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Given an n-sample of random vectors (Xi, Yi)1≤i≤n whose joint
law is unknown, the long-standing problem of supervised classifica-
tion aims to optimally predict the label Y of a given a new observation
X. In this context, the nearest neighbor rule is a popular flexible and
intuitive method in non-parametric situations. Even if this algorithm
is commonly used in the machine learning and statistics communities,
less is known about its prediction ability in general finite dimensional
spaces, especially when the support of the density of the observations
is Rd. This paper is devoted to the study of the statistical properties
of the nearest neighbor rule in various situations. In particular, at-
tention is paid to the marginal law of X, as well as the smoothness
and margin properties of the regression function η(X) = E[Y |X].
We identify two necessary and sufficient conditions to obtain uni-
form consistency rates of classification and to derive sharp estimates
in the case of the nearest neighbor rule. Some numerical experiments
are proposed at the end of the paper to help illustrate the discussion.

1. Introduction. The supervised classification model has been at the core
of numerous contributions to statistical literature in recent years. It contin-
ues to provide interesting problems, both from the theoretical and practical
point of views. The classical task in supervised classification is to predict
a feature Y ∈ M when a variable of interest X ∈ Rd is observed, the set
M being finite. In this paper, we focus on the binary classification problem
where M = {0, 1}.

In order to provide a prediction of the label Y of X, it is assumed that a
training set Sn = {(X1, Y1), . . . , (Xn, Yn)} is at our disposal, where (Xi, Yi)
are i.i.d. and with a common law PX,Y . This training set Sn makes it possible
to retrieve some information on the joint law of (X,Y ) and to provide, de-
pending on some technical conditions, a pertinent prediction. In particular,
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the regression function η defined as:

η(x) = E[Y |X = x], ∀x ∈ Rd

appears to be of primary interest for the statistician (see Section 2 for a for-
mal description of the model). Indeed, given x ∈ Rd, the term η(x) provides
the probability that Y is assigned the label 1, conditionally to the event
{X = x}. Since this function is unknown in practice, prediction rules are
based on the training sample Sn.

Several algorithms have been proposed over the years but we do not intend
to provide an exhaustive list of the associated papers. For an extended in-
troduction to the supervised classification theory, we refer to [BBL05] or
[DGL96]. Among available classification procedures, we can, roughly speak-
ing, divide them into (at least) three families:

• Approaches based on pure entropy considerations and Empirical Risk
Minimization (ERM): Given a classifier, the miss-classification error
can be empirically estimated from the learning sample. The ERM al-
gorithm then selects the classifier that minimizes this empirical risk
among a given family of candidates. Several studies such as in [MT99],
[BM06], [AT07], [LM14] now provide an almost complete description
of their statistical performance. In an almost similar context, some
aggregation schemes, first proposed in Boosting procedures by [FS97],
have been analyzed in depth in [Lec07] and shown to be adaptive to
margin and complexity.
• Methods derived from geometric interpretation or information theory:

For example, the Support Vector Machine classifier (SVM) aims to
maximize the margin of the classification rule. It has been intensively
studied in the last two decades because of its low computational cost
and excellent statistical performances (see [Vap98], [Ste05] or [BBM08]
among others). Classification and Regression Tree is another intuitive
standard method that relies on a recursive dyadic partition of the state
space, introduced in [BFOS84] and greatly improved by an averaging
procedure in [AG97] and [Bre01], which is usually referred to as Ran-
dom Forest, and later theoretically developed in [BDL08].
• Plug-in rules: The main idea is to mimic the Bayes optimal classifier

using a plug-in rule after a preliminary estimation of the function η.
We refer to [GKKW02] for a general overview, and to [BR03] and
[AT07] for some recent statistical results within this framework. The
main motivation behind plug-in rules is to transfer properties related
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to the classical regression problem (estimation of η from the sample
Sn) to a quantitative control of the miss-classification error.

In this general overview, the nearest neighbor rule (see Section 2.2 for a
complete description) belongs to the last two classes. It corresponds to a
plug-in classifier with a simple geometrical interpretation. It has attracted
a great deal of attention for the past few decades, from the seminal works
of [FH51] and [CH67]. Given an integer k, the corresponding classifier is
based on a feature average of the k-closest observations of X in the training
set Sn. We also refer to [Sto77], [Győ78], [Gyö81], [DW77] and [DGKL94]
for seminal contributions on this prediction rule (both for classification and
regression). Recently, this algorithm has received even further attention in
mathematical statistics, and is still at the core of several studies: [CG06]
examines the situation of general metric space and identifies the importance
of the so-called Besicovitch assumption, [HPS08] is concerned with the in-
fluence of the integer k on the excess risk of the nearest neighbor rule as
well as the two notions of the sample structure while [Sam12] describes an
improvement of the standard algorithm.

Most of the results obtained for penalized ERM, SVM or plug-in classifiers
are based on complexity considerations (metric entropy or Vapnik dimen-
sion). In this paper, we mainly use the asymptotic behavior of the small
ball probabilities instead (see [Lia11] and the references therein), which can
be seen as a dual quantity of the entropy (see [LS01]). We also deal with
the more intricate situation of not bounded away from zero densities (es-
pecially for non compactly supported measures). For this purpose, we work
with both smoothness and minimal mass assumptions (see Section 2.3 for
more details) that will provide a pertinent estimation of the function η. In
particular, it is assumed that we will be able to take advantage of some
smoothness properties of the function η in order to improve the prediction
of the label Y . According to previous existing studies (see, e.g., [Gyö81]), the
associated classification rates appear to be comparable to those obtained in
an “estimation” framework and, hence, always greater than

√
n
−1

. However,
it has been proven in [MT99] that fast rates (i.e., faster than

√
n
−1

) can
be obtained up to some additional margin assumption. It is in fact possible
to take advantage of the behavior of the law of (X,Y ) around the bound-
ary {η = 1/2} in order to improve the properties of the classification process.

In this paper, we investigate the nearest neighbor rule with margin assump-
tion and marginal distribution µ for the variable X that is not necessarily
compactly supported or lower bounded from zero. The contributions pro-
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posed below can be broken down into three different categories.

Consistency rate for bounded from below densities. Our first result concerns
the optimality of the nearest neighbor classifier Φn in the compact case. We
prove that this classification rule reaches the minimax rate of convergence for
the excess risk obtained by [AT07] (see Theorem 3.2 below). In particular,
under some classical assumptions about the distribution F of the couple
(X,Y ) (which will be illustrated below), we show that:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ Cn−
1+α
2+d ,

where α denotes the margin parameter, d the dimension of the problem,
R(Φ) the miss-classification error of a given classifier Φ and Φ∗ the Bayes
classifier.1 We obtain this result for both Poisson and Binomial sample-size
models. In particular, such a result appears to be a generalization of the
ones given in [HPS08] that do not take the margin α into account in their
study.

Consistency rate for general densities. In a second step, we investigate
the behavior of the nearest neighbor classifier when the marginal density µ
(w.r.t. the Lebesgue measure) ofX is not bounded from below on its support.
Such an improvement is not of secondary importance since it corresponds
to the commonly encountered situation of vanishing or non-compactly sup-
ported densities. To do this, we use an additional assumption on the tail of
this distribution and prove that generically:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ Cn−
1+α

2+α+d ,

as soon as the bandwidth k involved in the classifier is allowed to depend on
the spatial position of X. The tail assumption on the marginal distribution
on X involved in this result, will describe the behavior of the density µ near
the set {µ = 0}.

Lower bounds. Finally, we derive some lower bounds for the supervised
classification problem, which extends the results obtained in [AT07] in a
slightly different context. We prove that our Tail Assumption is unavoidable
to ensure uniform consistency rates for classification in a non-compact case,
regardless of dimension d. We then see how these upper and lower bounds
are linked. In particular, we show that a very unfavorable situation of clas-
sification occurs when the regression function η oscillates in the tail of the

1This result has also been established in the recent work of [Sam12]
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distribution µ, i.e., we establish that it is even impossible in these situations
to obtain uniform consistency rates and thus elucidate two open questions
in [Can13].

The paper is organized as follows. In Section 2, we precisely describe the
statistical setting related to the classification problem. Some attention is
paid to the nearest neighbor rule. Section 3 is devoted to the bounded from
below case where we prove that the nearest neighbor classifier reaches the
minimax rate of convergence for the excess risk under mild assumptions. We
then extend our study to the general (typically non-compact) case in Section
4. This section is supplemented with some supporting numerical results and
a glossary of typical situations of location models. We conclude with a dis-
cussion of our results, and potential problems. Proofs and technical results
are included in Appendix A. The paper is completed by an adaptation to
the smooth discriminant analysis model in Appendix B (see, e.g. [MT99]
or [HPS08] for another comparison between the so-called Poisson and Bino-
mial models). In particular, although the variables of interest are strongly
dependent in this case, we derive (using a Poissonization argument) results
similar to those obtained in the classical binary classification model.

We use the following notations throughout the paper. PX,Y denotes the dis-
tribution of the couple (X,Y ) and PX the marginal distribution of X, which
will be assumed to admit a density µ with respect to the Lebesgue measure.
Similarly, we set P⊗n =

∏n
i=1 P(Xi,Yi) and P = P(X,Y ) × P⊗n . In the same

spirit, E[.], EX [.] and E⊗n [.] will hereafter correspond to the expectations
w.r.t. the measures P, PX and P⊗n , respectively. Finally, given two real se-
quences (an)n∈N and (bn)n∈N, we write an . bn (resp. an ∼ bn) is a real
constant C ≥ 1 exists such that an ≤ Cbn (resp. bn

C ≤ an ≤ Cbn) for all
n ∈ N.

2. Statistical setting and nearest neighbor classifier.

2.1. Statistical Classification problem. In this paper, we study the classical
binary supervised classification model (see, e.g., [DGL96] for a complete
introduction). An i.i.d. sample Sn := (Xi, Yi)i=1...n ∈ Ω × {0, 1}, whose
distribution is PX,Y and where Ω = Supp(µ) is an open set of Rd, is at
our disposal. Given a new incoming observation X, our goal is to predict its
corresponding label Y . To do this, we use a classifier that provides a decision
rule for this problem. Formally, a classifier is a measurable mapping Φ from
Rd to {0, 1}. Given a classifier Φ, its corresponding miss-classification error
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is then defined as:
R(Φ) = P (Φ(X) 6= Y ) .

In practice, the most interesting classifiers are those associated with the
smallest possible error. In this context it is well known (see, e.g., [BBL05])
that the Bayes classifier Φ∗ defined as:

(2.1) Φ∗(X) = 1{η(X)> 1
2}, where η(x) := E [Y |X = x] ∀x ∈ Ω,

minimizes the miss-classification error, i.e.,

R(Φ∗) ≤ R(Φ), ∀Φ : Rd −→ {0, 1}.

The classifier Φ? provides the best decision rule in the sense that it leads to
the lowest possible miss-classification error. Unfortunately, Φ∗ is not avail-
able since the regression function η explicitly depends on the underlying
distribution of (X,Y ). In some sense, the Bayes classifier can be considered
as an oracle that provides a benchmark error. Hence, the main challenge
in this supervised classification setting is to construct a classifier Φ whose
miss-classification error will be as close as possible to the smallest possible
one. In particular, the excess risk (also referred to as the regret) defined as

R(Φ)−R(Φ∗),

appears to be of primary importance. We are interested here in the statistical
properties of the nearest neighbor classifier (see Section 2.2 below for more
details) based on the sample Sn. In particular, we investigate the asymptotic
properties of the excess risk through the minimax paradigm. Given a set
F of possible distributions F for (X,Y ), the minimax risk is defined as:

δn(F) := inf
Φ

sup
F∈F

[R(Φ)−R(Φ∗)] ,

where the infimum in the above formula is taken over all Sn measurable
classifiers. A classifier Φn is then said to be minimax over the set F if:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ Cδn(F),

for some constant C. The considered set F will be detailed later on and will
depend on the behavior of (µ, η) over Rd through some smoothness, margin
and minimal mass hypotheses.
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2.2. The nearest neighbor rule . In this paper, we focus on the nearest
neighbor classifier, which is perhaps one of the most widespread and simplest
classification procedures. Suppose that the state space is (Rd, ‖.‖) where
‖.‖ is a reference distance. Given any sample Sn and for any x ∈ Rd, we
first build the reordered sample

(
X(j)(x), Y(j)(x)

)
1≤j≤n with respect to the

distances ‖Xi − x‖, namely:

‖X(1)(x)− x‖ ≤ ‖X(2)(x)− x‖ ≤ . . . ≤ ‖X(n)(x)− x‖.

