, then for any given mixed bundling

schedule, there is a pure bundling schedule satisfying P = p + v which gives M a higher

profit. Therefore, M’s profit is maximized by a pure bundling schedule.

Proposition 2 strengthens the result in Proposition 1 for the specific case of i.i.d. valua-

tions, as it establishes that mixed bundling is suboptimal even though J(x) < 0 for some x,

provided that v + Jm ≥ 0. The result follows because F1 = F2 allows to combine the first

and the third term of ∂π
∂P
in (1) to prove that ∂π

∂P
is negative even though sometimes the first

term is positive.

From Proposition 2 and the remarks on non-negative virtual valuations, we obtain:

Corollary 1 Consider an increasing density f with support [v, v̄] and such that 2vf(v) ≥ 1
(i) Suppose that v1 and v2 are independently distributed with the identical support [v, v̄]

and common density f . Then M’s profit is maximized by a pure bundling schedule.

(ii) Suppose that v1 and v2 are independently distributed with the identical support [v, v̄]

and common decreasing density g, of which the graph is the mirror image of the graph of

f with respect to the vertical line x = 1
2
(v + v̄). Then, M’s profit is maximized by a pure

bundling schedule.

In the case of uniform distribution with support [v, v̄], pure bundling is optimal if v ≥ 1
3
v̄.

4 General mechanisms

In Section 3 we have focused on the class of selling mechanisms such that M chooses a price

schedule, which specifies a price for each object and a price for the bundle. However, if

we consider the set of all incentive compatible and individually rational mechanisms, which

we denote by M, then M includes many other mechanisms, and in particular stochastic

mechanisms specifying that certain types of buyer receive an object with a probability in

(0, 1). In this section we provide sufficient conditions for pure bundling to be the optimal
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selling mechanism among all mechanisms in M. We restrict attention to the case of i.i.d.

valuations with c.d.f. F , density f for each valuation, and V = [v, v̄]× [v, v̄].
From the Revelation Principle, we can describe a generic mechanism in M in terms

of two functions, q = (q1, q2) : V → [0, 1] × [0, 1] and T : V → R, such that a buyer

reporting valuations v0 = (v01, v
0
2) receives object 1 with probability q1(v

0), receives object 2

with probability q2(v0), and pays T (v0). The objective of M is to choose q and T in order to

maximize the expectation of T (v) subject to participation and incentive constraints:

v1q1(v) + v2q2(v)− T (v) ≥ max{0, v1q1(v0) + v2q2(v
0)− T (v0)} for each v and v0 in V.

Although this is typically a complicated problem, the results in Pavlov (2011) give some

insights on the optimal mechanism. First, since v1, v2 are identically distributed, we can

focus on determining the optimal q1, q2, T for (v1, v2) such that v2 ≥ v1; symmetric results

are obtained for v2 < v1. Second, Pavlov (2011) shows that under the condition

3 + v1
f 0(v1)

f(v1)
+ v2

f 0(v2)

f(v2)
≥ 0 for each (v1, v2) ∈ V, (2)

it is optimal for M to restrict attention to mechanisms in which the buyer either gets no

object, or gets her most preferred object for sure and her less preferred object with some

probability.13

Formally, given v2 ≥ v1, either q1(v1, v2) = q2(v1, v2) = 0, or q2(v1, v2) = 1 and q1(v1, v2) ∈
[0, 1]. Furthermore, there is no loss for M in performing the screening only on the valuation v1

for object 1, and in optimizing over mechanisms characterized by two functions, q1 : [v, v̄]→
[0, 1] and t : [v, v̄] → R, and in which the buyer chooses a message v01 in [v, v̄] ∪ {∅}.14

If v01 = ∅, then the buyer does not participate: she receives no object and pays zero. If

conversely v01 ∈ [v, v̄], then the buyer receives object 2 with probability 1, receives object 1
with probability q1(v

