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ABSTRACT

This paper develops a model of active asset management in which fund managers may

forego alpha-generating strategies, preferring instead to make negative-alpha trades

that enable them temporarily to manipulate investors’ perceptions of their skills. We

show that such trades are optimally generated by taking on hidden-tail risk, and that

they are more likely to occur when fund managers are impatient, and when their trading

skills are scalable and generate a high profit per unit of risk. We propose long-term

contracts that deter this behavior by dynamically adjusting the dates on which the

manager is compensated in response to her cumulative performance.
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The last thirty years have witnessed two important developments in financial markets.

First, a rapid pace of financial innovation has made it possible to slice and combine a

large variety of risks by trading a rich set of financial instruments. Second, the man-

agement of large amounts of capital has been delegated to entities such as hedge funds

and bank proprietary desks that are neither subject to significant trading restrictions

nor required to disclose publicly the details of their positions.

The amount of capital available to such entities crucially depends on investors’

perceptions of their “alpha” - that is, their ability to generate excess returns above

the level of fair compensation for risk. Combined with the relative opaqueness of these

entities and their vast risk-taking opportunities, this creates room for a particular type

of agency problem.

Fund managers who are running out of alpha-generating strategies may find it

tempting to pretend otherwise, and to take risky positions with zero or even negative

alpha that may temporarily improve their perceived reputation in case of favorable

outcomes. Strategies that generate frequent small positive excess returns that are offset

by very rare and large losses seem especially well suited to disguising luck as skill. As

Rajan (2008) puts it: “How can untalented investment managers justify their pay?

Unfortunately, all too often it is by creating fake alpha – appearing to create excess

returns but actually taking on hidden tail risk.” Consistent with this view, Jiang and

Kelly (2012) showed that a significant number of hedge funds are indeed exposed to

tail risk.

Creating fake alpha by taking on hidden tail risk does not seem to be limited to

the hedge fund industry. For example, in its 2008 report to shareholders intended to

analyze the causes of its subprime losses, UBS concluded that “The UBS compensation

and incentivization structure did not effectively differentiate between the creation of al-

pha versus the creation of return based on a low cost of funding.” More systematically,

Acharya et al. (2010) argued that the manufacture of tail risk through deliberate re-

tention of senior tranches on poor collateral by U.S. banks was an important ingredient
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of the 2008 banking crisis.

The perverse incentives to enter into (at best) zero-alpha gambles come with a

number of costs. First, they defeat the purpose of delegated asset management, which

is meant to combine “brains and resources” optimally in order to achieve superior

returns. Second, they lead to a misallocation of capital. Finally, the manufacture

of tail risk has far-reaching consequences for overall financial stability, and for the

taxpayer when gambling institutions benefit from public safety nets, either by law or

because they are systemically important.

The goal of this paper is to develop a new framework for the study of these risk-

taking incentives. We study those situations where managers find it optimal to fake

their alpha and propose a new class of contracts that eliminate any incentives to employ

such strategies.

Our model builds upon the frictionless benchmark of Berk and Green (2004), who

studied career concerns in delegated fund management. In their model, a fund manager

and investors discover the manager’s alpha-generating skills by observing her realized

returns. The excess returns that a manager is expected to generate increase with

respect to her skills, but decrease as she gains more funds under management. Com-

petitive investors supply funds to the manager until they earn a zero net (after fees)

expected return. At the beginning of each period, the manager sets fees that enable

her to reach the optimal fund size, and extract the entirety of the surplus that she

generates. Learning and competition among investors imply that both fund flows and

managerial compensation strongly depend on the manager’s record.

We add one particular friction to this model. We suppose that the manager may

secretly enter into zero-alpha trades with the sole purpose of manipulating investors’

perceptions of her skills. In what follows, we refer to this opportunistic behavior as

inefficient risk shifting or gambling. In contrast to many earlier papers on risk shifting,

we propose a general setting in which the fund manager can secretly choose to take on

positions with any arbitrary payoff distributions. This captures the large set of trading
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opportunities available to modern managers, and is therefore an important case to

consider.

We first study the impact of this friction in the case where the manager and investors

sign only short-term contracts. Three factors that are conducive to inefficient risk

shifting emerge from our analysis. The first is the size of the alpha per unit of risk

that can be generated by a skilled manager. If it is large, the history of returns has a

large impact on investors’ beliefs about the manager’s ability to generate future excess

returns. The second factor is the scalability of trading skills - that is, the sensitivity of

expected excess returns to fund size. If trading skills are scalable, a good reputation

translates into a large future fund size and thus into large future profits. Finally,

because the manager can manipulate her reputation only temporarily, she finds it

more valuable to do so when she is more impatient. These three factors determine the

convexity of future expected gains as a function of realized returns, and thus affect

inefficient risk-shifting incentives. In particular, the model predicts that “fallen-star”

managers (those who show high initial potential but who realize disappointing returns)

are particularly prone to gambling. For a calibration consistent with that of Berk and

Green (2004), we find that their efficient equilibrium with short-term contracts breaks

down, in the sense that any equilibrium must involve some degree of risk shifting.

We are able fully to characterize such equilibria with risk shifting in a simplified

version of the model, where the manager maximizes a combination of her expected

current return and the expected reputation that results from it. Interestingly, even

though we impose no restriction on the risk profiles available to the manager, we

show that she finds it optimal to manufacture hidden-tail risk. In other words, she

sells disaster insurance, and adds some noisy payoff to the collected premium so that

investors cannot discover the exact nature of the trade.

