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ABSTRACT

A model M is said to encompass another model NV if the former can explain
the results obtained by the latter. In this paper we propose a general notion of
encompassing which covers both classical and Bayesian viewpoints and essentially
represents a concept of sufficiency among models. We introduce the parent notion
of specificity which aims at measuring lack of encompassing. Tests for encompass-
ing are discussed and the test statistics are compared to Bayesian posterior odds.
Operational approximations are offered to cover situations where exact solutions
cannot be obtained.

RESUME

Un modele M enveloppe un modele A si les résultats obtenus par le sec-
ond modele peuvent étre expliqués par le premier. Dans cet article, nous pro-
posons une notion générale d’enveloppement essentiellement considérée comme
une propriété d’exhausitivité entre modéles. Nous introduisons alors la notion de
spécificité comme mesure du défaut d’enveloppement. Des tests d’enveloppement
sont présentés et comparés aux procédures de choix de modeles fondées sur les prob-
abilités a postériori de modeles (‘Posterior odds’). Des approximations opérationnelles
sont enfin proposées pour analyser des situations dans lesquelles les solutions ex-
actes ne peuvent pas étre obtenues.
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1 Introduction

One ‘model’ M is said to encompass another ‘model’ NV if the former can account
for the results obtained by the latter. This notion has long been accepted as a
critical component of research strategies in most sciences. Numerous applications
‘0 the econometric literature include investigations of the implications of each of a
series of models for the others. Recent developments in econometrics have opened
the way to formalizations of the notion of encompassing (see inter alia Hendry and
Richard [20], [22], Mizon [27], Mizon and Richard [28], Florens and Mouchart [11],
[12], Florens, Mouchart and Rolin [13], and Govaerts, Hendry and Richard [19].
The object of this paper is to build upon these earlier contributions and to propose
a rigorous and general definition of encompassing, which can accommodate clas-
sical and Bayesian viewpoints, parametric, semi-parametric and non-parametric
procedures and which, in line with recent econometric developments, does not
require the models under consideration to be correctly specified.

Formal definitions are offered below, but a brief heuristic discussion helps set
the scene for our analysis. First, we distinguish between the data generating pro-
cess (DGP) and an inference procedure (IP). The DGP is the actual mechanism,
conceptualized as a class of sampling probabilities P = {PG,O € @} on a mea-
surable sample space (S,S). © is a set of ‘parameters’ (possibly functional ones)
indexing P but the analysis does not require the DGP to be specified in full. For
example, P might consist of the set of all independent identically distributed (iid)
probability measures admitting a preassigned number of moments. IPs are pro-
cedures which are designed to draw inferences on functions of @ valued in a set
A (which is typically of lower dimensionality than © itself). Examples are esti-
mators, i.e. functions from S into A, and posterior distributions, i.e. probability
measures on (A, A) conditional on the elements of S. IPs may be associated with
a maximization criterion (maximum likelihood or generalized method of moments)
or follow from the application of Bayes theorem to an auxiliary sampling model,
which is typically ‘mis-specified’ relative to the DGP.

Encompassing is reinterpreted as a concept of sufficiency between IPs, ‘dual’
to that of sufficiency among sampling processes. An IP M encompasses another
IP N if the results derived from N can be reproduced within M without requiring
further processing of sample information, beyond that already associated with M,
i e. if the results of N are ‘contained’ in those obtained from M.

We introduce the concept of exact encompassing applicable to finite sample
situations. A procedure M from S to A exactly encompasses a procedure N from
S to B if there exists a pseudo-true value A from A to B such that N = Ao M.
Depending on the context, A could be a function or, more generally, a transition
probability. The transformation A generalizes the usual concept of pseudo-true
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value, as defined e.g. in Huber [23], Sawa [31], White [33] or Gouriéroux, Monfort
and Trognon [18], and provides a reinterpretation of an estimated parameter b € B
(implicitly) associated with NV in terms of an estimated parameter a € A associated
with M.

Limiting arguments lead to a concept of asymptotic encompassing. At this
level, we retrieve the heuristic notion that ‘valid’ models on S, including the DGP
itself, encompass all estimation procedures on S.

In general, exact encompassing will not hold, so we introduce a concept of
specificity, dual to that of deficiency among sampling processes: see Lecam [26]
and Cziszar [7]. Various measures of the specificity of N relative to A o M are
considered. Of special interest are measures associated with conventional IPs,
such as maximum likelihood (ML) estimation or Bayesian inference. Insofar as
such measures depend on the sample s € S, they are interpreted as measures
of ‘conditional’ specificity (and are instrumental in the construction of a variety
of encompassing test statistics). Unconditional measures of the specificity of N
relative to A o M are defined as expectations of conditional specificity measures
and require the introduction of a probability measure P2 on (S,8). Though the
concept of (unconditional) specificity is generic, specific choices for P¢ depend upon
the underlying mode of analysis (classical versus Bayesian, parametric versus non-
parametric,...).

Naturally, we have to discuss the selection of a pseudo-true value for the pur-
pose of measuring specificity when exact encompassing does not hold. Different
viewpoints will be considered. The heuristic notion of using a transition A which
minimizes the specificity of N relative to Ao M typically leads to intractable func-
tional optimization problems. The use of an asymptotic pseudo-true value often
leads to major simplifications. Other choices based on asymptotic properties are
also available.

One semantic issue requires clarification. As already discussed, encompassing
and specificity fundamentally relate to ‘results’ (i.e. inference procedures) rather
than to the underlying models themselves. This is true, in particular, for a model
N to be encompassed, since N is inherently ‘mis-specified’ from the viewpoint of
the encompassing model M. In other words, NV is essentially instrumental in the
selection of an IP NV whose outcome has to be accounted for within the context of
an IP M associated with M. As far as M is concerned, however, concepts such as
unconditional specificity necessitate the introduction of a probability measure on
(5,8) whose choice is paired with that of M itself. To avoid constant reference to
that distinction and to facilitate comparisons with earlier contributions, we discuss
encompassing and specificity in terms of ‘inferential models’, i.e. in terms of pairs
consisting of a sampling probability and an inference procedure, notwithstanding
the fact that the former might serve no other purpose than that of rationalizing



Encompassing and Specificity: an heuristic approach 6

the selection of the latter.

The paper is organized as follows: section 2 provides an heuristic introduction
to the concepts of encompassing and specificity, first from a classical viewpoint and
then from a Bayesian perspective; technical concepts such as transition probabili-
ties, inferential models and sufficiency are introduced in section 3: the concept of
‘exact’ encompassing is analyzed in section 4; lack of encompassing or specificity is
discussed in section 5, together with related issues such as encompassing tests and
a comparison between encompassing and model choice; section 6 considers asymp-
totic encompassing; approximate solutions to the frequently intractable concept of
specificity are offered in section 7; the various concepts discussed in the paper are

applied to the ‘choice of regressors’ problem in section 8 and section 9 concludes.

2 Encompassing and Specificity: an heuristic ap-

proach

To provide intuition for the formal definitions offered in the rest of the paper, we
discuss encompassing and specificity at an heuristic level, first from a sampling
theory viewpoint and then from a Bayesian perspective. Technical conditions -

such as regularity conditions - are omitted for ease of discussion.

2.1 Classical Estimation

The relevant notation is collected in table 1.

Table 1: Classical notation

[ Model M N
parameter a€A be B
sample s€S
sampling density p(s|a) q(s|b)
estimators a(s) b(s)
pseudo-true value Bla)
estimated model | M = (M, ) N = (W, b)

We first discuss finite sample situations and say that M exactly encom
if there exists a function 3 : A — B such that:

b(s) = B(a(s)) s-almost surely

relative to p(s|a), in which case b can be obtained directly fro
processing of s. Condition (2.1) is strong

circumstances.

and is only expected to hold under special

m & without further
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Example 2.1: Let § = {yi € R i = 1,...,71} consisting of n iid draws from

N2 (a,X) with ¥ = (0y;) known. The ML estimator of a is given by the sample

mean, a(s) = §. Under NV, the mean vector a’ is replaced by (b:0). The ML

estimator of b in V is given by b( ) = ®'¥ when «' = = (1 : 012/092) is known. Then

M exactly encompasses N with B(a) = n'a |
Exact encompassing in the sense of (2.1) has two key characteristics:

(1) it is a transitive concept;

(ii) it is a relationship among estimators or, if models and estimators are paired
through estimation principles (such as ML in example 2.1), among estimated
models, not among the models themselves.

That (2.1) holds for example 2.1 is obviously related to the fact that A is ‘nested’
within M but only because ML estimators preserve nesting. There exist estima-
tors, such as sample medians, for which (2.1) does not hold even though A is
nested within M. It is in order to avoid such confusion that encompassing and
specificity are discussed in terms of estimated models, notwithstanding the deeper
motivation that the main usage of a concept such as encompassing has always been
one of accounting for ‘results’ or ‘findings’. Thus, although exact encompassing is
related to parsimonious encompassing (see [22]), the two concepts do not coincide.

If, as expected in most cases, (2.1) does not hold, we consider measuring a
‘divergence’ between b(s) and B(a(s)) for a given pseudo-true value A, whose
choice is discussed below. For example, if A and B are finite dimensional Euclidean
spaces, we can use a norm such as:

drr () = [b(s) = B(@(s))] H [b(s) - B (a(s)) (2.2)

where H is a matrix function of s. This expression will be interpreted as a measure
of the ‘conditional specificity’ of NV relative to M with respect to 8 and can be
used as a statistic for testing the hypothesis that M (asymptotically) encompasses
N or, in light of the discussion which follows, for testing the ‘validity’ of M (in
the direction of V).

