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Introduction

After the renewal of banks regulatory framework with the Basel II agreement in 2003, the

European Commission has developped new capital standards for insurance companies

which are referred to as ”Solvency 2”, to be implemented in early 2016. This new

solvency regulation of insurers differs markedly from earlier standards by aiming to

determine capital requirements on the basis of the net risk position of their balance

sheet, as is now the case for banks. However, banking and insurance activities are

different by nature, in terms of liquidity, maturity transformation and guarantees. A

crucial question for life insurers and collective defined-contribution pension funds is to

determine whether the new prudential regulation in Europe should recognize the long

maturity of life insurance liabilities and the insurers’ role as intermediaries promoting

intergenerational risk sharing (see Gollier [2008]), two aspects of insurance activities

that are irrelevant in the banking sector. If policyholders have themselves a long-term

perspective for their saving, it is important that these financial intermediaries get the

right incentives to select assets portfolios that fit best their customers’ interests, both in

risk and in maturity. The current Solvency 2 regulation is based on the hypothesis that

the equity risk is stable through time and is independent of the duration of the holding

period. This hypothesis justifies using solvency rules in insurance that are similar to

those used in the banking sector in spite of the important differences in the duration

and liquidity of their liabilities. In this paper, we reevaluate this hypothesis. More

specifically, we quantify the relationship between the equity risk and both the holding

duration and the state the financial market is in.

Actually, the risk-based capital requirements now prevailing in the banking sector

have themselves been widely criticized because they could exacerbate financial cycles,

or more generally business cycle fluctuations (see e.g. Kashyap and Stein [2004], Adrian

and Shin [2008, 2010], Plantin, Sapra and Shin [2008], Rochet [2008]). Basically, these

authors claim that solvency capital requirements (SCR hereafter) rules which do not de-

pend on the state of the business/financial cycle may lead to large pro-cyclical leverage
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effects. As a result of such rules, investors demand of securities increases during finan-

cial booms, thereby reinforcing them. Conversely, investors have to sell securities during

financial downturns in order to restore their solvency ratios, which exacerbates the fi-

nancial recession.1 Yet, a cyclical SCR rule allowing for smaller capital requirements

during downturns could at least dampen, if not completely eliminate, this procyclical

leverage effect.

Providing further support to such a cyclical SCR rule, a growing empirical literature

points to predictability and mean-reversion in stocks returns (see e.g. Campbell [1991],

Campbell [1996], Barberis [2000], Campbell and Viceira [2002], Bec and Gollier [2007],

Campbell and Thompson [2008] or Jondeau and Rockinger [2009]). More precisely, ex-

cess stock returns risk is found to be mean reverting in the sense that the risk associated

with long holding periods is lesser than the one associated with short holding horizons

as e.g. the widely scrutinized one-year horizon. Beyond this potential investment hori-

zon effect, returns mean reversion may also imply a cyclical effect. In other words, the

financial cycle’s position could help predicting future returns and future risk.

Our contribution to this literature is twofold. First, we assess empirically the im-

portance of these cyclical and investment horizon effects for French stock price data.

For comparison purpose, the widely studied US data are also considered. The question

is explored by modelling the dynamics of excess return of equities from a self-exciting

threshold autoregression (hereafter SETAR) model. This setup aims at disentangling

bear and bull markets dynamics. The choice of this representation is basically motivated

by the fact that it allows for straightforward computation of the conditional first and

second-order moments matrices, namely the conditional mean and variance-covariance

matrices. Hence, two crucial variables for dynamic portfolio allocation optimization are

obtained easily — the time-t conditional expectation (forecast) and conditional variance

(risk measure) for asset returns at horizon t + h. Our second contribution is then to

propose a measure of the Value-at-Risk based on the SETAR estimates which takes the

1See Adrian and Shin [2010] for a very clear presentation of this procyclical leverage effect.
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influence of the recent cycle conditions into account. It is in line with existing measures

in that it derives from the empirical distribution of the expected k−period returns.