In this context X(m)(x) is the m-nearest neighbor of x w.r.t. the distance ‖.‖
and Y(m)(x) its corresponding label. Given any integer k in N, the principle
of the nearest neighbor algorithm is to construct a decision rule based on
the k-nearest neighbor of the input X: the Sn-measurable classifier Φn,k is:

(2.2) Φn,k(X) =

1 if
1

k

k∑
j=1

Y(j)(X) >
1

2
,

0 otherwise.

For all x ∈ Ω, the term 1
k

∑k
j=1 Y(j)(x) appears to be an estimator of the

regression function η(x). In particular, we can write the classifier Φn,k as
(2.3)

Φn,k(X) = 1{η̂n(X)>1/2} where η̂n(x) =
1

k

k∑
j=1

Y(j)(x) ∀x ∈ Ω.

Hence, the nearest neighbor procedure can be considered as a plug-in clas-
sifier, i.e., a preliminary estimator of the regression function η is plugged
in our decision rule. It is worth noting that the integer k is a regularization
parameter. Indeed, if k is too small, the classifier Φn,k will only use a small
amount of the neighbors of X, leading to a large variance during the clas-
sification process. On the other hand, large values of k will introduce some
bias into the decision rule since we use observations that may be far away
from the input X. In other words, the statistical performances of Φn,k will
depend on a careful choice of the integer k. In particular, the number of
neighbors k = kn considered should carefully grow to +∞ with respect to
n.

For this purpose, we introduce some baselines assumptions into the following
section that will make it possible to characterize an optimal value for this
regularization parameter.



8 S. GADAT, T. KLEIN, C. MARTEAU

2.3. Baseline assumptions. It is well known that no reliable prediction can
be made in a distribution-free setting (see [DGL96]). We restrict the class
of possible distributions of (X,Y ) below.

Since the nearest neighbor rule is a plug-in classification rule, we expect to
take advantage of some smoothness properties of η in order to improve the
classification process. In fact, when η is smooth, the respective values of
η(x1) and η(x2) are comparable for close enough x1, x2. In other words, we
can infer the sign of η(x)− 1

2 from those of the neighbors of x.

Assumption A1. (Smoothness) The regression function η belongs to the
Hölder class of parameter 1 with a radius L, which is denoted C1,0(Ω, L) and
corresponds to the set of functions such that

∀(x1, x2) ∈ Ω2 |η(x1)− η(x2)| ≤ L|x1 − x2|.

Remark 2.1. It would be tempting to consider some more general smooth-
ness classes for the regression function η. Nevertheless, the standard near-
est neighbor algorithm does not make it possible to use smoothness indexes
greater than 1. An alternative procedure has been proposed in [Sam12]: the
idea is then to balance the (Y(j))j=1..k with a suitable monotonous weighting
sequence. However, this modification complicates the statistical analysis and
may alter the ideas developed below. We therefore chose to fix the smoothness
of η to 1 (i.e. restrict our study to C1,0(Ω, L)).

Our second assumption was introduced by [Tsy04] in the binary supervised
classification model (see [MT99] in a smooth discriminant analysis setting).

Assumption A2. (Margin assumption) For any α > 0, a constant C > 0
exists such that:

PX
(

0 <

∣∣∣∣η(X)− 1

2

∣∣∣∣ < ε

)
≤ Cεα, ∀ε > 0.

In such a case, we write (µ, η) ∈Mα.

The Bayes classifier depends on the sign of η(X)− 1/2. Intuitively, it would
be easier to mimic the behavior of this classifier when the mass around the
set {η = 1/2} is small. On the other hand, the decision process may be more
complicated when η(X) is close to 1/2 with a large probability. Quantifying
this closeness is the purpose of this margin assumption.
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For the sake of convenience, we use the set FL,α throughout the paper, which
contains distributions that satisfy both Assumptions A1 and A2, namely:

FL,α :=
{
P(X,Y ) : PX(dx) = µ(x)dx andL(Y |X) ∼ B(η(X))

with η ∈ C1,0(Ω, L) and (µ, η) ∈Mα

}
We now turn to our last assumption that involves the marginal distribution
of the variable X.

2.4. Minimal Mass Assumption. In the sequel, this type of hypothesis will
play a very important role.

Assumption A3. (Strong Minimal Mass Assumption) There exists κ > 0
such that the marginal density µ of X satisfies µ ∈Mmma(Ω, κ) where

Mmma(Ω, κ) :=

{
PX : PX(dx) = µ(x)dx |

∃δ0 > 0, ∀δ ≤ δ0, ∀x ∈ Ω : PX(X ∈ B(x, δ)) ≥ κµ(x)δd
}
.

This assumption guarantees that PX possesses a minimal amount of mass
on each ball B(x, δ), this lower bound being balanced by the level of the
density on x. In some sense, distributions in Mmma(Ω, κ) will make it possi-
ble to obtain reliable predictions of the regression function η according to its
Lipschitz property. The Strong Minimal Mass Assumption A3 may be seen
as a refinement of the so-called Besicovitch assumption that is quite popular
in the statistical literature (see, e.g., [Dev81] for a version of the Besicovitch
assumption used for pointwise consistency or [CG06] for a general discussion
on this hypothesis in finite or infinite dimension). It is worth pointing out
that the Besicovitch assumption introduced in [CG06] states that η satisfies
the following µ-continuity property:

(2.4) ∀ε > 0 lim
δ→0

PX

{
x :

1

µ(B(x, δ))

∫
B(x,δ)

|η(z)− η(x)|dµ(z) > ε

}
= 0

In our setting, since η is L-Lipschitz (Assumption A1), we can check that
for all x ∈ Ω∫

B(x,δ)
|η(z)− η(x)|µ(z)dz ≤ L

∫
B(x,δ)

|x− z|µ(z)dz ≤ Lδµ(B(x, δ)),
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which implies that the right hand side of (2.4) vanishes as soon as δ ≤ ε/L.
We will see that Assumption A3 is necessary to obtain quantitative esti-
mates for any finite dimensional classification problem in a general setting.
In a slightly different framework, our Assumption A3 is similar to the Strong
Density Assumption used in the paper of [AT07] when the density µ is lower
bounded on its (compact) support, which is assumed to possess some geo-
metrical properties ((c0, r0) regularity). This setting is at the core of the
study presented in Section 3 below. Assumption A3 also recalls the notion
of standard sets used in [Cas07] for the estimation of compact support sets.
More generally, the following examples present some standard distributions
that satisfy Assumption A3.

Example 2.1.

• In Rd, it is not difficult to check that Gaussian measures with non-
degenerated covariance matrices satisfy Mmma(Ω, κ). As a simple ex-
ample, consider a standard Gaussian law µ ∼ N (0, 1). For any x ∈ R
and δ > 0, if x belongs to a compact set K, then a constant CK exists
such that (2π)−1/2

∫ x+δ
x−δ e

−t2/2dt ≥ CKe−x
2/2δ. Now, if x −→ +∞, we

can check that:

(2π)−1/2

∫ x+δ

x−δ
(2π)−1/2e−t

2/2dt ∼ (2π)−1/2e−x
2/2

[
exδ

x− δ
− e−xδ

x+ δ

]
e−δ

2/2.

The bracket above is always greater than δ when (xδ)−1 = O(1). Now,
if δ = o(1/x), a simple Taylor expansion yields

(2π)−1/2

∫ x+δ

x−δ
(2π)−1/2e−t

2/2dt ∼ µ(x)
1 + 2xδ

x
& µ(x)δ.

• The same computations are still possible for symmetric Laplace distri-
butions (et

∫ t+δ
t−δ e

−xdx = [eδ − e−δ] ∼ 2δ when δ is small. Thus, any
Laplace distribution belongs to Mmma(Ω, κ). In a same way, when µ
is a standard Cauchy distribution, we can check that:∫ x+δ

x−δ

dt

1 + t2
=

1

1 + x2

∫ δ

δ

1

1 + h2x+h
1+x2

dh

∼ 1

1 + x2

[
2δ − 2

3

δ3

1 + x2
+ +8

δ3x2

(1 + x2)2
o(δ3)

]
&

δ

1 + x2
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Typically, distributions that do not satisfy the Strong Minimal Assumption
(A3) possess some important oscillations in their tails (when the density µ

is close to 0). In such a setting, the alternative set M̃mma(Ω, κ), defined as
follows, may be considered:

M̃mma(Ω, κ) :=

{
PX : PX(dx) = µ(x)dx| ∃(ρ, C) ∈]0; +∞[2

∃δ0 > 0, ∀δ ≤ δ0 : ∀x ∈ Ω : µ(x) ≥ e−Cδ−ρ =⇒ PX(B(x, δ)) ≥ κµ(x)δd
}
.

The interest of the weaker M̃mma(Ω, κ) compared to Mmma(Ω, κ) is that
the statistical abilities of the nearest neighbor rule are still the same with
Mmma(Ω, κ) or M̃mma(Ω, κ). Moreover, an analytic criterion that ensures

M̃mma(Ω, κ) can be found (see Proposition 4.1. This is not the case for the
uniform assumption Mmma(Ω, κ) (it is indeed more difficult to ensure the
lower bound on the global set Ω).

Although all the subsequent results may be established for a weaker version
of the minimal mass assumption (based on the set M̃mma(Ω, κ)), we will
restrict ourselves to its strong formulation (Assumption A3). In Section 3,
we prove that the nearest neighbor rule is optimal in the minimax sense pro-
vided that the margin and smoothness assumptions hold, with a marginal
density of the variable X bounded away from 0 and a suitable choice of k. In
Section 4, we will see that Mmma(Ω, κ) is not yet sufficient to derive consis-
tent classifiers for non compactly supported densities, and a last additional
hypothesis is needed.

3. Bounded away from zero densities.

3.1. Minimax consistency of the nearest neighbor rule. In this section, we
are interested in the special case of a marginal density µ bounded from below
by a strictly positive constant µ−. In this context, we can state an upper
bound on the consistency rate of the nearest neighbor rule.

Theorem 3.1. Assume that Assumptions A1-A3 hold. The nearest neigh-

bor classifier Φn,kn with kn = bn
2

2+d c satisfies

sup
PX,Y ∈FL,α∩Mmma(Ω,κ)µ−

[R(Φn,kn)−R(Φ∗)] . n−
1+α
2+d ,

where Mmma(Ω, κ)µ− denotes the subset of densities of Mmma(Ω, κ) that are
bounded from below by µ−.
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Theorem 3.1 establishes a consistency rate of the nearest neighbor rule
over FL,α ∩Mmma(Ω, κ)µ− . A detailed proof of is presented in Section A.2.
Implicitly, we restrict our analysis to compactly supported observations,
this assumption being at the core of several statistical analyses (see, e.g.,
[GKKW02], [BBL05], [MT99] or [HPS08] among others). It is worth pointing
out that this setting falls into the framework considered in [AT07].

Definition 3.1 (Strong Density Assumption (SDA), [AT07]). The marginal
distribution of the variable X satisfies the Strong Density Assumption if

• it admits a density µ w.r.t. the Lebesgue measure of Rd,
• the density µ satisfies:

µ− ≤ µ(x) ≤ µ+, ∀x ∈ Supp(µ)

for some constants (µ−, µ+) ∈]0,+∞[2.
• The support of µ is (c0, r0)-regular, namely:

λ [Supp(µ) ∩B(x, r)] ≥ c0λ[B(x, r)],∀r ≤ r0,

for some positive constants c0 and r0.

As soon as the marginal density is bounded from below by a strictly positive
constant, then both SDA and Strong Minimal Mass Assumption (A3) are
equivalent, as stated in the following proposition.

Proposition 3.1. For bounded away from zero density, the SDA is equiv-
alent to the Strong Minimal Mass Assumption.

Proof. As soon as the support of µ is (c0, r0)-regular and the density is
lower bounded by µ− > 0, then SDA implies a minimal mass type assump-
tion since ∀δ ≤ r0:

PX(B(x, δ)) =

∫
B(x,δ)

µ(z)dz ≥ µ− × λ[B(x, δ) ∩ Supp(µ)] ≥ c0γdµ−δ
d.

Conversely, we can also check the fact that the Strong Minimal Mass As-
sumption (A3) implies the SDA (including the (c0, r0)-regularity of µ). In-
deed, since for any x and δ ≤ δ0:

1 ≥
∫
B(x,δ)

µ(x)dx ≥ Cµ(x)δd,
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then the density µ is upper bounded and we obtain that:∫
B(x,δ)

µ(x)dx ≤ ‖µ‖∞λ [Supp(µ) ∩B(x, r)] .

