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Abstract

Under which condition does the set of desirable uncertain prospects expand

when wealth increases? We show that the decreasing concavity (DC) of

the utility function  is necessary and sufficient in the −maxmin expected
utility model. In the smooth ambiguity aversion model with the ambiguity

valuation function , the DC of  and of ◦ is necessary and sufficient. An
alternative definition of decreasing aversion is based on the hypothesis that

the investment in a risky asset is increasing in wealth. We show that this

hypothesis does not hold in general under ambiguity aversion, and that one

needs to constrain the structure of ambiguity to obtain unambiguous results

of an increase in wealth in this portfolio choice problem.

Keywords: Decreasing concavity, portfolio choice, −MEU, smooth am-
biguity aversion, maxmin.



1 Introduction

How does one’s attitude towards risk evolve when one becomes wealthier?

One of the most ubiquitious assumption in the economics of risk is that

wealthier people are less risk-averse. Various definitions of the concept of

decreasing aversion exist in the literature. For example, an agent is said

to have decreasing aversion if any risk that is undesirable at some specific

wealth level is also undesirable at all smaller wealth levels. Another definition

of decreasing aversion is that in the one-risk-free-one-risky-asset portfolio

choice problem, the demand for the risky asset is an increasing function

of the initially sure wealth of the agent. In the classical expected utility

model, these two definitions of decreasing aversion are equivalent, and the

necessary and sufficient condition is expressed by the decreasing nature of

the Arrow-Pratt index of absolute risk aversion (DARA). DARA just means

that the utility function  exhibits decreasing concavity à la Arrow-Pratt, i.e.,

that its index of concavity −00()0() is decreasing in . This universally

accepted property of individual risk preferences plays a crucial role in many

applications of the expected utility theory, as illustrated in Gollier (2001).

In this paper, we explore the concept of decreasing aversion in the con-

text of ambiguity and ambiguity aversion. In most cases, the probability

distribution of the risk is not perfectly known, i.e., it is ambiguous. Exam-

ining a simple thought experiment, Ellsberg (1961) suggested that economic

agents do not behave accordingly to the subjective expected utility model.

Under ambiguity, contrary to Savage (1954) theory of subjective expected

utility, they do not use a subjectively chosen probability distribution to com-

pute the expected utility of the set of possible acts to determine their optimal

strategy. Many experiments have confirmed Ellsberg’s hypothesis that in the

absence of an objective probability distribution, individuals tend to favour a

relatively pessimistic plausible distribution to measure their welfare ex ante.

Gilboa and Schmeidler (1989) were the first to propose a decision criteria that

is compatible with Ellsberg’s hypothesis, and that generalizes the expected

utility model. In short, agents are assumed to have multiple priors whose

formation is a characteristic of the preferences of the agent. The agent’s ex

ante welfare associated to an act is the smallest expected utility generated

by this act over the different possible priors.

More recently, two models have been proposed to account for ambiguity

attitude. Ghirardato, Maccheroni and Marinacci (2004) have proposed the
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−maxmin expected utility (−MEU) family of preferences in which the
agent’s ex ante welfare is measured by a −weighted average of the small-
est and the largest expected utility levels among a convex, compact set of

probability distributions. The alternative approach provided by Klibanoff,

Marinacci and Mukerji (2005) represents the agent’s welfare under uncer-

tainty by the certainty equivalent of the different prior-dependent expected

utility levels. This certainty equivalent is computed by using a function 

that is increasing and concave, and whose degree of concavity is an index of

ambiguity aversion.

For these two decision criteria under ambiguity, we determine the con-

ditions under which wealthier people are less averse to risk, under the two

standard definitions for this concept. Consider first the definition of decreas-

ing aversion based on the shrinkage of the set of desirable lotteries when

wealth is reduced. In the −MEU family of preferences, this property is ob-
tained under the necessary and sufficient condition that the utility function

exhibits DARA. In the case of smooth ambiguity aversion, the shrinkage of

the set of desirable lotteries when wealth decreases prevails if and only if both

 and  ◦  exhibit decreasing concavity à la Arrow-Pratt. This condition is
weaker than the sufficient condition that  and  are decreasingly concave.

The definition of decreasing aversion based on the increasing demand for

the risky asset when wealth increases is more complex to characterize. In the

maxmin model, which is a special case of the −MEU criterion, we show

that the decreasing concavity of the utility function is not enough to guaran-

tee the desired comparative statics property, except in the small. Different

sufficient conditions are derived. For example, a sufficient condition is that

the utility function belongs to the HARA class with decreasing aversion. An-

other sufficient condition is that all priors can be ranked according to the

Jewitt’s order, and relative prudence is smaller than relative risk aversion

plus one. A similar condition is obtained in the KMM’s smooth ambigu-

ity aversion model, under the addictional condition that  is decreasingly

concave. The condition relating relative prudence and relative risk aversion

may be removed at the cost of replacing the Jewitt’s order by the monotone

likelihood ratio order, which is stronger.
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2 Acceptance of risk

In this section, we characterize the conditions under which wealthier people

have a larger set of desirable loteries.