Nevertheless, it has the advantage of not imposing any assumption regarding the law

of distribution of the sample but relies on bootstrapped quantiles instead.2. Finally, we

take advantage of this analysis to propose a cycle-dependent measure of the Solvency

Capital Requirement which accounts for the illiquidity risk.

Using quarterly French and US data from 1970Q4 on, it turns out that both cyclical

and horizon effects do influence the Value-at-Risk: the expected future returns are higher

(and the Value-at-Risk more favorable) from a crisis than from a normal or bull market,

and lower for long than for short investment horizons. These findings suggest that

if the prudential regulation aims at maintaining a constant yearly default risk, SCR

rules should be flexible enough so as to take these cyclical and horizon effects into

account. More precisely, for the countries considered here, the SCR rules should induce

intermediaries to be more conservative in long phases of normal or high returns and to be

more risk-taking in downturns. Failing to recognize these features of financial markets

would induce financial intermediaries with long and illiquid liabilities to overreact to

downturns on the equity markets, and to excessively reduce their equity holdings over

the entire financial cycle.

The paper is organized as follows. Section 1 presents the econometric methodology.

Section 2 describes the data used for the threshold autoregression presented in Section

3. In Section 4, estimated stocks returns VaR are compared across investment horizons

and phases of financial cycle. Section 5 concludes.

1 SETAR modelling of VaR

1.1 The SETAR model

Let R0t denote the nominal short rate and r0t = log(1 + R0t) the log (or continuously

compounded) return on this asset that is used as a benchmark to compute excess re-

2See e.g. Feunou and Meddahi [2007] for a different approach to derive the term structure of risk.
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turns on equities. Then, with ret the log stock return, let xet = ret − r0t denote the

corresponding log excess returns that we wish to model as a Self-Exciting Threshold

AutoRegression. In what follows, two kinds of SETAR will be considered for xet. The

first one is a two-regime SETAR model which aims at capturing high vs low regimes

and is given by:

xet = (µℓ +

n
∑

i=1

ρℓixe,t−i)st + (µu +

n
∑

i=1

ρuixe,t−i)(1− st) + vt, (1)

where st is a zero-one valued transition function defined by:

st =

{

1 if xe,t−1 ≤ λ,

0 otherwise.

Hence, we expect the dynamics of the excess returns to be regime-switching with xe,t−1

as the transition variable. More precisely, for values of xe,t−1 smaller than or equal to

the threshold λ, the dynamics is governed by µℓ and ρℓi: this corresponds to the bear

market regime. In the bull market regime, where values of xe,t−1 are greater than λ, the

dynamics is governed by µu and ρui.
3 It is assumed that the roots of the characteristic

polynomials ρj(z) = 1 − ρj1z − . . . − ρjnz
n, j = ℓ, u, lie strictly outside the unit circle

in absolute value, a condition which rules out nonstationary or explosive behavior in

xe,t. Finally, the innovations vt are assumed to be i.i.d. distributed with mean zero and

variance σ2
v . The second SETAR specification of interest is a 3-regime SETAR of the

form:

xet = (µℓ +
n

∑

i=1

ρℓixe,t−i)sℓt + (µm +
n

∑

i=1

ρmixe,t−i)smt + (µu +
n

∑

i=1

ρuixe,t−i)sut + vt, (2)

where sℓt = 1 if xe,t−1 ≤ λℓ and 0 otherwise, sut = 1 if xe,t−1 > λu and 0 otherwise,

with λu > λℓ and smt = 1 − sℓt − sut. There are now two real-valued thresholds, λℓ

and λu. In this 3-regime SETAR, we allow for a middle regime on top of the lower

3Of course, this model is retained as a first approach of threshold modeling of the excess returns and

cannot capture the fact that high expected returns do not have the same interpretation in periods of

high or low volatility. Nevertheless, we believe that at a quarterly frequency, this simplification is not

too misleading.
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and upper regimes. This middle regime could correspond i.e. to a “normal” regime, in

between the bear and bull markets. Contrary to the 2-regime model, the specification

given in Equation (2) could also capture a distinction between large absolute values of

the returns (in the lower and upper regimes) and smaller ones (in the middle regime).