We therefore obtain:

λ [Supp(µ) ∩B(x, r)] ≥ C µ(x)

‖µ‖∞
δd ≥ C µ−

‖µ‖∞
δd.

This concludes the proof of this proposition.

It is possible to link the constants (c0, r0) involved in SDA with κ involved
in Mmma(Ω, κ)µ− , but we have omitted their relationships here for the sake
of simplicity. Minimax rates of excess risk under the SDA are established in
[AT07]. A consequence of Proposition 3.1 is that the same lower bound is
still valid with Mmma(Ω, κ)µ− .

Theorem 3.2 (Theorem 3.3, [AT07]). Assume that Assumptions A1-A3
hold and a µ− > 0 exists such that µ(x) > µ− for all x ∈ Ω. Then, the
minimax classification rate is lower bounded as follows:

inf
Φ

sup
PX,Y ∈FL,α∩Mmma(Ω,κ)µ−

[R(Φ)−R(Φ∗)] & n−
1+α
2+d .

Thanks to the previous lower bound, we can conclude that the nearest neigh-
bor rule achieve the minimax rate of convergence in the particular case where
the density µ is lower bounded on its (compact) support. As already dis-
cussed in [MT99] or [AT07], the higher the margin index α is, the smaller
the excess risk will be. On the other hand, the performance deteriorates as
the dimension of the considered problem increases. This corresponds to the
classical curse of the dimensionality. The lower bound obtained by [AT07] is
based on an adaptation of standard tools from nonparametric statistics (As-
souad’s Lemma). This proof is of primary importance for next lower bound
results. It is recalled in Section A for the sake of convenience.

3.2. The Smooth discriminant analysis model (Binomial sample-size). While
the supervised classification model (also referred to as the Poisson sample-
size model) has been intensively studied in the last decades, the smooth dis-
criminant analysis model has been considered as an alternative approach.
This model is presented in [MT99] and is referred to as a binomial model in
[HPS08]. It assumes that we have two independent samples S1 = (X1, . . . , Xn)
and S2 = (X̃1, . . . , X̃n) of i.i.d. random variables at our disposal, with densi-
ties f and g respectively. Given a new incoming observation, the goal is then
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to predict its corresponding label, namely to determine whether X comes
from the density f or g.

In the classification setting, the positions are drawn according to µ and
the labels are then sampled using B(η(X)), which makes the values of the
labels (Y(i))1≤i≤n completely independent each other, conditionally to their
positions (X(i))1≤i≤n. This key observation is no longer true in the smooth
discriminant analysis: conditionally to ordered spatial inputs induced in the
nearest neighbor rule, the random variables (Y(1), . . . , Y(kn)) are not inde-
pendent. This significantly complicates the analysis of the nearest neighbor
rule and is a major difference with the standard classification task.

We briefly provide our main result on the nearest neighbor rule with
the smooth discriminant analysis below. More complete details can be found
in Appendix B.

Theorem 3.3. The nearest neighbor classifier Φn,kn with kn = bn
2

2+d c
satisfies

sup
PX,Y ∈FL,α∩Mmma(Ω,κ)µ−

[
RBinom(Φn,kn)−RBinom(Φ∗)

]
. log(n)n−

1+α
2+d ,

where RBinom denotes the risk in the smooth discriminant analysis setting.

To the best of our knowledge, the performance of the nearest neighbor
classifier in the binomial sample-size model has only been studied in [HPS08].
In their paper, the difference between the Poisson and the binomial model
is studied through Reny’s representation of order statistics. In contrast, we
directly compute an upper bound of the binomial model. Our main argument
relies on a Poissonization of the sample size (see, e.g., [Kac49]). Even if it
is a standard alternative to cope with dependencies in probability, such a
method has not yet been applied for smooth discriminant analysis.

Regarding the obtained consistency rates now, our result misses a log
term in the smooth discriminant analysis setting. In [HPS08], the authors
show that the difference of the excess risk between the classification and the
smooth discriminant analysis is on the order of o

(
k−1 +

(
k
n

)4/d)
for twice

differentiable functions η (instead of only the Lipschitz situation in our case)
and their resulting rate is n−2/(4+d) for the optimal choice kn = n4/(4+d).
Following their argument with a Lipschitz regression function η, their excess
risk becomes n−1/(2+d) for the binomial model. Hence, for a margin α = 0,
our result in Theorem 3.3 is weaker than the one in [HPS08] (because of
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our log term). This is not yet the case as soon as the margin α > 0 since
the result of [HPS08] does not take this parameter, which may be central to
obtain fast rates, into account. Moreover, the approach of [HPS08] does not
seem to simply manage the margin information of the classification.

Finally, our Poissonization method also applies for general densities
that are not necessarily bounded from below (see Appendix B). This is a
major difference with the results of [HPS08] that are valid with a compactly
supported and bounded away from zero density µ.

4. General finite dimensional case.

4.1. The Tail Assumption. Results of the previous section are designed for
the problem of supervised binary classification with compactly supported
inputs and lower bounded densities. Such an assumption is an important
prior on the problem that may be improper in several practical settings.
Various situations involve Gaussian, Laplace, Cauchy or Pareto distribu-
tions on the observations, and both the compactness and the boundedness
away from zero assumptions may seem to be very unrealistic. This is even
more problematic when dealing with functional classification with a Gaus-
sian White Noise model (GWN). In such a case, observations are described
through an infinite sequence of Gaussian random variables and the SDA or
Mmma(Ω, κ)µ− are far from being well-tailored for this situation (see [Lia11]
for a discussion and further references).

This section is dedicated to a more general case of binary supervised
classification problems where the marginal density µ of X is no longer as-
sumed to be lower bounded on its support. The main problem related to
such a setting is that we have to predict labels in places where few (or even
no) observations are available in the training set. In order to address this
problem, we take the following assumption.

Assumption A4. (Tail Assumption) Afunction ψ that satisfies ψ(ε) → 0
as ε→ 0 and that increases in a neighborhood of 0 exists such that

P(X,Y ) ∈ PT ,ψ :=
{
PX : ∃ ε0 ∈ R∗+ : ∀ε < ε0, PX ({µ < ε}) ≤ ψ(ε)

}
,

where PT ,Id corresponds to the particular case where ψ = Id.

The aim of this Tail Assumption is to ensure that the set where µ is small
has a small mass. We use the notation T because of the interpretation on
the tail of µ, but PT ,ψ is not just an assumption on the tail of the µ. It
is, in fact, an assumption on the behavior of µ near the set {µ = 0}. We
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provide some examples of marginal distribution below that satisfy this tail
requirement. In Section 4.2 below, we prove that the Tail Assumption (A4)
is unavoidable in this setting. In Section 4.3, we investigate the performances
of the nearest neighbor rule in this setting.

Example 4.1. Following are several families of densities in PT ,ψ.

• Laplace distributions obviously satisfy PT ,Id, and a straightforward in-
tegration by parts shows that Gamma distributions Γ(k, θ) satisfy PT ,ψ
with ψ(ε) = ε log(ε−1)k−1 (the term around x = 0 is on the order of
εk/(k−1) and thus negligible compared to the term around +∞).
• An immediate computation shows that the family of Pareto distribu-

tions of parameters (x0, k) satisfies PT ,ψ where ψ(ε) = εk/(k+1), re-
gardless of the value of x0.
• The family of Cauchy distributions satisfies PT ,ψ with ψ(ε) =

√
ε.

• Univariate Gaussian laws γm,σ2 with mean m and variance σ2 satisfy

γm,σ2(x) ≤ ε⇐⇒ |x−m| ≥ tσ,ε :=
√

2σ

√
log

(
1

ε

)
+ log(

1

σ
√

2π
),

and a standard result on the size of Gaussian tails (see [BNC89]) yields

γm,σ2

(
γm,σ2 ≤ ε

)
=

ε

tσ,ε

[
1− 1

t2σ,ε
+

1.3

t4σ,ε
. . .

]
.

ε√
log
(

1
ε

) .
Hence, univariate Gaussian laws satisfy PT ,ψ with ψ(ε) = ε log(ε−1)−1/2.
• If m is any real vector of Rd and Σ2 a covariance matrix whose spec-

trum is λ1 ≥ . . . λd ≥ 0:

γm,Σ2

(
γm,Σ2 ≤ ε

)
= γ0,Σ2

(
γ0,Σ2 ≤ ε

)
. γ0,Σ2

(
‖X‖ ≥

√
2λ1 log

(
1

ε

))
.

Careful inspection of Theorem 1 of [HLS02] now yields

γ0,Σ2

(
‖X‖ ≥

√
2λ1 log

(
1

ε

))
∼ CΣ2 log

(
1

ε

)r/2−1

ε,

where CΣ2 is a constant that only depends on the spectrum of Σ2 and
r is the multiplicity of the eigenvalue λ1. In particular, γm,Σ2 satisfy

PT ,ψ where ψ(ε) = CΣ2ε log(ε−1)r/2−1.
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4.2. Non-consistency results. We first justify the introduction of the sets
Mmma(Ω, κ) and PT ,ψ and discuss their influences regarding uniform lower
bounds and even consistency of any estimator. To do this, we first state
that the Minimal Mass Assumption (A3) is necessary to obtain uniformly
consistent classification rules. Second, we assert that the Tail Assumption
(A4) is also unavoidable.

Theorem 4.1. Assume that the law PX,Y belongs to FL,α, then:

i) No classification rule can be universally consistent if Assumptions A1-
A3 hold and not A4. For any discrimination rule Φn and for any
ε < 4−α, a distribution P(X,Y ) in FL,α ∩Mmma(Ω, κ) exists such that:

R(Φn)−R(Φ∗) ≥ ε.

ii) No classification rule can be universally consistent if Assumption A1,
A2, A4 hold and not A3. For any discrimination rule Φn and for any
ε < 4−α, a distribution P(X,Y ) in FL,α ∩ PT ,Id exists such that:

R(Φn)−R(Φ∗) ≥ ε.

The first result i) asserts that even if the Minimal Mass Assumption
A3 holds for the underlying density on X, it is not possible to expect a
uniform consistency result over the entire class of non-compactly considered
densities. In some sense, the support of the variable X seems to be too
large to obtain reliable predictions with any classifiers without additional
assumptions. As discussed above, the Tail Assumption A4 may make it
possible to counterbalance this curse of support effect (see next section).
Such statistical damage has also been observed for the estimation of densities
that are supported on the real line instead of being compactly supported,
even though such dramatic consequences are not shown here. We refer to
[RBRTM11] and the references therein for a more detailed description.

The second result ii) states that the Strong Minimal Mass Assump-
tion A3 cannot be skipped for uniform consistency rates and no compactly
supported densities. This is in line with the former studies of [Győ78] and
[DGKL94]. In particular, Lemma 2.2 of [DGKL94] takes advantage of some
of the positive consequences of this type of assumption. Our proof relies on
the construction of a sample size dependent law on (X,Y ) that violates our
Minimal Mass Assumption A3 but that keeps the regression function η in
our smoothness class FL,α. This is a major difference with former counter
examples built in [DGL96] where the non uniform consistency is obtained
with a family of non-smooth regression functions η. In our study, we also
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obtained a family of smooth regression functions for which such phenomena
occur. Even in this case, it is still possible to keep the excess risk strictly
positive for any classifier Φn (and no longer for only nearest neighbor rules).

Finally, it should be noted that our inconsistency results always occur
when building a network of regression functions η that oscillate around the
value 1/2 at the neighborhood of the set {µ = 0}. In a sense, Theorem 4.1
contributes to the understanding of one of the opens question put forth in
[Can13] on the behavior of the nearest neighbor rule when η is oscillating
about 1/2 in the tail.

4.3. Minimax rates of convergence. In the meantime, when both A2, A3
and A4 hold, we are able to precisely describe the corresponding minimax
rate of convergence.

4.3.1. Minimax lower bound.

Theorem 4.2. Assume that Assumptions A1-A4 hold. Then

inf
Φn

sup
P(X,Y )∈FL,α∩Mmma(Ω,κ)∩PT ,Id

[R(Φn)−R(Φ∗)] & n−
1+α

2+α+d .

For the sake of convenience, we briefly outline the proof of Theorem 3.2
borrowed from [AT07] in Section A.1. It is then adapted to our new set of
assumptions.

Theorem 4.5 below provides some lower bounds for different tails of
distributions (through the function ψ). It should be noted that we recover
the known rate of compactly supported densities with the so-called Mild
Density Assumption of [AT07] in the particular case ψ = Id. This implies
that in the non-compact case, the rate cannot be improved compared to the
compact setting, even with an Additional Tail assumption.

