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Abstract

This article formally analyzes the various corrective mechanisms that have been

proposed and implemented to alleviate underinvestment in electric power genera-

tion. It yields three main analytical findings. First, physical capacity certificates

markets implemented in the United States restore optimal investment if and only

if they are supplemented with a “no short sale” condition, i.e., producers can not

sell more certificates than they have installed capacity. Then, they raise producers’

profits beyond the imperfect competition level. Second, financial reliability options,

proposed in many markets, are effective at curbing market power, although they

fail to fully restore investment incentives. If “no short sale” conditions are added,

both physical capacity certificates and financial reliability options are equivalent.

Finally, a single market for energy and operating reserves subject to a price cap is

isomorphic to a simple energy market. Standard peak-load pricing analysis applies:

under-investment occurs, unless production is perfectly competitive and the cap is

never binding.
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1 Introduction

An essential objective of the restructuring of the electric power industry in the 1990s

was to “push to the market” decisions and risks associated with investment in power

generation, i.e., to have market forces, not bureaucrats, determine how much investment
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is required, and to have investors, not rate-payers, bear the risks of excess capacity,

construction cost overruns and delays.

However, since the early 2000s, generation adequacy has become an issue of concern

for policy makers, power System Operators (SOs), and economists. It would appear that,

contrary to the initial belief, the market does not necessarily provide for the adequate

level of generation capacity. Britain, that pioneered the restructuring of the electricity

industry in 1990, constitutes the most recent and striking example: Ofgem, the energy

regulator recently warned that, in its high demand scenario, involuntary curtailment of

customers will be imposed for 8 hours on average during the winter 2015/2016 (Ofgem,

2013).

Operating and regulatory practices aimed at preventing the exercise of market power

are often considered to be the primary cause of this market failure. As shown in Marcel

Boiteux (1949)’s seminal analysis, high prices a few hours per year are required to

finance the optimal capacity. However, in most jurisdictions SOs impose de jure or de

facto price caps, that deprive producers of these high prices. This revenue loss, called

“missing money”, is considered an important driver of underinvestment in generation

(Joskow, 2007).

Therefore, SOs and policy makers worldwide have designed and implemented a va-

riety of mechanisms to correct this apparent market failure (Finon and Pignon, 2008).

For example, most US power markets have adopted highly structured and prescriptive

physical certificates markets, and many European countries are considering, designing

or implementing capacity mechanisms1.

These mechanisms are extremely complex, hence expensive to set up and run. Fur-

thermore, they constitute a partial reversion towards central planning, which restructur-

ing precisely attempted to eliminate: using a centralized system reliability model, the

SO sets a generation capacity target, and organizes its procurement. Risk of overcapac-

ity is borne by consumers, while risk of cost overrun is borne by investors. A rigorous

economic analysis of the performance of the various market designs implemented by SOs

to restore investment incentives is therefore required. This is the objective of this article.

I am not aware of any previous systematic analytical comparison of these designs.

This work draws on a rich literature, that can be structured along two themes. A

first group of articles examines generation investment in restructured power markets.

While these works differ in important aspects, most model two stage games: in stage

1France formally instituted a capacity obligation mechanism in March 2012, to be effective in 2015.
Britain, Germany, and Belgium are designing mechanisms to ensure adequate capacity.
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1, producers decide on installed capacity; in stage 2 they produce and sell in the spot

markets, subject to the installed capacity constraint. For example, Borenstein and

Holland (2005) and Joskow and Tirole (2007), building on Boiteux (1949) and Crew and

Kleindorfer (1976), have developed the benchmark model of optimal investment and

production when (i) demand is uncertain at the time the investment decision is made,

and (ii) a fraction of the demand does not react to price. The former article considers

the perfect competition case, while the latter introduces some elements of imperfect

competition. Murphy and Smeers (2005) have developed models of closed- and open-

loop Cournot competition at the investment and spot market stages, and characterized

the equilibria of these games. Boom (2009) and Boom and Buehler (2014) have examined

the impact of vertical integration on equilibrium investment, while Fabra et al. (2011)

have examined the impact of the structure of the auction in the spot market on the

equilibrium investment. A more recent literature (e.g., Garcia and Shen, 2010) examine

multiperiod investment decisions. This article builds on the two-stage Cournot game

formalized in Zöttl (2011).

A second group of works describes and analyzes the possible corrective mechanisms2.

Stoft (2002) discusses average Value of Lost Load (V oLL) pricing, Hogan (2005) proposes

an energy cum operating reserves markets, and Cramton and Stoft (2006 and 2008)

and Cramton and Ockenfels (2011) propose a financial reliability options mechanism3.

Joskow and Tirole (2007) show that a capacity market and a price cap do not restore

the first best with more than two states of the world. Chao and Wilson (2005) examine

the impact of options on spot market equilibrium, investment, and welfare. Zöttl (2011)

determines the welfare maximizing price cap in the spot market. However, none of these

works presents a rigorous comparison of these mechanisms in a general and common

setting.

This article bridges these two strands of literature, that analyzes the proposals de-

scribed in the second group of articles using a rigorous economic model developed in the

first group: an extension of the two-stage Cournot model developed by Zöttl (2011) to

include both “price reactive” customers and “constant price customers”, the latter being

unable to react to spot energy prices and being rationed in some instances (Borenstein

and Holland, 2005, Joskow and Tirole, 2007, Stoft, 2002, and Hogan, 2005). Its contri-

bution is to propose clear policy recommendations, building on the economic analysis

of these mechanisms. While this work’s primary focus is the electric power industry,

2Since these mechanisms are described extensively in the article, they are not developped further
here.

3Strictly speaking, these options ensure “resource adequacy”, not “reliability”. Nevertheless, I use
the word “reliability options” as it was the term used in the original Cramton and Stoft articles.
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the analysis presented here can serve as a basis to examine (under)investment issues

in other industries where participants must select capacity in the presence of signifi-

cant demand variability and uncertainty and limited storage possibilities, for example

telecommunications and transport networks.

This article yields three main analytical findings. First, it examines the equilibrium of

markets where energy and forward physical installed capacity certificates are separately

exchanged. This is the case for example in the Northeast of the United States: 3 to

5 years ahead, the SO procures from producers physical capacity certificates (usually

15 to 20% higher than anticipated peak load to protect against supply and demand

fluctuations). The cost of these purchases is then passed on to customers. Proposition 1

shows that the SO must impose a “no short sale” requirement, i.e., require producers to

sell less certificates than have installed capacity (or to build as much capacity as they have

sold certificates). If she does, a physical capacity certificates market restores investment

incentives: the resulting capacity installed is optimal. For a given price cap, social

welfare is thus maximized. However, producers profits are higher than the imperfect

competition outcome without the capacity market. Numerical illustration suggests the

additional rent from the capacity market is not negligible, that ranges ranges between

10 to 16% of the investment cost.

Second, this article analyzes the equilibrium of another form of forward markets,

where producers are required to sell, through the SO, financial call options to customers,

covering all the demand up to a certain level at a given strike price. Option sellers pay

customers the difference between the actual spot energy price and the strike price (Oren,

2005, Cramton and Stoft, 2006 and 2008, Cramton and Ockenfels, 2011).

Proposition 2 proves that options sale reduces but does not eliminate market power.

Installed capacity is higher with options sale than without, but still lower than socially

optimal. To ensure optimal investment, the SO must again impose a “no short sale” re-

quirement. If she does, Proposition 3 shows that financial reliability options and physical

capacity certificates with the “no short sale” conditions are equivalent if the “technical”

parameters are identical (e.g., if the option strike price equals the wholesale price cap).

Reliability options thus also sur-remunerate strategic underinvestment. While Proposi-

tions 2 and 3 are consistent with Chao and Wilson (2005) and Allaz and Villa (1993)’s

theoretical analysis of the interaction between forward and spot markets, they are new

to the literature.

Finally, this articles examines the “energy cum operating reserves market” proposed
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by Hogan (2005). SOs procure operating reserves to protect against an unplanned

generation outage. Hogan (2005) proposes the SO balances supply against demand for

energy and operating reserves, using the average V oLL as a price cap. Producers should

receive additional revenues since: (i) the resulting power price is higher than when

the SO balances supply against demand for energy alone, and (ii) capacity providing

operating reserves – but no energy – is remunerated. This additional revenue is expected

to resolve the missing money problem, hence restores investment incentives. However,

Proposition 5 shows this intuition is invalid: since these additional revenues are already

accounted for in the determination of the installed capacity, the situation is isomorphic

to standard peak-load pricing.

Each of these three mechanisms is examined individually in this article, while they

may be implemented jointly in practice. For example, most US markets have a physical

certificate mechanism and co-procurement of energy and operating reserves.

The analysis yields clear policy recommendations. If policy makers and the SO are

confident a market is sufficiently competitive, as may be the case in Texas, there is no

need to impose a price cap and set up a forward capacity market (physical or financial),

which are complex and costly to administer. Average V oLL pricing or an energy cum

operating reserves market are simple to set up and, if the V oLL used is close enough

to the real V oLL, cause limited distortion compared to the optimum. Furthermore, an

energy cum operating reserves market remunerates flexibility, an important issue which

is not covered in this work.

On the other-hand, policy makers may determine that generation is insufficiently

competitive in their jurisdiction. This may be the case in European markets, where

in most markets less than 10 generation companies actually compete. This may also

be the case where congestion on the transmission grid separates the market in smaller

submarkets, and producers may be able to exert local market power. Then, policy makers

should set up a forward capacity market as an interim measure while removing barriers

to competition. If they believe they can effectively enforce no short sale conditions,

they can choose between physical capacity certificates and financial reliability options.

If they believe that no short sale conditions are too costly to enforce, they should be

prefer financial reliability options.

The article is structured as follows. Section 2 presents the model structure and ex-

amines the causes of underinvestment. Section 3 examines markets for physical installed

capacity certificates. Section 4 analyzes financial reliability options. Section 5 analyzes
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the “energy cum operating reserves market”. Finally, Section 6 suggests future research

directions. Technical proofs are included in the online Appendix.

2 Underinvestment

The model used throughout this article is developed in Léautier (2014), building on

the analysis presented by Zöttl (2011). This Section presents its main features and

conclusions. The interested reader is referred to Léautier (2014) for a comprehensive

presentation of the model.

2.1 Model structure

Uncertainty Uncertainty is an essential feature of power markets. In this work, de-

mand uncertainty is explicitly modeled, while production uncertainty is taken into ac-

count implicitly through operating reserves (presented in Section 5). This representation

is suitable for markets that rely mostly on controllable generation technologies, such as

thermal and nuclear (see for example Chao and Wilson, 1987). Extension to markets

where intermittent sources constitute an important portion of the generation portfolio

is discussed in the concluding section.