1.2 From SETAR to Value-at-Risk

Following Campbell and Viceira [2004], the one-period log excess returns are added

over k successive periods in order to get the cumulative k−period log excess returns

on equities, denoted xk
et ≡ (xe,t+1 + · · · + xe,t+k). Thanks to its autoregressive nature,

the SETAR model is particularly well suited for forecasting purposes. Indeed, the k

successive one-period returns used to define xk
et are obtained by forward recursion of

models (1) or (2).

Hence, the value-at-risk obtains straightforwardly from this model. The VaR is

basically defined as a number such that there is a probability p that a worse excess (log-

)return occurs over the next k periods. Throughout this paper, the VaR is defined from

the left tail of the loss and profit distribution function. Hence, a negative (respectively

positive) VaR denotes a loss (resp. profit), contrary to the alternative definition based on

the profit and loss distribution. Hence, the VaR over the time horizon k with probability

p may be defined from:

p = Pr
[

xk
et ≤ V aRk(p)

]

= Fk(V aRk(p)), (3)

where Fk(·) denotes the cumulative distribution function of xk
et. The quantile function

is the inverse of the cumulative distribution function from which the VaR obtains:

V aRk(p) = F−1

k (p). (4)

Since xk
et is the sum of log excess returns over k periods, it is also the log of the product of

the excess returns (not taken in log) over k periods. Hence, the VaR of the corresponding

portfolio value simply obtains as:

V aRcr
k (p) = exp(V aRk(p))− 1
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Since we are interested in the Value-at-Risk for various time horizons, it is desirable

to keep an equivalent risk level over all the horizons, which means adjusting p with

k. For instance, the 1 − p = 95% level retained in VaR analysis is chosen on a yearly

basis. In order to maintain the same yearly probability, the corresponding probability

for horizon k should be adjusted accordingly. Unfortunately, the question of the correct

adjustment regarding returns on equities is still open so far. Consequently, just to give

an idea of how the time-horizon may affect this probability, we propose a very crude

approximation instead, that is 1 − p = (95%)k.4 All the VaR computations below will

be made by fixing p to 5%, 10%, etc... for all horizons on the one hand and by using

this horizon-adjusted probability on the other hand.

2 The data

The benchmark asset from which the excess returns on equities will be calculated is a

short rate. For France, the 3-month PIBOR rate obtained from Datastream is retained

from 1970M11 to 1998M12. It is then continued using the 3-month EURIBOR rate from

1999M1 to 2012M12. For the US, we use the three-month Treasury Bills rate. The end-

of-quarter values from these monthly series are retained to get quarterly observations,

and r0t denotes the log return on the 3-month rate.

French and US data for stock prices and returns come from Morgan Stanley Capital

International (MSCI) database and are available since December 1969. More precisely,

using the monthly MSCI National Price and Gross Return Indices in local currency, a

quarterly stock total return series and a quarterly dividend series are obtained following

the methodology described in Campbell [1999]5. Note that we depart from Campbell’s

approach by not including the tax credits on dividends. Indeed, MSCI calculates returns

4This horizon correction is usually retained in default models with time independency. Note that

even with i.i.d. returns, it wouldn’t be correct. This crude approximation consists basically in assuming

that the survival function of the mean of x1 and x2 is the square of the survival function of x1.
5See also Campbell’s “Data Appendix for Asset Prices, Consumption and the Business Cycle”,

March 1998, downloadable from Campbell’s homepage.
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from the perspective of US investors, so it excludes from its indices these tax credits

which are available only to local investors. For France, Campbell chooses to add back

the tax credits quite roughly, by applying the 1992 rate of 33.33% to all the sample.

Nevertheless, this rate hasn’t remained fixed over the sample considered here (1970Q1—

2012Q4). On top of this, the way dividends are taxed has also changed during that

period. We couldn’t find exact tax rate data for our sample and have chosen to work

with data excluding tax credits. The equities excess return, xet, is then obtained by

substracting r0t from the log return on equities.