0
1), and pays t(v

0
1). Let u(v1) ≡ v1q1(v1) − t(v1). Then, the payoff of a

type v = (v1, v2) reporting v01 = v1 is u(v1) + v2; therefore type v participates if and only if

u(v1) + v2 ≥ 0.
13Condition (2) is a sort of hazard rate condition that appears in some literature on multidimentional

mechanism design: see McAfee and McMillan (1988) and Manelli and Vincent (2006).
14Here, we are somewhat abusing notation by using again q1 to denote a function defined on [v, v̄], whereas

q1 which was introduced previously is defined on V . However, since only q1 : [v, v̄]→ [0, 1] is used from now

on, there is no concern about ambiguity.
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The profit of M from type v is t(v1) = v1q1(v1)−u(v1) if u(v1)+v2 ≥ 0, but is 0 otherwise.
The expected profit isZ v̄

v

[v1q1(v1)− u(v1)]f(v1)[1− F (max{v1,−u(v1)})]dv1, (3)

in which 1−F (max{v1,−u(v1)}) takes into account that we are considering types satisfying
v2 ≥ v1 and that only types satisfying v2 ≥ −u(v1) participate. Standard techniques show
that the incentive constraints in this problem are satisfied if and only if q1 is weakly increasing

and u(v1) = u(v) +
R v1
v

q1(x)dx for each v1 ∈ [v, v̄]. Therefore, u is increasing, and if

u(v) ≥ −v, then v1 ≥ −u(v1) for each v1 ∈ [v, v̄], and hence each type participates since we
are considering v1, v2 such that v2 ≥ v1.

The design problem is then reduced to maximizing (3) with respect to u(v) (within the

set R) and with respect to q1 (within the set of weakly increasing functions with domain [v, v̄]

and codomain [0, 1]). This is a one-dimensional screening problem in which the screening

variable is the probability that the buyer receives her less preferred object, as a function of

her reported valuation for that object. A non-standard feature is that for each type of buyer

with valuation v1 for object 1, her participation is determined by the sign of u(v1) + v2, in

which v2 is private information of the buyer.

In this setting, pure bundling is obtained if q1(v1) = 1 for each v1 ∈ [v, v̄], since then each
type either receives both objects (if she participates), or receives no object (if she does not

participate). In this case the bundle price is v − u(v), selected by M through the choice of

u(v).

Proposition 3 Suppose that v1, v2 are i.i.d., each with support [v, v̄] and a density f which

satisfies (2), and that there exists β > 1 satisfying the two following conditions:

xf(x) ≥ β for each x ∈ [v, v̄]; (4)

F (
1

2
v +

1

2
v̄) ≤ β − 1. (5)

Then the optimal pure bundling price schedule is the optimal mechanism among all mecha-

nisms inM.

Since Jm ≥ 0 is equivalent to xf(x) ≥ 1 − F (x) for each x ∈ [v, v̄], it follows that
condition (4) can be interpreted as a strengthening of Jm ≥ 0, which is more restrictive the

11



greater is β. Conversely, (5) is less restrictive the greater is β, and it puts an upper bound

on the probability mass in the left half interval of [v, v̄]. Inequality (5) is used in the proof

of Proposition 3 to show that, although u(v) is smaller than −v, it is not too smaller than
−v, and this helps to make pure bundling optimal.
It is immediate to see that if f is increasing and β = 3

2
, then (i) (2) is satisfied; (ii)

(4) is equivalent to vf(v) ≥ 3
2
; (iii) (5) holds since f increasing implies F convex, thus

F (1
2
v + 1

2
v̄) ≤ 1

2
F (v) + 1

2
F (v̄) = 1

2
. Hence, the following corollary holds.

Corollary 2 Suppose that v1, v2 are i.i.d., each with support [v, v̄] and an increasing den-

sity f such that vf(v) ≥ 3
2
. Then the optimal pure bundling price schedule is the optimal

mechanism among all mechanisms inM.