Definition 1 We say that an agent is Decreasingly Averse if a reduction in

wealth can never makes an undesirable uncertain situation desirable.

In other words, the set of undesirable lotteries shrinks when wealth in-

creases. In that case, we say that the agent exhibits Decreasing Aversion

(DA). The benchmark model is expected utility. Under this model, decreas-

ing aversion is characterized by the following condition. For any initial wealth

 and for any random variable e so that the support of +e is in the domain
of the utility function  we have that

( + e) ≤ () =⇒ (0 + e) ≤ (0) ∀0 ≤  (1)

This means that if an agent with utility  dislikes lottery e at wealth level
, she must also dislike it at all wealth levels smaller than . We know since

Pratt (1964) that this is true if and only if the utility function  exhibits

decreasing absolute risk aversion (DARA). We formalize this by using the

following definition.

Definition 2 We say that a function  : R→ R satisfies (weak) Decreasing
Concavity (DC) if − 00 0 is non-increasing.

It is easy to check that  DC means that there exists a concave function

 such that − 0 =  ◦  . In the expected utility model, decreasing aversion
holds if and only if  exhibits DC. Notice that condition (1) is equivalent to

the single-crossing from below of function  defined as () = (+e) with
respect to function . Thus, condition (1) is equivalent to

( + e) = () =⇒ 0( + e) ≥ 0() (2)

Suppose now that there is some ambiguity about the true distribution of

the payoff of the lottery. For the sake of simplicity, suppose that the payoff

of the lottery has  possible distributions, corresponding to random variablese1  e. Departing from the EU model, we hereafter examine two decision

3



models under uncertainty: −MEU and smooth ambiguity aversion. Under
the −MEU model with  ∈ [0 1], the agent measures his/her welfare under
uncertainty by a −weighted average of the smallest and the largest expected
utility levels. In this context, decreasing aversion requires for any  and for

any set of random variables (e1  e) so that the support of + e is in the
domain of the utility function  for all  = 1  

min


( + e) + (1− )max


( + e) ≤ () (3)

implies that ∀0 ≤ 

min


(0 + e) + (1− )max


(0 + e) ≤ (0) (4)

This means that if the safe prospect is preferred to the uncertain one when

initial wealth is , this is also true for all wealth levels smaller than .

Proposition 1 The −MEU criterion implies decreasing aversion if and

only if  exhibits decreasing concavity.

Proof: Suppose by contradiction that there exists  and 0 ≤  such that

min


( + e) + (1− )max


( + e) ≤ () (5)

and

min


(0 + e) + (1− )max


(0 + e)  (0) (6)

Let us define

 = argmin


( + e)
and

 = argmax


(0 + e)
Because  ∈ [0 1] these definitions imply that
(+e)+(1−)(+e) ≤ min


(+e)+(1−)max


(+e)

(7)

and

(0+e)+(1−)(0+e) ≥ min


(0+e)+(1−)max


(0+e)
(8)
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Let us define the random variable  by its distribution ( e; 1 −  e).
Combining inequalities (5) and (6) implies that (+) ≤ (). Similarly,

combining inequalities (7) and (8) implies that (0+)  (0). In short,
a reduction in wealth from  to 0 makes the initially undesirable lottery 

desirable. This is a contradiction. ¥
We can conclude from this result that the multi-prior −MEU model has

the property of decreasing aversion if and if the corresponding expected utility

model has it also, which is the case if −000 is non-increasing. This result
applies in particular in the special cases of the maxmin and the maxmax

models.

We now examine the model of smooth ambiguity aversion, as introduced

by Klibanoff, Marinacci and Mukerji (KMM, 2005). This KMM model is

based on the same ingredients than the maxmin model. A new ingredient is

the vector (1  ) of non-negative scalars that sum up to unity. Parameter

 can be interpreted as the (subjective) probability that e describes the true
distribution of the lottery. Another ingredient is a new real-valued function

 that is increasing and concave, so that the welfare if the lottery is accepted

is measured by the certainty equivalent of the conditional expected utility

( + e) :
 () = −1

Ã
X

=1

 (( + e))!
Because  is assumed to be concave, the existence of ambiguity reduces

welfare since, by Jensen’s inequality,

 () ≤ −1
Ã


Ã
X

=1

( + e)!! = ( + e)
where e is distributed as (1 e1; ;  e). If the lottery is rejected, the
agent enjoys welfare −1((())) = () Decreasing aversion as defined in

this section requires in this case that  single-crosses  from below. This

requires that the following property be satisfied:

−1
Ã

X
=1

(( + e))! = () =⇒
P

=1 
0(( + e))0( + e)

0( ())
≥ 0()

(9)
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One can easily extract two necessary conditions for decreasing aversion in this

framework. The first is that  must be DC, since one possibility is that alle be identically distributed. Indeed, in that case, condition (9) is equivalent
to (2). The second condition can be derived in the special case in which

all e are degenerated. Suppose that e takes value  almost surely, for all
 = 1  . Let random variable e be distributed as (1 1; ;  ). Then,
condition (9) can be rewritten as

 ◦ ( + e) =  ◦ () =⇒ ( ◦ )0( + e) ≥ ( ◦ )0()
As recalled above, this condition holds for all  and all random variable e
if and only if  ◦  exhibits DC. This observation is just a restatement of
the fact that the KMM model simplifies to the expected utility model with

utility function  ◦  when the multiple priors are all degenerated.
This means that both conditions  DC and  ◦  DC are necessary for

decreasing aversion in the KMM smooth ambiguity model. We hereafter

show that this joint condition is also sufficient.