4.3.2. An upper bound for the nearest neighbor rule. When the density is
no longer bounded away from 0, the integer kn will be chosen in order to
counterbalance the vanishing probability of the small balls in the tail of the
distributions. For example, when ψ = Id, we show that a suitable choice of
the integer kn is:

kn := bn
2

3+α+d c,

which appears to be quite different from the one in the previous section.
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Theorem 4.3. Assume that A1-A3 hold and if the Tail Assumption A4

is driven by ψ = Id, the choice kn := bn
2

3+α+d c yields:

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(Ω,κ)

[R(Φn,kn)−R(Φ∗)] . n−
(1+α)

(3+α+d) .

The proof of Theorem 4.3 is provided in Section A.3. The above results indi-
cate that the price to pay for the classification from entries in compact sets to
arbitrary large sets of Rd is translated by the degradation from n−(1+α)/(2+d)

to at least n−(1+α)/(2+α+d) (see, e.g., Theorem 4.2 when ψ(ε) ∼ ε). Our up-
per bound for the nearest neighbor rule does not exactly match this lower
bound since we obtain n−(1+α)/(3+α+d) in a similar situation . At this step,
obtaining the appropriate minimax rate requires slight changes inside the
construction of the nearest neighbor rule. This is the purpose of the next
paragraph.

4.3.3. Minimax upper bound for an optimal nearest neighbor rule. The up-
per bound proposed in the theorem can be improved if we change the way
in which the regularization parameter kn is constructed. We use a nearest
neighbor algorithm with a number of neighbors that depends on the posi-
tion of the observation x according to the value of the density µ(x). More
formally, we define for all j ∈ N

Ωn,0 :=
{
x ∈ Rd : µ(x) ≥ n

−α
2+α+d

}
,

and

Ωn,j =

{
x ∈ Rd :

n
−α

2+α+d

2j
≤ µ(x) <

n
−α

2+α+d

2j+1

}
.

Setting kn,0 = bn
2

2+α+d log(n)c, we then use for all j ∈ N

(4.1) kn(x) = bkn,02−2j/(2+d)c ∨ 1 when x ∈ Ωn,j .

According to (4.1), the number of neighbors involved in the decision process
depends on the spatial position of the input X. In some sense, this position is
linked to the tail. The statistical performances of the corresponding nearest
neighbor classifier is displayed below. Such a construction of this sequence of
“slices” may be interpreted as a spatial adaptive bandwidth selection. This
bandwidth is smaller at points x ∈ Rd such that µ(x) is small. In a sense,
this idea is close to the one introduced in [GL14] that provides a similar
slicing procedure to obtain an adaptive minimax density estimation on Rd.
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Theorem 4.4. Assume that A1-A3 hold and that the Tail Assumption A4
is driven by ψ = Id. Then, if Φ∗n,kn is the classifier associated with (4.1),
we have:

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(Ω,κ)

[
R(Φ∗n,kn)−R(Φ∗)

]
. n−

(1+α)
(2+α+d) (log n)

1
2

+ 1
d .

We stress that the upper bound obtained in Theorem 4.4 nearly matches
the lower bound proposed in Theorem 4.2, up to a log-term. This log-term
can be removed by the use of additional technicalities that are omitted in
our proof. Hence, Theorems 4.4 and 4.2 make it possible to identify the
exact minimax rate of classification when the Tail Assumption is driven by
ψ = Id, that is:

inf
Φ

sup
P(X,Y )∈FL,α∩PT ,Id∩Mmma(Ω,κ)

[
R(Φ∗n,kn)−R(Φ∗)

]
∼ n−

1+α
2+α+d .

4.3.4. Generalizations. We propose several extensions of our previous re-
sults (lower and upper bounds) for more general tails of distribution. We
also propose to enlighten the Minimal Mass Assumption Mmma(Ω, κ).

Effect of the tail: from PT ,Id to PT ,ψ.

Theorem 4.5. Assume that Assumptions A1-A4 hold. For any tail T
parameterized by a function ψ, we obtain the following results:

i) Lower bound: the minimax classification rate satisfies:

inf
Φn

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(Ω,κ)

[R(Φn)−R(Φ∗)] & ε1+α
n,α,d,

where εn,α,d satisfies the balance

(4.2) n−1 = {εn,α,d}2+d × ψ−1 ({εn,α,d}α) .

ii) Upper bound: the nearest neighbor rule satisfies

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(Ω,κ)

[R(Φn,kn)−R(Φ∗)] ≤ Cν1+α
n,α,d

with kn = ν−2
n,α,d where νn,α,d fulfills the balance:

(4.3) n−1 = ψ−1({νn,α,d}1+α){νn,α,d}2+d.

It would also be possible to propose some generalizations using the sliced
nearest neighbor rule presented in Sections 4.3.2 and 4.3.3 for tails driven
by a general function ψ, even if we do not include this additional result for
the purpose of clarity.
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Meeting the Minimal Mass Assumption M̃mma(Ω, κ). We now obtain simi-

lar rates when using the weaker assumption M̃mma(Ω, κ) instead of Mmma(Ω, κ):
the lower bounds of µ(B(x, δ)) are only useful for some points x such that
µ(x) is large enough. We can state the next corollary.

Corollary 4.1. Assume that A1,A2,A4 hold and P(X,Y ) ∈ M̃mma(Ω, κ),
then

sup
P(X,Y )∈FL,α∩PT ,ψ∩M̃mma(Ω,κ)

[R(Φn,kn)−R(Φ∗)] . ν1+α
n,α,d,

with kn = ν−2
n,α,d where νn,α,d satisfies the balance

n−1 = ψ−1({νn,α,d}1+α){νn,α,d}2+d.

The condition Mmma(Ω, κ) cannot be easily described through an analytical

condition because of its uniform nature over Ω. In contrast, M̃mma(Ω, κ) is
more tractable in view of the criterion given by the next result (Proposition
4.1). Using a log-density model, we write the density µ as

µ(x) = e−ϕ(x), ∀x ∈ Rd.

Proposition 4.1. Let ϕ ∈ C1(Ω) and assume that a real number a > 0
exists such that:

lim
x:µ(x)−→0

‖∇ϕ(x)‖
ϕ(x)a

= 0,

then a suitable κ can be found such that µ = e−ϕ ∈ M̃mma(Ω, κ).

Proof. For any δ > 0, we compute a lower bound of

PX (B(x, δ)) =

∫
B(x,δ)

e−ϕ(z)dz.

The Jensen Inequality applied to the normalized Lebesgue measure over
B(x, t), which is denoted d̄z, yields
(4.4)∫

B(x,δ)
e−ϕ(z)dz ≥ πd/2δd

Γ(d/2 + 1)
exp

(
−ϕ(x) +

∫
B(x,δ)

[ϕ(z)− ϕ(x)]d̄z

)
.

A first order Taylor expansion leads to∫
B(x,δ)

[ϕ(z)−ϕ(x)]d̄z ≤ sup
z∈B(x,δ)

‖∇ϕ(z)‖
∫
B(x,δ)

‖z−x‖d̄z ≤ δ sup
z∈B(x,δ)

‖∇ϕ(z)‖.
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Now, our assumption on ϕ implies that a large enough Ca exists such that:

‖∇ϕ(z)‖ ≤ Ca(1 + ϕ(z)a).

Thus, the lower bound (4.4) becomes:∫
B(x,δ)

e−ϕ(z)dz ≥ πd/2δd

Γ(d/2 + 1)
e−ϕ(x)e−Caδ(1+supz∈B(x,δ) ϕ

a(z)).

It is now sufficient to consider points x such that ϕ ≤ δ−1/a (equivalent

to µ ≥ e−δ
−1/a

) to obtain a meaningful lower bound Hence, M̃mma(Ω, κ) is
satisfied choosing

ρ = 1/a and κ =
πd/2

2Γ(d/2 + 1)
e−Ca .

4.4. Practical settings on typical examples . The aim of this section is to
illustrate the results obtained above. We first describe a location model for
which we can derive explicit upper and lower bounds in several different
cases. We then propose a small numerical study in order to enhance the
discussion regarding the importance of the Tail Assumption and we conclude
by drawing a comparison between the standard nearest neighbor and sliced
nearest neighbor rules.

Explicit rates for specific location models. We investigate here the influence
of the function ψ in PT ,ψ as well as the one of the margin parameter on the
convergence rates through several specific location models. These models are
defined as follows: given any positive random variable Z (whose cumulative
distribution function is denoted as F ) and two real location values a and b,
the random variable X is given by:

(4.5) X = εZ + Y b+ (1− Y )a,

where ε is a Rademacher random variable (whose values is ±1) independent
of Z, and Y is the label of the observation, sampled independently of ε and
Z with a Bernoulli law B(1/2). Using a translation invariance argument, it
is enough in the next study to consider a = 0 and b > 0. Table 1 illustrates
the rate reached by the nearest neighbor procedure in each situation.
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Law of Z Tail ψ Margin kn ∼ nβ Upper bound

Gauss ψ(ε) ∝ ε log(1/ε)r/2−1 α = 1 β = 2/(4 + d) n−2/(4+d) log(n)β(r)

Laplace ψ(ε) ∝ ε α = 1 β = 2/(4 + d) n−2/(4+d)

Gamma ψ(ε) ∝ ε log(1/ε)k−1 α = 1 β = 2/(4 + d) n−2/(4+d) log(n)β(k)

Cauchy ψ(ε) ∝
√
ε α = 1 β = 1/(3 + d) n−2/(3+d)

Power-Pareto ψ(ε) ∝ εp/(p+1) α = 1 ∧ p β = 2(p+1)
p(3+α+d)+2+d

n
−4(p+1)

p(3+α+d)+2+d

Table 1
Convergence rates for location models with several tail sizes.

A numerical study for ’power laws’. In order to illustrate Equations (4.2)
and (4.3), we consider some specific cases of “power laws” such that:

PX(µ(X) < ε) = ψ(ε) ∼ εg when ε −→ 0+,

for some g > 0. In this case, the upper bound on the Nearest Neighbor
classifier is given by

R(Φn)−R(Φ∗) . n
− (1+α)

1+α+2+d
g

although the lower bound derived from (4.2) is:

inf
Φn

sup
P(X,Y )∈FL,α∩PT ,ψ∩Mmma(Ω,κ)

[R(Φn)−R(Φ∗)] & n
− (1+α)

α+2+d
g

We immediately observe that the classification rates are seriously damaged
when g is small. In contrast, for very thin tails, the rate can be arbitrarily
close to n−1. For this purpose, we illustrate this phenomenon with a family
of distributions Pg, where the parameter g > 0 influences the tail size. We
define the cumulative distribution function of the positive random variable
Z:

∀t ≥ 0 Fg(t) = 1− 1

(t+ 1)g
.

Then, for two real values (a, b), we sample n observations (Xi, Yi) according
to the previous model and the Bayes classifier is given by:

Φ∗(X) = 1{X>(a+b)/2}.

In this example, the margin α is equal to 1 and η is L-Lipschitz. We then
consider kn = bn2/5c + 1 to assess the statistical performance of the Near-
est Neighbor classifier. Figure 1 represents the excess risk obtained by the
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Fig 1. Example of observed empirical rates and upper bound theoretical rates given by
(4.3) for several power law distributions of parameter g.

Nearest Neighbor classifier and the successive degradation of the conver-
gence rate when g decreases to 0 (on the left, the empirical performance
of the Nearest Neighbor rule with the underlying distributions and on the
right for the upper bound theoretically derived from Theorem (4.3)). These
numerical experiments are consistent with the theoretical result obtained in
Theorem 4.5 .

Comparison between the standard nearest neighbor and its sliced counterpart.
We provide here a short numerical study that aims to compare the results
reached by the standard nearest neighbor rule described in Theorem 4.3 and
the ones obtained by its sliced counterpart described in Section 4.3.3 and
in Theorem 4.4. To measure such an improvement, we have chosen to once
again use some non-compactly supported distributions and several different
location models.
On the one hand, as pointed out in Theorem 4.3, the standard nearest

neighbor will be tuned with a number of neighbor kn := bn
2

3+α+d c+ 1.
On the other hand, the sliced nearest neighbor rule described in Theorem
4.4 requires a preliminary estimation of the law of observation PX . To do
this, we used the recent kernel density estimation package2 provided by
[BGK10], which is an adaptive estimator based on linear diffusion processes.
Given any training set (Xi, Yi)1≤i≤n, we first built the preliminary estimator
µ̂n of the unknown density µ. This estimator is interesting because of its
adaptive smoothing properties and because it includes a very fast automatic
bandwidth selection algorithm.
The sliced nearest neighbor rule then uses a number of neighbors that de-
pends on the design point X. If the density estimate is large enough, that

2kde.m is available on the author’s Website of [BGK10].
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is, if µ̂n(X) ≥ n−
α

2+α+d :

kn(X) := bn
2

2+α+d c+ 1.