Notice that if (4) is satisfied for β ≥ 2, then (5) holds even though f is not increasing,

but then (2) is not necessarily satisfied.15

Sufficient conditions for pure bundling to be the optimal mechanisms can be found also in

Giannakopoulos (2014) and in Hart and Nisan (2014). Precisely, in the first paper valuations

are i.i.d. with exponential density;16 in the second paper, v1, v2 are i.i.d. with a density f

such that x3/2f(x) is decreasing in [v, v̄]. Neither of these conditions implies the assumptions

of Proposition 3, nor vice versa.

5 Concluding remarks

We have given sufficient conditions for pure bundling to be the optimal mechanism, both

for the case in which the seller’s available instruments are restricted to price schedules,

and for the case in which he can choose any incentive compatible and individually rational

mechanism. It is interesting that unrelated conditions like those in Proposition 3, and those

in Giannakopoulos (2014) and Hart and Nisan (2014) all imply that pure bundling is optimal.

An interesting question for future research is to know whether they are special cases of more

general conditions under which pure bundling is optimal. Furthermore, little is known about

the optimal mechanism to sell two (or more) objects when there are two (or more) buyers

15The remark in Section 3 about large rightward shifts applies to satisfy (4) with β ≥ 2, but if the density’s
derivative is negative at some point, then (2) is violated for sufficiently large rightward shifts.
16The result by Giannakopoulos (2014) holds also for the case of more than two objects.
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which compete to buy the objects. Therefore it would be interesting to study whether the

progress made for the setting with a single buyer helps to improve our understanding of the

setting with multiple buyers. For instance, are there cases in which the optimal mechanism

consists in auctioning the bundle of all the objects on sale?
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6 Appendix

6.1 Proof of Proposition 1

We fix an arbitrary mixed bundling schedule (p1, p2, P ) and prove that if Jm
1 ≥ 0, Jm

2 ≥
0, then it is profitable for M to reduce the price of the bundle to min{p1 + v2, p2 + v1},
which means that M plays a pure bundling schedule; therefore no mixed bundling schedule

maximizes π.17 In order to fix the ideas, we consider p1, p2 such that p2 + v1 ≤ p1 + v2.
18

Hence, (p1, p2, P ) is a pure bundling schedule if p2+ v1 = P , which implies that p2+ v1 < P

needs to hold if (p1, p2, P ) is a mixed bundling schedule. Step 1 in this proof proves that
∂π
∂P

< 0 if p1 + v2 < P . Step 2 considers the case of p2 + v1 < P = p1 + v2.
19

Step 1 If Jm
1 ≥ 0 and (p1, p2, P ) is a mixed bundling schedule such that p1 + v2 < P ,

then ∂π
∂P

< 0.

Proof of Step 1. Since ∂π
∂P
= ∂μ1

∂P
p1 +

∂μ2
∂P

p2 +
∂μ12
∂P

P + μ12 and

∂μ1
∂P

= [1− F1(p1)]f2(P − p1),
∂μ2
∂P

= [1− F2(p2)]f1(P − p2),

∂μ12
∂P

= −[1− F1(p1)]f2(P − p1)− [1− F2(p2)]f1(P − p2)−
Z p2

P−p1
f1(P − v2)f2(v2)dv2,

after rearranging we obtain

∂π

∂P
= −(P − p1)[1− F1(p1)]f2(P − p1)− (P − p2)[1− F2(p2)]f1(P − p2) +

+

Z p2

P−p1
[1− F1(P − v2)]f2(v2)dv2 + [1− F1(P − p2)][1− F2(p2)]

−P
Z p2

P−p1
f1(P − v2)f2(v2)dv2

= [1− F2(p2)][1− F1(P − p2)− (P − p2)f1(P − p2)] +

+

Z p2

P−p1
[1− F1(P − v2)− Pf1(P − v2)]f2(v2)dv2 − (P − p1)[1− F1(p1)]f2(P − p1).