The number of possible states of the world is infinite, and these are indexed by

t ∈ [0,+∞). The functions f (t) and F (t) are respectively the ex ante probability and

cumulative density functions of state t. Since all market participants have the same

information about future demand projections and construction plans, f (t) and F (t) are

common to all stakeholders.

Supply This article considers a single generation technology, characterized by marginal

cost c > 0 and investment cost4 r. A single technology is sufficient to analyze total

installed capacity, that depends solely on the characteristics of the marginal technology

(see for example Boiteux (1949) for the perfect competition case and Zöttl (2011) for

the imperfect competition case).

Underlying demand

Assumption 1. All customers have the same underlying demand D (p, t) in state t,

where p the electric power price, up to a scaling factor.

4Both are expressed in €/MWh. r is the annual capital cost expressed in €/MWh/year divided by
8, 760 hours. It includes the cost of risk.
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Assumption 1 greatly simplifies the derivations, while preserving the main economics

insights. Inverse demand is P (q, t) defined by D (P (q, t) , t) = q, and gross consumers

surplus is S (p, t) =
´ D(p,t)

0 P (q, t) dq. P (q, t) is downward sloping: Pq (q, t) < 0. States

of the world are ordered by increasing demand: Pt (q, t) > 0.

Constant price customers, curtailment, and Value of Lost Load Only a frac-

tion α > 0 of customers face and react to real time wholesale price (“price reactive”

customers), while the remaining fraction (1− α) of customers face constant price pR in

all states of the world (“constant price” customers).

Since a fraction of customers does not react to real time price, there may be in-

stances when the SO has no alternative but to curtail demand, i.e., to interrupt supply.

As discussed for example in Joskow and Tirole (2007), there exists multiple rationing

technologies. Curtailment is represented by a serving ratio γ ∈ [0, 1]: γ = 0 represents

no serving (i.e., all energy to all consumers is curtailed), while γ = 1 represents full

serving (i.e., no customer is curtailed). D (p, γ, t) is the demand for price p and serving

ratio γ in state t, P (q, γ, t) is the inverse demand for a given serving ratio γ,defined by

D (P (q, γ, t) , γ, t) = q, and S (p, γ, t) is the gross consumer surplus.

Assumption 2. The SO has the technical ability to curtail “constant price” consumers

while not curtailing “price reactive” customers.

Assumption 2 holds only partially today: most SOs can only organize curtailment

by geographical zones, and cannot differentiate by type of customer. However, most

price reactive customers are large enough that they are connected directly to individual

transformers or to the high voltage grid, hence they need not be curtailed when the SO

curtail constant price customers. Assumption 2 will hold fully in a few years, when smart

grids are rolled out, as is mandated in most European countries and many US states.

It is expected that SOs will then be able to differentiate among adjacent customers

on the basis of the information provided by power suppliers, and curtail constant price

customers individually.

Since customers are homogeneous, the SO has no basis for discriminating among

them. Rationing is thus proportional, i.e., the fraction (1− γ) of constant price cus-

tomers is completely cut-off for the duration of the outage.

When consumers are curtailed, the marginal Value of Lost Load (V oLL) represents

the value they place on an extra unit of electricity (Joskow and Tirole, 2007, Stoft, 2002),

7



formally defined as

v (p, γ, t) =

∂S
∂γ

∂D
∂γ

(p, γ, t) .

If the SO knew the V oLL for every rationing technology and state of the world (and

each customer class), the second best (as defined in the next Section) would be achieved5.

In reality, regulators, SOs and economists have little idea of the V oLL. Estimation is

extremely difficult, because the V oLL varies drastically across customer classes, states

of the world, and duration and conditions of outages. Estimates vary in an extremely

wide range from 2 000 £/MWh in the British Pool in the 1990s to 200 000 $/MWh

(see for example Cramton and Lien, 2000, and Praktiknjo and Erdmann, 2012). In

practice, the SO uses her best estimate of the average V oLL, i.e., the average value per

MWh of electricity lost for an average customer who loses all his service, and prioritizes

curtailment by geographic zones (economic activity, political weight, network conditions,

etc.), thus implementing a third best.

Both approaches produce downward sloping demand curves, hence are analytically

equivalent. In this work, I assume the SO knows exactly the V oLL. While this assump-

tion is unrealistic, it constitutes a useful analytical benchmark.

2.2 Socially optimal consumption and investment

Optimal consumption The residual inverse demand curve with possible curtailment

of constant price customers is

ρ (Q, t) = P

(
Q− (1− α)D

(
pR, γ∗, t

)
α

, t

)
, (1)

where γ∗ is the optimal serving ratio in state t for production Q.

Price reactive customers face the wholesale spot price ρ (Q, t), hence are never cur-

tailed at the optimum. Off-peak, demand is low, and production Q (t) is determined by

ρ (Q (t) , t) = c. On-peak, demand is set by installed capacity K, and the wholesale price

is ρ (K, t).

As long as ρ (K, t) ≤ v
(
pR, 1, t

)
, constant price customers are not curtailed in state

t. If ρ (K, t) > v
(
pR, 1, t

)
, then γ∗ < 1 is set to equalize constant price customers’ V oLL

5The VoLL would be different if instead all price responsive customers received only (1 − γ) of their
demand. However, this does not change the analytical treatment presented in this article. I am grateful
to a referee for this observation.

8



and the wholesale price

v
(
pR, γ∗, t

)
= ρ (K, t) .

Define t̄ (K) the first state of the world when curtailment may occur6. If curtailment

never occurs, t̄ (K)→ +∞. With a slight abuse of notation, define ρq = 1
αPq

(
Q−(1−α)D(pR,t)

α , t

)
if no rationing occurs, and ρq = ∂v

∂K = ∂v
∂γ

∂γ∗

∂K if rationing occurs. Léautier (2014) derives

sufficient conditions for ρ (Q, t) to be well-behaved, even when curtailment occurs.

As an illustration, suppose (i) inverse demand is linear with constant slope: P (q, t) =

a (t)−bq, and (ii) rationing perfectly anticipated and proportional: S (p, γ, t) = γS (p, t)

and D (p, γ, t) = γD (p, t). If no rationing occurs,

ρ (Q, t) =
a (t)− bQ− (1− α) pR

α
.

Since rationing is anticipated and proportional,

v
(
pR, γ, t

)
=
S
(
pR, t

)
D (pR, t)

= a (t)− b
D
(
pR, t

)
2

=
a (t) + pR

2
.

Optimal investment The marginal social value capacity is

Ψ (K, c) =

ˆ +∞

t̂0(K,c)
(ρ (K, t)− c) f (t) dt,

where t̂0 (K, c) is the first state of the world such that price (weakly) exceeds the marginal

cost for production K

ρ
(
K, t̂0 (K, c)

)
≥ c.

Ψ (K, c) is decreasing in both arguments. If ρ (0, 0) > c+ r, the optimal capacity K∗ is

the unique solution to

Ψ (K∗, c) = r.

Off-peak, as long as capacity is not constrained, price equals marginal cost, hence

marginal capacity generates no economic profit. On-peak, when capacity is constrained,

price exceeds marginal cost. The optimal capacity is set such that the marginal social

value capacity is exactly equal to the marginal capacity cost r.

If α is small, rationing of constant price customers may occur at the optimal capacity,

an issue known as the Theoretical (capacity) Adequacy Problem (TAP ). With the

6t̄ is a function of all the parameters. The notation t̄ (K) is used since the dependency on installed
capacity K is the most important in this analysis.
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specification summarized in Appendix A, Léautier (2014) finds that rationing occurs at

the optimal capacity until α = 3.9% if the price elasticity of demand η = −0.01, and

α = 13.9% if η = −0.1. This result may seem counter-intuitive: a less elastic demand

results in less curtailment! The intuition is that, for a given α, capacity is higher when

demand is more inelastic, hence, curtailment is less frequent.

If the presence of constant price customers was the only imperfection in power mar-

kets, an energy only market design, sometimes referred to as average V oLL pricing,

would be efficient (Stoft, 2002, Oren, 2005): when constant price customers are cur-

tailed, the SO pays energy at the V oLL. This yields optimal investment, conditional

on the V oLL. If the SO knew exactly the V oLL, this would achieve a second best.

Otherwise, this would yield a third best.

However, power markets are subject to other imperfections. First, competition

among producers is less than perfect. Second, producers may be risk averse, which re-

duces their investment. Finally, investment decisions are dynamic and long-lived, more

complex than a simple static model suggests. This article focusses on the first imperfec-

tion, that examines the performance of corrective mechanisms in a static model where

agents are risk neutral. Extensions to a dynamic model and risk-averse agents are left

for further work.

2.3 Imperfect competition, price cap, and underinvestment

Consider now N producers, that play a two-stage game: in stage 1, producer n installs

capacity kn; in stage 2 he produces qn (t) ≤ kn in the spot market in state t. Producers

are assumed to compete à la Cournot in the spot markets, facing inverse demand ρ (Q, t)

defined by equation (1). Stage 2 can be interpreted as a repetition of multiple states of

the world over a given period (for example one year), drawn from the distribution F (.).

Producers are assumed to be independent, i.e., not to be vertically integrated into

supply. A rich literature has examined how vertical integration modifies market behavior,

in particular investment incentives (Boom, 2009, and Boom and Buehler, 2014).

The game is solved by backwards induction: producers first compute profits from a

Nash equilibrium in the energy spot market for each state of the world t, given installed

capacities
(
k1, ..., kN

)
; then they make their investment choice in stage 1 based on the

expectation of these spot market profits.

Aggregate production in state t and aggregate installed capacity are respectively

Q (t) =
N∑
n=1

qn (t) and K =
N∑
n=1

kn. Producer’s n profit for the two-stage game is
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Πn (kn,k−n).

The results presented in this article hold for other forms of imperfect competition in

the spot market, as long they yield an equilibrium price higher than the marginal cost

c, and a profit function Πn (kn,k−n) with the required concavity. Cournot competition

is used as it provides simple analytical expressions that can be illustrated numerically.

To limit the exercise of market power, the SO imposes a cap p̄W on the wholesale

power price7, assumed to satisfy

c+ r ≤ p̄W ≤ ρ (0, 0) .

A price cap lower than the full marginal cost of the first unit of energy would block any

investment. A cap higher than the value of the first unit of energy consumed would have

limited effectiveness.

The first on-peak state of the world under imperfect competition, i.e., where the

marginal revenue for production K equals marginal cost is t̂ (K, c,N), uniquely defined

by

ρ
(
K, t̂ (K, c,N)

)
+
K

N
ρq
(
K, t̂ (K, c,N)

)
= c.

The aggregate capacity constraint may be binding before or after the price cap con-

straint in the relevant range, i.e., t̂ (K, c,N) ≤ t̂0
(
K, p̄W

)
or t̂ (K, c,N) > t̂0

(
K, p̄W

)
.