We then consider long-term contracts; and here we follow two distinct lines of

inquiry. First, we consider a contract popular in the hedge fund industry, in which the

manager’s profits are given by a performance fee above a high-water mark. Similar to
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Panageas and Westerfield (2009), we find that without new inflows/outflows triggered

by realized performance, the performance fee with high-water mark is not conducive

to inefficient risk shifting. In the presence of fund flows, however, we show that the

high-water mark contract does not generally solve the risk-shifting problem.

Second, we exhibit an optimal contract that fully eliminates risk-shifting incen-

tives. The contract is designed to discriminate between skills and luck. It exploits the

fact that the impact of gambling on investors’ beliefs vanishes in the long-run, when

true skills are eventually revealed. The contract consists in deferring payments to the

manager at dates that vary depending on her cumulative performance. The promised

payment also evolves in order that it always at least matches the managers outside

options, thereby leading her not to renegotiate the contract. As we detail in Section 3,

this mechanism is highly reminiscent of the recent proposals for bankers’ compensation

reforms issued both by public authorities and the industry itself. All such proposals

consist of a deferral of bonuses together with a clawback mechanism ensuring that the

initial promised payment is revised with the benefit of hindsight. We offer theoreti-

cal foundations for these proposals. More importantly, we qualify them, suggesting in

particular that it is important to adjust the timing of the compensation dynamically,

notably by further postponing it upon observing a poor track record. In our model,

committing to pay a bonus at a fixed date may generate inefficient gambling in general,

even if this date is remote and even if the bonus is adjusted via a clawback provision.

The dynamic revision of the payment date turns out to be important, and yet it is

absent from the current suite of proposed reforms.

To our knowledge this paper is the first to derive a formal connection between fund

managers’ career concerns and alpha-faking through hidden-tail risk in a fully rational

environment. More precisely, we bridge two strands of literature, namely that on risk

shifting and that on career concerns. The risk-shifting friction was first introduced by

Jensen and Meckling (1976) as a source of value destruction within overly leveraged

firms. Arguably, this friction is particularly relevant in the context of sophisticated
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financial institutions that can swiftly alter their risk profiles. Accordingly, there is a

large amount of literature on asset pricing that considers the impact of nonconcave

objective functions on the risk-shifting incentives of fund managers who have access

to dynamically complete markets. Contributions include those of Basak, Pavlova, and

Shapiro (2007), Carpenter (2000), and Ross (2004). In common with them, we seek to

identify the risk-taking strategies that optimally respond to nonconcave objectives. We

extend this line of research in two directions. First, nonconcavities in the manager’s

objective are not assumed in our model. Rather, they arise endogenously from reputa-

tional concerns in a truly dynamic environment. Second, we exhibit optimal contracts

that eliminate the costs of this friction.

Acharya, Pagano, and Volpin (2012) also developed a model in which career con-

cerns may lead managers to destroy value, but by a different means from that of

manipulating a payoff distribution. As in our model, limited commitment prevents

managers from receiving insurance against the risk that their reputation deteriorates.

It is assumed that learning about managerial skills can take place only if managers run

the same project for sufficiently long. Thus risk-averse managers may prefer to churn

across projects in order to prevent learning. Whilst this shields them from reputational

risk, it inefficiently slows down the identification of good managers. Malliaris and Yan

(2012) considered a two-period model in which a manager may be tempted to take on

tail risk in order to manipulate her expected reputation. Their setup is related to the

static version of our model, which we solve for equilibria with risk shifting. In our case

the main difference is that we do not impose binary payoffs, as they do.

Our paper is also related to that of Goetzmann et al. (2007), who studied manipulation-

proof measures of managerial performance. They showed that to be manipulation-proof

a measure should take the form of a concave utility function averaged over the return

history. We also show that if the fund manager has a nonconcave continuation utility

she can engage in inefficient risk shifting, and that optimal contracts are aimed at

concavifying the manager’s objective .
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Finally, our study relates to two recent extensions of the Berk and Green (2004)

model. First, Berk and Stanton (2007) applied the Berk and Green setup to closed-end

funds. In this case, learning affects the net asset value of the fund and not its size, which

is fixed by construction. Berk and Stanton showed that the impact of learning explains

several characteristics of the closed-end fund discount, and that the behavior of this

discount crucially depends on the nature of the compensation contract. Second, Dang,

Wu, and Zechner (2008) studied an extension of Berk and Green’s approach in which

a management company can fire a manager if her performance is not good enough.

They restricted their analysis to short-term compensation contracts and solved for the

optimal firing rule.

The remainder of our paper is organized as follows. Section I develops our baseline

model of career concerns, and studies the impact of the risk-shifting friction when the

manager and investors sign only short-term contracts. Section II studies long-term

contracts. Section III concludes. Technical proofs are relegated to the appendix.

I. Career Concerns and Inefficient Risk Shifting

In Section A, we introduce and solve a frictionless model of career concerns in

delegated asset management that closely follows the approach used by Berk and Green

(2004). In Section B, we introduce a risk-shifting friction to this benchmark approach,

and study its impact on the equilibrium in the presence of short-term contracts. In

Section C, we fully characterize equilibria with risk shifting in a simplified version of

our baseline model. In Section D, we discuss the costs of risk-shifting strategies.

A. Frictionless Benchmark: The Berk and Green model

Time is discrete and is indexed by {n∆t} , where n ∈ N and ∆t > 0. There is

a single consumption good which serves as the numéraire. Agents are of two types:

a manager and investors. Agents live forever, are risk-neutral, and discount future
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consumption at the instantaneous rate r > 0.