Otherwise, when 2−(j+1) ≤ µ̂n(X)n
α

2+α+d ≤ 2−(j), the number kn(X) is:

kn(X) := bn
2

2+α+d 2−
2j

2+d c+ 1.

To draw some reliable comparisons, we also used some various laws for the
random variable Z involved in the definition of the location model (4.5) (Nor-
mal distributions, Cauchy distributions, and Power laws) whose parameters
are described in Table 1. The two location parameters are still denoted a
and b and fixed such that a = −b.
In each situation, we used a Monte-Carlo strategy with 1000 replications
to compute the mean excess risk of each nearest neighbor rule. We used a
training set of cardinal n, as well as a test set of size 200. Results are given
in Table 2.

Law of Z n = 100 n = 500 n = 1000

Gauss, a = 1, σ = 2 19.2.6 18.1.6 6% 16.4.5 13.9.5 15% 15.4.5 12.5 22%

Cauchy, a = 1
2
, γ = 1

2
2.6.2 1.9.2 26% 1.4.1 1.2.1 14% 0.9.05 0.8.05 6%

Cauchy, a = 1
2
, γ = 1 4.4.3 3.6.2 18% 3.1.3 2.2.2 28% 2.3.2 1.4.2 37%

Power, a = 1
2
, γ = 1 3.8.3 3.3 20% 2.7.2 2.1.2 22% 1.9.2 1.5.1 19%

Power, a = 1
2
, γ = 2 2.2 1.7.2 13% 1.2.2 1.0.1 15% 0.7.1 0.6.1 14%

Table 2
Mean excess risk multiplied by 100 (left: standard nearest neighbor; middle: sliced nearest
neighbor; right: percentage of improvement). Standard errors are given in small script.

We may observe in Table 2 that the sliced version of the nearest neighbor
always outperforms the standard one. Such a numerical result is consistent
with the theoretical ones of Theorem 4.3 and 4.4. Note also that the relative
improvement of the sliced nearest neighbor rule seems to increase when the
number of observations n growth, meaning that each excess risk of the two
procedures varies with a different power of n.
Finally, it should be mentioned that we have not tried to modify the di-
mension of the observations X. Indeed, the difference of the upper bounds
given by Theorems 4.3 and 4.4 becomes more and more negligible when the
dimension is increasing. This should also be the case in the empirical study
that will be in the subject of a future work. Likewise, the statistical study
of the empirical sliced nearest neighbor rule should also be addressed in a
future study, since a balance between the estimation µ̂n of the density µ and
the excess risk of classification with the sliced rule may exist. We have left
this problem open for a future study.
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SUPPLEMENTARY MATERIAL

Supplement A: Main proofs for this paper : Classification with the
nearest neighbor rule in general finite dimensional spaces: neces-
sary and sufficient conditions.
(doi: COMPLETED BY THE TYPESETTER; .pdf). See in the temporary
Appendix section after references.
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[Győ78] László Győrfi. On the rate of convergence of nearest neighbor rules. IEEE
Trans. Inform. Theory, 24(4):509–512, 1978.
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APPENDIX A: PROOFS

Recall that E (resp. EX , E⊗n) denote the expectation with respect to the
measure P (resp. PX , P⊗n).

A.1. Proofs of the lower bounds. The proofs of the lower bounds pre-
sented in both Theorem 4.1 and Theorem 4.2 are inspired from the construc-
tion proposed in [AT07]. It is based on Assouad’s cube method (see [Ass83],
and [BH79]). This approach reduces the problem of obtaining a lower bound
on the minimax risk to the problem of testing several couples of hypotheses.
We refer to [Tsy09] for a comprehensive introduction to this useful method
for deriving lower bounds on minimax risk.

A.1.1. Baseline structure of the network. We present here the common
structure of the network of laws on (X,Y ), that is, the definition of the
underlying measure P(X,Y ) on Rd × {0, 1} (through the density µ and the
regression function η).

Definition of η. Let (q,m) ∈ (N∗)2 and (x1, . . . , xm) ∈ Rd. We denote by
Bi the Euclidean ball of center xi and of radius 2/q, such that for any i
and j we have Bi

⋂
Bj = ∅ (we choose |xi − xj | ≥ 5/q). Now consider a

C∞ function ϕ such that ‖ϕ‖∞ = 1, ϕ is compactly supported in [0, 2]
such that ϕ(x) = 1 when |x| ≤ 1, and ϕ(x) = 0 for any x > 3/2. Now
let Φj(x) = cϕq

−1ϕ(q|x − xj |) so that Φj(x) is also C∞ and supported in
Bj := B(xj , 2/q). Denote by A0 =

⋃m
j=1Bj and let A1 = [0, 1]d

⋂
Ac0 and

A = A0
⋃
A1 be the support of the density µ.

Definition of the Assouad Hypercube of regression functions. We define
Σm = {−1, 1}m , and for any σ ∈ Σm:

∀1 ≤ j ≤ m, ∀x ∈ Bj : ησ(x) =
1 + σjΦj(x)

2
, and ησ(x) =

1

2
ifx ∈ A1.

Figure 2 shows the regression function ησ for two opposite values of σj and
for a particular ball Bj .

The density µ. We use in the sequel a measure µ in the sequel that does
not depend on σ. Indeed, we even consider only some constant densities on
each Bj . In particular, the measure µ of each ball Bj is ω (that will be
chosen later) and the density µ is then given by

µ(x) =
ω

λ(Bj)
=

ωqd

γd2d
, ∀x : inBj
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Fig 2. Example of function ησ on a particular ball Bj of size 1/q. The value of ησ oscillates
either between 1/2 and 1 if σj = 1 or 0 and 1/2 if σj = −1.

where γd is the Lebesgue measure of the unit Euclidean ball of Rd. We now
define µ on A1 as

µ(x) =
1−mω
λ (A1)

.

A schematic representation of this measure can be seen on the left of Figure
3.

Margin condition. For the sake of convenience, for any σ ∈ Σm, we denote
Pσ := P(X,Y ),σ the law of the couple (X,Y ). Following the arguments of
[AT07], consider any σ ∈ Σm:

Pσ
(

0 < |ησ(X)− 1

2
| ≤ t

)
= mPσ (0 < cϕϕ(q[|X − x1|]) ≤ 2tq)

= m

∫
B(x1,2/q)

1{0≤cϕϕ(q[|x−x1|])≤2tq}µ(x)dx

Since ϕ is equal to 1 on [0, 1], we then obtain that:

Pσ
(

0 < |ησ(X)− 1

2
| ≤ t

)
≤ m

∫
B(x1,2/q)

1{cϕ≤2tq}µ(x)dx

= 1{cϕ≤2tq}mω . t
α.
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Fig 3. Simplified representation of the measure PX , the gray level is proportional to the
value of the density µ. Left: measure used in Section A.1.1 or A.1.2 (compactly supported
measure or not) and in Section A.1.3 (Mmma(Ω, κ) is fulfilled and not the Tail Assump-
tion). Right: measure used in Section A.1.4 when the tail is fulfilled and not Mmma(Ω, κ).

as soon as:
mω = O(q−α).

Smoothness of ησ. We briefly check that the regression functions are Lips-
chitz, uniformly with respect to any choice of q. First, it should be observed
that:

∀(x, x̃) ∈ Bj |ησ(x)− ησ(x̃)| = |Φj(x)− Φj(x̃)|
2

≤ cϕ‖ϕ′‖∞
2

‖x− x̃‖

On the contrary, when (x, x̃) ∈ A1, ησ(x) = ησ(x̃) = 1/2. It now remains to
study the situation when x ∈ A1 and x̃ ∈ Bj for one j. When x̃ is in the
exterior ring of size 3/(2q) (the set Bj ∩B(xj , 3/(2q))

c), we have:

ησ(x) = ησ(x̃) = 1/2.

Now, if x̃ belongs to B(xj , 3/(2q)):

|ησ(x)− ησ(x̃)| =
∣∣∣∣Φj(x̃)

2

∣∣∣∣ ≤ cϕ‖ϕ‖∞
2q

≤ cϕ‖ϕ‖∞ ‖x− x̃‖

Hence, we can deduce the uniform Lipschitz bound (note that the case x ∈
Bj and x̃ ∈ Bk can be treated in the same way):

∀(x, x̃) ∈ (Rd)2,∀σ ∈ Σn |ησ(x)− ησ(x̃)| ≤ cϕ
‖ϕ′‖∞ + ‖ϕ‖∞ ‖x− x̃‖.
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Minoration of the risk. Following the arguments of Theorem 3.5 in [AT07],
we have that:

Rn ≥ m
ω

q

(
1− q−1√nω

)
.

A.1.2. Proof of Theorem 4.2 and of Theorem 4.5, i). We first study the
situation of rates when Mmma(Ω, κ) and PT ,ψ are in force and use a measure
similar to the one represented on the left of Figure 3.

Besicovitch-like condition Mmma(Ω, κ):. We aim to show that our network
satisfies the lower bound involved in Mmma(Ω, κ). Consider δ → 0+ and
q → +∞. If x ∈ A0 and δ = o(1/q) then one ball Bj intersects at the least
half of B(x, δ) and since µ is stepwise constant:

PX (B(x, δ)) ≥ µ(x)λ (B(x, δ))

2
≥ γd

2
µ(x)δd

If δ is now proportional to 1/q, the last inequality is still true up to a constant
(which is not illustrated here for the sake of simplicity). Now if q−1 = o(δ),

B(x, δ) contains a number Nδ,q of balls (Bj)1≤j≤m such that Nδ,q ≥ Cd δd

q−d
.

In this case, we still have

PX (B(x, δ)) ≥ PX
(
B(x, δ) ∩ ∪mj=1Bj

)
≥ Nδ,q × ω ≥ Cdδdqdω =

Cd
γd
µ(x)δd.

Hence, the measure PX belongs to Mmma(Ω, κ) with a constant κ indepen-
dent of q.

Tail Assumption PT ,Id or PT ,ψ. First, note that PX is built such that if
x ∈ A0

PX(µ < ε) = 0 if ε < ωqd/(γd2
d) and PX(µ < ε) = mω if ε > ωqd/(γd2

d).

Note that the density on A1 is bounded from below and, as a result, we will
not take the tail property on this set into account.
Since ψ is increasing in a neighborhood of 0, the tail property PX(µ < ε) .
ψ(ε) is fulfilled as soon as:

mω . ψ

(
ωqd

γd2d

)
.

Calibration for the minoration. Recall that Rn ≥ mω
q

(
1− q−1√nω

)
and

that we must satisfy the following constraints

mω = O(q−α) andmω . ψ

(
ωqd

γd2d

)
.
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The lower bound above is meaningful as soon as we choose ω ≤ q2

n . If we
denote εn,α,d = q−1, the values of m, q, ω that provide a tradeoff between all
these constraints are obtained with

mω = q−α,
ωqd

γd2d
= ψ−1(mω), ω =

q2

2n
.

In particular, the constraints are optimized when εn,α,d solves 2−dγ−1
d

ε−2
n,α,d

2n ε−dn,α,d =

ψ−1(εαn,α,d), which leads to the lower bound

Rn & ε1+α
n,α,d with n−1 = εd+2

n,α,dψ
−1(εαn,α,d).

In the above calibration, we obtain that:

ω = q−dψ−1(q−α) and m = qd
q−α

ψ−1(q−α)
.

This ends the proof of Theorem 4.2 and Theorem 4.5, i). �
Looking carefully at the proof of the theorem above, we can see that the
influence of ψ is as follows:

• If ε = o(ψ(ε)), then the construction of the network yields a non com-
pactly supported distribution since:

λ(Supp(µ)) & mq−d =
q−α

ψ−1(q−α)
−→ +∞ as q −→ +∞.

As pointed out in paragraph 4.4, a polynomial decay of the density
when x grows to ∞ yields such a tail size.
• In the opposite situation, when ψ(ε) = O(ε), the corresponding density

has a compact support. In particular, when ψ(ε) ∼ ε, our network is
exactly the same as the one used in [AT07] and we naturally recover
the lower bound n−(1+α)/(2+α+d).