Proposition 2 Consider the KMM smooth ambiguity aversion model char-

acterized by functions ( ) It exhibits decreasing aversion if and only if 

and  ◦  both exhibit decreasing concavity.
Proof of sufficiency: Let  be the certainty equivalent of e under func-

tion , i.e., ( + ) = ( + e) Let random variable e be distributed as
(1 1; ;  ). Suppose that

 () = −1
Ã

X
=1

(( + e))! = (),

or equivalently, that ◦(+e) = ◦() Because  is DC, (+e) =
( + ) implies that 

0( + e) ≥ 0( + ) It implies in turn that

X
=1


0((+e))0(+e) ≥ X

=1


0((+))

0(+) = (◦)0(+e)
We assume that  ◦  is DC. It implies that ( ◦ )0( + e) ≥ ( ◦ )0()
We conclude from the previous equation that

X
=1


0(( + e))0( + e) ≥ 0(())0() = 0( ())0()
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It implies that the right condition in (9) is satisfied. This concludes the proof

of the sufficiency of  and  ◦  being DC. ¥
An interesting case arises when  exhibits constant absolute risk aversion

and  is a power function:

() = −
−


∈ R− and (u) = −(−u)

1+

1+ 
 (10)

with  ≥ 0. Function  is increasing and concave in the relevant domain of .
Observe that −00()0() = −, which is increasing in . Thus, we have
that  and  exhibit respectively constant concavity and increasing concavity.

However, preferences (10) satisfy the necessary and sufficient condition of

Proposition 2, since

( ◦ )() = − −(1+)

(1 + )1+


is weakly DC. This shows that this necessary and sufficient condition does

not require that  exhibits DC. Only the DC of  and  ◦  is required. A
sufficient condition is that  and  be DC. Indeed, we have that

−( ◦ )
00()

( ◦ )0() = −
00(())
0(())

0()− 00()
0()

 (11)

Because  is increasing and 0 is decreasing, the right-hand side of this equal-
ity is decreasing in  if both −000 and −000 are decreasing. This yields
the following corollary.

Corollary 1 Consider the KMM smooth ambiguity aversion model charac-

terized by functions ( ) It exhibits decreasing aversion if both  and 

exhibit decreasing concavity.

The fact that the DC of  is not necessary can be illustrated by the

following counterexample. Suppose that () = 12. Suppose also that 

is such that 0() = exp(−2) so that −00()0() = 2 Thus, this 
function, which is increasing and concave in the relevant domain, exhibits

increasing concavity. Still,  ◦  exhibits DC, since using (11), we have that

−( ◦ )
00()

( ◦ )0() =
212

212
+
1

2
=  +

1

2


which is decreasing. Thus, from Proposition 2, the smooth ambiguity-averse

agent ( ) is decreasingly averse in spite of the fact that  is not DC.
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3 Portfolio allocation

In this section, we examine an alternative decision model. The decision maker

with initial wealth  can invest in two assets. There is a risk free asset whose

return is normalized to zero, and a risky asset whose return is expressed by

random variable e. The agent must choose the size  of her investment in
the risky asset. In the expected utility model, this decision problem can be

written as

max


( + e) (12)

In this model, it is easy to check that an increase in the initial wealth raises

the dollar investment in the risky asset if and only if  is decreasingly concave,

as first shown by Arrow (1963). Indeed, this requires to show that the cross

derivative of the objective function in (12) with respect to  and  evaluated

at the optimal  is positive. We normalize the unit of the risky asset in such

a way that it is optimal to invest exactly one monetary unit in the risky

asset, so that the first order condition of the above program yields

̃
0
( + ̃) = 0

Because  DC means that −0 is a concave function  of , it implies that

e00( + e) = −e0(( + e))0( + e) ≥ −0(())e0( + e) = 0
The inequality above comes from the observation that for all , −0(( +
)) ≥ −0(()). This demonstrates that the DC property in the expected
utility model is necessary and sufficient for two testable results. Namely, the

DC of  means that when wealth increases, the set of acceptable lotteries

inflates, and the demand for the risky asset increases. In the following, we

examine whether this property is still satisfied under ambiguity aversion. As

in the previous section, we examine two models of ambiguity aversion: the

−MEU model and the smooth ambiguity aversion model. For expository
reasons, we limit the analysis of the −MEU model to its special case of the
maxmin criterion. An introduction to the polar case of the maxmax criterion

is presented in the Appendix.

3.1 The maxmin model

Suppose that the distribution of the return of the risky asset is ambiguous.