The manager is protected by limited liability and is thus unable to have negative

consumption. Investors receive a large endowment of the consumption good at each

date n∆t, the manager does not. The manager has exclusive access to an investment

technology. If the manager invests qt consumption units at date t using her technology,

she generates qt+∆t units at date t+ ∆t such that

qt+∆t = qte

(
r+aθ−c(qt)−σ

2

2

)
∆t+σ(Bt+∆t−Bt), (1)

where (Bt)t≥0 is a standard Wiener process, and a and σ are strictly positive numbers.

The parameter θ ∈ {0, 1} measures the manager’s skills. It is unobservable by

both the manager and investors. All other parameters are common knowledge. The

parameter a is the alpha that a skilled manager can generate with her first dollar.

As in Berk and Green (2004), the cost c(qt) captures the fact that many arbitrage

opportunities or informational rents in financial markets are not perfectly scalable.

The function c is increasing, taking the form

c(q) = βq
1

α−1 , (2)

where α ≥ 1, β > 0.

All agents share the common date - 0 prior to which the manager is endowed with

high skills – that is, that θ = 1 – with probability π0 ∈ (0, 1). Except for the manager’s

skills, each action and the manager’s realized returns are publicly observable at each

date n∆t. Thus, information is symmetric across agents.

Let πt denote the probability that the agents assign to the possibility that the

manager is skilled at a given date t. We will refer to πt as the manager’s perceived

skills. Given πt = π, the net expected surplus created over [t, t+ ∆t] if the manager

invests q units is

q
(
πe(a−c(q))∆t + (1− π)e−c(q)∆t − 1

)
,
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which in the limit as ∆t → 0 becomes q (aπ − c(q)) . Thus the manager creates the

maximal net expected surplus over [t, t+ ∆t] if she invests q (π) that solves

q(π) = arg max
q
q
(
πe(a−c(q))∆t + (1− π)e−c(q)∆t − 1

)
.

We will refer to such q(π) as the optimal fund size. Denoting v(π)∆t as the maximal

expected profit over [t, t+ ∆t] that corresponds to this optimal fund size, we have:

LEMMA 1:

lim
∆t→0

q(π) =

(
α− 1

αβ
aπ

)α−1

, (3)

lim
∆t→0

v(π) = β1−α (α− 1)α−1

αα
(aπ)α . (4)

Proof of Lemma 1: See Appendix.

Using a power specification (2) for the cost function c(q), the expected instantaneous

surplus v (π) is proportional to πα as ∆t becomes small. The parameter α captures the

scalability of the trading skills. As α increases, the manager’s skills π become more

scalable and therefore, her expected profit becomes more sensitive to her reputation,

in other words, it becomes more convex in π. In the hedge fund universe, global macro

strategies are typically quite scalable. At the same time, strategies based on shareholder

activism may be more difficult to spread over increasing amounts of capital.

Berk and Green specified a linear cost function c corresponding to α = 2. They

showed that their model matches quantitatively well the empirically observed relation-

ship between realized returns of mutual funds and inflows/outflows. In the remainder

of the paper, we will generally restrict the analysis to a somewhat simpler limiting case

in which α = 1. In this case, the cost is zero for q < 1 and infinite for q > 1. Thus,

the manager can scale up the fund at no cost up to an upper bound that is (without

loss of generality) normalized to 1. The optimal fund size is thus always 1 and v(π)

is linear in π. In other words, in this case perceived skills affect the expected rate of
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return of the fund but the optimal fund size remains constant, normalized to 1.

To realize any surplus, investors must delegate their funds to the manager and

agree with her on the profit-sharing rule. We assume that investors are competitive

and can fully commit to a contract. At the same time, at the end of any period, the

fund manager is free to walk away from a contract and sign a new one with competing

investors. More precisely, at the end of each period [t, t+ ∆t] , after returns are realized

and all contractual transfers for the period are made, the fund manager is free to

terminate a contract without financial obligation to its investors, and to enter a new

one with new investors starting at period [t+ ∆t, t+ 2∆t]. In other words, commitment

is one-sided. This is a common assumption in labor economics. We find it to be all the

more plausible in the financial services industry where fund managers can swiftly move

between jobs and financial centres because their activity entails making few specific

investments. Limited cross-border enforcement precludes covenants that would make

such moves costly.

We first study incentives to take risk when investors and the manager cannot enter

into long-term contracts, but rather simply interact in a spot labor market at each

date. Our goal is to determine whether incentives created by market forces alone can

discipline managers who are concerned about their reputations in the labor market

We therefore postpone the analysis of explicit long-term contracts until Section II,

and instead assume, like Berk and Green, that the manager enters only into one-period

contracts with investors:

ASSUMPTION 1: At each date t, the manager offers investors a one-period asset man-

agement contract.

Assumption 1 only imposes a restriction on the horizon of contracts: The parties cannot

contract at date t on actions or transfers beyond date t+ ∆t. Parties are free to write

any one-period contracts, however, subject only to the limited-liability constraint of

the manager. We next show that this restriction to short-term contracts does not lead
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to any misallocation of capital in the absence of frictions.

LEMMA 2: Under Assumption 1, the manager adopts the optimal fund size q(π) at

each date and extracts the maximal expected surplus v(π)∆t.