Introducing constant price customers makes t̂ (K, c,N) > t̂0
(
K, p̄W

)
is a distinct possi-

bility, in particular if the residual demand ρ (Q, t) is very inelastic, i.e., if α or |η| are

very low.

Léautier (2014) proves that, if certain technical sufficient conditions are met, the

equilibrium capacity KC
(
p̄W
)

is characterized by

Ω
(
KC , p̄W

)
= r,

7In practice, most SOs in the United States impose a cap on bids into the wholesale markets, not a
cap on wholesale price. A wholesale price cap simplifies the analysis, while preserving the main economic
insights.
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where Ω
(
K, p̄W

)
is defined by

Ω
(
K, p̄W

)
=

(ˆ t̂0(K,p̄W )

t̂(K,c,N)

(
ρ (K, t) +

K

N
ρq (K, t)− c

)
f (t) dt

)
I{t̂(K,c,N)≤t̂0(K,p̄W )}

+

ˆ +∞

t̂0(K,p̄W )

(
p̄W − c

)
f (t) dt

where I{x≥0} is the indicator function, that takes the value 1 if x ≥ 0 and 0 otherwise.

This result illustrates the two distortions that reduce investment. First, if genera-

tion produces at capacity before the cap is reached, imperfect competition reduces the

marginal value of capacity by two terms: the reduction in profit on the inframarginal

units as in all Cournot competition models

(
K
N

´ t̂0(K,p̄W )
t̂(K,c,N)

ρq (K, t) f (t) dt

)
, but also the

lost margin (ρ (K, t)− c) in the states of the world t ∈
[
t̂0 (K, c) , t̂ (K, c,N)

]
. Both

effects are negative. Second, whether the cap or the generation capacity constraint

is reached first, the price cap reduces the marginal value, since the SO values energy

at ρ (K, t), while producers receive only p̄W < ρ (K, t). This is the “missing money”

discussed for example by Joskow (2007), and Cramton and Stoft (2006).

Léautier (2014) then computes the resulting capacity, and proposes sufficient condi-

tions for the existence of price cap that maximizes welfare. The latter result extends

Zöttl (2011) result to the presence of constant price customers (α ∈ (0, 1)). Taking

these constant price customers into account yields welfare maximizing price caps that

are much higher than those observed in most markets. Thus existing price caps will lead

to underinvestment, hence the need for corrective mechanisms.

3 Physical capacity certificates

The SO imposes price cap p̄W on the energy markets and procures at least K∗ physical

capacity certificates from producers. To simplify the notation and analysis, operating

reserves are ignored: as will be proven in Section 5, including them would not modify

the economic insights. All units (old and new) receive the same compensation in the

physical certificates markets.

The timing is as follows:

1. The SO designs the rules of the energy and capacity markets. All parameters are

set
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2. Producers sell physical capacity certificates to the SO, according to the rules set

up previously

3. Producers build new capacity if needed

4. The spot markets are played. In each state, producers compete à la Cournot facing

ρ (Q, t), given their installed capacity and their physical capacity obligation. The

SO pays the physical certificates to the producers, and passes the cost of purchase

to customers.

To simplify the analysis, this pass-through is assumed not to distort consumption deci-

sions in the spot market, e.g., the pass-through is proportional to the size of the meter8.

Steps 2 and 3 can be inverted or simultaneous: generators first build the plants, then

sell physical capacity certificates, or build and sell simultaneously9.

φn and Φ =
N∑
m=1

φm are respectively the certificates sold by producer n and the

aggregate volume of certificates sold. In practice, SOs offer a “smoothed” (inverse)

demand curve:

H (Φ) =


r if Φ ≤ K∗

h (Φ) if K∗ < Φ < K∗ + ∆K̄

0 if Φ ≥ K∗ + ∆K̄

where (i) r, the capital cost of capacity, is the maximum price the SO is offering for

capacity, (ii) ∆K̄ > 0 is an arbitrary capacity increment, and (iii) h (.) is such that

H (.) is C2, except maybe at K∗ and K∗+ ∆K̄, h
′
(Φ) < 0, 2h′ (Φ) +φh′′ (Φ) < 0 for all

φ, and ∣∣∣h′ (K∗)∣∣∣ ≥ Nr

K∗
. (2)

As will be discussed below, condition (2) simplifies the exposition, but is not essential.

It is met in practice. For example, Cramton and Ockenfels (2011) suggest a linear form

for h (.) with ∆K̄
K∗ = 4%. Condition (2) is then equivalent to N ∆K̄

K∗ ≤ 1, and holds as

long as less than 25 producers compete.

Efficiency of the physical certificates market is conditional on the quality of the SO’s

estimate of the optimal capacity K∗. The three stage game (stages 2, 3, and 4) is

solved below, assuming the SOs knows perfectly K∗, uses r as the reserve price, and the

8One least distorting approach would be a levy proportional to peak consumption (in kW ). Since
these payments are assumed not to distort consumption decisions, they have no impact on social welfare.
This requires smart meters to measure peak consumption. I am grateful to a referee for this observation.

9The formal proof can be found in a previous version of this article, available at %
http://idei.fr/doc/wp/2012/visible.pdf.
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function H (.) is given. Determining the optimal stage−1 parameters is left for further

work. The equilibrium characterized as follows:

Proposition 1. The SO must impose and monitor that the installed capacity exceeds

the capacity certificates sold by each generator: kn ≥ φn. Then (i) producers issue as

many credits as they install capacity, and (ii) K∗is the unique symmetric equilibrium

investment level. Compared to the no installed capacity market situation, producer’s

profit and overall welfare are increased.

Proof. The full proof is presented in Appendix B. Existence of a physical capacity certifi-

cates market alone does not alter investment incentives. The SO must impose kn ≥ φn ,

otherwise KC remains the installed capacity.

If she does, producers sell exactly as many certificates as they have installed capacity

since incremental capacity is unprofitable unless it collects capacity markets revenues.

Then, since kn = φn at the equilibrium, producer n program is:

max
kn

Πn
CM (kn ,k−n, ) = Πn (kn ,k−n) + knH (K)

Given the shape of the inverse demand function H (.), kn = K∗

N for all n is the unique

symmetric equilibrium, and producers’ profit is:

Πn
CM

(
K∗

N
, ...,

K∗

N

)
= Πn

(
K∗

N
, ...,

K∗

N

)
+
K∗

N
r.

Then, since Πn (k, ..., k) is concave (Zöttl, 2011) and KC ≤ K∗,

Πn

(
KC

N
, ...,

KC

N

)
≤ Πn

(
K∗

N
, ...,

K∗

N

)
+

(
KC −K∗

N

)
∂Πn

∂k

(
K∗

N
, ...,

K∗

N

)
⇔

∆ = Πn
CM

(
K∗

N
, ...,

K∗

N

)
−Πn

(
KC

N
, ...,

KC

N

)
≥ −K

C

N

∂Πn

∂k

(
K∗

N
, ...,

K∗

N

)
+
K∗

N

(
∂Πn

∂k

(
K∗

N
, ...,

K∗

N

)
+ r

)
> 0

since ∂Πn

∂k

(
K∗

N , ..., K
∗

N

)
< 0 and ∂Πn

∂k

(
K∗

N , ..., K
∗

N

)
+ r = Ω (K∗) > 0.

Producers’ profits increase compare to the no installed capacity market situation.

Finally, since overall welfare W (K) increases up to to K = K∗, W (K∗) ≥W
(
KC
)
.

Capacity markets do not automatically restore investment incentives. In the model,

producers exercise market power by reducing capacity ex ante, and not by withholding
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output on-peak. The SO must therefore ensure that producers cannot sell short, i.e.,

sell more certificates than their installed capacity.

This observation is not original to this work, for example it has been articulated by

Wolak (2006). Yet it remains an important practical challenge for SOs, that monitor that

existing generation assets providing certificates are still operational, and that planned

capacity having received certificates has indeed be installed. SOs then impose a penalty

on producers that, when requested, do not offer in the spot market energy up to the

certificates they have sold forward. The implementation challenge lies in assessing when

commitment has not been met, hence this process is still evolving. For example, ISO

New England recently proposed new rules for its forward market to ensure producers

have incentives to produce. The ban on short-selling is not universal: demand-side

resources can effectively sell-short in most US markets.

Physical capacity markets increase overall welfare, and also increase transfers from

customers to producers. This result is very general. Denote KE (not necessarily equal to

K∗) the equilibrium capacity including the certificates markets. As long as Πn (K, ...,K)

is concave, and KE > KC , the marginal value of capacity for the producers at KE is

negative: ∂Πn

∂k

(
KE

N , ..., K
E

N

)
< 0. The equilibrium price in the capacity market (r in this

case) must compensate for this negative marginal value, otherwise KE would not be an

equilibrium: ∂Πn

∂k

(
KE

N , ..., K
E

N

)
+ r ≥ 0. This is sufficient for the proof.

Although I had never seen its formal proof, this result is intuitive: producers must

receive a rent to induce them to invest beyond the oligopoly capacity. The illustrative

model developed by Léautier (2014) provides an estimate of this additional rent ∆. It

varies slightly with the price cap p̄W and the proportion of price reactive customers

α. To simplify, I provide the average value of ∆ over all relevant values of p̄W and for

α = 5%, which appears appropriate for most markets. For price elasticity of demand

η = −0.01 the average rent is around 5, 100 €/MWh, approximately 10% of investment

cost; for η = −0.1 the average rent is around 8, 400 €/MWh, approximately 16% of

investment cost. These estimates illustrate that the rent created by the capacity market

is not trivial.

Is there an optimal structure to the physical certificates market? With the above

design, the only parameter that can be modified in the price cap p̄W . I choose as an

objective function the net surplus from consumption, therefore transfers from consumers

to producers do not impact social welfare. Then, since the resulting capacity is K∗ for all

p̄W , the latter has no impact on the resulting capacity. However, increasing p̄W always

increases welfare, as it reduces the probability of curtailment: when the cap is binding,
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no customer can respond to price, hence the SO must curtail. Thus, there exists no

optimal binding price cap with a capacity market as modeled here.

Finally, if condition (2) is not met, the aggregate capacity at the unique symmetric

equilibrium is KC
CM ∈

(
K∗,K∗ + ∆K̄

]
. Welfare increases if and only if ∆K̄ is small

enough that W
(
K∗ + ∆K̄

)
≥W

(
KC
)
.

4 Financial reliability options

Financial contracts constitute another mechanism used in power markets. This Section

examines financial reliability options, proposed by Oren (2005), Cramton and Stoft (2006

and 2008), and more recently Cramton and Ockenfels (2011). Options and not forward

contracts are the financial instruments analyzed here, since Chao and Wilson (2005), that

examine a slightly different option design, argue that options are in general preferable.