Figure 4 in Appendix reports annualized French and US log excess return on equities

data.

3 Empirical assessment of the influence of the finan-

cial market cycle on equities log excess returns

The lag order n of the SETAR models is chosen so as to eliminate residuals serial

correlation, which leads to retain one lag. For both models (1) and (2), we have also

considered a constrained version in which the intercept is assumed to be the same across

regimes, i.e. µℓ = µu(= µm). The threshold estimates were obtained by grid search so as

to i) leave at least 5% of the observations in each regime and ii) minimize the model’s

sum of squared residuals. First, we performed linearity tests. Since the thresholds are

unidentified nuisance parameters under the null hypothesis, we use the SupLR statistic

whose non standard asymptotic distribution obtains from Hansen [1996]. The residual

bootstrap method described in Hansen and Seo [2002] is used to compute the p-value.

The results of these linearity tests, based on 5000 simulations, are reported in Table 1

below.

In France, the two- and three-regime models with a constrained intercept reject

the null of linearity at the 5%-level. Since the comparison of these models involves

a (second) threshold which is an unidentified nuisance parameter under the two-regime

null hypothesis, a standard LR test cannot be performed to this end. To circumvent this
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Table 1: SupLR linearity tests p-values

Model (1) Model (1) Model (2) Model (2)

unconstrained constrained unconstrained constrained

France 0.21 0.05 0.18 0.05

US 0.08 0.03 0.01 0.03

issue, a SupLR statistics can be used again: it leads to a bootstrap p-value of 11% and

hence does not reject the null of a constrained two-regime model at conventional levels.

The latter will accordingly be used in the subsequent empirical analysis. By contrast,

only the unconstrained intercept two-regime model does not reject the linear null in the

US: three SETAR candidates remain possible. Since the constrained and unconstrained

versions of the three-regime model are nested with the linear restrictions µℓ = µu = µm,

these constraints can be tested using a standard LR test. The corresponding LR statistics

is equal to 16.20 and is χ2(2) distributed: the constrained three-regime model is strongly

rejected. Then, according to the SupLR test performed to compare the unconstrained

three-regime model and the two-regime model with a constrained intercept, the null

of a constrained two-regime model can be rejected with a bootstrap p-value of 1%.

Consequently, the unconstrained three-regime model is retained for the US data.

The OLS estimates of the selected SETAR models are reported in Table 2, see Ap-

pendix. For these SETAR(1) models, the null of no residuals serial correlation up to

order 4 is not rejected according to the Portmanteau and LM test statistics. It is also

worth noticing that, likely due to the quarterly frequency of our observations sample,

both ARCH andWhite F tests do not reject the homoskedastic null hypothesis. Actually,

returns data heteroskedasticity is mainly a high frequency phenomenon.

In the two-regime model retained for French data, the threshold estimate is -22.56%,

which is strongly negative. As can be seen from Figure 4 in Appendix, which plots the

log excess returns together with the threshold value, the lower regime basically accounts

for the financial crisis which happened during the period: the two oil price shocks with

9



the financial market troughs in 1974 and 1977, the election of the left-hand President

François Mitterrand in the second quarter of 1981, the stocks markets Black Monday in

the fourth quarter of 1987, the Asian financial crisis at the end of 1990 and 1998, the

internet bubble burst in 2001 and 2002, and finally the subprimes crisis which makes the

French returns on equities visit the lower regime in 2008. Since only nine observations

out of 168 are classified in this low regime6, it seems to capture the troughs, or crisis,

rather than bear market times: The average of the log excess returns in this regime is -

29.50%. The autoregressive coefficient estimate ρℓ is -0.26 — the nullity of this coefficient

is rejected at the 6%-level — which implies strong mean reversion in this regime. In

the upper regime, where most of the observations lie, ρu is 0.21 which suggests a slight

persistence. The average of the observations lying in the upper regime is 3.39%.