This ambiguity is characterized by  possible random variables (e1  e).
8



Under the maxmin criterion, the decision program can be rewritten as

max

min


( + e) (13)

Of course, if there exists a  such that e is dominated by all other e0 , 0 6=
, then the minimum is obtained with this  and the above maximization

program is as in the EU model. The next Lemma provides us with a general

condition under which an increase of wealth raises the investment in the

risky asset. This condition states that whenever the agent with utility  is

indifferent between e and e, but would prefer to invest more than one unity
in e and less than one unity in e then the expected marginal utility undere is smaller than under e.
Lemma 1 Suppose that  is DC. In the maxmin model of ambiguity aver-

sion, an increase in wealth increases the demand for the risky asset if, for all

( ) ∈ {1  }2,

( + ̃) = ( + ̃)

̃
0
( + ̃) ≥ 0 ≥ ̃

0
( + ̃)

¾
=⇒ [

0
( + ̃)] ≤ [

0
( + ̃)]

(14)

Proof: Let’s consider the optimal investment ∗ that solves the maxi-
mization problem 13. If the minimum min ( + ∗e) is reached at only
one prior  =  ∈ {1  }, then locally around , the decision program

can be rewritten as max( + e) and the decreasing aversion property
is a consequence of  DC. Hence, in order to check the decreasing aversion

property, we only need to consider cases where there exist ( ) ∈ {1  }2
such that the optimum of the decision problem is such that

( + ∗e)−( + ∗e) = 0 (15)

where ∗ is normalized to unity. An optimality condition for ∗ = 1 at this
kink of the objective function is that e0(+e) and e0(+e) cannot
be both either strictly positive or strictly negative. Without loss of generality

suppose that

̃
0
( + ̃) ≥ 0 ≥ ̃

0
( + ̃) (16)

9



Now, observe that condition (15) characterizes ∗ locally around . Fully

differentiating this equality with respect to  yields

∗


= − 

0
( + e)−

0
( + e)

e0( + ∗e)−e0( + ∗e) 
This is positive if [

0
( + ̃)] ≤ [

0
( + ̃)] ¥

In fact, sufficient condition (14) is also necessary if  = 2, or if the set of

priors can be modified so that only priors  and  drive the solution, i.e., if

the minimal expected utility is a corner solution with (+∗e) = (+

∗e). In that case, as shown in the proof, a reversal in the right inequality in
(14) would imply that ∗ would be locally decreasing in wealth. In Figure 1,
we have illustrated condition (14). At wealth level , the objective function

() = min(( + e) ( + e)) has a maximum at the kink that is

characterized by the two left conditions in (14). We also see on the picture

that the right condition in (14) is satisfied . Indeed, the increase in wealth

has a larger effect on ( + ∗e) than on ( + ∗e). It implies that
∗()  ∗(0).
Condition (14) is linked to the DC property of . Indeed, suppose that

one of the two priors is degenerated at zero.1 Suppose for example thate = 0 almost surely. In that special case, condition (14) can be rewritten as
follows:

( + ̃) = ()

̃
0
( + ̃) ≤ 0

¾
=⇒ [

0
( + ̃)] ≥ 0()

Observe first that ( + ̃) = () implies that ̃
0
( + ̃) ≤ 0.

Indeed, function () = (+e) is concave in . Thus, if (1) = (0),

it must imply that  0(1) ≤ 0. This means that the above condition can be
rewritten as

( + ̃) = () =⇒ [
0
( + ̃)] ≥ 0()

which is the standard DC condition. We can conclude from this observation

that if one of the two priors is degenerated,  DC is sufficient to guarantee

that, in the maxmin model, wealthier people invest more in the risky asset.

1It is easy to check that the same result holds when one of the two priors is degenerated

elsewhere than at zero.

10



Figure 1: Effect of an increase in wealth from  to 0   on the optimal

portfolio allocation in the maxmin model.
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Another way to see the link between DC and condition (14) is to examine

the case in which both e and e are small. In the small, the indifference
between e and e is equivalent to condition

1 − 052 = 1 − 052 (17)

where  is the −th moment of random variable e and  = −00()0()
is absolute risk aversion. The condition that the demands for e and for e
are respectively larger and smaller than unity is equivalent to the following

condition:

1 −2 ≥ 0 ≥ 1 −2 (18)

Replacing1 by its expression derived from (17) in the first inequality allows

us to rewrite these two inequalities as follows:


2 +2

2
≤ 1 ≤ 2 (19)

These two inequalities imply in particular that 2 be smaller than 2.
2

Intuitively, if two small risks  and  yield the same expected utility, but the

demand for  is larger than the demand for , it must be that the riskiness

of  is smaller than the riskiness of  (and the expected payoff of  is smaller

than the expected payoff of ).

Now, observe that in the small, condition [
0
(+ ̃)] ≤ [

0
(+ ̃)] is

equivalent to

1 − 052 ≥ 1 − 052 (20)

where  = −000()00() is absolute prudence. Using condition (17), this
inequality holds if and only if

(2 −2)(−  ) ≥ 0
Because 2 ≤ 2 from (19) this condition holds if and only if  ≥ , i.e.,

if and only if  is DC.