These options constitute an insurance against spot energy prices higher than a pre-agreed

strike price p̄S , sold by producers to customers. If the spot price p (t) is lower than p̄S ,

producer n does not make any payment. If p (t) > p̄S , producer n pays
(
p (t)− p̄S

)
times a fraction of the realized demand equal to his fraction of the total options sale.

The SO does not impose a cap on wholesale prices, and runs an auction for financial

reliability options. θn and Θ =
N∑
m=1

θm are respectively the options sold by producer

n and the aggregate volume of options sold. To limit the potential exercise of market

power, Cramton and Ockenfels (2011) propose the SO impose all capacity must be

committed forward through option sales: θn ≥ kn.

The timing and notation are identical to the capacity market case, except that the

subscript RO is added when appropriate. A very simple auction setup is assumed, similar

to the one suggested by Cramton and Stoft (2008): the SO determines the volume she

desires to purchase, assumed to be K∗, sets the capital cost of capacity r as the reserve

price for the auction, and proposes a downward sloping inverse demand curve for options:

HRO (Θ) =


r if Θ ≤ K∗

hRO (Θ) if K∗ < Θ < K∗ + ∆K̄RO

0 if Θ ≥ K∗ + ∆K̄RO

where (i) ∆K̄RO > 0 is an arbitrary capacity increment, and (ii) hRO (.) is such that

HRO (.) is C2, except maybe at K∗ and K∗+∆K̄, h
′
RO (φ) < 0, 2h′RO (φ)+φh′′RO (Φ) < 0

for all φ, and hRO (.) verifies condition (2).

When the spot price exceeds the strike price, price-reactive consumers then pay p̄S as
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the effective price, i.e., they know when making their consumption decision they receive

rebate max
(
ρ (Q, t)− p̄S , 0

)
per unit of energy purchased. Then, actual demand does

not depend on the spot price, which leads to rationing.

t̂0
(
K, p̄S

)
is the first state of the world such that the spot price exceeds the strike

price, and is defined by ρ
(
K, t̂0

(
K, p̄S

))
≥ p̄S . We assume p̄S satisfies

Ψ
(
KC

(
p̄S
)
, p̄S
)
≤ r. (3)

Condition (3) simplifies the exposition, as it guarantees that Θ = K∗ is the unique

equilibrium of the options market, however it is not essential. As shown in Appendix C,

Ψ
(
KC (p) , p

)
is decreasing in p, and and Ψ

(
KC (p) , p

)
→ 0 as p stops binding. Thus,

condition (3) is met for p̄S sufficiently high.

Chao and Wilson (2005) examine a slightly different market structure: they consider

physical options paired (or not) with a complementary price insurance, and compute the

linear supply function equilibrium for options forward sales and power spot sales. Their

findings are aligned with those presented below.

4.1 Expected profits with financial reliability options

The producers profit function is characterized below:

Lemma 1. The expected profit of producer n is

Πn
RO (kn , θn ,k−n, θ−n) = θnHRO (Θ) + Πn (kn ,k−n) +

(
kn − θn

Θ
K

)
Ψ
(
K, p̄S

)
, (4)

with the convention that p̄S acts as the price cap in Πn.

Proof. Producer n receives the revenues from options sale θnHRO (Θ), plus profits from

the energy market. Suppose first t̂ (K, c,N) ≤ t̂0
(
K, p̄S

)
. First, the producer receives

profit Πn (kn ,k−n) previously computed, assuming p̄S as price cap. Second, since there

is no price cap, he receives the difference between the spot price ρ (K, t) and the cap p̄S

for every unit produced when the price exceeds p̄S . Since t̂ (K, c,N) ≤ t̂0
(
K, p̄S

)
, he

produces his entire capacity kn, hence he receives kn
´ +∞
t̂0(K,p̄S)

(
ρ (K, t)− p̄S

)
f (t) dt =

knΨ
(
K, p̄S

)
.

Finally, when the spot price exceeds the strike price p̄S , each generator must pay(
ρ (K, t)− p̄S

)
times his fraction θn

Θ of the total demand. Since t̂ (K, c,N) ≤ t̂0
(
K, p̄S

)
,

total demand is equal to total capacity K and the payment is proportional to θn
Θ K.

17



Total expected payment from generator n is thus: θn
Θ K
´ +∞
t̂0(K,p̄S)

(
ρ (K, t)− p̄S

)
f (t) dt =

θn
Θ Ψ

(
K, p̄S

)
. Summing these terms yields equation (4).

Appendix C proves that Equation (4) also obtains if t̂0
(
K, p̄S

)
< t̂ (K, c,N).

The profit realized in states higher than t̂0
(
K, p̄S

)
is πnRO (K, t) = kn

((
1− θn

Θ
K
kn

)
ρ (K, t) + θn

Θ
K
kn p̄

S − c
)
.

Producers face a weighted average of the spot price and the option price, hence are less

sensitive to an increase in spot price. Consistent with Allaz and Villa (1993) and Chao

and Wilson (2005), a producer holding forward contracts faces lower incentives to exert

market power in the spot market.

4.2 Equilibrium capacity with financial reliability options

Proposition 2. Suppose the SO imposes θn ≥ kn and chooses strike price p̄S such that

condition (3) holds. Reliability options reduce but do not eliminate the underinvestment

problem. KC
RO, the unique symmetric equilibrium of the options and investment game,

verifies

KC
(
p̄S
)
≤ KC

RO < K∗,

with equality occurring when N = 1.

Proof. Appendix C proves that, if producers invest first then sell options, there exists a

unique symmetric equilibrium of the two-stage game, that satisfies

θn =
K∗

N
,

and kn =
KC

RO
N , where KC

RO is uniquely defined by

Ω
(
KC
RO, p̄

S
)

+
N − 1

N
Ψ
(
KC
RO, p̄

S
)

= r. (5)

Then,

Ω
(
KC
RO, p̄

S
)

= r − N − 1

N
Ψ
(
KC
RO, p̄

S
)
≤ r.

Hence KC
RO ≥ KC

(
p̄S
)
. Then,

∂Πn
RO

∂kn

(
K∗

N
, ...,

K∗

N

)
= −

ˆ t̂(K,c,N)

t̂0(K,c)
(ρ (K∗, t)− c) f (t) dt+

K∗

N

ˆ t̂0(K,p̄S)

t̂(K,c,N)
ρq (K∗, t) f (t) dt

− 1

N
Ψ
(
K∗, p̄S

)
< 0.
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Then K∗ > KC
RO since we prove in Appendix C that Πn

RO

(
K
N , ...,

K
N

)
is concave10.

For N > 1, reliability options curb the exercise of market power: the resulting

installed capacity is higher than the Cournot capacity. Thus, they are more effective

than physical certificates alone, that have no impact on installed capacity without the

“no short sale” obligation.

However, reliability options are not sufficient to completely eliminate market power

and restore optimal investment incentives. This result may appear surprising, since

reliability options impose a penalty of
(
ρ (K, t)− p̄S

)
on each unit a producer is short

energy. However, a closer examination of the mechanism reveals that, at the symmetric

equilibrium, this penalty represents only N−1
N

(
ρ (K, t)− p̄S

)
, which is not sufficient to

fully compensate for the “missing money”
(
ρ (K, t)− p̄S

)
.

Proposition 2 mirrors Allaz and Villa (1993) analysis of the interaction between spot

and forward markets: assuming Cournot competition in both, they show that introducing

forward markets reduces but does not eliminate market power, and has not impact on a

monopoly (N = 1).

Finally, observe that generators short-sell certificates in equilibrium: θn = K∗

N ≥
KC

RO
N .

4.3 Equivalence between physical certificates and financial reliability

options when “no short sale” conditions are added

If the SO cannot impose a no short sale condition, Proposition 2 above proves that

financial reliability options yield higher investment. Which one should the SO choose

if she can impose a no short sale condition? Proposition 3 below shows that both

mechanisms are equivalent, if the technical parameters are equivalent:

Proposition 3. Suppose (i) the SO imposes and monitors that the installed capacity

equals the options sold by each generator: kn = θn, (ii) the wholesale price cap in the

capacity market is set equal to the strike price of the reliability option
(
p̄S = p̄W

)
and

satisfies condition (3), and (iii) the demand functions for reliability options and for

capacity credits are identical and satisfy condition (2). Then, financial reliability options

yield the same equilibrium as a capacity market with a no short-sale condition.

Proof. Since the SO imposes θn = kn , equation (4) yields

Πn
RO (kn ,k−n) = Πn (kn ,k−n) + knHRO (K) .

10A previous version of this work, available at http://idei.fr/doc/wp/2012/visible.pdf, shows that the
result also holds if producers sell certificates, then invest, or sell certificates and invest simultaneously.
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If p̄S = p̄W and HRO (.) = H (.), then, with the no short sale conditions, Πn
RO = Πn

CM .

Thus the equilibria are identical.

As mentioned earlier, since producers sell exactly as many options as their installed

capacity (or install as much capacity as they sold options), the profit net of the payment

on the option is equivalent to a cap on prices. Therefore, if the technical parameters are

identical, both approaches are equivalent.

5 Energy cum operating reserves market

SOs must secure operating reserves to protect the system against catastrophic failure.

Hogan (2005) suggests that remuneration of these operating reserves may help resolve

the missing money problem11.

The representation of operating reserves is that of Borenstein and Holland (2005).

For simplicity, only one type of reserves is considered, the non-spinning one (i.e., plants

that are not running, but can start up and produce energy within a short pre-agreed

time frame). Since the plant is not running, the marginal cost of providing reserves

is normalized to zero. In reality, SOs run multiple markets for operating reserves, for

example, spinning, 10-minutes, 30-minutes. The economic insights are not modified, as

long as the no-arbitrage condition presented below holds.

Hogan (2005) proposes that the SO runs a single market for energy and operating

reserves. Generating units called to produce receive the wholesale price w (t), generating

units that provide operating reserves receive the wholesale price w (t) less the marginal

cost of generation c, assumed to be perfectly known by the SO. Generators are there-

fore indifferent between producing energy or providing reserves, an essential condition

(Borenstein and Holland, 2005). When an unscheduled generation outage occurs, oper-

ating reserves produce energy and receive the full price w (t).

Operating reserves requirements are expressed as a percentage of demand, denoted

h (t), and taken as given here12. Defining the optimal h (t) requires advanced network

11Hogan (2005) conjectures: “Under stressed conditions there would not be adequate capacity to meet
all load and maintain the target nominal level of reserves. This would give rise to scarcity pricing
determined by the capacities of the generation offered, the energy demand, and the administrative
demand for operating reserves. (...) Payments for operating reserves would be made to generators
providing reserves and the cost would be applied to loads in a proportional uplift payment. All generators
providing energy would receive the high energy price. All generators providing reserves would receive
this high energy price less the variable cost of the marginal reserve capacity. Although scarcity conditions
with very high prices would apply in relatively few hours, the payments to generators during these hours
would include a large fraction of the total contribution to fixed and investment costs.”