The same troughs are captured by the lower regime in the unconstrained three-regime

model retained for the US data. However, this model fails to capture a “normal” regime:

While λℓ is estimated at -9.95%, the second threshold is also found strongly negative

with an estimate of -6.81%. Looking at Figure 4, where λℓ and λu are plotted, it appears

that the middle regime basically captures the returns fall which forgoes a large trough.

As can be seen from Table 2, ρm = 13.21, which means that a negative observation in

this regime will have a negative impact on the next observation, whereas there is still

strong mean reversion in the lower regime through the corresponding positive intercept

µℓ.

Overall, these two SETAR models yield quite similar results: There is strong mean-

reversion in the lower regime and there is some persistence in the upper regime, even

though rather weak. If the dynamics of the log returns is regime-dependent, so should

be the dynamics of the Value-at-Risk as will be checked below.

6Note however that the estimated threshold is not the lower boundary of the grid-search interval.
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4 The dynamics of Value-at-Risk

4.1 The VaRk based on filtered historical simulations

The bootstrap method described below belongs to the filtered historical simulation

(FHS) method presented in Chirstoffersen [2009]. This method consists in simulat-

ing future returns from a model using historical return innovations. It is qualified by

“filtered” because it does not use simulations from the set of returns directly, but from

the set of shocks, which are basically returns such as filtered here by the SETAR model.

The FHS method described in Chirstoffersen [2009] would amount in our case to

the following: First, using random draws from a uniform distribution, the estimated

residuals of model (1) or (2) are resampled S times. Using these S series of vs together

with the estimated parameters of the corresponding model and the observed value of

xe,t−1, S hypothetical sequences of xk
et are obtained by forward recursion of the SETAR

model. Finally, a conditional V aRk(p) is calculated by retaining — amongst these S

simulated sequences — the value of return such that there is a probability p that a

worse value occurs at horizon k. This method clearly accounts for the uncertainty of

the shocks realization. However, by setting xs
e,t−1 = xe,t−1, it makes the VaR measure

strongly dependent on the last available observations: contrary to the definition given

earlier in Equation (4), this method defines the Value-at-Risk conditionally to past

returns values. In order to illustrate this, Figures 1 and 2 report this time-dependent

VaR measure calculated from 200,000 simulations for the one- to three-year investment

horizons and for all t from 1980Q1 on. For each date t, the corresponding SETAR is

estimated from 1971Q1 until t, which yields the k−year VaRs by the bootstrap method

described above. These figures also plot the ex-post observed values of exp(xk
et) − 1.

Even though time-dependent, these conditional VaRs are still much less volatile than

the corresponding expected returns: the latter’s volatility is around four times larger

than the conditional VaR at the one-year horizon and a little bit more than ten times

larger at the 3-year horizon. Then, for all these investment horizons, the VaRs under-

estimates the stock return risk during the 2001-2002 and 2007-2008 episodes. Table 3
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Figure 1: French VaR and corresponding observed returns

in appendix reports out-of-sample tests of predictive accuracy of the models considered

here for the V aR(5%)’s up to five years. Following the lines of e.g. Guidolin and

Timmermann [2006], we consider the unconditional coverage probability which is the

percentage of VaRs above the corresponding ex-post observed return, as well as the

SP test statistic given in Escanciano and Olmo [2009], Equation (5) therein. This SP

statistic refers to the so-called unconditional backtesting which tests wether or not the

unconditional expectation of the ‘hits’ or ‘exceedances’ is equal to the theoretical one.7

From the unconditional coverage probabilities, it turns out that the SETAR model is

7Under the null, (p(1 − p))−0.5SP has a standard normal distribution given the DGP is known. In

practice, the DGP parameters are estimated but Escanciano and Olmo [2009] show that this uncondi-

tional S-test still possesses rather good finite-sample power properties even in presence of estimation

risk. See also Giacomini andWhite [2006] for a comparison of unconditional and conditional backtesting.
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Figure 2: US VaR and corresponding observed returns

slightly too liberal at the one-year horizon. As expected, it tends to become much too

conservative at longer horizons, particularly when the probability p is held constant over

horizons. In France, the unconditional backtesting does not reject the null of forecasting

accuracy for most horizons. In the US, the null is rejected after the three-year horizon

only.