A measure of the ‘unconditional specificity’ of A relative to M is obtained by
taking the expectation of dy in (2.2) with respect to s under M. It depends on 3
and we naturally consider selecting a # which minimizes the specificity of A relative
to M, though other criteria based, in particular, on asymptotic considerations may
lead to more operational expressions.

Within the context of (pseudo) ML estimation, an alternative measure of the
conditional specificity of N relative to M is:

/log B~ S)) p(t|a)dt (2.3)
q(tB(a(s)))
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Minimizing dy, with respect to § for all s is equivalent to solving the minimization
problem:

B(a) = arginin/ log [1—;%(;—;] p(sla)ds (2.4)

whose solution is given by the classical pseudo-true value associated with pseudo
ML estimation.

We now briefly discuss the asymptotic case. Index the estimators by the sample
size n and let n tend to infinity. Consider first the limiting form of (2.1) on
M. Let a = plim,_.o, @n(s) and B(a) = plim,_ b,(s) on M. Then (2.1) holds
asymptotically on M with 3 being a classical pseudo-true value. However, in
contrast to exact encompassing, asymptotic encompassing is not transitive. The
contradiction is only apparent and arises from the fact that while the finite sample
distribution of @,(s) on M and b,(s) on N are typically ‘equivalent’ (i.e. have
common null sets) which suffices to ensure the transitivity of (2.1), their limiting
distributions are mutually ‘singular’.

Insofar as M (as well as N) is expected to be mis-specified relative to the
DGP P, we can usefully examine the limit of (2.1) on P rather than on M. Let
a(f) = pliman(s) and b(0) = plimb,(s) on P. Asymptotic encompassing now
requires the existence of a function /3 such that b(8) = B(a()) for all fs, and
so is not expected to hold in general. However, if (i) A C ©; (ii) a(f) = a and
(iii) b() = B(a), then M asymptotically encompasses N relative to the usual
pseudo-true value. We retrieve the heuristic notion that the (estimated) DGP
(or any ‘valid’ reduction of it which is ‘sufficient’ relative to ./\7) asymptotically
encompasses all rival models. This property sustains the use of encompassing tests
for the ‘validity’ of M in the direction of N.

2.2 Bayesian inference

The notation in table 2 complements that in table 1.
Table 2: Bayesian notation

Model M N

Prior density p(a) v(b)

Joint density (s, a) x(s,b)
Predictive density p(s) q(s)
Posterior density u(als) v(bls)
Transition density 5(bla)

Inferential model | M = (M, u(als)) N = (N, v(b]s))

The Bayesian extension of (2.1) is straightforward. We say that M exactly
encompasses A if there exists a conditional (transition) density &(bla), independent
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of s, such that:!

u(b|s)=/A,u(a|s)5(b|a)da s—a.s. (2.5)

Example 2.1 (continued): Let the relevant prior densities be a ~ N, (aO,Hal)

and b~ N; (bo, lo—l). Let H = X7 = (h;;). The corresponding posterior densities
are als ~ N (a., H') and b|s ~ Ny (b, I71), where:

H,. = Ho + nH Ay = H:l [TZHS’ + Hoao]
I, =1+ nhy be = 171 [n(h11 ¢ Ra2)F + lobo)

and §' = (7, : J2). Finally, let bla ~ N;(n'a, v?). Condition (2.5) holds if #’a, = b,
and v+ w'H'm = (71, s-almost surely, i.e. if:

(i) =" = 171(h3; : Ay)
(11) Zobo = (h?l : h?2)ag
(i) v? = [2(Io — h,)

which requires in particular that lo > A9,. If y(a) and v(b) are mutually ‘consistent’
with the nesting of V' within M, i.e. if v(b) coincides with u(a;|a; = 0), then
lo = R{; and by = (1 : A{7'AY,)ae so that conditions (i)-(iii) are verified with
v? = 0 and « = (1 : A} k). If u(a) and v(b) are ‘non-informative’ in the
sense that Ho = 0 and I = 0, then conditions (i)-(iii) still hold with v? = 0 and
7' = (1 : h{j'h12) in which case §(b|a) collapses to a Dirac transition probability
on the classical pseudo-true value 3(a). ]

The comments made earlier extend to the Bayesian case. Classical pseudo-true
values which are functions from A4 to B are now replaced by Bayesian pseudo-true
values which are transition probabilities from A to (B, B). The Bayesian concept
of encompassing calls for a number of additional comments.

First, (2.5) involves two parameters (a, b) and one statistic s. Consider instead
two statistics (s,?) and one parameter q, and substitute (s, ¢, a) for (a, b, 8) in (2.5),
adjusting notation to eliminate ambiguities. This substitution yields the following
formula:

a(tla) = [ plsla)A(tls)ds (26)

where ¢ denotes the sampling density of ¢ and \ is a conditional density for t,
given s, independent of a. Then (2.6) corresponds to a version, expressed in terms

'Requiring (2.5) to hold s-almost surely is tantamount to requiring that s be independent of
b, conditionally on a. As discussed below, that condition makes sense from the viewpoint of M.
It does not contradict the ‘likelihood principle’, whereby all inferences should be conditional on
the actual sample s.. As discussed in section [5] Bayesian tests of whether or not (2.5) holds
are evaluated at s.. Moreover, requiring (2.5) to hold only at s. would empty the concept of
encompassing of meaning since it would be trivially satisfied by the transition é(b|a, 5,) = v(b|s.).



Encompassing and Specificity: an heuristic approach 10

of density functions, of the definition of sufficiency (among statistics) defined by
Blackwell [5], [6]. The ‘duality’ between (2.5) and (2.6) sustains our interpretation
of encompassing as a notion of sufficiency among models.

Secondly, the conditional density 6(bla) de facto generates an extension of the
joint density 7 on 5 X A associated with M, into a density 7" on S x A x B such
that 7 is a marginal of 7, thereby preserving all the features of M. The density

r(s,a,b) = [p(sla) p(a)]6(bla)
= [u(als)p(s)] 6(bla)

Let the superscript * denote marginal and conditional densities associated with 7~.

x* is defined as:

(2.7)

In particular, the sampling distribution associated with 7~ is:

p* (sla,b) = p(sla) (2.8)

so that m* incorporates the assumption that a is a sufficient parameterization
(i.e. that s and b are independent conditionally on a), an assumption which is
largely implicit in the formulation of M by its proprietor. Under 7*, the posterior
distribution of b is given by:

v (bls) = /A u(a|b)8(bla)da (2.9)

Hence, (2.5) essentially requires that the ‘actual’ posterior density v(b|s), as ini-
tially obtained within N, coincides with the ‘derived’ posterior density v*(bls),
which is obtained within M via the transition 6(+)

Extensions of the concept of specificity to the Bayesian case are fairly straight-
forward and are discussed below within a general framework. Again the issue arises
of which transition & (-) ought to be used for the purpose of measuring specificity.
A strict decisional approach would require that the proprietor of M be capable of
eliciting a genuine joint prior on a and b, wherefrom & (-) would follow by condi-
tioning. Such an exercise is demanding and requires a thorough understanding of
the (stochastic) relationship between a and . Further, it generates a measure of
specificity which is problem dependent. Our objective is to evaluate M relative
to N without recourse to such complex elicitation exercises. Hence we propose
instead to select a transition 6 (+) which minimizes the predictive expectation of an
appropriate measure of divergence between v(b|s) and v(bls). Specificity is then
defined as a lower bound to the expected divergence between v(b|s) and v*(bls)

25 similar problem arises in the Bayesian literature on model choice and is often ‘addressed’
by assuming prior independence between a and b. This default option is unsatisfactory as it is
incompatible with the concept of encompassing. The relationship between measures of specificity
and posterior odds is formally investigated in section 5.5.
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and is meant to measure some ‘irreducible divergence’ between M and N.3 This
notion of a minimal expected divergence is precisely that which has already been
used at a dual level for the purpose of measuring lack of sufficiency, i.e. deficiency
in the terminology of Lecam [26] and Cziszar [7].

Finally, measures of divergence between v(b|s) and v*(b|s) are functions of
the actual sample s. Hence any such measure can be used for the purpose of
constructing a Bayesian test of whether or not M encompasses N, following the
testing principles discussed in Florens and Mouchart (12]. Specifically, we can
use the predictive densities associated with M and N respectively as null and
alternative hypotheses to evaluate the ‘significance’ of the actual encompassing
test statistics. Additional details are provided in section 5.4.

2.3 Comments

It should now be clear that the classical and Bayesian concepts of encompassing
have much in common. In fact, there exists a technical concept which can rec-
oncile both viewpoints, namely that of a transition probability. The adoption of
that concept, which entails rephrasing the analysis in terms of a more abstract
probability framework, generates additional advantages: by focusing attention on
the deeper probability structure of the competing models, it eliminates several
side issues that may create confusion in a less general framework (non-uniqueness
of the parameterization associated with any given model, redundant parameters,
singular distributions, and so on).