Proof of Lemma 2: One only needs to exhibit a particular contractual arrangement

that enables the manager to raise q(π) at each period, and to receive an expected

compensation v(π)∆t over [t, t+ ∆t]. In the absence of any frictions, there are many

different arrangements in which this can be achieved. For example, the manager can

simply ask investors at the beginning of each period to pay her a salary v(π)∆t, collect

funds q(π) from them, invest, and leave them the date - (t + ∆t) proceeds. She may

alternatively, as assumed by Berk and Green (2004), quote a fee f∆t at the beginning

of each period. The fee is the fraction of the date - (t+ ∆t) assets under management

(before any new inflows/outflows of funds) that accrues to the manager. If a manager

with perceived skills π quotes a fee f∆t, competitive investors will supply funds as

long as their net expected rate of return is equal to r. Thus, their fund supply q(f)

solves

(1− f∆t)
(
πe(r+a−c(q(f)))∆t + (1− π)e(r−c(q(f)))∆t

)
= er∆t.

Therefore as ∆t→ 0, q (f) solves

πa = c(q(f)) + f. (5)

The manager maximizes her expected profits by choosing f such that:

f = arg max
f

f∆t× q(f) = arg max
f

(πa− c(q(f))) ∆t× q(f),

which implies that the manager collects the maximal expected surplus v(π)∆t.

Q.E.D.

This baseline model is essentially identical to that of Berk and Green (2004). The
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main modeling difference is that the distribution of skills is binomial in our setup

while it is Gaussian in theirs. With our specification, the model is stationary in per-

ceived skills π, and is therefore more tractable. In particular, this specification yields

a tractable formulation of the manager’s total expected profit from date 0 onwards.

While this is not particularly useful in the frictionless environment of Berk and Green,

it turns out to be instrumental when we introduce asymmetric information between

the manager and investors.

Let (πn∆t)n≥0 denote the process that describes the manager’s perceived skills at

each date. From Lemma 2, the manager’s continuation utility is

V (π,∆t) = E

[
∞∑
n=0

e−rn∆tv(πn∆t)∆t | π0 = π

]
,

where v(π) is given by (4). The following proposition shows that this continuation

utility converges to a simple limit when ∆t becomes small.

PROPOSITION 1: Let

V (π) = lim
∆t→0

V (π,∆t).

We have

V (π) =

∫ 1

0

G (π, x) v(x)dx, (6)

where

G(π, x) =
2σ2

ψa2x2(1− x)2

 g(1− π)g(x) if 0 ≤ x ≤ π

g(π)g(1− x) if π ≤ x ≤ 1
, (7)

and

ψ =

√
1 +

8rσ2

a2
, (8)

g(u) = u
1
2

+ 1
2
ψ(1− u)

1
2
− 1

2
ψ.

Convergence of V (π,∆t) to V (π) when ∆t→ 0 is uniform over π ∈ (0, 1) .
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Proof of Proposition 1: See Appendix.

In the remainder of the paper, all results will be established for ∆t that is sufficiently

small for us to approximate the manager’s continuation utility with its continuous-time

limit (6).

Expression (6) can be interpreted as an expectation over the instantaneous surplus

v (x) weighted by a discount factor G(π, x). The factor G(π, x) has an intuitive in-

terpretation: it measures the discounted frequency of the future dates at which the

manager will have a perceived ability x given that she starts out with perceived skills

π. Notice that the factor G depends only on a/σ, which governs the speed at which

agents learn about the manager’s skills, and on the discount rate r. The cost parame-

ters α and β affect only the instantaneous profit v from (4). This is because the cost is

known and thus filtered out by the agents when inferring skills from realized returns.

It is easy to verify that ∫ 1

0

G (π, x)xdx =
π

r
. (9)

Thus, in the case α = 1, the continuation utility V (π) is proportional to π.

We now depart from this frictionless benchmark set by Berk and Green, and intro-

duce informational asymmetry between the manager and investors. We posit that the

manager may secretly enter into zero-alpha trades in order to manipulate her perceived

skills temporarily as opposed to efficiently investing in the alpha-generating technology

described in (1). We will show that the spot labor market interactions considered thus

far may generate perverse incentives in the presence of this friction.

B. Risk Shifting

The Berk and Green model assumes a frictionless interaction between the manager

and investors. While this is a very useful benchmark, in reality several informational

frictions may affect the delegation of asset management to sophisticated entities such as

hedge funds and investment banks. As the following quote from the Financial Stability
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Forum “Principles for Sound Compensation Practices” suggests, the impossibility of

perfectly monitoring shifts in risk exposures within such institutions can be particularly

problematic:

In principle, if risk management and control systems were strong and

highly effective, the risk-taking incentives provided by compensation sys-

tems would not matter because risk would stay within the firm’s appetite.

In practice, all risk management and control systems have limitations and,

as the current crisis has shown, they can fail to properly control risks. The

incentives provided by compensation can be extremely powerful. Without

attention to the risk implications of the compensation system, risk man-

agement and control systems can be overwhelmed, evaded, or captured by

risk-takers.

To study such incentives for surreptitiously shifting risk exposures, we introduce

the following friction to the baseline model:

ASSUMPTION 2: (Risk-shifting technology). At each date, the manager can secretly

invest all or part of her funds in an alternative technology whose returns are perfectly

scalable and independent of the returns on the technology described in (1). This tech-

nology enables her to generate a one-period gross return with any arbitrary distribution

over [0,∞) with mean er
′∆t, where r′ ≤ r. Investors observe returns realized at the

reporting and contracting dates n∆t, at which the manager’s position is marked-to-

market.

We will now briefly comment on our modeling choice. We interpret the alpha-

generating technology (1) available to the manager as the investment strategy that

she agrees with the investors and/or her supervisors. In practice this strategy may

vary over time, and involve shifts in asset selection, asset allocation, or overall risk

exposure. But such shifts are agreed between the parties. For simplicity, we abstract
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from them and, following Berk and Green, we model this agreed trading strategy as a

simple production function (1).