12In practice, various metrics for operating reserves are used, including absolute values expressed in
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analysis, hence is beyond the scope of this work. Joskow and Tirole (2007) show the

optimal reserve ratio increases with the state of the world; hence h (t) is assumed to be

nondecreasing.

The retail price p (t) must be higher than wholesale price w (t) to cover generators’

revenues from the operating reserves market. A natural choice is to directly include the

cost of reserves in the retail price faced by price reactive customers13:

p (t) = w (t) + h (t) (w (t)− c)

⇔
p (t)− c = (1 + h (t)) (w (t)− c) (6)

Throughout this section, the retail and wholesale prices are assumed to be related by

equation (6). The notation and model structure are identical to the previous Sections,

except that the subscript or superscript OR is added when appropriate.

Only the fraction 1
1+h(t) of installed capacity is used to meet demand in state t,

hence K
1+h(t) and not K is the output appearing in the function ρ (., t) (a formal proof is

presented in Appendix D). Thus, the marginal social value of capacity in state t is

w (K, t)− c =
p (t)− c
1 + h (t)

=
ρ
(

K
1+h(t) , t

)
− c

1 + h (t)
.

The marginal social value of capacity is

ΨOR (K) =

ˆ +∞

t̂OR
0 (K,c)

ρ
(

K
1+h(t) , t

)
− c

1 + h (t)
f (t) dt,

where t̂OR0 (K, c) is uniquely defined14 by ρ
(

K
1+h(t) , t̂

OR
0 (K, c)

)
= c.

The socially optimal capacity is thus uniquely defined by

ΨOR (K∗OR) = r. (7)

Consider now the producers’ problem. By construction, producers are indifferent

between producing energy or providing reserves. In state t, they offer sn (t) into the

MW . Expressing reserves as a percentage of peak demand simplifies the analysis while preserving the
main economic intuition.

13Borenstein and Holland (2005) show it to be the perfect competition outcome.
14Since h (t) is nondecreasing, m1 (K; t) = ρ

(
K

1+h(t)
; t
)

is increasing in t: ∂m1
∂t

= −ρq Kh′(t)
(1+h(t))2

+ρt > 0.
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energy cum operating reserves market. S (t) =
∑N

n=1 s
n (t) is the total offer. Energy

available to meet demand is Q (t) = S(t)
1+h(t) . The SO then (i) verifies that sn (t) ≤ kn,

and (ii) allocates each sn (t) between energy qn (t) and reserves bn (t). Producer n profit

is then

πn (t) = (qn (t) + bn (t)) (w (t)− c)

=
sn (t)

1 + h (t)

(
ρ

(
S (t)

1 + h (t)

)
− c
)
,

since (i) energy and operating reserves receive same net revenue by construction, and

(ii) wholesale (w (t)) and retail
(
ρ
(

S(t)
1+h(t)

))
prices are linked by equation (6). The

problem is then isomorphic to standard peak load pricing, except that sn(t)
1+h(t) replaces

production qn (t).

t̂OR (K, c,N), the first on-peak state of the world under imperfect competition, is

uniquely defined15 by ρ

(
K

1+h(t̂OR)
, t̂OR

)
+ 1

N
K

1+h(t̂OR)
ρq

(
K

1+h(t̂OR)
, t̂OR

)
= c.

The SO imposes a wholesale price cap v equal to her best estimate of V oLL.

t̂OR0 (K, v), the first state of the world where the cap may be binding, is uniquely defined

by ρ

(
K

1+h(t̂OR
0 )

, t̂OR0

)
= v. For simplicity, v is assumed to be binding after the capacity

constraint under imperfect competition: t̂OR (K, c,N) ≤ t̂OR0 (K, v). The inverse de-

mand function for producers is then: ρ
(

K
1+h(t) , t

)
as long as price cap is not reached,

and a horizontal inverse demand at v afterwards.

Following the steps of the standard peak load analysis, the marginal value of capacity

for a producer at the symmetric equilibrium is

ΩOR (K) =

ˆ t̂OR
0 (K,v)

t̂OR(K,c,N)

(
ρ

(
K

1 + h (t)
, t

)
+

1

N

K

1 + h (t)
ρq

(
K

1 + h (t)
, t

)
− c
)
f (t) dt

+

ˆ +∞

t̂OR
0 (K,v)

v − c
1 + h (t)

f (t) dt,

and there exists a unique symmetric equilibrium for which each generator invests
KC

OR
N defined by:

ΩOR

(
KC
OR

)
= r. (8)

15Similarly, m2 (t) = ρ
(

K
1+h(t)

; t
)

+ 1
N

K
1+h(t)

ρ
(

K
1+h(t)

; t
)

is increasing in t since m′2 (t) =

−
(

N+1
N

ρq + 1
N

K
1+h(t)

ρqq
)

Kh′(t)
(1+h(t))2

+ ρt > 0.
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Proposition. Suppose the SO runs an energy cum operating reserves market and im-

poses a price cap v. The problem is isomorphic to standard peak load pricing. KC
OR <

K∗OR unless (i) generation is perfectly competitive (N → +∞), and (ii) the price cap is

never binding
(
t̂OR0 (K, v)→ +∞

)
.

Proof. The result follows immediately from equations (8) and (7).

Including an operating reserve market leads to the same investment incentives as

average V oLL pricing. This result is surprising: one would have expected the operating

reserves market to alleviate the missing money problem, since (i) all producing units

receive a higher price, and (ii) units providing capacity but not energy are remunerated.

However, the discussion above shows these two effects are already included in the de-

termination of the socially and privately optimal capacities K∗OR and KC
OR. Then, units

providing reserve capacity receive the same profit (w (t)− c) as units producing electric-

ity, to avoid arbitrage between markets. No additional profit is generated. The operating

reserves market remunerates reserves, which are needed, not capacity investment.

6 Conclusion

This article formally analyzes the various corrective mechanisms that have been proposed

and implemented to alleviate underinvestment in electric power generation. It yields

three main analytical findings. First, physical capacity certificates markets implemented

in the United States restore optimal investment if and only if they are supplemented with

a no short sale condition, i.e., producers can not sell more certificates than they have

installed capacity. Then, they raise producers’ profits beyond the imperfect competition

level. Second, financial reliability options, proposed in many markets, are effective at

curbing market power, although they fail to fully restore investment incentives. If no

short sale conditions are added, both physical capacity certificates and financial relia-

bility options are equivalent. Finally, a single market for energy and operating reserves

subject to a price cap is isomorphic to a simple energy market. Standard peak-load pric-

ing analysis applies: under-investment occurs, unless production is perfectly competitive

and the cap is never binding.

This analysis highlight the limitations of the corrective mechanisms. This suggest

that policy makers should first and foremost control and reduce the exercise of market

power, then use these mechanisms as interim remedial measures. If they believe they can

effectively enforce no short sale conditions, they can choose between physical capacity
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certificates and financial reliability options. If they believe that no short sale conditions

are too costly to enforce, they should be prefer financial reliability options.

These results provide a sound basis for policy makers decision making. Different

avenues for further work would increase their applicability. First, expand the economic

models to other types of technologies: (i) intermittent and uncontrollable production

technologies such as photovoltaic and on- and off-shore wind mills, which will provide an

increasingly important share of power supply16; (ii) reservoir hydro production, which

has almost zero marginal cost, but limited overall production capacity, and (iii) volun-

tary curtailment, i.e., consumers reducing their consumption upon the SO’s request.

Second, determine the optimal design parameters. In this work, we have taken the

auction parameters (reserve price, shape of the demand function) as given. Optimally

selecting these parameters may lead to higher welfare17.

Third, examine how these designs performe under different vertical industry struc-

tures. Bushnell et al. (2008) have examined how vertical industry structure impacts

market performance, and Boom (2009) and Boom and Buehler (2014) have examined

how vertical industry structure impacts investment. It would be important to determine

which combination of market structure and capacity mechanism is most effective.

Finally, expand the model to multiple investment periods. Observation suggests the

power industry, like many capital-intensive industries, displays cycle of over- and under-

investment (“boom bust” cycles). Understanding how various market designs perform

in a dynamic setting is therefore extremely important.
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A Numerical illustration

Inverse demand is P (q, t) = a0−a1e
−λ2t−bq, states of the world are distributed according

to f (t) = λ1e
−λ1t, and rationing is anticipated and proportional. a0, a1, λ = λ1

λ2
, and

bQ∞ where Q∞ = a0−p0

b is the maximum demand for price p0, are the parameters to

be estimated. λ is estimated by Maximum Likelihood using the load duration curve for

France in 2010. The same load duration curve provides an expression of a0 and a1 as a

function of bQ∞. The average demand elasticity η is then used to estimate bQ∞. Two

estimates of demand elasticity at price p0 = 100 €/MWh are tested: η = −0.01 and

η = −0.1, respectively the lower and upper bound proposed by Lijesen (2007). The

resulting estimates are

for η = −0.1
bQ∞ = 1 873 €/MWh

a0 = 1 973 €/MWh

a1 = 1 236 €/MWh

λ = 1.78

, and

for η = −0.01
bQ∞ = 18 727 €/MWh

a0 = 18 827 €/MWh

a1 = 12 360 €/MWh

λ = 1.78

.

Generation costs are those of a gas turbine, c = 72 €/MWh and r = 6 €/MWh as

provided by the International Energy Agency, IEA (2010). The regulated energy price

is pR = 50 €/MWh, from Eurostat18.

B Physical capacity certificates

B.1 No short sale condition

Suppose first the SO imposes no condition on certificates sales. Producer n’s ex-

pected profit, including revenues from the capacity market is: Πn
CM (kn , φn ,k−n, φ−n) =

Πn (kn ,k−n) + φnH (Φ). Since φn does not enter Πn (kn ,k−n),

∂Πn
CM

∂kn

(
K

N
, ...,

K

N

)
=
∂Πn

∂kn

(
K

N
, ...,

K

N

)
:

the certificate market has no impact on equilibrium investment.

Suppose now the SO imposes kn ≥ φn . Consider the case where producers first

sell credits, then install capacity. When selecting capacity, each producer maximizes

18Table 2 Figure 2 from http://epp.eurostat.ec.europa.eu/statistics explained/images/a/a1/Energy%
prices 2011s2.xls
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Π̄n
CM (kn,k−n) subject to kn ≥ φn . The first-order condition is then

∂Ln

∂kn
=
∂Π̄n

∂kn
+ µn1 ,

where µn1 is the shadow cost of the constraint kn ≥ φn . Suppose first φ̂n < k̂n ∀n, then

µn1 = 0 ∀n and k̂n = KC

N at the symmetric equilibrium. When selecting the amount

of credits sold, the producers then maximize φnH (Φ). Given the shape of H (.), the

symmetric equilibrium is φ̂n ≥ K∗

N . But then, KC > Φ ≥ K∗, which is a contradiction,

hence φ̂n = k̂n .