3 Preliminaries

To be self-contained, we next describe the technical concepts used in the rest
of the paper. Details can be found e.g. in Neveu [29], Dellacherie and Meyer
(9], and Florens et al. [13] whose (Bayesian) framework is ideally suited to the
object of our paper. The reader may wish to skim through section 3.1 since a
thorough understanding of notation is only required for proofs. Understanding
our definitions and the main results essentially requires familiarity with formula
(3.9) below or, for heuristics, with its density counterpart, as given in (3.12).

%In line with the recent literature on Bayesian robustness, as discussed e.g in Berger [1] or
Lavine [25], we could alternatively consider computing lower and upper bounds to measures
of divergence between v(b[s) and v*(b|s) within a given class of transition probabilities. This
suggestion will not be investigated further in the present paper but belongs to our research
agenda.
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3.1 Transition probabilities

The concept of transition probability (equivalently Markov kernel or random func-
tion) is central to the argument. Hence, we summarize its main properties using
the notation in Neveu [29](section IIL2) to which the reader is referred for more
details. A short-hand notation will be introduced at the end of this section. Let
(U,U), and (V,V) denote two measurable spaces. Let ] and [V]e denote the
corresponding sets of bounded random variables.!

Definition 3.1. A transition probability is a function:®
AU XV = [0,1]; (u,Y) — A(u,Y) (3.1)

which has the following properties:
(i) Yu € U, AY(u,") is a probability on (V,V);
(i) VY €V, AY(-,Y) is U-measurable.
We make use of the following properties of transition probabilities:
(i) To every pair consisting of a probability Py on (U,U) and of a transition prob-

ability AY on U x V, we can associate a probability Ilygy on the product space
(UxV,U®YV) and a probability Qv on (V,V), respectively defined by:

VXeUYeV, Mug(XxY)= /\' AU (u, Y) Pry( ) (3.2)
VY eV, Qu(Y)= /U AY(u, Y) Py (due) (3.3)

(ii) To every pair consisting of a random variable y € [V]e and of a transition
probability AY on U x V, we can associate a random variable z € [V]o defined as:

Vuel, z(u)= /Vy(v)Aﬁ(u,du) (3.4)

(iii) To every pair consisting of a transition probability A§ on UxV and a transition
probability A}y on V x W, we can associate a transition probability %}, on U x W
defined as:

VZeW, T%(u,Z)= ]V A, (v, Z)AY (u, dv) (3.5)

In the rest of the paper, we use a short-hand notation taken from Florens et
al. [13](Ch.0) which leads to the following reformulation of formulae (3.3)-(3.5):

VY €V, Qu(Y)= L AY(Y)dPy (3.6)

4The restriction to bounded random variables is introduced for convenience, since such vari-
ables are integrable under any probability measures. In practice, we will consider much larger
classes of random variables depending on the specific probability measures which are being used.
5The notation AL\f is adopted to emphasize the measurability requirement.
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— U -
= /V ydAY (3.7)
VZew, TI¥%(Z)= /V AY(Z)dAY (3.8)

Hence, the notation AY covers several usages: it represents either the transition
probability itself, or a mapping from a set of probabilities on (U,U) onto a set
of probabilities on (V,V) as in (3.6), or a mapping from (V] onto [U], as in
(3.7). However, no ambiguity should arise from this multiplicity of usages since,
in particular, formulae such as (3.6)-(3.8) are unequivocal.

The third interpretation, whereby (3.7) asserts that z € [U]s is the image of
Yy € [V]s by the mapping AY, offers the advantage that (3.8) then corresponds to
the usual composition for mappings. Specifically:

If 2=A%y) and y= AYy(z), then z = % (2)

with
% = Ao A), (3.9)

A proof that (3.8) and (3.9) are equivalent relies upon monotone class arguments
and is found e.g. in Dellacherie and Meyer [9]. The more compact formulation
(3.9) is used in the rest of the paper.

Under suitable dominance arguments,® we can associate bimeasurable density
functions with transition probabilities and, for example, rewrite (3.6)-(3.8) in terms
of densities as:

g(v) = /U A(v]u)p(t)du (3.10)
m(u):/vy(v)/\(vlu)dv (3.11)
7(w[u)=/V6(w[v)/\(v|u)du (3.12)

Such reformulations are useful for heuristic arguments but not for formal proofs.
One class of transition probabilities which plays an important role in the analy-
sis of the limiting behavior of posterior distributions is the class of Dirac transition

®A transition probability AY is said to be dominated if there exists a o-finite measure on
(V, V) such that for all u € U, A%(u, ) is dominated by that measure. Under suitable regularity
conditions (see Florens et al. [13], theorem 0.3.19), there will exist a bimeasurable function
Alu, v) such that:

A%(u,Y):/Y/\(u,v)dv

where the integration is relative to the dominant measure. For notational convenience, we shall
not introduce an additional symbol to denote the dominant measure.
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probabilities. Specifically let A: (U,U) — (V,V) be a U-measurable function. The
corresponding Dirac transition probability is defined as:

0 ifMu)¢Y

1 iAW) EY (3:13)

YuelU, VYeV, DY,(uY)= {

3.2 Inferential models

To discuss sufficiency and encompassing in parallel, we need two sample spaces
and two parameter spaces. The notation is shown in Table 3.
Table 3: Inference Notation

Parameters Samples
Outcomes a€A be B seS teT
Events Ge A FeB Xes YeT
Random Variables | g € [Alo | f € [Bloo | 2 €[Sl | Y € [T

A classical experiment is defined by a set of sampling probabilities indexed by
a parameter. Bayesian reasoning endows the parameter space with a o-field and
hence implicitly reinterprets sampling probabilities as transition probabilities.

Definition 3.2. A sampling model is a triple consisting of a measurable param-
eter space (A, A), a measurable sample space (S,8) and a transition (sampling)
probability PZ.

Definition 3.3. An inferential model My is a pair consisting of a sampling model
M and an estimation procedure M5.

Definition 3.4. A Bayesian inferential model MY, is a triple consisting of a sam-
ple model M, a prior probability pa and the corresponding posterior probability
M-
We consider two inferential models using the notation in table 4.
Table 4: Probability Notation

Sampling Model M = {(A,A),(S,8),P{} | N = {(B,B),(T,T),Q%}

Prior Probabilities LA Vg

Joint Probabilities Mags or II XB&T OF X
Predictive Probabilities Ps Qr
Posterior Probabilities Iy vE
Estimation Procedures M35 NE

Inferential Models My = (M, M3) Ny = (W, NE)
Bayes Inferential Models M = (M, pa, p3) N4 = (N, vs,vE)
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This notation is used in the following ‘dual context’:”

(i) The concept of sufficiency applies to a pair of sampling models sharing a
common parameter space (A = B) and, as shown in section 3.3, specifically
relates the two sampling probabilities P# and Q%.

(i) Encompassing applies instead to a pair of models sharing a common sample
space (S = 7T') and relates together two arbitrary estimation procedures, say
M4 and Nj. Examples of estimation procedures are:

(a) Estimators: if @ : (5,8) — (4, A) is an ‘estimator’, then the Dirac measure
Di,a is an estimation procedure ;
b) Estimated sampling distributions: if an estimator & has a sampling distribu-
pung g

tion ¢(a), then ¢(d) defines an estimation procedure;
(c) Posterior distributions: if M is endowed with a prior density pa, then the
corresponding posterior density uS is an estimation procedure.

3.3 Sufficiency

The sufficiency concept to which encompassing is related by duality was introduced
by Blackwell [5], [6] and is extensively analyzed in Lecam [26]: also see Goel and |
DeGroot [16] and Torgensen [32]. The classical definition is: '

Definition 3.5. Let M and V' be two sampling models with a common parameter
space (A = B). M is sufficient for N' if and only if there exists a transition
probability A5 such that:
Q7 = PdoAS (3.14)
If, in a Bayesian framework, a common prior probability KA 1s associated with
the two sampling models, then the sufficiency condition has to hold U 4-almost
surely. More generally, definition 3.5 can be reformulated in several ways under
equivalent priors.® In particular, we can enlarge the sampling model M into a
sampling model M, whose sampling probability Pg.r is an ‘extension’ of P
defined such that:

(i) S is sufficient or, equivalently, 7 1LA|S (ie. 7 and A are independent,
conditionally on S) under M,;
(i) Pgyr|T restricted to T equals Q%.
See Florens et al. [13] for details and for discussion of the case where the two
sampling models are endowed with non-equivalent prior probabilities.

"Here, predictive probabilities are marginal probabilities for the data (i.e. ‘prior predictive’
probabilities) rather than conditional probabilities for out-of-sample data given actual data (i.e.
‘posterior predictive’ probabilities). The omission of ‘prior’ as a qualifier should not cause any
confusion.

8Two probabilities p and p' are equivalent if VA € A, p(A) =0~ py'(4) = 0.
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4 Exact Encompassing

4.1 General Definitions

Our baseline definition of exact encompassing is the dual of definition 3.5 and
applies to arbitrary estimation procedures. The two inferential models under con-
sideration share a common sample space. Hence, the notation in table 4 applies
with§=7.