To sum up what we have at this stage in the maxmin model,  DC is

sufficient for the demand for the risky asset to raises with wealth when one

of the two priors is degenerated, or when the different possible priors entails

small risk. However, DC is generally not sufficient, as shown in the following

counter-example.

2Notice that the same result holds when condition ̃
0
( + ̃) ≥ 0 ≥ ̃

0
( + ̃)

is relaxed to ̃
0
( + ̃) ≥ ̃

0
( + ̃)

12



Figure 2: Maxmin welfare as a function of the investment in the risky asset

 for three different wealth levels in the case described in Example 1The

three curves have been translated vertically for the sake of comparison.

Example 1 Consider function () =  − 1 in R+. This function is in-
creasing, concave and DC. Consider e1 ∼ (−8 047437; 9 052563) ande2 ∼ (−9 010719; 2 086155; 3 003126) One can check that e1 and e2
violate condition (14) at  = 10. In Figure 2, we show that an increase in

wealth around  = 10 reduces the demand for the risky asset.

Definition 3 We say that e dominates e in the sense of Jewitt if the fol-
lowing condition holds: for all increasing and concave , if agent  weakly

prefers e to e, then all agents more risk-averse than  also weakly prefere to e.
This is denoted e º e. By definition, if e dominates e in the sense

of Jewitt, e also dominates e in the sense of the second-order stochastic
dominance (SSD). Thus, Jewitt’s order is weaker than SSD. Jewitt (1989)

fully characterizes this stochastic order. A sufficient condition is that the

cumulative distribution function of e crosses the cumulative distribution
function of e only once, from below. Now suppose that we can ranked
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the set of priors {e1  e} according to Jewitt’s order. Without loss of
generality, suppose that e1 º e2 º  º e. Define function  such

that () = 0( + ) for all . Suppose that both −0 and  are more

concave than  in the sense of Arrow-Pratt. Consequently, for any ( ) ∈
{1  }2 if ( + e) = ( + e) then 0( + e) ≤ 0( + e) and
e0( + e) ≥ e0( + e). This is stronger than requested by condition
(14). The conditions in the following proposition guarantee that −0 and 

are more concave than .

Proposition 3 Normalize the demand for the risky asset at wealth level 

to unity. Suppose that the set of priors {e1  e} can be ranked according
to Jewitt’s order. In the maxmin model of ambiguity aversion, an increase

in wealth around  raises the demand for the risky asset if  is DC and for

all  in the joint support of {e1  e} we have that
 [ ( + )−( + )] ≤ 1 (21)

where  and  are the indices of absolute risk aversion and of absolute

prudence, respectively.

Proof: It remains to prove that −0 and  are two concave transforma-

tions of . We already know that  DC just means that −0 is more concave
than . Concerning , let us define function  such that () = (()) in

the joint support of {e1  e}. By definition of , fully differentiating this
equality twice yields

0( + ) + 00( + ) = 0(( + ))0( + )

and

200( + ) + 000( + ) = 00(( + )) (0( + ))
2
+ 0(( + ))00( + )

Eliminating 0 from these two equations allows us to write

00(( + )) (0( + ))
2
= 00( + )− 

Ã
000( + )− (

00( + ))
2

0( + )

!


This implies that  is concave in the relevant domain of  if condition (21)

is satisfied. ¥
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Observe that this proposition implies that  DC is sufficient if the possible

priors are small risk, that is, if the joint support of priors is in a small

neighborhood of 0. Observe also that condition (21) is quite general, as we

show now. Define relative risk aversion and relative prudence respectively as

() = −00()0() and  () = −000()00(). Condition (21) can then
rewritten as

 ( + )−( + )−  [ ( + )−( + )] ≤ 1

Assuming that the domain of possible wealth levels is in R+ a sufficient
condition for this inequality is that  ( + ) is weakly larger than ( +

) + 1 for all  + .

Corollary 2 Normalize the demand for the risky asset at wealth level  to

unity. Suppose that the set of priors {e1  e} can be ranked according to
Jewitt’s order. In the maxmin model of ambiguity aversion with  DC, a

marginal increase in wealth from  raises the demand for the risky asset if

relative prudence is uniformly smaller than relative risk aversion plus one.

To complete this section, let us consider the special case of HARA utility

functions, i.e., functions with linear absolute risk tolerance:

() = 

µ
 +





¶1−
 (22)

for some scalars  , and . The consumption domain of this utility function

is such that + is positive. We assume that (1−) is positive to insure
that  is increasing and concave in its domain. DC holds if  is positive. The

HARA set includes power, log, exponential and quadratic functions. Observe

that

( + e) = 

µ
̂ +

e


¶1−


0( + e) = 
1− 




µ
̂ +

e


¶−


and

e0( + e) = 
1− 


eµ̂ + e



¶−

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where ̂ =  +   0. Observe that

( + e) = 

µ
̂ +

e


¶µ
̂ +

e


¶−
= ̂

µ
̂ +

e


¶−
+




eµ̂ + e



¶−
= ̂



1− 
0( + e) + (1− )−1e0( + e)

This implies that

0( + e) = 1− 

̂
( + e)− 1

̂
e0( + e)

A symmetric condition holds for e. This implies that
0( + e)−0( + e) =

1− 

̂
[( + e)−( + e)]

+
1

̂
[e0( + e)−e0( + e)] 

Suppose that the two left conditions in (14) hold. It implies that the first

term in the RHS of the above equality vanishes, and that the second term is

negative if  is positive, i.e., if  is DC. This yields the following proposition.