A.1.3. Proof of Theorem 4.1, item i). We study the specific case where the
Besicovitch has to be fulfilled although the Tail Assumption is no longer
necessary. In such a case, we still use the construction shown on the left of
Figure 3 and provided in Section A.1.2 but m can be chosen much greater
than qd. For example, for a parameter τ > 0 chosen in the sequel, we assume
that m = qd+τ >> qd as q −→ +∞. In such a case, the underlying measure
PX is no longer compactly supported.
Using the same argument as above, Assumption A3 is still satisfied since
the number m of balls Bi does not influence the minoration of PX(B(x, δ)).
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We have to satisfy the following constraints:

mω = O(q−α), ω ≤ q2

n
.

We keep the value of ω as:
ω = q2/(2n),

and the calibration of q with respect to m yields

q = n
1

2+d+α+τ .

We then obtain the lower bound

Rn ≥ cφn−
1+α

2+α+d+τ .

By increasing the size of τ (τn = n for example), it can then be observed
that it is possible to obtain any arbitrary value between 0 and cφ. Hence,
for any classifier Φn, a distribution on (X,Y ) exists such that Assumptions
A1-A3 hold and that the classifier Φn cannot be consistent.

A.1.4. Proof of Theorem 4.1, item ii). We then study what could happen
when the Tail Assumption is satisfied but Assumption A3 can be violated.
The idea is to pick the density of observations to ensure the validity of the
Tail Assumption. To do this, we consider the new marginal on X whose µ
defined as:

∀x ∈ Bj µ(x) = ω
qγd (1− |x− xj |qγ)+∫
B(0,1) (1− |x|)+ dx

so that: ∫
Bj

µ(x)dx = ω.

The obtained measure is represented on the right of Figure 3. We proceed
in the same way as in paragraph A.1.1: ϕ is still lower bounded by a strictly
positive constant (as soon as γ ≥ 1) and the Margin Assumption is satisfied
as soon as mω = O(q−α).
It should also be observed that Assumption A3 is not satisfied here. In fact,
when we choose γ > 1 and the reference radius δ as δ = q−a for a ∈ [1, γ[:

PX(B(xj , q
−a)) = ω and δdµ(xj) = cq−adωqγd = cωqd(γ−a),

where

c =
1∫

B(0,1) (1− |x|)+ dx
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The left hand side becomes negligible with respect to the right hand side as
soon as q −→ +∞.
We now check that such a definition of density µ satisfies the Tail Assump-
tion. Consider any ε > 0. We then have:

PX ({µ < ε})

= mω

∫
B(x1,1/q)

cqγd (1− |x− x1|qγ)+ 1{cωqγd(1−|x−xj |qγ)+≤ε}
dx

= mω

∫
B(x1,1/q)

cqγd (1− |x− x1|qγ)+ 1{(1−|x−xj |qγ)+≤c−1ω−1q−γdε}dx.

Consider the variable y = qγ(x− x1). We then obtain

PX ({µ < ε}) = mω

∫
B(0,1)

c (1− |y|)+ 1{(1−|y|)+≤c−1ω−1q−γdε}dy ≤ γdmq−γdε.

As a consequence, the Tail Assumption is true as soon as m = O(qγd). We
point out that since we chose γ > 1 in the sequel, m is then greater than qd

and the support of µ is no longer compact since q −→ +∞.
Following the roadmap of paragraph A.1.2, we then obtain the lower bound
calibrations of q and ω such that:

Rn ≥ n−
1+α

2+α+γd .

Again, a sufficiently large value of γ makes it possible to obtain arbitrarily
slow rates (and even non-consistent classifiers).

A.2. Proof of Theorem 3.1. Let ε > 0 be a given real number (whose
value will be specified later), and define:

Bε :=
{
x ∈ Rd | |η(x)− 1/2| ≤ ε

}
.

Applying Proposition A.1 in Section A.5, the excess risk can be decomposed
as follows:

R(Φn)−R(Φ∗) = E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}

]
,

= E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}1X∈Bε

]︸ ︷︷ ︸
:=T1,ε

+E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}1X∈Bcε

]︸ ︷︷ ︸
:=T2,ε

.
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Now, the Margin Assumption A2 yields:

(A.1) T1,ε ≤ 2E [|η(X)− 1/2|1X∈Bε ] ≤ 2εPX(X ∈ Bε) ≤ 2Cε1+α.

In order to control T2,ε, define:

∀j ≥ 1 Bε,j :=
{
x ∈ Rd | 2j−1ε ≤ |η(x)− 1/2| ≤ 2jε

}
.

Now,

T2,ε = 2
∑
j≥1

E
[
|η(X)− 1/2|1{Φn(X)6=Φ∗(X)}1{X∈Bε,j}

]
≤ 2ε

∑
j≥1

2jEX
[
1{X∈Bε,j}E⊗n

(
1{Φn(X)6=Φ∗(X)}

)]
.

We can apply Proposition A.2 (see Section A.5 below) to obtain:

(A.2) T2,ε ≤ 4ε
∑
j≥1

2jEX
[
1{X∈Bε,j} exp

(
−2knb2j−1ε−∆n(X)c2+

)]
.

Since µ is lower bounded by a > 0 on Ω, we can apply Proposition A.3 with
a = µ− to obtain:

∆n(X) ≤ C

((
kn
n
µ−1
−

)1/d

+ exp (−3kn/14)

)
.

Now, we consider ε = εn ≥ 2∆n(X) , for example by choosing:

(A.3) εn := 2C

((
kn
n
a−1

)1/d

+ exp (−3kn/14)

)
.

With εn defined as in (A.3), we deduce that 2j−1εn−∆n(X) ≥ 2j−1εn− εn
2 ≥

εn
(
2j−1 − 1

2

)
> 0. Thus, (A.2) becomes:

T2,εn ≤ 4εn
∑
j≥1

2jEX
[
1{0<|η(X)−1/2|<2jεn} exp

(
−2knε

2
n

(
2j−1 − 1/2

)2)]
.

Now, in order to control the previous bound, we choose kn such that:

(A.4) kn = ε−2
n .

Thanks to (A.3), the constraint (A.4) then yields:

(A.5) εn ∼ n
−1
2+d and kn ∼ n

2
2+d .
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We then obtain that:

T2,εn ≤ 4εn
∑
j≥1

2jEX
[
1{0<|η(X)−1/2|<2jεn} exp

(
−22j

8

)]
,

≤ εn
∑
j≥1

2j+2 exp

(
−22j

8

)
PX
(
|η(X)− 1/2| < 2jεn

)
.

The Margin Assumption applied to PX
(
|η(X)− 1/2| < 2jεn

)
leads to:

T2,εn ≤ ε1+α
n

∑
j≥1

2j(1+α)+2 exp

(
−22j

8

)
.

The series on the right hand side converges. This last bound associated with
(A.1) leads to:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ Cn−
1+α
2+d .

A.3. Proof of the upper bounds: Theorem 4.3 and Theorem 4.5
ii).

Proof of Theorem 4.3. We consider a constant γ and use the following
decomposition of Rd for a suitable γ > 0 (that will be chosen later on):

Rd = {x : 0 ≤ µ(x) ≤ n−γ}︸ ︷︷ ︸
Rn

∪{x : µ > n−γ}︸ ︷︷ ︸
Qn

.

We follow the roadmap of the proof of Theorem 3.1 and keep the notation Bε,
which refers to Bε :=

{
x ∈ Rd : |η(x)− 1/2| ≤ ε

}
. Thanks to Proposition

A.1, we obtain:

R(Φn)−R(Φ∗) = E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}

]
= E

[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}1X∈Rn

]︸ ︷︷ ︸
:=TRn

+E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}1X∈Qn

]︸ ︷︷ ︸
:=TQn

.

Study of Rn. The Tail Assumption A4 in the particular case where ψ = Id
leads to:

TRn ≤ PX (X ∈ Rn) = PX(µ(X) ≤ n−γ) . n−γ .
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Study of Qn. Following the proof of Theorem 3.1 with a = n−γ , Equations
(A.2)-(A.4) yield:

(A.6) TQn ≤ Cε1+α
n ,

where εn and kn satisfy the balance equations

εn ∼ 2C

(
kn
n
a−1

)1/d

= 2C

(
kn
n1−γ

)1/d

and kn = ε−2
n .

The equilibria are met in the two terms above with

(A.7) kn ∼ Cn
2(1−γ)
2+d , and εn . n

− (1−γ)
2+d .

Final control of the risk.. From the previous bounds, we obtain that:

(A.8) R(Φn)−R(Φ∗) . n−
(1−γ)(1+α)

2+d + n−γ .

We optimize the last expression with respect to γ by setting

(1− γ)(1 + α) = γ(2 + d)⇔ γ =
1 + α

3 + α+ d
.

The above choices allow us to conclude that:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ Cn−
1+α

3+α+d .

Proof of Theorem 4.5. ii) We follow the roadmap of the previous proof
and replace the threshold n−γ with an, which should be carefully chosen.
The key balance is still kn = ν−2

n on the set {µ ≥ an} with the optimal
setting:

kn
nan

. νdn

Since we want to obtain a minimal value for νn, this last equation leads to
the choice:

(A.9) an =
1

nν2+d
n

,

and the upper bound of the excess risk we obtained is then

sup
F∈F

[R(Φn)−R(Φ∗)] . ν1+α
n + ψ(an).
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The natural equilibrium is found when plug-in (A.9) in this last upper bound

and νn are be fixed so that ψ−1
(
ν1+α
n

)
= n−1ν

−(2+d)
n . We then obtain the

rate ν1+α
n with the balance equation:

ν2+d
n ψ−1(ν1+α

n ) ∼ n−1.

A.4. Proof of Theorem 4.4 (sliced nearest neighbor).

Proof. We use the partition of Ω naturally derived from the slices Ωn,0

and (Ωn,j)j≥1:

Ωn,0 :=
{
x|µ(x) ≥ n−γ

}
and Ωn,j :=

{
x|n−γ2−(j+1) ≤ µ(x) ≤ n−γ2−j

}
.

For this purpose, let γ ∈ (0, 1) (that will be specified later) and:

kn,j = kn,02−2j/(2+d) with kn,0 = n
2(1−γ)
2+d log(n).

We then use the following decomposition of the excess risk:

R(Φn)−R(Φ∗)

= E

|2η(X)− 1|1{Φn(X)6=Φ∗(X)}

1Ωn,0 +

+∞∑
j=1

1Ωn,j

 ,
= E[|2η(X)− 1|1{Φn(X) 6=Φ∗(X)}1Ωn,0 ]

+
+∞∑
j=1

E[|2η(X)− 1|1{Φn(X)6=Φ∗(X)}1Ωn,j ,

:= Tn +

+∞∑
j=1

Rn,j .

Study of Tn. The density is lower bounded by n−γ on Ωn,0. The proof of
Theorem 4.3 yields (see (A.6) and (A.7)):

Tn ≤ n−(1+α) 1−γ
2+d .

Study of Rn,j. For any j > J0(n) := (1−γ) log(n)
log(2) and for any x ∈ Ωn,j with

j > J0, we have:

µ(x) < n−γ2
−(1−γ)

log(n)
log(2) = 1/n.

The Tail Assumption with ψ = Id leads to:∑
j>J0

Rn,j ≤ PX
[
µ(X) ≤ n−1

]
. n−1.
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Study of Rn,j , j ≤ J0(n). We consider the intermediary slices, and for 1 ≤
j ≤ J0(n):

Rn,j =

:=Rn,j,1︷ ︸︸ ︷
E
[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}

[
1|η(X)−1/2|≤εn,j

]
1X∈Ωn,j

]
+E

[
|2η(X)− 1|1{Φn(X)6=Φ∗(X)}

[
1|η(X)−1/2|>εn,j

]
1X∈Ωn,j

]
︸ ︷︷ ︸

:=Rn,j,2

where εn,j will be chosen later. To bound Rn,j,1, we use the fact that |η −
1/2| ≤ εn,j as well as the Tail Assumption on the set Ωn,j ⊂

{
µ(X) ≤ n−γ2−j

}
to obtain:

(A.10) Rn,j,1 ≤ 2εn,jn
−γ2−j .

Thanks to Proposition A.2, we can bound the term Rn,j,2 as follows:

Rn,j,2 ≤ 4E
[
1X∈Ωn,j exp

(
−2kn,jbεn,j −∆n(X)c+2

)]
.

The term εn,j is then chosen such that εn,j −∆n(X) ≤ εn,j/2. According to
Proposition A.3, we obtain:

εn,j = c

(
kn,j

nγ2j+1

n

)1/d

,

where c is chosen large enough. With this value, we obtain the following
simplifications:

(A.11)

ε2n,jkn,j = c2
k

1+ 2
d

n,j 2
j+1
d

n
1−γ
d

= c2
k

1+ 2
d

n,0

n
1−γ
d

2−
2j

2+d(1+ 2
d)2(2j+2)/d = c222/d log(n)1+2/d.