The “risk-shifting” technology that the manager may secretly use reflects the po-

sitions that she can conceal from the investors and /or her supervisors by evading the

various control and risk management systems put in place to monitor her. To bring

our results into sharper focus, we assume that these trades are detrimental to investors

in that they do not generate a positive risk-adjusted expected excess return. Moreover,

we allow for the possibility that concealing these trades from investors comes at a cost

r−r′. The assumption that these trades are independent of the alpha-generating tech-

nology ensures that they cannot be used for arbitrage purposes. Because such trades

yield less in terms of expectation than the manager’s alpha-generating technology (1),

she will not invest her own funds in them. In the presence of career concerns, however,

the manager may be tempted to use the “risk-shifting” technology because it provides

her with an opportunity to manipulate investors’ beliefs about her reputation.

Given the large set of trading opportunities available to sophisticated managers, we

consider a general setting in which the fund manager can secretly choose any arbitrary

payoff distribution. One of the questions we are interested in relates to understanding

which trades work best in manipulating investors’ beliefs. For expositional simplicity,

we assume the perfect scalability of these trades. It is straightforward matter to extend

our analysis to the case in which large trades are more difficult to hide than small trades.

The manager in our model may literally be interpreted as an individual trader, or

may alternatively be a desk or a division that collectively decides to breach its mandate

or exceed its risk limits. In the remainder of the paper, we refer to the secret use of

this inefficient technology by the manager, as opposed to the transparent risk taking

induced by the alpha-generating technology (1), as “risk shifting” or “gambling”.

We now study whether the friction introduced in Assumption 2 affects the outcomes

in the Berk and Green environment for short-term contracts (Assumption 1). The first

type of opportunistic behavior could occur if the manager secretly invests a portion of
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her funds at the risk-free rate r′, rather than using her alpha-generating technology.

This represents the case where a manager performs well from January to November,

say, and then prefers to stop investing actively in order to lock in a profit. We then

have the following result.

PROPOSITION 2: If

r′ ≤ r − σ2/2, (10)

then the manager does not secretly invest at the risk-free rate.

Proof of Proposition 2: See Appendix.

The remainder of the paper focuses on situations in which the manager uses the

risk-shifting technology to increase rather than reduce risk. We believe that this is a

more important question because such excessive risk taking could contribute to financial

instability, as suggested by the recent financial crisis . We therefore assume in what

follows that condition (10) holds.

We now characterize the manager’s incentives to gamble secretly (and inefficiently).

Suppose that the economy is in an equilibrium in which investors believe that the

manager always invests in the alpha-generating technology (1). We assess whether the

manager could be tempted to deviate and enter into a one-shot gamble.

Suppose therefore that the manager gambles during her first trading round, realizes

a return R, and from then on does not gamble. Suppose that investors believe instead

that she has never gambled. Let πn∆t be the manager’s (correct) belief about her skills

at date n∆t and let πRn∆t be investors’ (incorrect) perception of her skills at date n∆t.

We have

PROPOSITION 3:

πRt ≡ lim
∆t→0,n∆t→t

πRn∆t =
πtR

a
σ2

1− πt + πtR
a
σ2
. (11)

Proof of Proposition 3: See Appendix.
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Remark. In principle, a realization of R = 0 should perfectly reveal to investors

that the manager gambled because her alpha-generating technology delivers strictly

positive returns with a probability of one. We assume instead that πRt is continuous

at zero, so that investors infer π = 0 from observing R = 0. Equivalently, we could

assume that traders who are caught gambling are excluded from the market.

The continuation utility of the manager after the return R is realized is

W (π,R,∆t) = E

[
∞∑
n=0

e−rn∆tv(πRn∆t)∆t|π0 = π

]
.

For ∆t small, (6) and (11) imply that:

W (π,R) ≡ lim
∆t→0

W (π,R,∆t) =

∫ 1

0

G (π, x) v

(
xR

a
σ2

1− x+ xR
a
σ2

)
dx. (12)

Notice that as ∆t→ 0 the mean of the gamble, er
′∆t, converges to one irrespective of

r′. The manager therefore chooses a unit mean gamble whose distribution maximizes

her expectation over W (π,R). Formally, denoting M the set of Borelian probability

measures over [0,+∞), she solves

max
µ∈M

∫ ∞
0

W (π,R) dµ(R) (13)

s. t.

∫ ∞
0

Rdµ(R) = 1.

In the electronic appendix, we show that the generic solution to (13) is attained using

a binary gamble - or a measure comprised of two atoms, one above 1 and the other

below. If these two atoms coincide at 1, the manager does not find it worthwhile to

gamble, and an equilibrium without inefficient risk shifting can be sustained. If they

do not, then the optimal binary gamble is not degenerate, which means that such an

equilibrium without risk shifting does not exist.
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Obviously, a sufficient condition that makes gambling undesirable is that W (π,R)

is concave in R. More generally, the optimal gamble is determined by the convexity

properties of W (π,R), which in turn depend on the parameters a, σ, α, and r. We

have the following result.

PROPOSITION 4: Suppose that Assumptions 1 and 2 hold.

i) If

a

σ2
≤ 1

α
, (14)

then there exists an equilibrium in which the manager extracts the entire expected

surplus and does not engage in risk shifting.

ii) If

a

σ2
>

1

α
and r >

α(α− 1)a2

2σ2
(15)

then such an equilibrium does not exist.