Proposition 4 Suppose that  is HARA and DC (condition (22) with  

0). In the maxmin model of ambiguity aversion, an increase in wealth always

increases the demand for the risky asset.

It is noteworthy that in the HARA subset with increasing concavity (con-

dition (22) with   0) as the quadratic utility function, the demand for the

risky asset is always decreasing in wealth.

3.2 The KMM model

Let’s now consider the portfolio problem in the KMM smooth ambiguity

framework. The decision problem becomes

∗() = argmax(( + e)) (23)
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We normalize again the unit of the risky asset in such a way that ∗() = 1.
The first order condition is therefore


£
0(( + e))e0( + e)¤ = 0 (24)

We examine the condition under which the demand for the risky asset is

increasing in wealth. Since the denominator in the relation

∗


= −

£

00
(( + e))0( + e)e0( + e)¤+

£
0(( + e))e00( + e)¤


£

00
(( + e))(e0( + e))2¤+

h
0(( + e))e200( + e)i

is negative, this decreasing aversion property is satisfied if and only if


h

00
(( + e))0( + e)e0( + e)i+ h0(( + e))e00( + e)i ≥ 0

(25)

The second term in the left-hand side of this inequality is positive if  is DC.

Indeed,  DC means that () = −00()0() is decreasing, which implies
in turn that


h
0(( + e))e00( + e)i = − £( + e)0(( + e))e0( + e)¤

≥ −() £0(( + e))e0( + e)¤
= −() £0(( + e))e0( + e)¤ = 0

We now turn to the analysis of the sign of the first term in (25). If we use

the same method as for the second term, we can rewrite this first term as

follows:


h

00
(( + e))0( + e)e0( + e)i = − £(( + e))0(( + e))0( +

= −
h
(e)0(( + e))e0( + e)i

where () = −00()0() is the absolute measure of ambiguity aversion,
and () = (( + e))0( + e). Suppose that  is a decreasing

function of , and that e0( + e) satisfies the single-crossing property:
there exists b so that ( − b)e0( + e) ≥ 0 for all . From the above

equality, this would imply that


h

00
(( + e))0( + e)e0( + e)i ≥ −(b) £0(( + e))e0( + e)¤ = 0

This proves the following Lemma.
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Lemma 2 Suppose that  is DC. In the portfolio problem under the KMM

smooth ambiguity framework, the demand for the risky asset is increasing

with wealth if () = ((+ e))0(+ e) is decreasing in  and there

exists b such that ( − b)e0( + e) ≥ 0 for all 
We can use this lemma to show that combining condition  DC to the

one presented in Proposition 3 is sufficient for the demand for the risky asset

to be increasing in wealth.

Proposition 5 Normalize the demand for the risky asset at wealth level  to

unity. Suppose that (+e1) ≤  ≤ (+e) and e1 ¹ e2 ¹  ¹ e.
In the KMM smooth ambiguity model, an increase in wealth around  raises

the demand for the risky asset if  and  are DC, and for all  in the joint

support of {e1  e} condition (21) holds.
Proof: Because  is DC, we have that −0 is more concave than . Be-

cause  prefers e+1 to e, e+1 º e implies that the agent with utility
function −0 also prefers e+1 to e i.e., 0( + e+1) ≤ 0( + e). Be-
cause  is decreasing, we obtain that () = (( + e))0( + e) is
decreasing in . Moreover, condition (21) implies that () = 0( + ) is

more concave than , so that (e) = e0(+e) is increasing in . This
is sufficient for the existence of an integer b such that (−b)e0(+e) ≥ 0
for all Applying Lemma 2 yields the result. ¥
A sufficient condition for (21) is that  has constant relative risk aversion.

Suppose that we replace the Jewitt’s ordering condition by the stronger

SSD condition: e1 ¹  ¹ e or (e1) ≤  ≤ (e) for all
 increasing and concave. Because  and −0 are increasing and concave,
and assuming  decreasing, we obtain that  is monotone decreasing in

. The single crossing property for e0( + e) requires another stochas-
tic dominance order defined by Gollier (1995). Let us introduce define the

location-weighted-probability function  as follows:

() =

Z 

() (26)

where  is the cumulative distribution function of e. Following Gollier
(1995), we say that e+1 dominates e in the sense of Central Dominance
(CD) if there exists a nonnegative scalar  such that () ≤ +1() for
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all  in the joint support of e and e+1 SSD-dominance is neither necessary
nor sufficient for CD-dominance. Observe that any decreasing function 0

can be expressed as a convex combinaison of decreasing step function: ∃ :
R→ R+ : ∀ ∈ om(u)

0() =
Z
()( ≤ )

This implies that

e0( + e) = Z ()(− )

If e+1 dominates e, then there exists  ≥ 0 so that e0( + e) ≤
e+10(+e+1). This implies that [e+10(+e+1) ≤ 0 =⇒ e0(+e) ≤ 0], i.e., the single crossing property for e0( + e). Using Lemma
2, this proves the following Proposition.