As noted in the introduction, an important qualification applies to all defini-
tions and results which follow, namely that they assume identities that are con-
ditional on S (or on sub o-fields thereof) and are meant to be almost sure with
respect to a ‘reference’ probability P2on (S,S). The choice of P2, which essentially
serves to characterize the relevant null sets, often depends on the context. Natu-
ral choices are P# from a classical viewpoint or Ps from a Bayesian perspective.
In line with the recent econometric literature on ‘mis-specified’ models - see e.g.
Gouriéroux et al. [17] - we could also think of P2 as representing the underlying
DGP. '

Definition 4.1. Let My and N be two inferential models. M exactly encom-
passes Ny (on P2) if and only if there exists a transition probability Ay, called
the pseudo-true value of Ny within M, such that:

N§ =M3® A%, PJ - a.s. (4.1)

Lemma 4.1. If My exactly encompasses Ny (on Pg) with pseudo-true value
A#, if Ny exactly encompasses 0o = (0,0%) (on Q) with pseudo-true value AZ
and if P and Q% are equivalent, then My exactly encompasses Oo (on P2) with
pseudo-true value:

T4 = Ap o AG, Pg - as. (4.2)
Proof: Follows from (3.5). ‘ ]

Lemma 4.1 establishes that exact encompassing is transitive. If Ny is encom-
passed by My, its status need not be reexamined if My is later replaced by an

encompassing model Oo.

Example 4.1: The concept of parametric encompassing, as defined e.g. in Mizon
and Richard [28], applies to situations where the estimation procedures M $ and
Ng are Dirac measures associated with a pair of estimators, & and b respectively.
An additional restriction is imposed, namely that A% is itself a Dirac measure.
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Under these conditions, (4.1) simplifies to:

Vf € Bl Vs €S, f(bs) =N§(f) = / [Js fdag] dng

B . (4.3)
/f ))dMS = (£ 0 8) (a(s))

which is essentially formula (2.4) in Mizon and Richard [28] (when ¢ = 0). As
discussed in section 2.1 adopting a limiting viewpoint, whereby B(a) is a classical
pseudo-true value, results in a loss of transitivity. ]

The next example is phrased in terms of sampling distributions but its Bayesian
reformulation in terms of posterior densities is straightforward.

Example 4.2: Let & be an estimator which is Ny (a,%,) under M and b an
estimator which is N, (b, ;) under V. Let Ny (3, X;) and N, (b, Qg) be the corre-
sponding estimation procedures. We restrict attention to linear Gaussian transition

probabilities, so that
Af = N¢(Ca+c,V) (4.4)

Formula (4.1) then requires that there exist C,c and a symmetric positive semi-
definite matrix V such that Vs € $, b = Ca + ¢ and Q; = Cx;C +V. Insuch a
case, V measures the loss of efficiency when Ca+ ¢ is estimated by b in A instead
of Ca+cin M. |

The property of exact encompassing may be weakened in two non- mutually
exclusive directions:

(i) we may consider only a sub o-field of B consisting of events of special interest
within the context of V (partial encompassing);

(i) we may also condition the entire analysis on a sub o-field S consisting e.g.
of events relative to a set of ‘exogenous’ variables and, in particular, let the
pseudo-true values be conditional on that sub o-field.

Let By and S be sub o-fields of B and S respectively.

Definition 4.2. The inferential model My exactly encompasses the inferential
model Ny on By given Sy (on P2) if and only if there exists a transition probability
AA®S‘ such that:

Ng

1

= M50A5%%  Plas. (4.5)

Example 4.3: The conventional ‘choice of regressors’ problem typically takes the
form:

M: y=XB+u, u~N(0,0%;), BeR:, a=(g,0? (4.6)

N y=Zy+v, VNN(O,T2IT), v € R, b = (v,7?) (4.7)
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where X and Z are conditioning variables. Let B; and S; be the sub o-fields
associated with v and (X, Z) respectively. In their discussion of parametric en-
compassing, Mizon and Richard [28] use the Dirac transition measure associated
with the classical pseudo-true value, namely ¥3 = (Z'Z)"'Z'XP. Bayesian gener-
alizations are discussed in section 3.3. ]
Lemma 4.2. If M exactly encompasses Ny on By given S, (on P2) with pseudo-
true value A’[;‘?Sl, then M exactly encompasses N on any Bo given any So such

that Bo C By and 81 C So with pseudo-true value:

0

VF € By, ALS%(F) = /F dARSS Pas. (4.8)

Proof: F necessarily belongs to Bi and Aé?sl = A’éfbs" for any Sp such that
S; C So. ]

It is often the case that A is a product space with A = A4; ® Az and that the
inference procedure M$ accordingly factorizes such that:

M5, =M$ and MM =M, (4.9)

Definition 4.3. M} = (M, M3,) is a valid reduction of My on Sy if condition
(4.9) is satisfied.

Lemma 4.3. If M, exactly encompasses Ny (on P?) with pseudo-true value
A4, and if My isa valid reduction of My on Sy, then MY, exactly encompasses
Ny given & with pseudo-true value A“,;b@& given by:

AL®S = M oAg  Pg-as. (4.10)
Proof: Under (4.1) and (4.9) we have successively:
VFeB, N5(F) = / AA(F)ALS
= / AL84e (FYIMSEA dME,
= / ALSS (F)AMS, P -as.

|
Condition (4.9) is often associated with a factorization of the sampling probability

P into a marginal probability P¢ and a conditional one P#® in such a way
that:

P4 =P and PgS = P3O (4.11)

If, for example, M, is the posterior probability associated with the prior g4, then
(4.11) together with the prior independence condition Ay LL A, defines a global cut
in the terminology adopted by Florens et al. [13] and (4.9) follows.
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4.2 Bayesian exact encompassing

We now restrict attention to Bayesian inferential models. By taking advantage of
the relationship between the prior and posterior probabilities, we can derive ad-
ditional implications of exact encompassing. The two Bayesian inferential models
under consideration are denoted MY}, and V% respectively and the notation in
table 4 applies with 7 = S. Following (3.2) and (3.3), the two models are de facto
endowed with joint and predictive probabilities: (II, Ps) for M4, and (x, Qs) for
N} respectively. In the rest of this section, we proceed under the convention that
the reference probability is the predictive probability Ps associated with My

Definition 4.1 raises technical issues with the derivation of A§ when A and
B are not ‘distinct’, e.g. when they include common parameters. A Bayesian
reformulation of definition 4.1 which implicitly addresses these technicalities runs
as follows. Let © be a parameter space such that A € © and B C ©. Let ©
be endowed with the o-field A V B, defined as the smallest o-field generated by
AU B.

Theorem 4.1. M}, exactly encompasses N if and only if there exists a proba-
bility II* on {© x S,(AV B) ® S} such that:

(i) VG e A VX € §,II"(G x X) =II(G x X);

(i) Ng = N3, where N;° is the posterior transition derived from JIRF

(iii) B1LS| A under IT*.

Proof : See Appendix. |

If in particular B C A and y is the restriction of Il to B® S, then A is derived
from M by marginalization and conditions (i)-(iii) are satisfied with [I* = II. This
result formalizes the heuristic claim that if A’} is explicitly ‘nested’ within M,
then it ought to be encompassed by the latter.

Under the conditions of theorem 4.1, the two inferential models are nested
within a ‘super-model’ characterized by II* though they are not treated symmet-
rically. In particular, the restriction of IT* to B ® S need not coincide with x and,
hence Qs cannot be retrieved from IT*. In a number of contexts, such as that of
model choice and the analysis in Florens and Scotto [15], it may be desirable to
treat the two models symmetrically (except for the encompassing condition itself
which is inherently asymmetric). This is achieved by indexing the two models and
treating the index ¢ as an additional parameter. Let I = {1,2} and 7 = P(I). Let
¥ denote a probability on {1 x © x S, 7 ® (AV B)® S}. The necessary additional
notation is:

(i) o for the marginal probability of ¥ on (I,7);
(ii) Wlgs for the restriction of ¥ to A @ S, conditionally on i = 1;
(iii) \Il%@s for the restriction of ¥ to B ® S, conditionally on i = 2.
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Theorem 4.2. M}k, exactly encompasses N if and only if there exists a proba-
bility I1 on {I x © x $,T@ (AV B)® S} such that:

(i) a(s) > 0 for i =1,2;

(ii) ‘I’it&s =1II;

(iii) Yigs = X5

(iv) BLLS|A conditionally oni =1 and ALLS|B conditionally on 1 = 2;

(v) BLLT|S under ¥.

Proof: See Appendix. [ |

Condition (iv) simply states that A and B are ‘sufficient’ parameterizations
within their respective models. The nesting in theorem 4.2 is partially arbitrary
and hence is not unique. Generally, the as can be arbitrarily chosen as well as the
transition B x A which is implicit in the construction of a probability on (AV B)®
S, conditionally on ¢ = 2. Nevertheless, theorem 4.2 provides a formulation which
is convenient when the index i is itself a parameter of interest, as in the literature
on model choice. The relationship between encompassing and model choice is
discussed in section 5.5.

Bayesian exact encompassing relies upon the existence of a transition between
the posterior probabilities. An intriguing issue is whether or not it also implies the
existence of a transition between the sampling probabilities. A general answer to
that question is provided by the next theorem.

Theorem 4.3. Let M¥%, and N} be two Bayesian inferential models with equiva-
lent predictive probabilities. Let p denote a probability on AVB such that pa = pa
and pg is equivalent to vg. Let A# and K§ denote the corresponding conditional
transition probabilities. The following two conditions are equivalent:

(i) p is such that M}y exactly encompasses N with transition A%;

(i) p is such that:

; dv dP,
VX €S, /A PA(X)dKE = (ﬁ) /Y (ﬁ) dQ8 (4.12)

Proof: See Appendix. ]

It follows from theorem 4.3 that exact encompassing does not entail the exis-
tence of a transition on B x A that can be used to directly transform P into Q8
unless additional conditions are imposed on the prior and predictive probabilities.
This is the object of the concepts of coherent and strong (exact) encompassing
which are introduced below.