Since kn = φn at the equilibrium, producer n program is

max
kn

Πn
CM (kn ,k−n, ) = Πn (kn ,k−n) + knH (K)

We prove below that
(
K∗

N , ..., K
∗

N

)
is the unique symmetric equilibrium.

B.2 Equilibrium investment if generation produces at capacity before

the cap is reached

Suppose t̂ (K, c,N) ≤ t̂0
(
K, p̄W

)
. As observed by Zöttl (2011), the profit function

Πn
(
k1, ..., kn , ..., kN

)
is not concave in kn , so one must separately consider a positive

and negative deviation from a symmetric equilibrium candidate to prove existence of

the equilibrium. Consider first a negative deviation, i.e., k1 < K∗

N while kn = K∗

N for all

n > 1. Since K = k1 + N−1
N K∗ < K∗,

∂Π1
CM

∂k1

(
k1 ,

K∗

N
, ...,

K∗

N

)
=
∂Π1

∂k1

(
k1 ,

K∗

N
, ...,

K∗

N

)
+ r.

Analysis of the two-stage Cournot game (Zöttl (2011) for α = 1, Léautier (2013) for

α ∈ (0, 1)) yields:

∂Π1

∂k1

(
k1 ,

K∗

N
, ...,

K∗

N

)
=

ˆ t̂(K,c,N)

t1

(
ρ
(
Q̂ (k1 , t)

)
+ k1ρq

(
Q̂ (k1 , t)

) ∂Q̂
∂k1
− c

)
f (t) dt

+

ˆ t̂0(K,p̄W )

t̂(K,c,N)

(
ρ (K) + k1ρq (K)− c

)
f (t) dt (9)

+

ˆ +∞

t̂0(K,p̄W )

(
p̄W − c

)
f (t) dt− r,
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where t1 is the first state of the world where producer 1 is constrained, Q̂ (k1 , t) =

k1 + (N − 1)φN (k1 , t) is the aggregate production, and φN (k1 , t) is the equilibrium

production from the remaining (N − 1) identical producers, that solves

ρ
(
k1 + (N − 1)φN (k1 , t)

)
+ φN (k1 , t) ρq

(
k1 + (N − 1)φN (k1 , t)

)
= c.

φN (k1 , t) ≥ k1 for t ∈
[
t1, t̂ (K, c,N)

]
: lower-capacity producer 1 is constrained,

while the (N − 1) higher capacity producers are not. Since quantities are strategic

substitutes, ∂φN

∂k1 < 0 and

0 <
∂Q̂

∂k1
= 1 + (N − 1)

∂φN

∂k1
< 1.

ρ
(
Q̂
)

+k1ρq

(
Q̂
)
−c =

(
k1 − φN

)
ρq

(
Q̂
)
∂Q̂
∂k1 ≥ 0 for t ∈

[
t1, t̂ (K, c,N)

]
. ρ
(
K, t̂ (K, c,N)

)
+

k1ρq
(
K, t̂ (K, c,N)

)
= c, and ρt (K) + k1ρqt (K) ≥ 0, hence ρ (K) + k1ρq (K)− c ≥ 0 for

t ≥ t̂ (K, c,N). Therefore

∂Π1

∂k1

(
k1 ,

K∗

N
, ...,

K∗

N

)
+ r > 0

for k1 < K∗

N : no negative deviation is profitable.

Consider now a positive deviation, i.e., kN > K∗

N while kn = K∗

N for all n < N . Since

K = kN + N−1
N K∗ > K∗ :

∂ΠN
CM

∂kN

(
K∗

N
, ...,

K∗

N
, kN

)
=
∂ΠN

∂kN

(
K∗

N
, ...,

K∗

N
, kN

)
+ kNH

′
(K) +H (K) ,

and

∂2ΠN
CM

(∂kN )2

(
K∗

N
, ...,

K∗

N
, kN

)
=

∂2ΠN

(∂kN )2

(
K∗

N
, ...,

K∗

N
, kN

)
+ kNH

′′
(K) + 2H

′
(K) .

Zöttl (2011) shows that, for kN > K
N ,

∂2ΠN

∂ (kN )2

(
KC

N
, ...,

KC

N
, kN

)
=

ˆ t̂0(K,p̄W )

tN

[
2ρq

(
K̂, t

)
+ kNρqq

(
K̂, t

)]
f (t) dt

+kNρq

(
K̂, t̂0

(
K, p̄W

))
f
(
t̂0
(
K, p̄W

)) ∂t̂0 (K, p̄W )
∂kN

(10)

< 0.
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Thus,

∂ΠN
CM

∂kN

(
K∗

N
, ...,

K∗

N
, kN

)
<
∂ΠN

∂kN

(
K∗

N
, ...,

K∗

N

)
+
K∗

N
H
′
(K∗) + r < 0

since condition (2) implies K∗

N H
′
(K∗) + r < 0.

Hence,
(
K∗

N , ..., K
∗

N

)
is a symmetric equilibrium. Finally, no other symmetric equilib-

rium exists since Πn
(
K
N , ...,

K
N

)
+ K

NH (K) is concave.

B.3 Equilibrium investment if the cap is reached before generation

produces at capacity

Suppose t̂0
(
K, p̄W

)
< t̂ (K, c,N). To simplify the exposition, generators are ordered

by increasing capacity k1 ≤ ... ≤ kN , and suppose that the price cap is reached be-

fore the first generator produces at capacity. Léautier (2014) proves that the expected

equilibrium profit is

Πn (kn,k−n) =

ˆ t̃0

0

Q̂ (t)

N

(
ρ
(
Q̂
)
− c
)
f (t) dt+

(
p̄W − c

)(n−1∑
i=0

ˆ t̃i+1

t̃i
q̃i+1 (t) f (t) dt+ kn

(
1− F

(
t̃n
)))
−rkn ,

(11)

where Q̂ (t) is the unconstrained Cournot output in state t, t̃0 is the first state of the

world such that the price cap is reached, defined by ρ
(
Q̂
(
t̃0
)
, t̃0
)

= p̄W , t̃i+1 for

i = 0, ..., (N − 1) is the first state of the world such that producer (i+ 1) is constrained,

defined by ρ
(∑i

j=1 k
j + (N − j) ki+1, t

)
= p̄W , and q̃i+1 (t) is defined on

[
t̃i, t̃i+1

]
by

ρ

 i∑
j=1

kj + (N − j) q̃i+1 (t) , t

 = p̄W .

For t ≤ t̃0, unconstrained Cournot competition takes place. For t ≥ t̃0, the Cournot

price would exceed the cap, hence wholesale price is capped at p̄W . All generators play a

symmetric equilibrium characterized by ρ
(
Nq̃1 (t) , t

)
= p̄W . When t reaches t̃1 generator

1 produces its capacity. For t ≥ t̃1, the remaining (N − 1) generators play a symmetric

equilibrium characterized by ρ
(
k1 + (N − 1) q̃2 (t) , t

)
= p̄W . This process continues

until all generators produce at capacity. t̃N is such that ρ
(∑N

j=1 k
j , t̃N

)
= p̄W , hence

t̃N = t̂0
(
K, p̄W

)
previously defined. For t > t̃N , since wholesale price is fixed at p̄W and

generation is at capacity, the SO must curtail constant price consumers.
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Differentiation of equation (11) yields

∂Πn

∂kn

(
k1 , ..., kN

)
=

ˆ +∞

t̃n

(
p̄W − c

)
f (t) dt− r, (12)

and
∂2Πn

(∂kn)2

(
k1 , ..., kN

)
= −

(
p̄W − c

)
f
(
t̃n
) ∂t̃n
∂kn

< 0.

Πn
(
k1 , ..., kN

)
is concave in kn. The previous analysis then shows that

(
K∗

N , ..., K
∗

N

)
is

the unique symmetric equilibrium.

B.4 Producers extra profits from the capacity markets

Léautier (2014) shows that, for common values of the parameters, t̂0
(
K, p̄W

)
< t̂ (K, c,N).

This is the case considered to evaluate ∆. At a symmetric equilibrium, equation (11)

yields

Πn

(
K

N
, ...,

K

N

)
=

1

N

 ´ t̃00 Q̂ (t)
(
ρ
(
Q̂ (t) , t

)
− c
)
f (t) dt+

(
p̄W − c

) ´ t̂0(K,p̄W )
t̃0

Q̃ (t) f (t) dt

+K
((
p̄W − c

) (
1− F

(
t̂0
))
− r
)

 ,

∆ = Πn
(
K∗

N , ..., K
∗

N

)
+ rK

∗

N −Πn
(
KC

N , ..., K
C

N

)
is then estimated numerically.

C Financial reliability options

The equilibrium is solved by backwards induction. In the second stage, producers solve

the equilibrium of the option market, taking (kn,k−n) as given.

We assume that including the option market does not decrease investment, i.e.,

K ≥ KC
(
p̄S
)
. As suggested by Cramton and Ockenfels, the SO imposes the restriction

that all capacity is sold forward: θn ≥ kn . This restriction is made operational by

conditioning profits from the option market to θn ≥ kn . Since these profits are positive,

θn ≥ kn is a dominant strategy, hence holds.

C.1 Derivation of the profit function if the strike price is reached be-

fore generation produces at capacity

If reliability options are in effect, the price cap is eliminated. For simplicity, assume that

the strike price is reached before the first generator produces at capacity, and denote

t̃0 this state of the world. For t ≥ t̃0, consumers consume as if the price was p̄S , since
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they internalize the impact of the reliability option. As long as total generation is not at

capacity, the wholesale price is indeed p̄S , and the equilibrium is identical to the previous

one. When total generation reaches capacity, since consumers consume using constant

price p̄S , the SO must curtail constant price consumers. The wholesale price reaches the

V oLL. Generators must then rebate the difference between the wholesale price and the

strike price, in proportion to the volume of options sold.