We know that J1(x) ≥ 0 for each x ∈ [v1, v̄1], therefore 1−F1(P−p2)−(P−p2)f1(P−p2) ≤ 0,
and

R p2
P−p1 [1−F1(P − v2)−Pf1(P − v2)]f2(v2)dv2 ≤

R p2
P−p1[1−F1(P − v2)− (P − v2)f1(P −

17Although in several cases we prove that ∂π
∂P < 0, in one case it is conceivable that ∂π

∂P = 0, so that

reducing the price of the bundle has no effect on M’s profit. However, in this case we still prove that the

optimal pure bundling schedule is superior to the initial mixed bundling schedule.
18Given p2 + v1 ≤ p1 + v2, the inequality Jm1 ≥ 0 suffices to prove the result. If p2 + v1 > p1 + v2, then

the inequality Jm2 ≥ 0 suffices.
19We do not need to consider P < p1+ v2 since, as we explained in the main text, we assume without loss

of generality p1 ≤ min {v1, P − v2}.
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v2)]f2(v2)dv2 ≤ 0. Hence, each term in ∂π
∂P
is negative or zero and now we rule out the

possibility of ∂π
∂P
= 0. If p1 < v̄1, then ∂π

∂P
< 0 because the third term in ∂π

∂P
is negative. If p1 =

v̄1, then p2 < v̄2 in order for (p1, p2, P ) to be a mixed bundling schedule, and we distinguish

the case of P = p1+p2 from the case of P < p1+p2. When P = p1+p2, the first term in ∂π
∂P

is equal to −[1−F2(p2)]v̄1f1(v̄1), which is negative. When P < p1+p2, the second term in ∂π
∂P

is equal to −
R p2
P−p1 v2f1(P−v2)f2(v2)dv2+

R p2
P−p1[1−F1(P−v2)−(P−v2)f1(P−v2)]f2(v2)dv2,

which is negative. ¥
Step 2 If Jm

1 ≥ 0 and (p1, p2, P ) is a mixed bundling schedule such that p2 + v1 <

P = p1 + v2, then there exists a pure bundling schedule which yields a higher profit than

(p1, p2, P ).

Proof of Step 2. Given P = p1 + v2, we have μ1 = 0, μ2 = [1 − F2(p2)]F1(P − p2),

μ12 = [1−F1(P−p2)][1−F2(p2)]+
R p2
v2
[1−F1(P−v2)]f2(v2)dv2. Since ∂π

∂P
= ∂μ2

∂P
p2+

∂μ12
∂P

P+μ12

and

∂μ2
∂P

= [1−F2(p2)]f1(P −p2),
∂μ12
∂P

= −[1−F2(p2)]f1(P −p2)−
Z p2

v2

f1(P −v2)f2(v2)dv2,

after rearranging we obtain

∂π

∂P
= −(P − p2)[1− F2(p2)]f1(P − p2) + [1− F1(P − p2)][1− F2(p2)]

+

Z p2

v2

[1− F1(P − v2)− Pf1(P − v2)]f2(v2)dv2

= [1− F2(p2)][1− F1(P − p2)− (P − p2)f1(P − p2)]

+

Z p2

v2

[1− F1(P − v2)− Pf1(P − v2)]f2(v2)dv2.

We can argue as in the proof of Step 1 to infer that each term in ∂π
∂P
is negative or zero.

Moreover, notice that if p2 > v2 then
∂π
∂P

< 0 because the second term in ∂π
∂P
is equal to

−
R p2
v2

v2f1(P − v2)f2(v2)dv2 +
R p2
v2
[1 − F1(P − v2) − (P − v2)f1(P − v2)]f2(v2)dv2, which is

negative. If conversely p2 = v2, then it is possible that
∂π
∂P
= 0 and that decreasing the price

of the bundle until v1 + v2 has no effect on π. In such a case, the profit under the initial

mixed bundling schedule coincides with v1+v2, but we know that the optimal pure bundling

schedule yields a profit higher than v1+ v2, and thus higher than the profit under the initial

mixed bundling schedule. Therefore, even in this case we can find a pure bundling schedule

which is superior to the initial mixed bundling schedule. ¥
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6.2 Proof of Proposition 2

Using the symmetry in the distributions and p1 = p2 = p, we obtain μ1 = μ2 = [1 −
F (p)]F (P − p), μ12 =

R p
P−p[1 − F (P − v2)]f(v2)dv2 + [1 − F (P − p)][1 − F (p)], and π =

2pμ1 + Pμ12. Therefore

∂π

∂P
= [1−F (p)][1−F (P−p)−2(P−p)f(P−p)]+

Z p

P−p
[1−F (P−v2)−Pf(P−v2)]f(v2)dv2.