Taken together, (A.10) and (A.11) lead to:

Rn,j ≤ 2εn,jn
−γ2−j + 4 exp(−c222/d log(n)1+2/d)P(X ∈ Ωn,j).
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We then sum up all these terms for j ≥ 1:

Rn .
J0∑
j=1

log(n)1/2+1/d√
kn,j

n−γ2−j +
1

n

J0∑
j=1

P(X ∈ Ωn,j),

. n−γ log(n)1/2+1/d
J0∑
j=1

2−jk
−1/2
n,j +

1

n
,

. n−γn−
1−γ
2+d log(n)1/2+1/d

J0∑
j=1

2−j+
j+1
2+d +

1

n
,

. n−γn−
1−γ
2+d log(n)1/2+1/d +

1

n
.

We can see in this last upper bound that we obtain an improvement between
the standard rule and the one fixed here since the term n−γ that appears in

the tail of µ on the right hand side of (A.8) is transformed into n−γ×n−
1−γ
2+d

up to a log term.

Final equilibrium. We now fix the optimal value of γ with the conjunction
of the upper bounds for Rn and Tn:

R(Φn)−R(Φ∗) . n−(1+α) 1−γ
2+d + n−γ−

1−γ
2+d log(n)1/2+1/d +O(1/n).

The balance equilibrium is reached with (1 + α)1−γ
2+d = γ + 1−γ

2+d , meaning

that γ = 1
2+α+d . This concludes the proof.

A.5. Technical results. In the following, we use the result reported in
[Győ78] that compares the excess risk of any classifier with the Bayes pro-
cedure.

Proposition A.1 ([Győ78]). For any classifier Ψ, we have:

R(Ψ)−R(Φ∗) = E
[
|2η(X)− 1|1{Ψ(X)6=Φ∗(X)}

]
.

The following lemma is concerned with the concentration of the plug-in
estimator η̂n (see (2.3)).

Lemma A.1 (Concentration of η̂n). In the classification model,

P⊗n (|η̂n(X)− E⊗n (ηn(X)) | > s) ≤ 2 exp
(
−2kns

2
)
.
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Proof. Once again, we can observe that conditionally to the (X(i))1≤i≤n,
the corresponding labels (Y(i)(X))1≤i≤n are independent Bernoulli random
variables with respective parameters η(X(i)). We can now use the Hoeffding
inequality as follows:

P⊗n (|η̂n − E⊗n (ηn(X)) | > s)

= E⊗n (P⊗n (|ηn(X)− E⊗n (ηn(X)) | > s|(X1, . . . , Xn))) .

≤ E⊗n
(
P⊗n

(∣∣∣∣∣ 1

kn

[
kn∑
i=1

Y(i)(X)− η(X(i))

]∣∣∣∣∣ > s|(X1, . . . , Xn)

))
.

≤ E⊗n
(
2 exp(−2kns

2)|(X1, . . . , Xn)
)
≤ 2 exp(−2kns

2).

We first state an important upper bound of the error rate when the design
point X is fixed.

Proposition A.2. For any ε > 0 and any X ∈ Ω, if ∆n(X) := |E⊗n η̂n(X)−
η(X)|, we have:

1{|η(X)− 1
2
|≥ε} E⊗n

[
1{Φn(X)6=Φ∗(X)}

]
≤ 21{|η(X)− 1

2
|≥ε} e

−2knbε−∆n(X)c+2

,

where bac+ refers to the positive part of any real number a.

Proof. In the event {Φn(X) 6= Φ∗(X)}, η̂n(X) − 1/2 and η(X) − 1/2 do
not have the same sign. Therefore:

1{|η(X)− 1
2
|≥ε}1{Φn(X)6=Φ∗(X)} ≤ 1{|η(X)−1/2|≥ε}1{|η̂n(X)−η(X)|≥ε}.

Then:

E⊗n
[
1{Φn(X)6=Φ∗(X)}1{|η(X)− 1

2
|≥ε}

]
≤ E⊗n

[
1{|η(X)−1/2|≥ε}1{|η̂n(X)−η(X)|≥ε}

]
= 1{|η(X)− 1

2
|≥ε} P⊗n (|η̂n(X)− η(X)| ≥ ε)

≤ 1{|η(X)− 1
2
|≥ε} P⊗n (|η̂n(X)− E⊗n (η̂n(X)) | ≥ ε−∆n(X))

where the last line follows from the triangular inequality and the definition
of ∆n(X). Lemma A.1 applied with s = bε − ∆n(X)c+ now leads to the
conclusion of the proof.
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This last proposition clearly underlines the effect of the bias term ∆n(X)
in the misclassification error rate. This bias term is then upper bounded by
the next result.

Proposition A.3. Assume that µ belongs to Mmma(Ω, κ) and η belongs
to C1,0(Ω, L). Then, a constant C > 0 exists such that for any a > 0:

|E⊗n η̂n(x)− η(x)| ≤ L
(

2

κ

)1/d(kn
na

)1/d

+ 2 exp

(
−3kn

14

)
,

for all x ∈ Ka where

Ka :=
{
x ∈ Rd |µ(x) ≥ a

}
.

Proof. We first propose a control of the bias and then use a concentration
inequality in order to obtain the bound.

Decomposition of the bias. Let x ∈ Ka be fixed. According to the definition
of η̂n(x) (see (2.3)):

E⊗n [η̂n(x)] = E⊗n

 1

kn

kn∑
j=1

Y(j)(x)

 = E⊗n

 1

kn

kn∑
j=1

η(X(j))

 .
Hence:

∆n(x) = |E⊗n [η̂n(x)]− η(x)| =

∣∣∣∣∣E⊗n
(

1

kn

kn∑
i=1

η(X(i))− η(X)

)∣∣∣∣∣ .
For any t ≥ 0, we write:

∆n(x) =

∣∣∣∣∣E⊗n
(

1

kn

kn∑
i=1

η(X(i))− η(X)

)(
1‖Xkn−X‖<t + 1‖Xkn−X‖≥t

)∣∣∣∣∣ .
Using the fact that η and ηn belong to [0, 1], we then have:

∆n(x) ≤

∣∣∣∣∣E⊗n
(

1‖X(kn)−x‖<t

kn

kn∑
i=1

(η(X(i))− η(x))

)∣∣∣∣∣+P⊗n
[
‖X(kn) − x‖ ≥ t

]
.



44 S. GADAT, T. KLEIN, C. MARTEAU

Now, since η ∈ C1,0(Ω, L):

∆n(n) ≤ 1

kn

kn∑
i=1

E⊗n
[
1‖X(kn)−x‖<t

∣∣η(X(i))− η(x)
∣∣]

+P⊗n
[
‖X(kn) − x‖ ≥ t

]
,

≤ L

kn
E⊗n

[
1‖X(kn)−x‖<t

kn∑
i=1

∥∥X(i) − x
∥∥]+ P⊗n

(
‖X(kn) − x‖ ≥ t

)
,

≤ tL+ P⊗n
(
‖X(kn) − x‖ ≥ t

)
.(A.12)

Concentration inequality. We now turn our attention to the control of the
last term in the r.h.s. of (A.12). In the following, for all x ∈ Ω and for all
t > 0, µ(B(x, t)) will denote the mass of the ball B(x, t) w.r.t the measure
PX , i.e.

µ(B(x, t)) :=

∫
B(x,t)

µ(z)dz.

Within this context, we sometimes omit the dependency of this quantity
w.r.t. the point x and write µt = µ(B(x, t)). Then:

P⊗n
(∥∥X(kn) − x

∥∥ ≥ t),

= P⊗n
(

n∑
i=1

1{Xi∈B(x,t)} ≤ kn

)
,

= P⊗n
(

1

n

n∑
i=1

[
1{Xi∈B(x,t)} − µ (B(x, t))

]
≤ kn

n
− µ (B(x, t))

)
,

≤ P⊗n
(∣∣∣∣∣ 1n

n∑
i=1

[
1{Xi∈B(x,t)} − µ (B(x, t))

]∣∣∣∣∣ ≥ µ(B(x, t))− kn
n

)
,

as soon as µ(B(x, t)) > kn
n . Since PX ∈Mmma(Ω, κ) and x ∈ Ka,

µ(B(x, t)) ≥ κµ(x)td ≥ κatd.

We therefore choose t such that:

(A.13) κatd ≥ 2
kn
n
⇔ t ≥

(
2
kn
n

1

κa

)1/d

.

In particular, with the choice of t given by (A.13), we obtain:

(A.14) µ(B(x, t))− kn
n
≥ µ(B(x, t))

2
.
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We then use the following version of the Bennett inequality. If Wi are random
variables such that Wi ≤ b, v =

∑n
i=1 E(W 2

i ), let S =
∑n

i=1Wi−E(Wi) then
for any x > 0:

P (S ≥ x) ≤ exp

(
− x2

2(v + bx/3)

)
.

We apply this version to the random variables Zi =
1{Xi∈B(x,t)}√

µt(1−µt)
. We then

have b = 1√
µt(1−µt)

, v = n
1−µt and x =

n
√
µt

2
√

(1−µt)
. The exponential bound

obtained is then

exp

− nµt
4(1−µt)

2( 1
1−µt + 1√

µt(1−µt)

√
µt

2
√

(1−µt)
/3)

 = exp

(
−3nµt

28

)
.

Hence:

P⊗n
(∥∥X(kn) − x

∥∥ ≥ t)
≤ P⊗n

(∣∣∣∣∣ 1n
n∑
i=1

[
1{Xi∈B(x,t)} − µ (B(x, t))

]∣∣∣∣∣ ≥ µ(B(x, t))

2

)
,

≤ 2 exp

(
−3nµt

28

)
.

Now, using (A.14) µt ≥ 2kn/n, we obtain:

P⊗n
(∥∥X(kn) − x

∥∥ ≥ t) ≤ 2 exp

(
−3knµt

14

)
.(A.15)

Final Bound. According to (A.12) and (A.15), we obtain:

∆n(X) ≤ Lt+ 2 exp

(
−3kn

14

)
,

≤ L

(
2

κ

)1/d(kn
na

)1/d

+ 2 exp

(
−3kn

14

)
.

This concludes the proof of Proposition A.3.
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APPENDIX B: THE SMOOTH DISCRIMINANT ANALYSIS MODEL

B.1. Statistical setting. In this subsection, we focus our attention on
an alternative binary classification model. We assume that we have two
independent samples S1 = (X1, . . . , Xn) and S2 = (X̃1, . . . , X̃n) of i.i.d.
random variables at our disposal, with respective densities f and g. We
assume that the support of f and g are included in a set K. In the following,
we can label each element of the sample S1 (resp. S2) by 0 (resp. 1).
In this context, given a new incoming observation, the goal is to predict its
corresponding label, namely to determine whether X ∼ f or X ∼ g. This
setting is known as a smooth discriminant analysis model and has been pop-
ularized, in particular, by Mammen and Tsybakov (1999).

As in the classical binary classification model, a classifier is defined as a
measurable function of the samples S1 and S2, having values in {0, 1}. The
risk of each classifier Φn is defined as:

R(Φn) :=
1

2

[∫
{x:Φn(x)=1}

f(x)dx+

∫
{x:Φn(x)=0}

g(x)dx

]
.

It can then be proved that the Bayes Classifier defined as:

Φ?(x) = 1{f(x)≥g(x)},

provides the smallest possible risk w.r.t. all possible classifiers. At this step,
if we rewrite the Bayes classifier as:

Φ?(x) = 1{η(x)≥ 1
2
}, where η(x) =

f(x)

f(x) + g(x)
,

A strong analogy with the classical binary classification problem defined in
Section 2 (see in particular (2.1)) can be observed. The next assumption is
equivalent to Assumption A1.

Assumption Ã1. An L exists such that η = f
f+g belongs to C1,0(Ω, L).

In keeping with the previous study, we work with both a Margin and a
Smoothness Assumption on the regression function η. Once again, the Mar-
gin Assumption is quite close to the one introduced for the classical binary
classification problem.

Assumption Ã2. An α > 0 and a constant C > 0 exist such that∫
|η− 1

2
|<ε

(f + g) ≤ Cεα
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.
We also consider the case where the marginal density on X satisfies a Min-
imal Mass Assumption.

Assumption Ã3. A κ exists such that µ = f+g
2 satisfies the condition in-

troduced by Mmma(Ω, κ).