Proposition 6 Suppose that e1 ¹  ¹ e and e1 ¹  ¹e. In the KMM smooth ambiguity model, an increase in wealth raises the

demand for the risky asset if  and  are DC.

This proposition is similar to the main result in Gollier (2011), who shows

that an increase in ambiguity aversion reduces the demand for the risky asset

in the KMM smooth ambiguity aversion framework if the priors can be ranked

according to SSD and CD. The intersection of SSD and CD is not empty.

For example, the well-known Monotone Likelihood Ratio (MLR) order is a

subset of both SSD and CD.

Corollary 3 Suppose that  and  are CD. Then, the demand for the risky

asset is decreasing in wealth if the set of priors can be ranked according to

the MLR order: ∀( 0) ∈ {1  }2 ()0() is monotone in .
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4 Conclusion

Two basic hypotheses prevail in decision theory with a large consensus in

the profession. The first one is that human being are averse to uncertainty.

The second one is that they are decreasingly averse to uncertainty. In the

classical expected utility, these properties of human behavior prevail respec-

tively if the utility function  is concave, and if it is decreasingly concave

in the sense that −000 is decreasing. In this paper, we have focused our
attention to this concept of decreasing aversion, by examining two different

decision problems when the decision maker is not ambiguity-neutral. We first

define decreasing aversion by the property that the set of desirable uncertain

prospects expands when wealth increases. In the smooth ambiguity aversion

model, we have shown that the classical conditions of decreasing risk aver-

sion and of decreasing ambiguity aversion imply this property, and that an

intuitive weaker condition is necessary and sufficient. In the −MEU model,
the standard DARA condition is necessary and sufficient.

Another definition of decreasing aversion is that the demand for a risky as-

set is increasing with wealth. The introduction of the ingredient of ambiguity-

sensitive preferences into the picture implies much more complexity than in

the above discrete choice problem. Even in the simpler maxmin criterion, the

decreasing concavity of  is not sufficient to get this result, except in the case

of small risks. As in the smooth ambiguity aversion model with a decreas-

ingly concave ambiguity-related function , the unambiguous comparative

static result requires some assumptions on the structure of ambiguity. As in

Jewitt and Mukerji (2011), this paper illustrates once again the fact that even

the most intuitive departures from the classical subjective expected utility

model introduce much richness to our decision models. This is at the cost of

a non-marginal increment in the complexity of the analysis.
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Appendix: The wealth effect in the maxmax portfolio problem

In this Appendix, we present a short analysis of the portfolio choice prob-

lem when the investor has a maxmax preference functional:

max

max


( + e) (27)

In the family of −MEU preferences, this model is the polar one to the

maxmin criterion. Of course,  DC is necessary to guarantee that  is in-

creasing in  in intervals of wealth levels where the argument of the maximum

of (+e) with respect to  does not change. Because the objective func-
tion is not concave with respect to the decision variable , we also need to

take care of the possible bifurcations. In Figure 3, we describe a situation in

which the demand for the risky asset goes discountinuously down from ()

to (0)  () when wealth goes up from  to 0.
We first show that bifurcations never occur in the case of HARA utility

functions defined by (22). Let us define

() = max


( + e)
The absence of bifurcation comes from the property that, for all ( ) ∈
{1  }2 

() ≥ () =⇒ ∀0  − : (
0) ≥ (

0)

In other words, the  that maximizes expected utility with the optimal port-

folio never switches in the case of HARA preferences (22). To show this, let

us observe that conditional to , the expected-utility-maximizing investment

in the risky asset is linear in the wealth level . The first-order condition to

the maximization of ( + e) can be written as follows:
e ( +  + ∗()e)− = 0

Let us define ∗ as the unique root of the follwoing equation:

e (1 + ∗e)− = 0
22



 



Eu 

Eu(z+xj)

Eu(z+xi)

(z)

Eu(z’+xi)Eu(z’+xj)

(z’)

Figure 3: A bifurcation yielding a decreasing demand for the risky asset in

the maxmax portfolio model.
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By comparing the last two equations, it is immediate that the optimal so-

lution conditional to  is ∗() = ∗( + ) for all   −. We can now
compute (). We obtain:

() = 

µ
( + )(1 + ∗e)



¶1−
= ( + )1−∗ 

with

∗ = 

µ
1 + ∗e



¶1−


It implies that the (1()  ()) can be ordered in the same way as

(∗1  
∗
), which is independent of . This implies in particular that the

largest element in (1()  ()) is independent of . Hence, there is no

bifurcation. This concludes the proof of the following result.

Proposition 7 Consider the maxmax portfolio problem (27) with a HARA

utility function . In this framework, there is no bifurcation when wealth

increases in the sense that the  that maximizes the expected utility along

the optimal portfolio strategy is independent of . This implies that  DC is

sufficient to guarantee that the demand for the risky asset is increasing with

wealth in the maxmax-HARA portfolio model.