Proof of Proposition 4: See Appendix.

To gain a better understanding of the results in Proposition 4, suppose that the

manager tries to “pick up nickels in front of a steamroller”, in other words, she gambles

and realizes an instantaneous return of 1+ε with probability 1/(1+ε), where ε is small,

or loses everything. Then from (11), in case of success, her new reputation is

πR =
π (1 + ε)

a
σ2

1− π + π(1 + ε)
a
σ2
,

which for π and ε small enough is approximately

πR ' π0

(
1 +

a

σ2
ε
)
. (16)

Further, Lemma 6 in the Appendix shows that if r is not too small, then the continu-

ation utility of the manager V (π) behaves as πα as π → 0. Therefore, the manager’s
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net expected gain from the gamble for π and ε small enough is proportional to

1

1 + ε

(
πR
)α − πα ' πα

(αa
σ2
− 1
)
ε. (17)

Thus, whether there is risk shifting or not depends on whether the ratio αa/σ2 is

greater or less than 1.

Proposition 4 shows that risk shifting is particularly appealing when three condi-

tions are met. First, managerial skills generate a high alpha per unit of risk (a/σ2 is

large). One can see from (16) that in this case, realized returns have a large impact

on investors’ beliefs. Second, the manager’s skills are sufficiently scalable (α is large).

In this case, positive news about her skills translates into a large increase in expected

future fund size, and thus into large future expected profits. Finally, the manager

should be sufficiently impatient (r is large). If the manager is patient, she cares only

for the long run in which she ends up with the reputation that she deserves regardless

of her earlier attempts to gamble. In this regard, it is worth noticing that condition

r > α(α−1)a2

2σ2 in (15) is only a sufficient condition for risk shifting. Numerical analysis

shows that the manager is tempted to gamble under much milder conditions on r when

a/σ2 > 1/α is satisfied.

To assess whether the risk-shifting friction is likely to be important in practice,

we consider a calibration consistent with that of Berk and Green. We set α = 2,

a = 5%, σ = 25%, and r = 5%. Simple calculations then show that the conditions

(15) are satisfied. More generally, condition a/σ2 > 1/α is very likely to be satisfied

in practice. It holds whenever the Sharpe ratio of a portfolio strategy is larger than

its volatility (a/σ > σ), which is true for almost all investment strategies. In sum,

this suggests that risk shifting matters in this model for parameter values that are

empirically plausible.1
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C. Equilibria with Risk Shifting

Proposition 4 establishes that under the plausible conditions (15), an equilibrium

without gambling does not exist. This raises the following questions: Under these

conditions, which gambles emerge in equilibrium? How does gambling in equilibrium

affect learning and the distribution of realized returns?

To answer these questions, we consider a reduced-form version of our model. It

allows us to abstract from complex signalling issues that would arise in an infinite

horizon dynamic model, but nevertheless yields interesting insights into equilibrium

gambling strategies.2

Specifically, we study the following static model. We assume that the manager

makes only one investment decision: She can invest one unit of capital using one of

two technologies. She can either use an alpha-generating technology, which produces

a gross return

eaθ−σ
2/2+σξ, ξ ∼ N(0, 1), (18)

where again θ ∈ {0; 1} is the unknown ability of the manager. Alternatively, she can

invest her funds in the risk-shifting technology that enables her to generate a gross

return with any arbitrary distribution over [0,+∞) with unit mean.

Investors and the manager share the common prior beliefs π0 that the manager is

skilled (θ = 1). Upon observing the return R realized by the manager - but without

knowing if she gambled or used the alpha-generating technology - investors update

their beliefs about the manager’s skills. As before, we denote πR1 = Prob{θ = 1|R} the

investors’ posterior belief that θ = 1, and refer to it as the manager’s reputation.

We assume that the manager invests in order to maximize the sum of her expected

current return R and a reduced-form continuation utility that is proportional to her

reputation πR1 :

maxE
(
γR + πR1

)
, γ > 0.
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Assuming a continuation utility that is linear in reputation is commonplace in the

literature on career concerns (see, for example, Dasgupta and Prat (2008), Holmstrom

and Ricart I Costa (1986), and Scharfstein and Stein (1990)). It is also consistent with

what the manager obtains in our dynamic model when the fund size is fixed (α = 1).

Lemma 3, similar to Proposition 4, shows that if a > σ2 then an equilibrium without

gambling does not exist.

LEMMA 3: If a > σ2 and π0 is sufficiently low, then there exists no equilibrium without

gambling.

Proof of Lemma 3: See Appendix.

We now assume that the conditions in Lemma 3 are satisfied, and characterize

an equilibrium with gambling. As before, we assume that the manager who is caught

gambling is excluded from the market and attains zero utility. Thus, in any equilibrium

with gambling, the manager cannot gamble with a probability of one. Notice that if the

manager decides to gamble she should choose a distribution for her returns that has no

atoms other than at zero. Suppose otherwise that investors believe that a particular

return R̂ > 0 occurs with a strictly positive probability. Because the distribution of

returns of the efficient technology has no atoms then upon observing R̂ investors would

conclude that the manager gambles and penalize her with zero payoff. In this case,

the manager would be better off by setting R̂ to zero in the first place and using the

realized surplus to improve the distribution of returns.

The foregoing observations imply that the investment strategy of the manager can

be summarized as follows. The manager invests in her alpha-generating technology

with probability (1 − q) and gambles with probability q ∈ (0, 1) . In the latter case,

she chooses a gamble that pays off 0 with probability x ≥ 0 and, conditionally on not

yielding 0, admits an atomless density ϕ over [0,∞). The following lemma further

characterizes this strategy.
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LEMMA 4: The gamble yields 0 with a positive probability (x > 0). The density ϕ is

single-peaked and has the support [z1, z2], where 1 < z1 < z2.