In order for (p, P ) to be a mixed bundling schedule it is necessary that p < v̄ and P −p > v.

Hence the first term in ∂π
∂P
is negative since 1−F (p) > 0, and 1−F (P−p)−2(P−p)f(P−p) <

0 is equivalent to P − p+ J(P − p) > 0, which is satisfied since P − p > v, J(P − p) ≥ Jm,

and v + Jm ≥ 0; (ii) 1− F (P − v2)− Pf(P − v2) ≤ 0 is equivalent to v2 + J(P − v2) ≥ 0,
which is satisfied since v + Jm ≥ 0.

6.3 The case of P > p1 + p2

In the case of P > p1+ p2, we assume that the seller can monitor the buyer’s purchase such

that when she buys both objects she must pay P . This assumption is not needed to be

explicitly made when P ≤ p1 + p2 since the buyer prefers paying P to paying p1 + p2 when

she buys both objects.

For price schedules such that P > p1 + p2, we can argue as in Section 3 to find that a

buyer of type (v1, v2) buys only object 1 if and only if v1 ≥ p1, v2 < P −p1, v2 < p2−p1+v1;

buys only object 2 if and only if v2 ≥ p2, v1 < P − p2, v2 ≥ p2 − p1 + v1; buys the bundle if

and only if v1 ≥ P − p2, v2 ≥ P − p1. Moreover, without loss of generality we can restrict

to (p1, p2, P ) which satisfy p1 ≤ min{v̄1, P − v2}, p2 ≤ min{v̄2, P − v1},20 and P − p1 ≤ v̄2,

P − p2 ≤ v̄1.21

Hence

μ1 =

Z P−p2

p1

f1(v1)F2(p2 − p1 + v1)dv1 + [1− F1(P − p2)]F2(P − p1),

μ2 =

Z P−p2

p1

f1(v1)[1− F2(p2 − p1 + v1)]dv1 + F1(p1)[1− F2(p2)],

μ12 = [1− F1(P − p2)][1− F2(P − p1)],

20As in Section 3.
21If P − p1 > v̄2 (or P − p2 > v̄1), then μ12 = 0 because each type prefers buying only object 1 (only

object 2) to buying the bundle. However, the profit remains unchanged if M reduces the price of the bundle

to satisfy P = min{p1 + v̄2, p2 + v̄1}.
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and

∂μ1
∂P

= f2(P − p1)[1− F1(P − p2)],
∂μ2
∂P

= f1(P − p2)[1− F2(P − p1)],

∂μ12
∂P

= −f1(P − p2)[1− F2(P − p1)]− f2(P − p1)[1− F1(P − p2)].

Since ∂Π
∂P
= p1

∂μ1
∂P
+ p2

∂μ2
∂P
+ P ∂μ12

∂P
+ μ12, after rearranging we obtain

∂Π

∂P
= −(P−p1)f2(P−p1)[1−F1(P−p2)]+[1−F1(P−p2)−(P−p2)f1(P−p2)][1−F2(P−p1)].

We can argue as in the proof of Proposition 1 to conclude that each term in ∂Π
∂P
is negative

or zero. Moreover, if P −p2 < v̄1 then ∂Π
∂P

< 0 since the first term is negative. If P −p2 = v̄1,

then the second term in ∂Π
∂P
is −v̄1f(v̄1)[1−F2(P −p1)], which is negative unless P −p1 = v̄2.