The resulting equilibrium profit is

Πn
RO (kn,k−n) =

ˆ t̃0

0

Q̂ (t)

N

(
ρ
(
Q̂
)
− c
)
f (t) dt

+
(
p̄S − c

)(n−1∑
i=0

ˆ t̃i+1

t̃i
q̃i+1 (t) f (t) dt+ kn

ˆ t̂0(K,p̄S)

t̃n
f (t) dt

)

+

ˆ +∞

t̂0(K,p̄S)

(
kn (ρ (K, t)− c)− θn

Θ
K
(
ρ (K, t)− p̄S

))
f (t) dt− rkn

= Πn (kn,k−n)

+

ˆ +∞

t̂0(K,p̄S)

(
kn (ρ (K, t)− c)− θn

Θ
K
(
ρ (K, t)− p̄S

)
− kn

(
p̄S − c

))
f (t) dt

= Πn (kn,k−n) +

(
kn − θn

Θ
K

) ˆ +∞

t̂0(K,p̄S)

(
ρ (K, t)− p̄S

)
f (t) dt

= Πn (kn,k−n) +

(
kn − θn

Θ
K

)
Ψ
(
K, p̄S

)
.

C.2 Equilibrium in the options market

We first establish that dΨ
dp

(
KC (p) , p

)
< 0 and limp→p̆Ψ

(
KC (p) , p

)
= 0, where p̆ is the

maximum price cap reached in equilibrium. Differentiation with respect to p yields

dΨ

dp

(
KC (p) , p

)
=

ˆ +∞

t̂0(KC(p),p)

(
ρq
dKC

dp
− 1

)
f (t) dt.

Suppose t̂ (K, c,N) > t̂0
(
K, p̄W

)
. Then, KC (p) is defined by

ˆ +∞

t̂0(KC(p),p)
(p− c) f (t) dt = (p− c)

(
1− F

(
t̂0
(
KC (p) , p

)))
= r.

Full differentiation with respect to p yields

(
1− F

(
t̂0
))
− (p− c) f

(
t̂0
)(∂t̂0

∂p
+
∂t̂0
∂K

dKC

dp

)
= 0
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⇔
∂t̂0
∂p

+
∂t̂0
∂K

dKC

dp
=

1− F
(
t̂0
)

(p− c) f
(
t̂0
) .

Differentiation of ρ
(
K, t̂0 (K, p)

)
= p yields ∂t̂0

∂K = −ρq
ρt

and ∂t̂0
∂p = 1

ρt
. Thus,

1− ρq
dKC

dp
=

ρt
p− c

1− F
(
t̂0
)

f
(
t̂0
) > 0,

therefore dΨ
dp (Kc (p) , p) < 0.

Suppose now t̂ (K, c,N) ≤ t̂0
(
K, p̄W

)
. KC (p) is defined by

ˆ t̂0(KC(p),p)

tN (KC(p))

(
ρ
(
KC (p) , t

)
+
KC (p)

N
ρq
(
KC (p) , t

)
− c
)
f (t) dt+

ˆ +∞

t̂0(KC(p),p)
(p− c) f (t) dt = r.

Full differentiation with respect to p yields

I
dKC

dp
+
KC

N
ρq

(
∂t̂0
∂p

+
∂t̂0
∂K

dKC

dp

)
+
(
1− F

(
t̂0
))

= 0,

where I =
´ t̂0
tN

(
N+1
N ρq + KC

N ρqq

)
f (t) dt < 0. Substituting in ∂t̂0∂K and ∂t̂0

∂p yields:

−Iρt
dKC

dp
− KC

N
ρq

(
1− ρq

dKC

dp

)
= ρt

(
1− F

(
t̂0
))

⇔

1− ρq
dKC

dp
=
ρt
(
ρq
(
1− F

(
t̂0
))

+ I
)

Iρt − KC

N ρ2
q

> 0,

therefore dΨ
dp (Kc (p) , p) < 0.

Finally, KC (p) converges when p → p̆, thus (P (Kc (p) , t)− c) is bounded, thus

limp→p̆Ψ (Kc (p) , p) = 0 since limp→p̆t̂0 (Kc (p) , p) = 0.

We now prove that θn = K∗

N ≥ kn for all n is a symmetric equilibrium if condition

(3) holds. Differentiation of equation (4) yields:

∂Πn
RO

∂θn
(θn , θ−n) = HRO (Θ) + θnH

′
RO (Θ)− Θ− θn

Θ2
KΨ

(
K, p̄S

)
,

and
∂2Πn

RO

(∂θn)2 (θn , θ−n) = 2H
′
RO (Θ) + θnH

′′

RO (Θ) + 2
Θ− θn

Θ3
KΨ

(
K, p̄S

)
.
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For Θ ≤ K∗,
∂2Πn

RO

(∂θn)2 (θn , θ−n) = 2
Θ− θn

Θ3
KΨ

(
K, p̄S

)
> 0.

∂Πn
RO

∂θn is increasing, thus the only equilibrium candidates are θn = K∗

N and θn = kn.

Furthermore,

∂2Πn
RO

∂θn∂θm
(θn , θ−n) =

(
2

Θ− θn
Θ3

+
θn

Θ2

)
KΨ

(
K, p̄S

)
> 0,

thus
∂Πn

RO

∂θn
(θn , θ−n) ≥

∂Πn
RO

∂θn

(
k1 , ..., kN

)
.

Then,

∂Πn
RO

∂θn

(
k1 , ..., kN

)
= r−K − k

n

K2
KΨ

(
K, p̄S

)
> r−Ψ

(
K, p̄S

)
≥ r−Ψ

(
KC

(
p̄S
)
, p̄S
)
> 0

since K ≥ KC
(
p̄S
)

by assumption. Thus, if condition (3) holds,
∂Πn

RO
∂θn (θn , θ−n) > 0 for

all θn such that θn ≥ kn and Θ ≤ K∗. In particular, if θn = K∗

N for all n > 1, no negative

deviation θ1 < K∗

N is profitable.

Consider now a positive deviation, i.e., θN > K∗

N ≥ k
N while θn = K∗

N for all n < N .

We have:

∂ΠN
RO

∂θN

(
K∗

N
, ...,

K∗

N
, θN

)
= h (Θ) + θNh

′
(Θ)− Θ− θN

Θ2
KΨ

(
K, p̄S

)
.

By construction, Θ = θN + N−1
N K∗ > K∗ and θN − Θ

N = N−1
N

(
θN − K∗

N

)
> 0,

therefore

HRO (Θ) + θNH
′
RO (Θ) < HRO (Θ) +

Θ

N
H
′
RO (Θ) < HRO (K∗) +

K∗

N
H
′
RO (K∗) < 0

by condition (2), hence
∂ΠN

RO

∂θN

(
K∗

N , ..., K
∗

N , θN
)
< 0 for all θN > K∗

N . No positive deviation

is profitable.

θn = K∗

N for all n is therefore an equilibrium.

We now prove θn = K∗

N ≥ kn for all n is the unique symmetric equilibrium. Since
∂Πn

RO
∂θn (θn , θ−n) > 0, no equilibrium exists for θn such that θn ≥ kn and Θ ≤ K∗.
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Finally, consider the case θn = Θ
N > K∗

N for all n:

∂Πn
RO

∂θn

(
Θ

N
, ...,

Θ

N

)
= h (Θ) +

Θ

N
h
′
(Θ)− N − 1

N

K

Θ
KΨ

(
K, p̄S

)
< 0.

There exists no symmetric equilibrium with Θ
N > K∗

N .

C.3 Equilibrium investment

In the first stage, producers decide on capacity, taking into account the equilibrium of

the options market. Denote V n (kn ,k−n) producer n profit function:

V n (kn ,k−n) = Πn
RO

(
kn ,

K∗

N
,k−n,

K∗

N

)
= Πn (kn ,k−n, )+

K∗

N
r+

(
kn − K

N

)
Ψ
(
K, p̄S

)
.

Differentiation with respect to kn yields

∂V n

∂kn
=
∂Πn

∂kn
+
N − 1

N
Ψ
(
K, p̄S

)
+

(
kn − K

N

)
∂Ψ

∂K
. (13)

A necessary condition for a symmetric equilibrium kn = K
N is:

∂V n

∂kn

(
K

N
, ...,

K

N

)
=
∂Πn

∂kn

(
K

N
, ...,

K

N

)
+
N − 1

N
Ψ
(
K, p̄S

)
∂V n

∂kn

(
K
N , ...,

K
N

)
is decreasing since ∂Πn

∂kn

(
K
N , ...,

K
N

)
is decreasing and ∂Ψ

∂K < 0. ∂V n

∂kn (0, ..., 0) =
∂Πn

∂kn (0, ..., 0) + N−1
N Ψ

(
0, p̄S

)
> 0 since (i) ∂Πn

∂kn (0, ..., 0) > 0 and (ii) Ψ
(
0, p̄S

)
> 0 by

construction. limK→+∞
∂V n

∂kn (K) = −r < 0. Hence, there exists a unique KC
RO > 0 such

that
∂Πn

RO
∂kn

(
KC

RO
N , ...,

KC
RO
N

)
= 0. This is equation (5). We prove in the main text that

KC
(
p̄S
)
≤ KC

RO < K∗.

We prove below that kn =
KC

RO
N for all n is an equilibrium, distinguishing the two

cases t̂ (K, c,N) ≤ t̂0
(
K, p̄S

)
and t̂ (K, c,N) > t̂0

(
K, p̄S

)
.

C.3.1 Generation produces at capacity before the strike price is reached

Consider first a negative deviation: k1 <
KC

RO
N while kn =

KC
RO
N for all n > 1. To-

tal installed capacity is K = k1 + N−1
N KC

RO < KC
RO. Substituting expression (9) for
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∂Πn

∂kn

(
k1 ,

KC
RO
N , ...,

KC
RO
N

)
into equation (13)

∂V 1

∂k1

(
k1 ,

KC
RO

N
, ...,

KC
RO

N

)
=

ˆ t̂(K,c,N)

t1

(
ρ
(
Q̂ (k1 , t)

)
+ k1ρq

(
Q̂ (k1 , t)

) ∂Q̂
∂k1
− c

)
f (t) dt

+

ˆ t̂0(K,p̄S)

t̂(K,c,N)
(ρ (K) + k1ρq (K)− c) f (t) dt

+

ˆ +∞

t̂0(K,p̄S)

( (
p̄S − c

)
+ N−1

N

(
ρ (K, t)− p̄S

)
+
(
k1 − K

N

)
ρq (K, t)

)
f (t) dt− r.