Proof of Lemma 4: See Appendix.

Lemma 4 shows that equilibria with risk shifting involve trading strategies that

consist exactly in taking on hidden-tail risk. With some probability, the manager sells

disaster insurance. She uses the insurance premium to generate a noisy excess return

if the disaster does not occur. Upon observing such fake excess returns, investors still

revise their views about the manager’s skills upwards because the manager also uses

her alpha-generating technology with some probability.

The proof of Lemma 4 provides an analytical expression for ϕ. Here we consider a

numerical example. We assume the following parameter values: σ = 10%, a = 2σ2 =

2%, π0 = 40%, and γ = 10%.

First, we check that with these parameter values, an equilibrium without gambling

does not exist. Suppose, by contradiction, that such an equilibrium does exist. In this

case, after observing a return R, investors form a posterior belief about the manager’s

skills as

πR1 =
π0χR

a/σ2

π0χRa/σ2 + 1− π0

, χ = e−a(a−σ2)/2σ2

.

Figure 1 Panel (a) depicts πR1 . It is increasing in R and is first convex and then concave.

[Figure 1 About Here]

If the manager does not gamble and invests in the efficient technology, her expected

future reputation coincides with the current reputation, and is π0. The electronic ap-

pendix offers a simple procedure to check whether the manager can enhance her ex-

pected reputation by resorting to gambling. This procedure consists in finding the

straight line that has the smallest value at one among all the straight lines that are

above the graph of πR1 . The manager manipulates her reputation if and only if this
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straight line takes a value strictly larger than π0 at R = 1. An optimal gamble has its

support included in the set where this line coincides with πR1 .

Panel (a) shows that in our example, there is an optimal gamble which delivers

either 0 or a gross return of 1.23 with probability of 80%. The expected reputation

from such a gamble is 40.6% > 40%. The gains in expected reputation from gambling

come at the cost of the lower expected returns. If the manager gambles, the expected

return is only 1, while it is π0e
a + (1 − π0) = 1.008 if she uses the alpha-generating

technology. Because the cost is less than the reputation gain, an equilibrium without

gambling is not sustainable.

Next, we solve for the manager’s equilibrium strategy with randomized gambling.

Figure 1 Panel (b) shows the equilibrium posterior πR1 . In contrast to that in Panel (a),

the posterior now has a linear portion over [1.02, 1.49] . In equilibrium, the manager

gambles with probability q = 5.6%. When she gambles, the manager loses everything

with probability x = 8.8% and obtains an excess return between 2% and 49% with a

density shown in Figure 1 Panel (c). The range of these returns [1.02, 1.49] corresponds

to the linear part of πR1 in Figure 1 Panel (b). The unconditional probability that the

manager goes bust is q × x = 0.5%. Thus, the manager trades an excess return with

probability 99.5% with the risk of losing everything.

While binary gambles are optimal deviations in an equilibrium in which investors

believe that the manager does not gamble, the equilibrium gambles are not binary

because this would be detected by investors. The equilibrium posterior with gambling

is flatter than the one without gambling in the region [1.02, 1.49] , where the returns

from gambling are realized. As a result, learning about managerial skills is slower in

the equilibrium with gambling.

D. What Are the Costs of Risk Shifting?

The results of Sections B and C suggest that there are three types of costs associated

with risk shifting induced by career concerns in delegated asset management. First,
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realized returns are riskier in equilibria with gambling. While in our setting investors

are risk-neutral, it would be straightforward to extend our model to one in which

investors are risk-averse. In this case, additional risk would be costly to them, unless

one assumes that gambles are purely idiosyncratic and that investors can diversify

them away. From a financial stability perspective (which is beyond the scope of our

model), the most worrying aspect of equilibrium risk shifting is that it thickens the left

tail of returns, since the manager finances small and frequent positive excess returns

with rare but devastating losses. When such incentives prevail within institutions that

have legal access to the public safety nets, or that are too big or too systemic too fail,

the induced cost for taxpayers of the occurrence of such fat-tailed returns can be very

high.

Second, the manager may give up pursuing alpha-generating strategies and invest

instead in fairly priced portfolios, which have a risk profile better suited to the manip-

ulation of her reputation. As a result, markets may not be as efficient as they would

be if the manager tried to correct any mispricing.

Finally, gambling in equilibrium slows down the discovery of managerial skills be-

cause the manager applies them less often. This leads to a less efficient allocation of

capital.

II. Long-Term Contracts and Risk Shifting

In the previous section we showed that risk shifting reduces the gains from matching

“brains and resources” through delegated asset management, and that it generates

significant tail risk for financial institutions. It also shows that risk shifting is likely to

occur in equilibrium if only one-period contracts are used.

This section introduces the possibility of long-term contracting. We perform two

different exercises. First, we consider the risk-taking incentives induced by performance

fees with high-water marks, which are commonly used in the hedge fund industry. We
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show that this contract does not eliminate the risk-shifting incentives created by the

flow-performance relationship. Second, we solve for optimal contracts that eliminate

risk shifting even when conditions (15) are satisfied.

For simplicity, this section restricts the analysis to the case in which the alpha-

generating technology is such that α = 1 in (2). In this case, reputation affects the

manager’s expected alpha, but not the optimal fund size, which is constant and equal

to 1.