In this context, the principle of the Nearest Neighbor Algorithm introduced
in Section 2.2 remains the same. We first aggregate the two samples S1 and

S2 to obtain S =
{

(X1, 0), . . . (Xn, 0), (X̃1, 1), . . . , (X̃n, 1)
}

= (Xi,Yi)1≤i≤2n.

Then, if X(m)(x) is the m-nearest neighbor of x and Y(m)(x) is its label, the
K nearest neighbor decision rule is

(B.1) Φn,k(x) =

1 if
1

k

k∑
j=1

Y(j)(x) >
1

2
,

0 otherwise.

B.2. Case of bounded from below densities. The following theorem
provides a control on its corresponding minimax excess risk when the un-
derlying density on X is bounded from below by a strictly positive constant.

Theorem B.1. Assume that Assumptions Ã1− Ã3 hold and that the den-

sity of X is lower bounded by µ− > 0. If kn = bn
2

2+d c , then

[R(Φn,kn)−R(Φ∗)] .

(
log n

n

) 1+α
2+d

.

We can immediately observe that we lose a log term compared to the mini-
max rate obtained in Section 2.3 for the classification model.
According to our knowledge, the optimal rates in the present model (that
is, the smooth discriminant analysis) have never been investigated under
Assumptions Ã1− Ã3. Nevertheless, it appears that under some slightly
different assumptions (see [Tsy04] and [AT07]), the minimax risk of the
smooth discriminant analysis problem is the same as the one of the classifi-
cation model. It is therefore reasonable to think that our rate is near-optimal
(optimal up to a log term).
From a technical point of view, the main counterpart when using the smooth
discriminant analysis setting is that conditionally to the spatial positions
of the ordered aggregate sample (X(j)(x))1≤j≤2n, the corresponding labels
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(Y(j)(x))1≤j≤2n are no longer independent of each other. This is a significant
difference with the classification model considered in Section 2 and makes
it quite difficult to obtain a concentration inequality for the empirical “re-
gression” function:

ηn(x) =
1

kn

kn∑
j=1

Y(j)(x).

In order to get around this problem, we adopt a Poisson embedding (see
Subsection B.4 for further details), which makes it possible to satisfy a con-
trol of the excess risk, up to some additional logarithmic terms. We assume
that such a logarithmic term may be removed using some concentration in-
equalities on negatively associated random variables. In fact, we hypothesize
that for asymptotically large n, the random sequence (

∑p
j=1 Y(j)(x))1≤p≤kn

is negatively associated as soon as kn/n 7−→ 0, which may make it possible
to remove the logarithmic term (see e.g. [Kle03],[Sha00]).

B.3. Case of general densities. We provide a short paragraph here
about the case of general densities and introduce the Tail Assumption nec-
essary to derive a uniform rate of consistency for the nearest neighbor rule.

Theorem B.2. Assume that Assumptions Ã1− Ã3 hold and that a func-
tion ψ exists such that PX ∈ PT ,ψ. Then:

[R(Φn)−R(Φ∗)] .

(
log n

n

) 1+α
3+α+d

if ψ = Id.

Otherwise:

[R(Φn)−R(Φ∗)] . ν1+α
n,α,d where

log n

n
= ψ−1({νn,α,d}1+α){νn,α,d}2+d.

We only provide the proof of Theorem B.1: the one of Theorem B.2 relies on
a mixed association of some arguments in Theorem 4.3 and Theorem B.1.

B.4. Proof of Theorem B.1. A straightforward decomposition yields
the following proposition.

Proposition B.1. For any classifier Ψ, we have:

R(Ψ)−R(Φ∗) =

∫
Ψ6=Φ∗

|2η(x)− 1| f(x) + g(x)

2
dx.
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Proof of Theorem B.1. The beginning of the proof is similar to the one
of Theorem 3.1. We use Proposition B.1 and Assumption Ã3 to obtain:

R(Φn)−R(Φ∗) ≤ 2Cc2ε
1+α

+c2ε
∑
j≥1

2j
∫
K∩{0<|η(x)−1/2|<2jε}

P
(
|ηn(x)− η(x)| > 2j−1ε

)
dx.(B.2)

At this step, the major difference between the discriminant analysis and the
classification model is the control of the deviation inequality on the right
hand side of the equation above. Indeed, conditionally to ((X(i)(x))1≤i≤2n,
the corresponding labels ((Y(i)(x))1≤i≤2n are no longer independent.
We use Proposition B.2 with:

(B.3) εn = 2C

(
kn
n

)1/d

,

where C is the constant that appears in Proposition B.2 ii). We then obtain:

P
(
|ηn(x)− η(x)| > 2j−1εn

)
≤ 2πn

[
exp

(
−2kn

(
(2j−1 − 1/2)εn

)2)
+ 1{

2j( knn )
1/d≤C−1

}e−n
]
.

The suitable choice of kn and εn then becomes:

(B.4) knε
2
n ∼ a log(n)

for a sufficiently large universal constant a > 0. Hence, (B.3) and (B.4)
yields:

εn ∼
(

log(n)

n

) 1
1+d

and kn ∼ log(n)d/(2+d)n2/(2+d).

This last choice implies:
(B.5)

P
(
|ηn(x)− η(x)| > 2j−1εn

)
. exp(−2a22j) + 2πne−n1{

2j≤C−1
(
n
kn

)1/d}
Plug in (B.5) in (B.2) allows us to conclude:

R(Φn)−R(Φ∗)

≤ 2Cc2ε
1+α
n + c2ε

1+α
n

∑
j≥1

2j(1+α)+1 exp(−C̃22j)

+ε1+α
n 2πne−n

∑
j:2j≤C−1

(
n
kn

)1/d 2j(1+α)

. ε1+α
n + 2πne−n

(
n

kn

)(1+α)/d

,
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where the last inequality follows from standard upper bounds on geometrical
sums. We then deduce:

sup
F∈F

[R(Φn)−R(Φ∗)] ≤ C
(

log(n)

n

) 1+α
2+d

.

Proposition B.2 (Concentration of ηn with Poisson approximation). In
the smooth discriminant analysis model, assume that kn < n. We then have:

i) For any t ≥ 0:

P (|ηn(x)− Eηn(x)| > t) ≤ 2πn
[
2 exp(−2knt

2) + 1{|t|≤1}e
−n] .

ii) For any t ≥ 0 and if kn >> log(n), there exists a constant C such
that:

P (|ηn(x)− η(x)| > t)

≤ 2πn

2 exp

−2kn

[
t− C

(
kn
n

)1/d
]2
+ 1{|t|≤1}e

−n

 .
Proof. Poissonization:
In order to eliminate the dependency between the ordered statistics (X(i))1≤i≤2n,
we use an idea introduced by [Kac49] and randomize the size of the sample
by using some Poisson random variables.
First consider (N1, N2) two independent random variables following a Pois-
son distribution P(n) as well as a N ∼ P(2n) independent of (N1, N2). We
now build an artificial sample of size N1 +N2 divided into two parts:

SP0−1 = (Xi, Yi)1≤i≤N1+N2 ∼ (gdλ⊗ δ0)⊗N1
⊗

(fdλ⊗ δ1)⊗N2 .

Then, if σ denotes a random permutation picked uniformly in SN1+N2 and
independent of the previous realizations, the permutated sample:

SP,σ0−1 = (Xσ(i), Yσ(i))1≤i≤N1+N2 ,

follows the same distribution as the sample of i.i.d. realizations:

SPη = (Ui, Vi)1≤i≤N ,

where U ∼ f+g
2 dλ and V |U ∼ B(η(U)) with η(U) = f(U)

f(U)+g(U) .
Recall that ηn is built from our original sample S according to:

ηn(x) =
1

kn

kn∑
j=1

Y(j)(x).
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Our aim is to study the deviation of ηn from its mean. For this purpose, we
introduce its Poisson counterpart built from SP,σ0−1:

ηN1,N2
n (x) =

1

kn

kn∧(N1+N2)∑
j=1

Y(j)(x),

which is independent of the random choice of σ. At last, we define ηNn by

ηNn =
1

kn

kn∧N∑
j=1

V(j)(x).

where we have used the convention
∑0

j≥1 aj = 0 for any sequence (aj)j≥1.

Proof of i). Since L (ηn(x)) = L
(
ηn(x)N1,N2 |N1 = N2 = n

)
, we deduce that

P (|ηn(x)− Eηn(x)| > t) = P
(∣∣ηN1,N2

n (x)− EηN1,N2
n (x)

∣∣ > t|N1 = N2 = n
)

=
P
(∣∣∣ηN1,N2

n (x)− EηN1,N2
n (x)

∣∣∣ > t,N1 = N2 = n
)

P(N1 = N2 = n)

≤
P
(∣∣∣ηN1,N2

n (x)− EηN1,N2
n (x)

∣∣∣ > t
)

P(N1 = N2 = n)
.(B.6)

Again, we can observe that L
(
ηN1,N2
n (x)

)
= L

(
ηNn (x)

)
and

P
(∣∣ηN1,N2

n (x)− EηN1,N2
n (x)

∣∣ > t
)

= P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t
)

= P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N > kn
)

+P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N < kn
)
.

We now study the two terms of the upper bound separately.

Upper bound of P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N > kn
)
. We can use the stan-

dard Hoeffding inequality:

P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t|N > kn
)
≤ 2 exp(−2knt

2),

and trivially bounding P(N > kn) by 1 yields:

(B.7) P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N > kn
)
≤ 2 exp(−2knt

2).
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Upper bound of P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N < kn
)
. From the Chernoff bound

of the left Poisson tail, we obtain:

P(N < kn) ≤ e−2n(e2n)kn

kknn
= e−2n(1− kn

2n
log( eknn )) ≤ e−n,

as soon as kn < n. Moreover, we have:

P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t|N < kn
)

= P

(
N

kn

∑N
j=1

[
V(j)(x)− η(U(j)(x)

]
N

> t|kn > N

)
≤ 1{|t|≤1}.

It follows that:

(B.8) P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t,N < kn
)
≤ 1{|t|≤1}e

−n.

We then deduce from (B.6), (B.7) and (B.8) that:

P (|ηn(x)− Eηn(x)| > t) ≤
2 exp(−2knt

2) + 1{|t|≤1}e
−n

P(N1 = N2 = n)
.

The Stirling formula concludes the proof of i):

P (|ηn(x)− Eηn(x)| > t) ≤ 2πn
(
2 exp(−2knt

2) + 1{|t|≤1}e
−n)

Proof of ii). We now build the decomposition already used in the proof of
Theorem 3.1.

P (|ηn(x)− η(x)| > t)

= P
(∣∣ηN1,N2

n (x)− η(x)
∣∣ > t|N1 = N2 = n

)
≤

P
(∣∣∣ηN1,N2

n (x)− η(x)
∣∣∣ > t

)
P(N1 = N2 = n)

≤
P
(∣∣∣ηN1,N2

n (x)− η(x)
∣∣∣ > t,N1 +N2 > kn

)
P(N1 = N2 = n)

+
P
(∣∣∣ηN1,N2

n (x)− η(x)
∣∣∣ > t,N1 +N2 ≤ kn

)
P(N1 = N2 = n)

≤
P
(∣∣ηNn (x)− EηNn (x)

∣∣ > t−
∣∣EηNn (x)− η(x)

∣∣ |N > kn
)
P(N > kn)

P(N1 = N2 = n)

+
1{|t|≤1}e

−n

P(N1 = N2 = n)
.
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We can slightly modify Proposition A.3 to obtain that for any m > kn:

∣∣E [ηNn (x)− η(x)|N = m
]∣∣ ≤ C ((kn

m

)1/d

+ e−3kn/14

)
.

Now if we set mn = 2n− (2n)β for β < 1, we can write:∣∣E [ηNn (x)− η(x)
]∣∣

≤ P(N < mn) +

∣∣∣∣∣
+∞∑

m=mn

E
[
ηNn (x)− η(x)|N = m

]
P(N = m)

∣∣∣∣∣
≤ P(N < mn) + CP(N > mn)

((
kn
mn

)1/d

+ e−3kn/14

)

≤ P(N < mn) + C

((
kn
n

)1/d

+ e−3kn/14

)
.

where we have used mn > n for n large enough. Again, the Chernoff bound
on the Poisson tail yields

P(N < mn) ≤ e−n2β−1
.

Any choice of β ∈ (1
2 , 1) implies

∣∣E [ηNn (x)− η(x)
]∣∣ . (kn

n

)1/d

.

The end of the proof is now straightforward using the bounds already given
in the proof of i).
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