Definition 4.4. M¥, coherently (exactly) encompasses V% if and only if:
(i) MY, exactly encompasses N4 with pseudo-true value AV-2
(ii) p4 and vg are coherent with each other relative to A in the sense that:

VFeB, vs(F)= /A AA(F)dps (4.13)
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Condition (4.13) entails that v3 coincides with pg, as defined in theorem 4.3 and,
hence, that dvs/dpg = 1. Under the conditions of theorem 4.2, 1t is reformulated
as:

(i1)’ BLLZ under ¥.

Definition 4.5. M} strongly (exactly) encompasses N¥; if and only if:
(i) M3y exactly encompasses N¥;
(i) VX € S, Ps(X) = Qs(X).

Under the conditions of theorem 4.2, condition (ii) is reformulated as:

(i1)’ SLLT under V.

Theorem 4.4. Strong encompassing implies coherent encompassing.
Proof: The proof is immediate under the conditions of theorem 4.2 since:

BLI|S and S1LT = BII under ¥

n

It also follows from theorems 4.2 and 4.4 that strong encompassing can be

reformulated in terms of the existence of a transition probability between sampling
probabilities.

Theorem 4.5. M}, strongly encompasses N if and only if there exists a tran-
sition probability K% such that:

(i) VX €S, Q5X)= /A PAX)dKE (4.14)

(i) VE€ A, pa(E)= /B K5(X)dvs (4.15)

The pseudo-true value Aj is derived from the joint probability p on A® B asso-
ciated with the pair (vg, K§).
Proof: See Appendix. |
In concluding this section, we emphasize that the concepts of coherent and
strong encompassing differ fundamentally in their treatment of the predictive prob-
abilities and so will be used in different contexts. Coherent encompassing is rel-
evant in situations where one wishes to compare models under a common body
of prior knowledge. We should nevertheless not rule out the possibility that the
models could also be compared under mutually incoherent prior probabilities, e.g.
as initially specified by their respective builders, since the specifications of a sam-
pling model and a prior probability are typically interrelated. Strong encompassing
is relevant within such contexts as that of a ‘hierarchical’ (joint) model where a
transition Ky is explicitly introduced to reduce the dimensionality of a parameter
space A and where (4.15) then states the coherency condition to be satisfied by
the corresponding hierarchical prior probability.
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Example 4.4: Consider the hierarchical models:
P§‘ : S‘a ~ Nr (av UZIT) , aeg RT;
K§: alb~ Ny(b-e,7Ir), bER, V= (1...1);
Q%: slb~Nr(b-¢, (0% + %) 1)
whence MY, strongly encompasses N% under the coherent priors:

vg : b~ Ny (bo, v0) and p4:a~Nr (bo ce, T + VOLL') .
|

5 Specificity

Exact encompassing provides conditions under which the functions in [B]., can be
‘estimated’ equivalently either directly within My or indirectly within My via the
transition probability A#. In practice, however, it will often be the case that the
two procedures yield different solutions, especially when M and Ny have initially
been designed for different purposes or by different investigators. Exactly as Lecam
[26] uses a notion of deficiency to measure a lack of sufficiency, we introduce two
concepts of ‘specificity’ aimed at measuring a lack of exact encompassing.

5.1 p-specificity

If attention is restricted to a specific random variable g € [B],, thenits ‘estimators’
N§ (g) and (]ij 0 Ag‘) (g) can be compared by means of an Lp-norm on (5,8)
endowed with a reference probability P2.

Definition 5.1. The p-specificity of Ny relative to Mg with respect to g, given
P2 and a class of transition probabilities D is:

7y (i Mar) = int |V3 (0) ~ (V30 25) )], (5.1)

This definition can be extended to (B]..-

Definition 5.2. The p-specificity of Ny relative to My, given P and D, is:

o (Nn; Mu) = sup 0y (Nn; M) subject to lgll, <1 (5.2)

9€[8)
While the second definition is conceptually interesting, and is related by duality to
the concept of deficiency in Lecam [26], it will prove impossible to evaluate except
for trivial cases. Definition 5.1 is more operational under suitable choices of g. An

example is provided in section 5.3.
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5.2 -specificity

Under suitable existence conditions, we can also analyze the expectation of a mea-
sure of the ‘divergence’ between the two estimation procedures Vg and M§ o A3,
The concept of p-divergence, as discussed e.g. in Cziszar [7] - also see Florens and
Scotto [15] for Bayesian applications - is convenient for that purpose. Let ¢ be a
real valued convex function defined on Ry such that p(1) = 0. The p-divergence
between two probabilities P and @ is defined as:

D, (P;Q) = [ ( dQ) dQ (5.3)

Special cases of y-divergence are characterized as follows: (i) The negative entropy
Dg (also called the Kullback-Leibler comparison): ¢(z) = zlogz; (ii) The square
of the Hellinger distance Dy : ¢(z) = (v/Z — 1)*; (iii) The total variation distance
Dy : ¢(z) = 3|z —1]; (iv) The x* comparison D; : ¢(z) = (z — 1)®. Except for
D,, these measures are not ‘distances’ in the strict sense.

Definition 5.3. The @-specificity of Ny relative to Mys, given P2 and D, is:

(NN,MM)— min / D, (N§; M5 0 A%) dPS (5.4)

This definition of the @-specificity raises no conceptual problems within a Bayesian
framework when N§ and M$ are posterior probabilities. It cannot be applied to
mutually singular classical estimation procedures, such as Dirac measures, since
the ¢-divergence is then maximal independently of the choice of a transition. Other
definitions of specificity based, for example, on the notion of weak convergence dis-
tance in Billingsley [4] do not suffer from that limitation but are not as operational
as that of p-specificity.

5.3 A special case

The search for a solution to (5.4) is often complicated. We next discuss a special
case for which an explicit solution is available and which generalizes the approach
followed by Florens et al. [10].

Let A = {ao}. M then consists of a single probability P2 which also serves
as the reference probability. The estimation procedure associated with Mys is a
Dirac DS ; with a(s) = ao, P9-almost surely. It follows that Aj simplifies to a
single conditional probability on B given ag. We assume that both Aj and N§
are dominated probabilities with respective densities §(b) and v(b|s) relative to a
measure on (B, B) with differential element db. D is defined as the set of all such
6 (+)s. This special case is of interest for two main reasons:



Specificity 24

(i) it can serve as the basis for a test of the single hypothesis that a model My
with A = {ao} encompasses a rival NN;

(i1) as discussed below, it is instrumental in the pointwise construction of a transi-
tion probability A7 which constitutes an operational alternative to a solution
of (5.4) when A is not a singleton.

Under our simplifying assumptions and using the negative entropy DE, the
o-specificity of Ny relative to My is:

T, (NvyMu) = Igé%l/ {fs log [;6(%);)] 5(b) db} dPg
s

(5.5)
— mi 8(b) ,
. %1{3/1% [5E(b)} 5(b)db—-log1x}
where 6 is the auxiliary density:
65 (b) = K™ -exp [/s log v(b|s) - dPg] (5.6)

and K is its integrating constant which is shown to be less than one by application
of Jensen’s inequality. Note that K is unaffected by the choice of & (-). Hence the
optimal solution in (5.5) is given by ég itself and 7, equals — log K. If, furthermore,
v(b|s) is a posterior density derived from a prior density v(b), then:

§g (b) ox v (b) - exp [/; log q(sb) - dPg] (5.7)

The transition 6z often is easier to evaluate than a solution to (5.4). Consider,
for example the case where M (unit root) and N are characterized as follows:

M : Si=5i—1+ui; uiNIN (0,1) (58)

N S; = bs;1 +viy v IN (0 l) (59)

Florens et al. [10] demonstrate that, if v(b) « 1, then &£ is the density associated
with the normal distribution N (1, n—(n?:ﬁ), where n is the sample size.
Using the Hellinger distance Dy instead of Dg, the optimal transition Oy 1s
given by: ,
512(b) ox { /5 (v (bls))F cng} (5.10)
As suggested earlier, the special case just discussed is instrumental in the derivation

of operational - though non-optimal choices - for A# in the more general case where
A is not a singleton. They are defined as transition probabilities which, to every
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ain A, associate a transition which is optimal for that specific a. For example, a
0g(bla) which follows from (5.6) is:

0g(bla) o exp [/S log v(bls) - dPg“] (5.11)

In line with the discussion in section 6 below, §g(bla) ought to have the same
asymptotic properties as an optimal transition, whence follows its usefulness as an
operational alternative to the latter. An explicit comparison is provided in section
8 in the context of the choice of regressors problem.

5.4 Bayesian encompassing tests

We can usefully draw a parallel between the construction of classical and Bayesian
encompassing test procedures.

Classical test procedures are based on a pseudo-true value b(a), which is usually
defined as the plim under PZ' of an estimator bof b so that it typically minimizes the
Kullback-Leibler divergence between the two sampling distributions. A distance
between b and b(a), where @ is an estimator of a, is then evaluated and calibrated
in accordance with conventional test principles (Wald or score). See Mizon and
Richard [28] for details and also Gourieroux et al. [18] and [17].