One can easily find a counterexample where the bifurcation yields a down-

ward jump in the demand for the risky asset when wealth increases in spite

of DARA. Consider the DARA utility function () =  − 1
−2 with

1 = 10 and 2 = 1. Consider an ambiguous situation with two possible

priors: e1 ∼ (−1 12; 2 12) and e2 ∼ (−1 13; 1 23) The demand for the
risky asset as a function of wealth is represented in Figure 4. This illustrates

the fact that DARA is not sufficient for a monotone relationship between

wealth and the optimal exposure to risk in the maxmax model.

Let us now characterize bifurcations. A bifurcation occurs at some wealth

level  if two global maxima to problem (27) prevails for that . Let e denote
∗e. The following set of conditions is necessary for (∗  ∗) to be two global
maxima:

e0( + e) = 0 (28)

e0( + e) = 0 (29)
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Figure 4: The demand for the risky asset as a function of wealth in the

maxmax model.

and

( + e) = ( + e) (30)

A marginal increase in wealth yields a bifurcation from ∗ to 
∗
 iff

0( + e)  0( + e) (31)

Whether this bifurcation is demand-increasing or demand-decreasing de-

pends upon whether ∗ ≥ ∗ or 
∗
 ≤ ∗  respectively. If it is a demand-

increasing bifurcation, we can build another ambiguous context with the

same utility function in which there is a demand-decreasing bifurcation.

Proposition 8 Consider the maxmax model with utility function . Con-

sider an ambiguous context (e1  e) with e  0 for all  = 1   such
that there is a demand-increasing bifurcation at wealth level . Then, there

exists another ambiguous context (e01  e0) such that there is a demand-
decreasing bifurcation at wealth .

Proof: Observe first that condition e  0 implies that the local max-
imum ∗ is positive. Suppose that the two local maxima under (e1  e)
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are ∗ and 
∗
 , with ∗  ∗ . It implies that e = ∗ e and e = ∗e satisfy

conditions (28)-(31), yielding a demand-increasing bifurcation at . Consider

now the alternative ambiguous context (e01  e0) such that e0 = e for all
 6=  and e0 = e where  is a positive scalar larger than ∗ 

∗
  0. It is

then immediate that the pair (∗0 = ∗  
∗
) describes two global maxima

under the new ambiguous context. Indeed, we have that ∗0 e0 = ∗ e = e,
so that the pair of conditions (28)-(31) is preserved by the joint change of

ambiguity context and in (∗  
∗
). But in the new context, we have that

∗0 =
∗



∗

∗


∗
= ∗ 

so that the bifurcation is now demand-decreasing. ¥
This proposition tells us that as soon as an ambiguity context yields

a bifurcation in the demand for the risky asset as some wealth level, we

can make it demand-decreasing, thereby violating the desired comparative

statics property. We have seen earlier that there is never any bifurcation if

 is HARA. In the remainder of this section, we examine the case of small

risks.

Lemma 3 Suppose that there are two local maxima ∗ and ∗ to program
(27) at wealth level , and that they are small. This requires that

1 − ∗2+ 05
∗2
 3 = 0 (32)

for  =  and , together with

∗2 2 − ∗2 2 =
2

3

£
∗3 3 − ∗3 3

¤
 (33)

where  is the th moment of e and  and  are respectively the ab-

solute risk aversion and the absolute prudence evaluated at wealth level . A

marginal increase in  implies a bifurcation from ∗ to 
∗
 if and only if£

∗2 2 − ∗2 2

¤
[+  − 2 ] ≤ 0 (34)

where  = −0000()000() is the index of absolute temperance.
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Proof: Condition (32) is obtained from (28) and (29) via second-order

Taylor expansion 0(+) around . Using third-degree Taylor expansions,

condition (30) can be rewritten as follows:

∗1 − 1
2
∗2 2+

1

6
∗3 3 = ∗1 − 1

2
∗2 2+

1

6
∗3 3

Replacing 1 and 1 in this equation by their expression derived from (32)

yields condition (33). Using the same method for inequality (31) yields

£
∗2 2 − ∗2 2

¤ ∙
− 1

2


¸
≤ £∗3 3 − ∗3 3

¤ ∙
2
− 

6

¸


Using condition (33) to eliminate ∗3 3 − ∗3 3 in this inequality yields

condition (34). ¥
Observe that in the HARA case, + − 2 is uniformly zero, so that if

there are two global maxima to program (27) for some , this is the case for

all . With a non-HARA utility function, whether bifurcations are compat-

ible with an increasing demand for the risky asset depends upon a complex

condition linking the signs of +  − 2 and of ∗2 2 − ∗2 2, where 
∗


and ∗ are defined by (32) under constraint (33). Notice that skewness is
important. On the contrary, if e and e are such that 3 = 3 = 0 implies

that 2 = 2 by condition (33) to guarantee that the two local maxima

are also global maxima. But this latter condition implies that condition (34)

is satisfied as an equality, which means that there is no bifurcation.
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