In the case that P = p2 + v̄1 = p1 + v̄2, we have that ∂Π
∂P
= 0 at P = p2 + v̄1 = p1 + v̄2,

but ∂Π
∂P

< 0 for P slightly smaller than p2 + v̄1 = p1 + v̄2. This makes reducing P strictly

profitable.

In the case that v1, v2 are i.i.d., we have

∂Π

∂P
= [1− F (P − p)− 2(P − p)f(P − p)][1− F (P − p)].

By the virtue of the same argument used in the proof of Proposition 2, v + Jm ≥ 0 implies
that 1−F (P −p)−2(P −p)f(P −p) < 0, and thus ∂Π

∂P
< 0 if P −p < v̄. If instead P −p = v̄,

then ∂Π
∂P
= 0 for P = p+ v̄, but ∂Π

∂P
< 0 for P slightly smaller than p+ v̄.

6.4 Proof of Proposition 3

It is convenient to define γ ≡ −u(v), therefore−u(v1) is equal to γ−
R v1
v

q1(x)dx, a decreasing

function. We use π(γ, q1) to denote the profit of M in (3) as a function of (γ, q1) and prove

that π is maximized with respect to q1 at q1 = qpb1 , with qpb1 defined as follows: qpb1 (v1) = 1

for each v1 ∈ [v, v̄]. The superscript pb means pure bundling.
The proof is split in three steps. The first two steps establish that M can restrict his

attention to values of γ in the interval [v, v̄]. The third step proves that the optimal γ is

relatively close to v, and this implies that the optimal q1 is q
pb
1 .

Step 1: It is suboptimal to choose γ < v

If γ < v, then −u(v1) < v1 and F (max{v1,−u(v1)}) = F (v1) for any v1 ∈ [v, v̄]. Hence

π(γ, q1) =

Z v̄

v

[v1q1(v1) + γ −
Z v1

v

q1(x)dx]f(v1)[1− F (v1)]dv1,
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which is increasing with respect to γ. Therefore no γ smaller than v is optimal.

Step 2: Given (γ, q1) such that γ > v̄, there exists q̇1 such that π(v̄, q̇1) = π(γ, q1)

First notice that if −u(v̄) ≥ v̄, then no type participates, that is F (max{v1,−u(v1)}) = 1
for any v1 ∈ [v, v̄]. Therefore π(γ, q1) = 0 = π(v̄, q̇1) with q̇1 such that q̇1(v1) = 0 for each

v1 ∈ [v, v̄].

If−u(v̄) < v̄, then pick v̇ ∈ (v, v̄) such that−u(v̇) = v̄ and let q̇1(v1) ≡

⎧⎨⎩ 0 if v1 ∈ [v, v̇]
q1(v1) if v1 ∈ (v̇, v̄]

.

The equality π(v̄, q̇1) = π(γ, q1) holds because the set of participating types and the payment

of each participating type are the same in the two cases.

Step 3: If (4) and (5) are satisfied for some β > 1, then π is maximized at

(γ, q1) such that q1 = qpb1

The proof of this step is split in three substeps. First we define a function π̃(γ, q1) such that

π(γ, q1) ≤ π̃(γ, q1) and π(γ, qpb1 ) = π̃(γ, qpb1 ), and then we prove that π̃ is maximized with

respect to q1 at q1 = qpb1 . Since π(γ, q1) ≤ π̃(γ, q1) and π(γ, qpb1 ) = π̃(γ, qpb1 ), it follows that

also π is maximized with respect to q1 at q1 = qpb1 .

Step 3.1: The definition of π̃(γ, q1) In view of Steps 1-2, we assume that γ belongs to

[v, v̄], and we let v̂ ∈ [v, v̄] be such that−u(v1) ≥ v1 for v1 ∈ [v, v̂], −u(v1) < v1 for v1 ∈ (v̂, v̄];
hence F (max{v1,−u(v1)}) = F (−u(v1)) if v1 ∈ [v, v̂], and F (max{v1,−u(v1)}) = F (v1) if

v1 ∈ (v̂, v̄]. Therefore

π(γ, q1) =

Z v̂

v

[v1q1(v1)−u(v1)]f(v1)[1−F (−u(v1))]dv1+
Z v̄

v̂

[v1q1(v1)−u(v1)]f(v1)[1−F (v1)]dv1.