A similar approach applies within a Bayesian framework following testing prin-
ciples described e.g. in Florens and Mouchart [12]. As discussed above, a Bayesian
pseudo-true value Aj is a transition probability which minimizes the specificity of
N relative to My, where specificity is defined as the M-predictive expectation of
the divergence between the A'- and M- posterior distributions of 5. The divergence
itself, evaluated under the optimal transition, is a function of the actual sample
and may, therefore, serve as an encompassing test statistic. The two alternative
models under consideration are characterized by their predictive densities.

For ease of presentation, we restrict attention to the y-specificity, as defined in
section 5.2, assuming that there is a unique solution to the optimization problem
(5.4). The statistic of interest is then given by:

é(s) = D, (V55 M5 0 AF) (5.12)

where () also depends on (M 4, NS, go), but such arguments are omitted for ease
of notation. The M;-predictive expectation of £(s) is the specificity itself, as given
n (5.4). The predictive distribution of £(s), under either .\ or A, often is analyt-
ically intractable but can be evaluated by means of a conceptually straightforward
Monte Carlo simulation. An application of this principle is discussed in section 8.
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5.5 Encompassing and Model Choice

The object of encompassing is not that of choosing between two inferential models
My and Ny. It is instead that of examining whether or not a rival model Ny
is redundant relative to one’s preferred model My, for the purpose of conducting
inference on b. The finding that M does not encompass Ny indicates that the
latter contains information relative to b that cannot be retrieved from the former.
It does not imply that Ny is to be preferred to or chosen against My since, In
particular, the parameters of N may not even be of direct interest to the proprietor
of M. The object of the exercise is that of validating M s in light of ‘fresh’ evidence
provided by N and lack of encompassing typically leads to further improvements
of M,y itself. See Hendry and Richard [21] for further discussion of the role of
encompassing as a key component of a progressive modelling strategy.

This being said, we can usefully examine the relationship between encompassing
test statistics and Bayes factors for the pair (MM,N ~). Depending on which
measure of divergence is being used, the relationship can be rather muddled though
an interesting comparison €merges if we restrict attention to the encompassing
test statistic which is based on negative entropy. Assuming that the relevant
distributions can be characterized by (well behaved) density functions, the negative
entropy encompassing test statistic is given by:

£(s) = /B log (%ﬁ%) - v*(b]s)db (5.13)

A rearrangement of factors leads to the expression:

£(s) = — log (?(;L(Z—))) + /B log (%}3) - (bls)db (5.14)

where the notation is in line with that in table 3. Hence £(s) is given by the differ-
ence between the M-posterior expectation of the log-ratio of the joint probabilities
on (b, s) corresponding to both models, and the log of the corresponding Bayes fac-
tors. In line with the general result derived in theorem 4.5, the M-posterior density
v*(b|s), as defined in (2.9), may be rewritten as:

p(b) - 4(s[b)

v*(bls) = o05) (5.15)
where
o(b) = /A u(a) - §(bla)da (5.16)
§(s|) = [ p(sla) - k(a|b)da (5.17)
k(ald) = pla) - (ble) (5.18)

7(b)
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Sequential Encompassing and Asymptotics

Hence (b) and ¢(s|b) are M-coherent prior and sampling densities which could be
used to derive v*(b|s) directly by application of Bayes theorem, as in (5.15) noting
that p(s) = [z G(s|b)7(b)db. It follows that (5.14) may be rewritten as:

£(s) = — log (%) + /B [log (Z—E—j—%) + log (%H sbls)db  (5.19)

If the specificity itself is evaluated under a coherent prior, then (5.19) simplifies

£(s) = —log (%) + /Blog (%) v™(b|s)db (5.20)

where §(s) = [zq(s[b)#(b)db. High posterior odds in favor of M contribute to
lowering the value of the encompassing test statistic £(s) - and conversely - but
the latter also depends on additional terms, as given in (5.19) and (5.20).

Finally it must be emphasized that, in much of the literature on model choice,

to:

the default option is one of prior independence between a and b. Such an assump-
tion is inconsistent with the fact that both models are meant to capture a common
sampling process. Further, it is instrumental in generating some of paradoxes that
plague applied work in the form of extreme values for the posterior odds. See e.g.
the discussion in Kiefer and Richard [24]. In contrast, encompassing explicitly re-
quires stochastic dependence between a and b, in the form either of a genuine prior
transition §(bla) or of a transition which minimizes the specificity of My relative to
M. Formula (5.20) appears to be of special interest in the (common) situation
where M is one’s ‘preferred’ model. In such cases there would be little interest in
rejecting M in favor of a rival model N whose specificity relative to M is small.
Neither should rejection result from the use of a prior v(b) which is not coherent
with the M-prior density p(a). Formula (5.20) suggests evaluating posterior odds
under an N-prior #(b) which (i) is coherent with y(a) in the sense of (5.16), and
(i1) minimizes the specificity of \V relative to M. Such a prior constitutes a ‘fixed-
point’ prior in the sense of (5.4) and (5.16). Its existence in general is yet an open
issue but approximate solutions can be evaluated in line with our discussion in
section 7 below.

6 Sequential Encompassing and Asymptotics

In previous sections, we implicitly adopted a ‘global’ mode of analysis, specifically
restricting attention to the derivation of a single transition probability relative to
a sample space (5,8) of fixed dimensionality. However, a broad class of statistical
problems require a ‘sequential’ mode of reasoning relative to a sequence of embed-
ded sample spaces {(Sn,S,)}. Consider, in particular, the problem of analyzing
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the limiting (asymptotic) behavior of a sequence of encompassing transition prob-
abilities. The ‘asymptotic’ experiments are denoted by £ = {A x S, AV §,II} and
F={BxSBVS,x}andSis endowed with a filtration S, — S. Let II, denote
the restriction of 1 to AV S, and & = {A x §, AV Sn,11.}. A similar notation
applies to F and we have Fr = {B x S,BV Sn,Xn}. Finally, let (A;;)n denote
the encompassing transition associated with the sample size n (i.e. the transition
which minimizes the specificity of F» relative to &, under the working criterion).
In particular, (A{})n extends II, to a probability I, on (AV B) V Sn.

An heuristic argument runs as follows: ‘well-behaved’ inferential procedures
should converge towards limiting Dirac distributions which, under PZ in particular,
would be centered around a and b(a) respectively, where b(a) is a (classical) pseudo-
true value of b. In such a case, sequences of optimal encompassing transitions
(A{;‘)n would themselves converge towards a Dirac distribution centered on b(a)
and the specificity of F, relative to &, would tend to zero (under Pg‘). A formal
proof is found in Florens and Richard [14] for the case where the parameter spaces
A and B are discrete (covering situations where, as discussed in Berk [2], [3], the
support of the limiting distribution on B is a singleton). Attempts to generalize
this result have yet to deal with the difficulty that the sequence {IIx} does not
constitute a projective system, in the sense that the restriction of I}, on (AVB)VS,
for n' < n generally does not coincide with II7,. It follows for example, that we
might have exact encompassing for all ns:

N§» =M o (AF)  n (6.1)
and yet:®

N3¥ # My o (Af)  forn'<m (6.2)

Further, in the context of (dynamic) sequential models it would be natural to
condition encompassing transitions on a o-field 7, of ‘exogenous’ variables - as in
section 8 - and possibly also on the o-field S,_; of ‘lagged endogenous’ variables.
The probability II, then has to be extended to a probability II; on (AV B)V
Snl|To V Sn-1 by means of a transition (AAVT"VS"-l)n. Here again the sequence
{II*} does not constitute a projective system.

We shall not discuss sequential encompassing further and, for the rest of the
paper, simply assume that both {NB"} as well as sequences (Aé)n of optimal
transitions converge towards a limiting distribution D#. In fact, as discussed
next, convergence towards that common limiting distribution will be used as an

9Note that (Af), is an admissible transition for n’ < n, since under I} if B1LS,|A, then
BLUS,|A.
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important criterion in the selection of operational ‘approximations’ to optimal
transitions that are intractable.

7 Approximate encompassing

There are few cases where there exist operational solutions to the minimization
problems in definitions 5.1 to 5.3. One such case has been discussed in section 5.3
above. Another case (discussed in Florens and Richard, 1989) is where the sample
spaces A and B are finite. Numerical solutions might also exist though a thorough
discussion of their implementation goes beyond the objective of this paper. We
limit ourselves here to three approximate solutions which, in addition to the one
already discussed in section 5.3, could usefully be implemented for a broad class
of problems. In line with the discussion in section 6, our analysis will be largely
heuristic as far as asymptotic properties are concerned.

7.1 A ‘Marginalized Likelihood’ pseudo-true value

The first approximation we propose is a straightforward generalization of the clas-
sical notion of pseudo-true value which is defined as the plim under P2 of a point
estimate Ng. It consists of marginalizing the inferential procedure N 3 with respect
to S using the sampling distribution P&, Hence, let:

Af = P{oN; (7.1)

The transition Af is clearly not optimal in the sense of definitions 5.1 to 5.3
since, in particular, if the two estimation procedures under consideration did coin-
cide with each other, then the optimal transition would be the Dirac distribution
associated with the identity mapping, whereas A# in (7.1) would not. Beyond
considerations of computational convenience, the following asymptotic theorem
provides the rationale for using Af as an approximation to the optimal Af when
the latter is not available (For notational convenience, transitions are not indexed
by sample size as they were in section 6).