Substituting in equation (5), observing that t̂ (K, c,N) < t̂
(
KC
RO, c,N

)
and t̂0

(
K, p̄S

)
<

t̂0
(
KC
RO, p̄

S
)

since K < KC
RO, and rearranging yields

∂V 1

∂k1

(
k1 ,

KC
RO

N
, ...,

KC
RO

N

)
=

ˆ t̂(K,c,N)

t1

(
ρ
(
Q̂
)

+ k1
qρ
(
Q̂
) ∂Q̂
∂k1
− c

)
f (t) dt

+

ˆ t̂(KC
RO,c,N)

t̂(K,c,N)

(
ρ (K) + k1

qρ (K)− c
)
f (t) dt

+

ˆ t̂0(K,p̄S)

t̂(KC
RO,c,N)

 ρ (K) + k1
qρ (K)

−
(
ρ
(
KC
RO

)
+

KC
RO
N ρq

(
KC
RO

))
 f (t) dt

+

ˆ t̂0(KC
RO,p̄

S)

t̂0(K,p̄S)


p̄S − ρ

(
KC
RO, t

)
− KC

RO
N ρq

(
KC
RO

)
+N−1

N

 ρ (K, t)− p̄S

+ρq (K, t)
(
k1 − KC

RO
N

) 
 f (t) dt

+
N − 1

N

ˆ +∞

t̂0(KC
RO,p̄

S)

 ρ (K, t)− ρ
(
KC
RO, t

)
+ρq (K, t)

(
k1 − KC

RO
N

)  f (t) dt.

Each term is positive:

1. ρ
(
Q̂
)

+ k1
qρ
(
Q̂
)
∂Q̂
∂k1 − c =

(
k1 − φN

)
ρq

(
Q̂
)
∂Q̂
∂k1 ≥ 0 for t ∈

[
t1, t̂ (K, c,N)

]
2. ρ

(
K, t̂ (K, c,N)

)
+ k1

qρ
(
K, t̂ (K, c,N)

)
= c, and ρt (K) + k1ρqt (K) ≥ 0, hence

ρ (K) + k1
qρ (K)− c ≥ 0 for t ∈

[
t̂ (K, c,N) , t̂

(
KC
RO, c,N

)]
3. ρq (Q) + qρqq (Q) < 0, hence ρ (K) + k1ρq (K) ≥ ρ (K) +

KC
RO
N ρq (K) ≥ ρ

(
KC
RO

)
+

KC
RO
N ρq

(
KC
RO

)
for t ∈

[
t̂
(
KC
RO, c,N

)
, t̂0
(
K, p̄S

)]
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4. ρ
(
KC
RO, t

)
≤ p̄S for t ≤ t̂0

(
KC
RO, p̄

S
)

and ρ (K, t) ≥ p̄S for t ≥ t̂0
(
K, p̄S

)
, hence(

p̄S − ρ
(
KC
RO, t

)
−
KC
RO

N
ρq
(
KC
RO

)
+
N − 1

N

(
ρ (K, t) ≥ p̄S

))
≥ 0

for t ∈
[
t̂0
(
K, p̄S

)
, t̂0
(
KC
RO, p̄

S
)]

5. K ≤ KC
RO, yields ρ (K, t) ≥ ρ

(
KC
RO, t

)
for all t

Thus,
∂Π1

RO
∂k1

(
k1 ,

KC
RO
N , ...,

KC
RO
N

)
> 0: a negative deviation is not profitable.

Consider now a positive deviation, kN >
KC

RO
N while kn =

KC
RO
N for all n < N .

K = kN + N−1
N KC

RO > KC
RO.

∂2V N

(∂kN )2

(
KC
RO

N
, ...,

KC
RO

N
, kN

)
=

∂2ΠN

(∂kN )2 + 2
N − 1

N

∂Ψ

∂K
+

(
kN − K

N

)
∂2Ψ

(∂K)2

=
∂2ΠN

(∂kN )2 +
N − 1

N

ˆ +∞

t̂0(K,p̄S)

 2ρq (K, t)

+
(
kN − KC

RO
N

)
ρqq (K, t)

 f (t) dt

−
(
kN − K

N

)
ρq
(
K, t̂0

(
K, p̄S

))
f
(
t̂0
(
K, p̄S

)) ∂t̂0 (K, p̄S)
∂K

.

Substituting in ∂2ΠN

(∂kN )2 from equation (10),

∂2V N

(∂kN )2

(
KC
RO

N
, ...,

KC
RO

N
, kN

)
=

ˆ t̂0(K,p̄S)

t̂(K,c,N)

[
2ρq

(
K̂, t

)
+ kNρqq

(
K̂, t

)]
f (t) dt

+
N − 1

N

ˆ +∞

t̂0(K,p̄S)

[
2ρq (K, t) +

(
kN −

KC
RO

N

)
ρqq (K, t)

]
f (t) dt

+
K

N
ρq
(
K, t̂0

(
K, p̄S

))
f
(
t̂0
(
K, p̄S

)) ∂t̂0 (K, p̄S)
∂K

< 0.

A positive deviation is not profitable. Therefore
(
KC

RO
N , ...,

KC
RO
N

)
constitutes an equilib-

rium. Furthermore,

∂2V n

∂ (kn)2

(
K

N
, ...,

K

N

)
=

ˆ tp̄
S

tN

[
2ρq (K, t) +

K

N
ρqq (K, t)

]
f (t) dt+ 2

N − 1

N

ˆ +∞

tp̄
S

ρq (K, t) f (t) dt

+
K

N
ρq
(
K, t̂0

(
K, p̄S

))
f
(
t̂0
(
K, p̄S

)) ∂t̂0 (K, p̄S)
∂K

< 0
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hence
(
KC

RO
N , ...,

KC
RO
N

)
is the unique symmetric equilibrium.

C.3.2 The strike price is reached before generation produces at capacity

Substituting expression (12) for ∂Πn

∂kn

(
k1 , ..., kN

)
into equation (13) yields

∂V n

∂kn
=

ˆ +∞

t̃n

(
p̄S − c

)
f (t) dt+

N − 1

N

ˆ +∞

t̂0(K,p̄S)

(
ρ (K, t)− p̄S

)
+

(
kn − K

N

)
∂Ψ

∂K

(
K, p̄S

)
−r.

Suppose k1 = ... = kN−1 =
KC

RO
N . Then,

∂2V N

∂ (kN )2 = −
(
p̄S − c

)
f
(
t̃N
) ∂t̃N
∂K

+
N − 1

N

ˆ +∞

t̂0(K,p̄S)

[
2ρq (K, t) +

(
kN −

KC
RO

N

)
ρqq (K, t)

]
f (t) dt

−N − 1

N

(
kN −

KC
RO

N

)
ρq
(
K, t̂0

(
K, p̄S

))
f
(
t̂0
(
K, p̄S

)) ∂t̂0 (K, p̄S)
∂K

.

Thus, if kN <
KC

RO
N , ∂2V N

∂(kN )2 < 0: a negative deviation is not profitable.

Consider now a positive deviation, kN >
KC

RO
N . Since producer N is the last producer

to be constrained, t̃N = t̂0
(
K, p̄S

)
. Substituting equation (12) into equation (13) yields

∂V n

∂kn

(
KC
RO

N
, ...,

KC
RO

N
, kN

)
=

ˆ +∞

t̂0(K,p̄S)

(p̄S − c)+
N − 1

N

 (
ρ (K, t)− p̄S

)
+
(
kN − KC

RO
N

)
ρq (K, t)

 f (t) dt

−
ˆ +∞

t̂0(KC
RO,p̄

S)

[(
p̄S − c

)
+
N − 1

N

(
ρ
(
KC
RO, t

)
− p̄S

)]
f (t) dt

= −
ˆ t̂0(K,p̄S)

t̂0(KC
RO,p̄

S)

(
p̄S − c

)
f (t) dt

+
N − 1

N


´ +∞
t̂0(K,p̄S)

(
ρ (K, t)− ρ

(
KC
RO, t

))
f (t) dt

−
´ t̂0(K,p̄S)
t̂0(KC

RO,p̄
S)

(
ρ
(
KC
RO, t

)
− p̄S

)
f (t) dt

+
(
kN − KC

RO
N

) ´ +∞
t̂0(K,p̄S) ρq (K, t) f (t) dt

 .

Since K > KC
RO, then t̂0

(
K, p̄S

)
> t̂0

(
KC
RO, p̄

S
)

and ρ (K, t) < ρ
(
KC
RO, t

)
, hence

the first three terms are negative. The last term is negative since kN >
KC

RO
N and

ρq < 0. Thus, ∂V n

∂kn

(
KC

RO
N , ...,

KC
RO
N , kN

)
< 0: a positive deviation is not profitable.
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(
KC

RO
N , ...,

KC
RO
N

)
is therefore an equilibrium. Furthermore,

∂2V n

∂ (kn)2

(
K

N
, ...,

K

N

)
= −

(
p̄S − c

)
f
(
t̂0
) ∂t̂0
∂K

+ 2
N − 1

N

ˆ +∞

t̂0(K,p̄S)
ρq (K, t) f (t) dt < 0

hence
(
KC

RO
N , ...,

KC
RO
N

)
is the unique symmetric equilibrium.

D Energy cum operating reserves market

Define the total surplus

S̊ (p, γ, t) = αS (p (t) , t) + (1− α)S (p, γ, t)

and total demand

D̊ (p, γ, t) = αS (p (t) , t) + (1− α)D (p, γ, t) .

The social planner’s program is:

max
{p(t),γ(t)},K

E
{
S̊ (p (t) , γ (t) , t)− cD̊ (p (t) , γ (t) , t)

}
− rK

st : (1 + h (t)) D̊ (p (t) , γ (t) , t) ≤ K (λ (t))

The associated Lagrangian is:

L = E
{
S̊ (p (t) , γ (t) , t)− cD̊ (p (t) , γ (t) , t) + λ (t)

[
K − (1 + h (t)) D̊ (p (t) , γ (t) , t)

]}
−rK

and: 
∂L
∂p(t) = {p (t)− [c+ (1 + h (t))λ (t)]} ∂D̊

∂p(t)

∂L
∂γ(t) =

{
vt

[
D̊ (p (t) , γ (t)) , γ (t)

]
− [c+ (1 + h (t))λ (t)]

}
∂D̊
∂γ(t)

∂L
∂K = E [λ (t)]− r

First, off-peak λ (t) = 0 and γ (t) = 1. Then p (t) = c = w (t). This holds as long as

ρ
(

Q
1+h(t) , t

)
= c for Q ≤ K ⇔ t ≤ t̂OR0 (K, c).

Second, on-peak, if constant price customers are not curtailed, (1 + h (t)) D̊ (p (t) , 1, t) =

K hence λ (t) > 0 and γ (t) = 1. Then p (t) = c + λ (t) (1 + h (t)) = ρ
(

K
1+h(t) , t

)
and

λ (t) = w (t)− c = p(t)−c
1+h(t) > 0.

Finally, constant price customers may have to be curtailed, (1 + h (t)) D̊ (p (t) , γ∗ (t) , t) =

K for γ∗ (t) < 1 such that (1 + h (t)) D̊ (v̄, γ∗ (t) , t) = K. Then (1 + h (t))λ (t) =
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ρ
(

K
1+h(t) , t

)
− c as before.

The optimal capacity K∗OR is then defined by E [λ (t)] = r which yields equation (7).
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