Let v∗ ≡ 1
2
(v + γ) and notice that v∗ = v̂ if q1(v1) = 1 for each v1 ∈ (v, v̂], but v∗ < v̂ if

q1(v1) < 1 for some v1 ∈ (v, v̂]. A related remark is that −u(v1) ≥ γ − (v1 − v) = 2v∗ − v1

for v1 ∈ [v, v∗], and −u(v1) ≥ v1 for v1 ∈ (v∗, v̂]. Define π̃(γ, q1) as follows:

π̃(γ, q1) ≡
Z v∗

v

[v1q1(v1) + γ −
Z v1

v

q1(x)dx]f(v1)[1− F (2v∗ − v1)]dv1

+

Z v̄

v∗
[v1q1(v1) + γ −

Z v∗

v

q1(x)dx−
Z v1

v∗
q1(x)dx]f(v1)[1− F (v1)]dv1.

Since v1q1(v1)− u(v1) = v1q1(v1) + γ −
R v1
v

q1(x)dx > 0,22 we have π(γ, q1) ≤ π̃(γ, q1).

22Precisely, v1q1(v1) + γ −
R v1
v

q1(x)dx =
R v1
v
[q1(v1)− q1(x)]dx+ vq1(v1) + γ, which is positive since q1 is

increasing and γ ≥ v > 0.
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Step 3.2: If (4) is satisfied for some β > 1 and 1− 1
2β
+ 1

2β
[F (v∗)]2 ≥ F (γ), then π̃ is

maximized with respect to q1 at q1 = qpb1 Consider q1(v1) for v1 ∈ [v∗, v̄], which affects
π̃ only through the termZ v̄

v∗
[v1q1(v1)−

Z v1

v∗
q1(x)dx]f(v1)[1− F (v1)]dv1. (6)

Integration by parts yields
R v̄
v∗

R v1
v∗ q1(x)dxf(v1)[1−F (v1)]dv1 =

£
−1
2
[1− F (v1)]

2
R v1
v∗ q1(x)dx

¤v̄
v∗
+R v̄

v∗
1
2
[1 − F (v1)]

2q1(v1)dv1 =
R v̄
v∗

1
2
[1 − F (v1)]

2q1(v1)dv1, thus (6) is equal to
R v̄
v∗{v1f(v1)[1 −

F (v1)]− 1
2
[1−F (v1)]2}q1(v1)dv1. From (4) it follows that v1f(v1)[1−F (v1)]− 1

2
[1−F (v1)]2 ≥

1
2
(1 − F (v1))(2β − 1 + F (v1)) ≥ 0, and therefore it is optimal to set q1(v1) = 1 for any

v1 ∈ [v∗, v̄].
Now consider q1(v1) for v1 ∈ [v, v∗), which affects π̃ only through the termZ v∗

v

[v1q1(v1)−
Z v1

v

q1(x)dx]f(v1)[1− F (2v∗ − v1)]dv1 −
Z v∗

v

q1(x)dx
[1− F (v∗)]2

2
. (7)

Let Ψ(v1) ≡
R v1
v

f(x)[1− F (2v∗ − x)]dx, for v1 ∈ [v, v∗], and findZ v∗

v

Z v1

v

q1(x)dxf(v1)[1− F (2v∗ − v1)]dv1 =

∙
Ψ(v1)

Z v1

v

q1(x)dx

¸v∗
v

−
Z v∗

v

Ψ(v1)q1(v1)dv1

=

Z v∗

v

[Ψ(v∗)−Ψ(v1)]q1(v1)dv1

=

Z v∗

v

Z v∗

v1

f(x)[1− F (2v∗ − x)]dxq1(v1)dv1.