Theorem 7.1. If:
(i) Ms is exactly estimable;'°
(ii) there exists a transition D§ such that:

VF €B, vg(F)— D (F), II- almost surely,

then:
VFeB, Af(F)— Dj(F), p-almost surely

19Tn the sense that the posterior expectation of any integrable function of the parameters
converges towards that function II-almost surely.
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Proof: If we factorize II into the product of P£ and 4, then condition (i1) implies
that:

{V‘g (F)— D4 (F), PZ- as. },uA— a.s.
Further, v5 (F) is bounded above by 1. Hence, by Lebesgue’s theorem (see Del-
lacherie and Meyer, 1975 Chap. I1):

(Ag=E (v8 (7] A) = E (D5 (F)| A) = Dg (F)} pa- as.

|

Explicit comparisons between A‘é and the optimal transition are found in Flo-
rens and Richard [14] for the case where the parameter spaces are finite and in
section 8 for the choice of regressors problem. When the baseline model is a
Bayesian inferential model MY, then (7.1) implicitly defines an auxiliary joint
distribution II on A ® B|S as the product of the transition probabilities p% and
v$ (so that ALLBIS under IT) which is then marginalized with respect to & under
the predictive Ps and finally conditionalized on A. In terms of density functions:

$(ba) = =15 [ wlals)v0ls)p(e)ds (7.2)

7.2 A ‘Least-squares’ Encompassing Transition

From section 3.1, a transition probability on A x B can be reinterpreted as a trans-
formation from [B],, to [Al,,- This suggests defining a least-squares encompassing
transition Ap as follows. Consider an ¢-dimensional random variable b € [B] and
a k-dimensional random variable a € [A]. Expectations are denoted by the op-
erator E, together with a subscript 1 (2) to denote expectations in Mu (Nw).
The shorthand notation & and b represents E; (a|S) and E» (b|S) respectively. It
is also assumed that b is square-integrable in M. As usual in the context of
least-squares formulae, all expressions are in deviations from their means.

Definition 7.1. A least-squares pseudo-true value of b relative to a is a linear
expression of the form b(a) = A’a, where the k X ¢ matrix A minimizes:

E, [(A" ~b) (a2 b)]
ie. is a solution of the linear system:
E, (38) A = B (ab) (7.3)

If, in particular, E,(4a) is non-singular, then A is unique. Here also the arguments
in favour of using least squares pseudo-true values are computational tractability

and asymptotic behavior.
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Theorem 7.2. If:
(i) .\/tM is exactly estimable and F\(aa’) is non- -singular;
(ii) b converges -a.s. and in L*(IT) towards b(a), then:

A = Ao = [Ey(aa’)] ™" E, [ab(a)] (7.4)

Proof: Followmg (i), & — a,M-a.s. in £2(II). Hence, by Schwartz’s inequality
43’ — aa’ and 4b — ab’ (a) II-a.s. in £L%(II) and (7.4) follows. n

When b(a) belongs to the set generated by a, i.e. when b(a) = Aja, then
b(a) — b(a), I-a.s. in L*(II). In general the approximate specificity associated
with the least-squares encompassing transition converges towards the norm of the
difference between b(a) and Aga, which is given by:

Ey [b(a)b'(a)] - Ei [b(a)a’] [Ey(aa’)] " E) [ab'(a)]

and will be zero if b(a) = Aja.
In general it ought to be possible to select a;s of the form 14;, in such a way that
Apa is arbitrarily ‘close’ to b(a). This essentially follows from our next theorem.

Theorem 7.3. Let (‘A’C)ICZO be a growing sequence of o-fields such that:
(i) Ak is generated by a partition (Af ... A§) of A with uf = pa(AR) £ 0;
(i]) Vieso Ax = A. A

Let af = Hyx. Ifb(a) € L?, then bx(a) — b(a) p-a.s. in L2

Proof: Under assumptions (i) and (ii), (a) may be rewritten as:

)=3 = [b Ig““] Iy

=1

and the result follows from a martingale theorem (see e.g. Dellacherie and Meyer,
1975). |
Section 8 applies (7.3) to the choice of regressors problem.

7.3 A ‘discrete’ encompassing transition

The fact that solutions to (5.4) are, conceptually at least, fairly straightforward
when the sample spaces are finite suggests another way of designing approximate
encompassing transitions. We can partition A and B into finite numbers of mea-
surable sets, say (Gy),_;_,, and (F} )j=1—n Tespectively. An approximate discrete
encompassing transition then consists of an m x n matrix A, whose (¢,7)*" element
is a conditional probability for F; given G;:

A={b;} 6;>0 ) 6;=1 (7.5)
J=1
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If, for example, we use the Kullback-Leibler criterion, the optimal discrete transi-
tion is a solution of the following optimization problem:

min E, {; §i;1 (GilS) log [%%S—)] } (7.6)

subject to the constraints in (7.5). We are presently developing numerical tech-
niques for the evaluation of the expectation (under Ps) in (7.6) and for its solution.
Though no formal proofs are offered in the present paper, discrete encompassing
transitions should typically have the following properties:

(i) They can be made arbitrarily close to the optimal encompassing transition
by refinements of the two partitions;

(i1) Discretisation on A increases the specificity of Ny relative to M since it
is equivalent to imposing constraints on the form of é;

(iii) Discretisation on B should instead decrease the specificity of Ny relative to
M s since it ‘condenses’ the information to be accounted for.

8 An application to the choice of regressors prob-

lem

The various concepts discussed in the previous sections are now applied to the
choice of regressors problem which was introduced in example 4.3. Only those
results that can be derived analytically will be discussed here. See Florens et al.
[10] for an example of how numerical (simulation) techniques can be used when
analytical results are not available. For simplicity, we assume that the variances
o? and 72 are known.!* Hence a =g and b =1. The sampling models are those
given in (4.6) and (4.7) respectively. The corresponding priors are assumed to be
‘Natural Conjugate’ priors, as defined e.g. in Raiffa and Schlaifer [30] or Zellner
(34]. Hence:

pa:a~ Ng (ao,a'zMal) . vg:b~Ng (bo,ergl) (8.1)
The posterior distributions have similar functional forms with parameters:
a, = M:l (Moao + X.l}’) and b,. = N:l (Nobo + Z'}’) (82)

M. =M, +X'X N.=No+Z'Z (8.3)

Il Extensions to the case where o2 and 72 are unknown are currently under study. The tran-
sition probabilities A'g between the two inferential models are then obtained by reduction of an
overall inverted-Wishart density on AV B in line with our discussion in section 4.2.
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The predictive Ps is given by:
Ps: y~N(Xag,o® [Ir + XM;'X']) (8.4)

In the present context, it is natural to define D as a class of conditional normal

distributions of the form:!?

Af :bla~N,(Ca+ec,V) (8.5)

with C € R**,c € R and V > 0.

Let 4 and b denote the OLS (ML) estimators of a and b respectively. The clas-
sical (finite sample) pseudo-true value of b on M is given by b(a) = ITa, with IT =
(2'Z)™" Z'X. The encompassing difference b — b(a) = (Z'Z)"' Z'Myy is normally
distributed on M with zero mean and covariance matrix 02 (2'Z)™" Z'Mx Z (2'2)7".
As shown e.g. in Mizon and Richard (28], the corresponding Wald encompassing
test (WET) statistic is:

1,
W(y) = 5y'MxZ(Z'MxZ)" Z'Mxy — x*(r) (8.6)

o2

where r = rank (Z’MxZ) and (Z'MxZ)" denotes the Moore-Penrose inverse of
Z'MxZ. In the rest of the discussion, we assume - without loss of generality - that
Z'MxZ is non-singular, i.e. that (X : Z) has rank k + ¢.

The M-posterior density of b is given by:

pioAfF : bly ~Ny(Ca.+¢,Q) (8.7)

where Q = V+0?CM ' C'". The p-specificity of Ny is trivial to evaluate for p = 2
and for an arbitrary norm matrix Q > 0. It implies the same optimal values for C
and c as the p-specificity which is the focus of the following discussion.!® Following
Florens and Scotto [15], the negative entropy between v3 and uS o Af is:

EX(v) = § [log|Qf —log [*NIY| + 72 (27'NIY) + M@ A - ¢]  (8.8)

with A, = b, — (Ca. +¢). As discussed in sections 5.4 and 5.5, ¢£(y) can serve
as a Bayesian encompassing test statistic. Its expectation on Ps is:

& = 1 [log|Q| - log|r*N:

+ 7% (@7 (0?®. + NIY)| + mi2 'm, - /|
(8.9)

2]t can be shown that the optimal transition, in the sense of (5.4), has the assumed form
within a much broader class of dominated transition probabilities.