4.2 Empirical measures of VaRk across investment horizon and

financial market state

Finally, since we aim at evaluating the impact of the state the financial market is in on

the VaR for various investment horizons, we would rather control for its position. This

is done by initializing the value of the excess return for the forward recursion of model
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(1) or (2) with the average of observations lying respectively in the lower, middle (if any)

and upper regimes. In this variant, we also adapt the bootstrap procedure to account

for possibly neglected residuals heteroskedasticity following the lines described in e.g.

Cavaliere, Rahbek and Taylor [2010]: instead of being resampled, the estimated SETAR

residuals are multiplied by a Gaussian i.i.d. N (0, 1) sequence so that the resulting

simulated residuals keep the same heteroskedastic features as the estimated ones.

The results reported below were obtained for S = 200, 000 simulations for each

k = 1, · · · , 15 years, from which the p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

quantiles are picked up for each V aRcr
k . Figure 3 plots the regime-dependent measures

of V aRcr
k described above against holding horizons up to fifteen years8.
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Figure 3: French Value-at-Risk(95k%) across cycle and horizons

The first important result emerging from this figure is that whatever the investment

horizon, the VaR depends on the state the financial market is in. For all horizons, the

VaR is worst in upper regime than in the lower one. The VaR’s gap between these two

8The corresponding figures are available upon request.
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regimes at the one-year horizon is around 5% for both countries. This gap widens up

to about 15% at the 15-year horizon, but such long-horizons results must be cautiously

interpreted since the model is estimated using thirty-seven years only. Note that for all

investment horizons in the US, the largest VaR in absolute value appears in the middle

regime. This confirms our interpretation of this regime as the one capturing the returns

fall which forgoes a large trough. The VaR’s gap between the lower and middle regimes

reaches 7% at the one-year horizon. Overall, these results suggest that a rule imposing

the same solvency capital requirement whatever the state of the financial market could

actually be pro-cyclical.

The second important result regards the dynamics of the VaR across investment

horizons. In a previous study (see Bec and Gollier [2007]), mean-reversion was found in

log returns on French equities relatively to other assets returns: their relative risk was

found decreasing with the holding period. The same result was found by Campbell and

Viceira [2002] for US quarterly data. This is confirmed by our results as can be seen in

Figure 3.

As a further check, the simulations were also performed fitting distribution laws that

allow for larger tails, since extreme risks can hardly be captured from such a short period

as the one considered here. This is a shortcoming of the bootstrap approach retained

above.

As can be seen in Figures 5 and 6 reported in appendix, only an extreme value

distribution9 is able to capture the fat left tail of the residuals distribution. Figures 7

and 8 in appendix show the resulting regime and horizon dependent Value-at-Risk when

using 100,000 random draws from the fitted extreme value distribution (the Student-t

distribution is also used for comparison purpose): As expected, the VaRs corresponding

to small p worsen when residuals are drawn from the extreme value distribution, but

both financial market state and horizon effects are confirmed.

9The probability density function for the extreme value distribution with location parameter µ and

scale parameter σ is f(x|µ, σ) = σ−1 exp
(

x−µ
σ

)

exp
(

− exp
(

x−µ
σ

))

.
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5 Concluding remarks

The SETAR modelling of French and US stocks excess returns provides evidence of

the regime-dependent nature of their dynamics: large downturns are strongly corrected

whereas a slight persistence is found otherwise. Since the Value-at-Risk is evaluated from

the expected excess returns, it is also influenced by the state the financial market is in.