Therefore (7) is equal to
R v∗
v
{v1f(v1)[1 − F (2v∗ − v1)] −

R v∗
v1

f(x)[1 − F (2v∗ − x)]dx −
[1−F (v∗)]2

2
}q1(v1)dv1.

From (4) it follows that

v1f(v1)[1− F (2v∗ − v1)]−
Z v∗

v1

f(x)[1− F (2v∗ − x)]dx− [1− F (v∗)]2

2

≥ β[1− F (2v∗ − v1)]−
Z v∗

v1

f(x)[1− F (2v∗ − x)]dx− 1
2
[1− F (v∗)]2 ≡ λ(v1),

and λ is an increasing function. Since we have

λ(v) = β[1− F (γ)]−
Z v∗

v

f(x)[1− F (2v∗ − x)]dx−
Z v̄

v∗
f(x)[1− F (x)]dx

and

−
Z v∗

v

f(x)[1−F (2v∗−x)]dx−
Z v̄

v∗
f(x)[1−F (x)]dx = −1+

Z v∗

v

f(x)F (2v∗−x)dx+
Z v̄

v∗
f(x)F (x)dx
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≥ −1 +
Z v∗

v

f(x)F (v∗)dx+
1

2
− 1
2
[F (v∗)]2 =

1

2
[F (v∗)]2 − 1

2
,

we infer that

λ(v) ≥ β − 1
2
− βF (γ) +

1

2
[F (v∗)]2 ≡ βκ(γ).

Therefore q1 = qpb1 maximizes π̃ as long as κ(γ) ≡ 1− 1
2β
+ 1
2β
[F (1

2
v+ 1

2
γ)]2−F (γ) is positive

or zero. It is immediate that

κ(v) = 1− 1

2β
> 0 > κ(v̄) = − 1

2β
{1− F [(

1

2
v +

1

2
v̄)]2}.

Step 3.3: If (4) and (5) are satisfied for some β > 1, then the optimal γ is such

that 1 − 1
2β
+ 1

2β
[F (v∗)]2 ≥ F (γ) We prove that if γ is such that κ(γ) < 0, then ∂π̃

∂γ
< 0.

This reveals that the optimal γ satisfies κ(γ) ≥ 0.23 After rearranging we find

∂π̃

∂γ
=

1

2
[1− F (v∗)]2 −

Z v∗

v

{[v1q1(v1) + γ −
Z v1

v

q1(x)dx]f(2v
∗ − v1) + F (2v∗ − v1)− 1}f(v1)dv1

≤ 1

2
[1− F (v∗)]2 −

Z v∗

v

[γf(2v∗ − v1) + F (2v∗ − v1)− 1]f(v1)dv1.

In addition, we have Z v∗

v

γf(2v∗ − v1)f(v1)dv1 > β

Z v∗

v

f(2v∗ − v1)dv1

= β

Z γ

v∗
f(x)dx = βF (γ)− βF (v∗) > β − 1

2
− βF (v∗) +

1

2
[F (v∗)]2

where the first inequality follows from (4) and γ > v∗, the first equality is obtained by using

the substitution x = v + γ − v1 and the last inequality holds since κ(γ) < 0. Moreover,

F (2v∗ − v1) ≥ F (v∗) for v1 ∈ [v, v∗]. Therefore

∂π̃

∂γ
<

1

2
[1− F (v∗)]2 −

∙
β − 1

2
− βF (v∗) +

1

2
[F (v∗)]2 + [F (v∗)]2 − F (v∗)

¸
= − (1− F (v∗)) (β − 1− F (v∗)) .

The last expression is negative or zero since F (v∗) ≤ F (1
2
v + 1

2
v̄) ≤ β − 1 by (5).

23In order to evaluate ∂π̃
∂γ we use the result that the optimal q1(v1) is equal to 1 for v1 close to v

∗. This

follows from the proof of Step 3.2, since λ(v1) > 0 for v1 close to v∗.
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Figure 1: Illustration of the proof of Proposition 1.