13That p-specificity does not depend on the transition variance matrix V. which can, therefore,
be chosen arbitrarily. To secure desirable asymptotic properties, we should select a sequence
(V)n which tends to zero.
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where m. and o2®. are the predictive mean and covariance matrix of A. respec-
tively. Elementary matrix manipulations lead to the following expressions for m.

and ®.:

&. = 3. + (C— COM'X'XM'(C - C.) (8.10)
m, = NI (Nobo + Z'Xag) — (Cao + ¢) (8.11)
with
¥, = N1Z'MyZN; (8.12)
C.=NI1QM,, Q=ZX(X'X)™ (8.13)

Hence the values of C and ¢ which minimize £§ are given by C = C.and c =c,

where:

Cx = N:l (Nobg + leao) - C*ao
L ) (8.14)
= N* (Nobo - QMan)

implying m. = 0 and &, = 3.
Substituting these values in (8.9) and minimizing with respect to € yields the
following optimal choice for £

Q. = 0?8, + 7N (8.15)
whence the @-specificity of Ny relative to Mys is:

re(Wyi Mar) = & [log |92.] — log (+* [NZ*])] (8.16)

We have implicitly assumed that V, = Q. — ¢’C.MIC, > 0, otherwise the
above minimization would have to be subject to the (partially) binding constraint

V > 0. Note that, in sharp contrast with posterior odds, the -specificity in (8.16)
is unambiguously defined under non-informative priors (Mg = 0 and No = 0), in

which case:
V. = (r2 =) (Z'Z) +20° (Z'Z)" Z'MxZ(Z'Z)” (8.17)

Hence a sufficient condition for V. >0 - at Jeast in ‘large sample’ situations - is
72> o2, As discussed in [22], this ‘variance dominance’ condition plays a key role
in the encompassing framework. As the sample size tends to infinity, the optimal
transition A# tends to a limiting Dirac probability centered around the classical
pseudo-true value 1la, where IT = plimfI (under appropriate assumptions on the
exogenous process).

Note that the encompassing test statistic ¢E(y), as given in (8.8) is not centered
on zero on Ps but, more meaningfully, on the (-specificity of Ny relative to M.
As discussed in Florens and Mouchart [11] in a related context, its distribution
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on Ps can be expressed in terms of a mixture of y?(1)s and standardized normals
which could be calibrated by simulation.

The optimal coherent prior #(b) which was discussed in section 6.5 cannot be
characterized analytically in full. If we substitute the coherent prior mean C.ag+c,
for bo in (8.14) and solve for by, we find that the ‘optimal-coherent’ prior mean of
b is:

bo = ITa, (8.18)
where IT = (Z'Z)™' Z'X. An optimal-coherent prior covariance matrix cannot be
obtained analytically. Its numerical derivation goes beyond the objectives of this
paper.

The two ‘point-optimal’ transition probabilities described in section 5.3 are
easily obtained. The expectation of log v(b|s) under the sampling density p(s|a)
takes the form of a normal density as defined in (8.5) with parameters:

C=N['ZX, &=N 'Ngby, V =o2N:! (8.19)

If M = 0, then (C, &) = (C., c.). More generally, both pairs share a common large
sample limit which is given by (I1,0) as in (8.18). A large sample approximation
for V is given by o 2(Z'Z)™" which differs from the corresponding approximation
for V. as given in (8.17). The point optimal prior (5.10) associated with the
Hellinger distance is also of the form given in (8.5) with parameters C and & as
defined in (8.19). Its covariance matrix is:

V = ¢®?NJ1Z'ZN! + 72N (8.20)

Finally, we can also obtain analytical expressions for the approximate encom-
passing transitions that were proposed in sections 7.1 and 7.2. The ‘marginalized
likelihood’ transition, as defined in (7.1), takes the form of the normal distribution
in (8.5) with parameters (C, &) as given in (8.19) and covariance matrix:

V = o®N;'Z'ZN]! + 72N (8.21)

A ‘least squares’ (LS) pseudo-true value is easily obtained for the random vari-
ables a, and b, in deviations from their sample means on .M. Let:

a=M'X'(y—Xa), b=N;'Z'(y - Xa) (8.22)
whence:
Ei(38) = o’MI'X'XM;", E, (ab) = o*MI'X'ZN;" (8.23)

It follows that the LS pseudo-true value of b. relative to a. is given by b(a) =

s

C.a + c., where C_ and c. are givap in (3070 200 (8.14) respectively. It is no
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surprise that in the context of linear regression models, the LS pseudo-true value
of b, relative to a. coincides with the mean of the optimal transition associated
with the specificity measure introduced in equations (8.9) to (8.15).

Thus, the various measures of specificity in section 3 and the alternative tran-
sitions in section 7 have been shown to be operational in an important model
class. While we cannot unequivocally rank these, they converge to the same Dirac
transition asymptotically, only differing in their use of prior information.

9 Conclusion

The concept of encompassing (that one model can explain the results obtained by
another model) has been considerably developed and formalized since the initial
intuitive proposal in Davidson, Hendry, Srba and Yeo [8]. This paper sought to
extend its application to the Bayesian approach, and to highlight the resulting
close similarities with classical methods. Encompassing was reinterpreted as a
concept of sufficiency between inference procedures, ‘dual’ to that of sufficiency
among sampling processes. The main tool was that of a transition probability,
which applied to both classical and Bayesian approaches. Exact encompassing
supplied the baseline from which departures could be measured by the specificity
of the alternative model, and various measures of specificity were introduced. The
intractability of the optimal transition probability, namely that which minimized
the specificity of the rival model, led to various approximations being considered
as operational approaches in practice. These were then applied to the choice of
regressors problem to lustrate their differences and commonalties. The relation
of encompassing to model choice was discussed.

[n summary, encompassing is formalized as a concept of sufficiency among
models whereas specificity measures the lack of encompassing. Both concepts
are designed to cover classical and Bayesian viewpoints. Tests for encompassing,
related to Bayesian posterior odds, are developed. Half a dozen operational tran-
sition probabilities are introduced and applied to the choice of regressors problem.
They differ in their treatment of prior information relative to My and Ny, but
all converge towards the same limiting Dirac distribution, which is centered on the
‘classical’ pseudo-true value as given in (2.4). A detailed analysis of their relative
merits by simulation is currently under investigation. More importantly, however,
considerations of analytical and numerical tractability are bound to play a key
role outside of the choice of regressors problems. In that respect, the more opera-
tional alternatives are likely to be the ‘marginalized likelihood’ transition (section
7.1), the ‘least squares’ transition (section 7.2) and, possibly, the ‘point optimal

transition’ (section 5.3).
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10 Appendix: Technical details

A.1 Proof of Theorem 4.1

Necessity : II* is defined as the "product” of IT and A# in accordance with formula
(3.2). Condition (i) follows from that definition. Under IT*, A% also represents the
conditional probability on B given A @ S, whence condition (iii) follows. The
marginal probability on S under II* is Ps and N3®, the correponding transition
on B given §, is then defined by the following identity:

VFeB, XS, M (AxFxX) = A NZS(F)dPs (A.1)
On the other hand, if follows from the definition of II* that:

VFEB, X €S, AxFxX) = [ UA A;;‘(F)de] dPs
) (A.2)

- /\ (MSoAL)(F)dPs

Condition (ii) follows by comparison between formula (A.1) and (A.2).

Sufficiency : II* being given, a version of the conditional probability on B given
A®S which does not depend on S provides a transition Af which satifies definition
4.1 in accordance with the decompositions in formulae (A.1) and (A.2). ||

A.2 Proof of Theorem 4.2

Necessity : The probability ¥ is constructed as follows:
- The marginal of ¥ on 7 is defined by (1) and (2) > 0;

- Conditionally on ¢ = 1, the distribution on (A V B) ® S is taken to be II*, as
defined in theorem 4.1;

- Conditionally on 7 = 2, a distribution x* on (A V B) @ S is defined as follows:

VEEAFeB XeS X (ExFxX)= e Q8(E)dx (A.3)
where QF is an arbitrary transition on B x A.

Conditions (i) to (iii) are verified by construction. Condition (iv) follows from
the fact that under II* (x*), A4 (95) is a version of a conditional probability on
B (A) conditionally on A®S (B®S). Finally the transitions on B given S and T
are M3oAg for i = 1 and N§ = N3 for i = 2. Hence condition (v) follows from
definition 4.1.
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A.3 Proof of Theorem 4.3

The notation and the definition of a probability *on (AVB)® S are those
introduced in theorem 4.1. Under formula (A.1) the encompassing condition NV 5=
N3 is equivalent to the following condition:

(Mg dPs
Wses _ 25 Ad
dx dQs (4-4)

where ITggs denotes the restriction of II* on (B ® ). Equivalent reformulations
of (A.4) are the following:

M AxFxX) = /Fxx oo and

[ recoars]aos = [ [f 5]

— dvs dP§ B
- /F {dpg /\ dQs dQs| des

wherefrom formula (4.12) and theorem 4.3 follow. |
A.4 Proof of Theorem 4.5

Necessity : Let 11" denote the distribution on (AV B)® S introduced in theorem
4.1. The restriction of II* on B ® S equals x since, under definition 4.5 both
imply a common conditional distribution on B given S and a common marginal
distribution on S. Let K 2 denote the conditional distribution on A given B which
s derived from IT*. Note that Pg = PZ®E. Condition (i) and (ii) follow.

Sufficiency : We define a probability I' on A x B as follows:
T(E x F) = /F KE(E)dvs

The marginal of ' on A is pa by condition (ii). From T we derive a conditional
distribution on B given A, which is denoted A%, and use it next to construct II*
on (AVB)®S as in theorem 4.1. The proof is completed by establishing that the
restriction of II* on B® S equals x. We have successively:

W(F x X) = fFQg(X)duB = /F [ /A P;‘(X)df(ﬁ] dus
_ [ pAO0dr = [ 85E)PEX)dus

= AMFYI=TI"(Ax Fx5) ®
AxF
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