The VaR calculated from a trough corresponds to smaller losses than the ones evaluated

in the bull market for all investment horizons. Our results provide support to the claim

that fixed solvency capital requirements may have important procyclical consequences

for the dynamic investment strategies of the financial intermediaries. They also suggest

some predictability in equities returns since they point to a decrease in the absolute

value of the VaR as the holding period increases. One limit of the approach retained

here is that it assumes the existence of financial markets cycles without explaining their

origins. A better understanding of this phenomenon is a challenging question on our

research agenda.
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Table 2: SETAR estimates

France US

µ 0.809 —

[0.39]

µℓ — 11.52

[0.04]

µm — 107.17

[0.00]

µu — 0.86

[0.30]

ρℓ -0.257 0.372

[0.06] [0.27]

ρm — 13.21

[0.00]

ρu 0.215 0.234

[0.03] [0.04]

λℓ -22.56 -9.95

λu — -6.81

R-squared 0.05 0.17

ARCH(1) p-val. 0.39 0.68

ARCH(4) p-val. 0.58 0.16

Q(4) p-val. 0.94 0.56

White F p-val. 0.25 0.53

p-values of t-statistics in [ ].
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Table 3: Out-of-sample tests of predictive accuracy

1 year 2 years 3 years 4 years 5 years

p p padj p padj p padj p padj

Expected % of

violations 5% 5% 9.7% 5% 14.3% 5% 18.5% 5% 22.6%

France 8.6% 6.4% 7.3% 4.2% 10.8% 2.6% 13.8% 0% 15.2%

U.S. 8.6% 4.8% 8.1% 2.5% 7.5% 0% 6% 0% 1.8%

Unconditional backtesting ((p(1 − p))−0.5SP )

France 1.86 0.74 -0.93 -0.42 -1.07 -1.19 -1.32 -2.43* -1.88

U.S. 1.86 -0.08 -0.63 -1.26 -2.12* -2.47* -3.47* -2.43* -5.27*

The adjusted expected % of violations, padj, is given by (1− 0.95k).

SP is defined in Escanciano-Olmo (2009). ‘*’ means rejection at 5%-level.

Table 4: France : VaRk(p), Extreme Value Simulations, Lower Regime

p (1 − 0.95k) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Years

1 -0.31 -0.31 -0.22 -0.16 -0.11 -0.07 -0.03 0.01 0.05 0.09 0.13

2 -0.30 -0.40 -0.30 -0.22 -0.15 -0.09 -0.04 0.02 0.08 0.13 0.19

3 -0.26 -0.45 -0.34 -0.25 -0.17 -0.10 -0.03 0.04 0.11 0.18 0.25

4 -0.21 -0.49 -0.37 -0.27 -0.18 -0.10 -0.02 0.06 0.14 0.23 0.32

5 -0.13 -0.52 -0.39 -0.28 -0.18 -0.09 0.00 0.09 0.19 0.29 0.39

6 -0.05 -0.54 -0.40 -0.29 -0.18 -0.08 0.02 0.13 0.24 0.35 0.47

7 0.05 -0.55 -0.41 -0.29 -0.18 -0.07 0.05 0.16 0.28 0.41 0.55

8 0.17 -0.57 -0.42 -0.29 -0.17 -0.05 0.08 0.20 0.33 0.48 0.64

9 0.30 -0.57 -0.42 -0.29 -0.16 -0.03 0.11 0.25 0.39 0.55 0.72

10 0.45 -0.58 -0.43 -0.28 -0.14 -0.01 0.14 0.29 0.45 0.63 0.81

11 0.63 -0.59 -0.43 -0.27 -0.13 0.02 0.18 0.34 0.51 0.70 0.91

12 0.83 -0.60 -0.42 -0.27 -0.11 0.05 0.21 0.39 0.58 0.79 1.02

13 1.06 -0.60 -0.42 -0.26 -0.09 0.08 0.25 0.44 0.65 0.88 1.13

14 1.32 -0.60 -0.42 -0.25 -0.08 0.10 0.29 0.50 0.72 0.97 1.25

15 1.62 -0.61 -0.41 -0.23 -0.05 0.13 0.33 0.55 0.79 1.06 1.37
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Figure 4: Data (1970Q4—2012Q4)
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Figure 5: French residuals distribution fits
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Figure 6: US residuals distribution fits
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Figure 7: Regime and horizon dependent VaR in France: EV and t distributions
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Figure 8: Regime and horizon dependent VaR in the US: EV and t distributions
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Table 5: France : VaRk(p), Extreme Value Simulations, Upper Regime

p (1− 0.95k) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Years

1 -0.34 -0.34 -0.27 -0.21 -0.16 -0.12 -0.08 -0.05 -0.01 0.03 0.06

2 -0.34 -0.43 -0.34 -0.27 -0.20 -0.15 -0.09 -0.04 0.01 0.06 0.12

3 -0.30 -0.48 -0.38 -0.29 -0.22 -0.15 -0.09 -0.03 0.04 0.11 0.17

4 -0.25 -0.52 -0.40 -0.31 -0.23 -0.15 -0.08 0.00 0.07 0.15 0.24

5 -0.19 -0.54 -0.42 -0.32 -0.23 -0.14 -0.06 0.03 0.12 0.21 0.31

6 -0.10 -0.57 -0.44 -0.33 -0.23 -0.13 -0.04 0.06 0.16 0.27 0.38

7 -0.01 -0.58 -0.45 -0.33 -0.23 -0.12 -0.02 0.09 0.21 0.33 0.46

8 0.10 -0.59 -0.45 -0.33 -0.22 -0.10 0.01 0.13 0.25 0.39 0.54

9 0.22 -0.60 -0.46 -0.33 -0.21 -0.08 0.04 0.17 0.31 0.45 0.62

10 0.37 -0.61 -0.46 -0.32 -0.19 -0.07 0.07 0.21 0.36 0.53 0.70

11 0.53 -0.62 -0.46 -0.32 -0.18 -0.04 0.11 0.26 0.42 0.60 0.80

12 0.72 -0.62 -0.46 -0.31 -0.17 -0.02 0.14 0.31 0.48 0.68 0.90

13 0.93 -0.62 -0.46 -0.30 -0.15 0.01 0.18 0.36 0.55 0.76 1.00

14 1.18 -0.63 -0.45 -0.29 -0.13 0.04 0.21 0.41 0.62 0.85 1.11

15 1.46 -0.63 -0.45 -0.28 -0.11 0.06 0.25 0.46 0.68 0.94 1.23

Table 6: France : VaRk(p), Student-t Simulations, Lower Regime

p (1− 0.95k) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Years

1 -0.22 -0.22 -0.14 -0.09 -0.04 0.00 0.03 0.07 0.10 0.14 0.17

2 -0.18 -0.28 -0.18 -0.11 -0.04 0.02 0.07 0.12 0.18 0.23 0.29

3 -0.11 -0.31 -0.19 -0.10 -0.01 0.06 0.13 0.20 0.28 0.35 0.42

4 0.00 -0.32 -0.18 -0.07 0.02 0.12 0.21 0.30 0.39 0.48 0.58

5 0.13 -0.32 -0.17 -0.04 0.07 0.18 0.29 0.40 0.51 0.62 0.75

6 0.30 -0.32 -0.14 0.00 0.13 0.26 0.38 0.51 0.65 0.78 0.93

7 0.49 -0.31 -0.12 0.05 0.20 0.34 0.48 0.64 0.79 0.96 1.13

8 0.72 -0.30 -0.08 0.10 0.27 0.43 0.60 0.77 0.95 1.15 1.36

9 1.00 -0.28 -0.05 0.16 0.35 0.54 0.72 0.92 1.13 1.36 1.61

10 1.34 -0.26 -0.01 0.22 0.44 0.65 0.86 1.09 1.33 1.59 1.89

11 1.75 -0.24 0.05 0.30 0.54 0.77 1.01 1.27 1.56 1.87 2.20

12 2.22 -0.21 0.10 0.37 0.64 0.90 1.18 1.48 1.80 2.15 2.54

13 2.79 -0.18 0.15 0.46 0.76 1.05 1.37 1.70 2.07 2.46 2.91

14 3.47 -0.15 0.22 0.55 0.88 1.21 1.57 1.94 2.35 2.81 3.33

15 4.30 -0.12 0.29 0.66 1.01 1.39 1.78 2.21 2.68 3.21 3.81

25