A. Performance Fees with High-Water Marks

The typical fee structure in the hedge fund industry usually includes a management

fee and a performance fee. Management fees are a fixed fraction of the fund’s net asset

value ranging from 1% to 4% per annum, and are meant to cover the fund’s operating

costs. The performance fee is a fraction of the fund’s profits over a given year, ranging

from 15% to 50%. The most widespread combination is a 2% management fee and

a 20% performance fee, the so-called 2-20 contract. The performance fee typically

includes a “high-water mark” (HWM) provision, meaning that the fee applies only to

the profits in excess of the previous fund maximum. The goal of this section is to study

whether the performance fees are conducive to risk shifting in our model.

Because the terms of the contract are usually fixed, in general the manager does not

extract the maximum expected surplus but leaves some surplus to investors. This would

not be possible with the one-sided commitment assumed thus far because the manager

would enter into a new contract with higher fees if her reputation improved. Such

renegotiation by hedge fund managers is not just a theoretical possibility. In practice,

managers do adjust their fees in response to their performance. There is also ample

anecdotal evidence that fund managers tend to close funds that have underperformed

in order to reset the high-water mark.3 Nevertheless, in order to provide a meaningful

analysis, we only assume in this Section A that both investors and the manager agree

on the fees and can commit not to renegotiate them.
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To understand the risk-taking incentives created by the performance fee, we first

consider a situation in which there are no new inflows after the manager and investors

sign the contract at date 0. Specifically, we assume that both the manager and investor

can commit to the following contract: (i) At date 0, investors make an initial unit

investment in the fund; (ii) The manager receives a performance fee k with a high-

water mark equal to one and returns the fraction of the fund value in excess of 1 that

she does not receive as a performance fee to investors; (iii) There are no new inflows

to the fund.

Under the above contract, if the manager uses the alpha-generating technology, the

fund size (qt)t≥0 evolves as:

dqt = qt [(r + aθ) dt+ σdBt]− dHt, (19)

Ht =

∫ t

0

1{qs=1}dqs. (20)

Ht is the fund value in excess of 1 that is redeemed to investors after the performance

fee is paid. It is a non-decreasing adapted process that increases only when qt exceeds

the optimal fund size equal to 1. At any date t, the continuation utility of the manager

is

Wt = Et

[∫ ∞
t

e−rskdHt+s

]
. (21)

The next proposition computes this utility Wt and shows that the manager never finds

it worthwhile to gamble in this case.

PROPOSITION 5: Suppose that the manager commits to the contract described in (i),

(ii), and (iii) above. Then, she never finds gambling worthwhile and her continuation

utility is

Wt = k
(
πtρ
−1qρt + (1− πt)qt

)
, (22)

ρ =
−(r + a− σ2/2) +

√
(r + a− σ2/2)2 + 2rσ2

σ2
< 1.
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Proof of Proposition 5: See Appendix.

Proposition 5 shows that without new inflows, a performance fee with a high-water

mark is not sufficiently convex to trigger gambling. A similar result is established by

Panageas and Westerfield (2009). Although our results are closely related, our setting

differs from that of Panageas and Westerfield along several interesting dimensions.

Panageas and Westerfield also considered a risk-neutral fund manager who is com-

pensated according to (21). The manager cannot secretly gamble but she can take

positions in a risk-free asset and in a risky asset that carries an exogenous constant

excess return. Panageas and Westerfield found that despite risk neutrality, the man-

ager optimally maintains a finite and constant leverage. One way to understand their

result is to notice that the performance fee with high-water mark can be viewed as

a continuum of call options with varying maturities. An increase in risk raises the

value of the options with the closest maturity but it also increases the possibility that

more remote options will become far out-of-the money in case of adverse realizations.

The resulting trade-off yields a constant leverage that depends both on the manager’s

discount rate and on the excess return on the risky asset. When the latter goes to

zero, Panageas and Westerfield show that the optimal leverage goes to infinity. This

result, however, crucially depends on the assumption that the manager’s discount rate

is strictly greater than the risk-free rate.

If the manager had a discount rate greater than r in our setting, she would then find

it optimal to gamble as her reputation deteriorates. In our model, as the manager’s

reputation declines, the perceived expected return on the alpha-generating technology

goes to zero. Therefore, at some point the manager would choose to forfeit investing in

a technology that provides a small excess return but limited risk in favor of gambling

with unrestricted risk-taking possibilities. This does not occur here only because the

manager’s discount rate is equal to the risk-free rate. In this case, the manager never

trades, even in the hope of gaining small expected excess returns in exchange for more

risk.
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Proposition 5 may suggest that the HWM contract does not lead to gambling.

This conclusion, however, does not apply if fund inflows are considered. The case

of α = 1 is especially illustrative and simple. Provided that the reputation of the

manager is high enough to cover her performance fees, investors will always be willing

to supply funds until the assets under management reach their optimal size equal to

one. This drastically reduces the penalty that accrues from realizing negative returns

and therefore, from gambling.

To demonstrate this, suppose that the manager has an option to reopen her fund

once to new investors. Let q∗ be the fund size when she decides to reopen her fund. In

this case, the manager raises 1 − q∗ units of fresh capital with a high-water mark set

to one. We assume that the new investors are the first to withdraw their capital if the

total fund size exceeds the optimal fund size of one.4

Let qot and qnt be the respective stakes in the fund of the old and new investors after

the fund is reopened and before the stake of the old investors reaches one. Then if the

manager uses her alpha-generating technology, qot and qnt evolve as

dqot = qot [(r + aθ) dt+ σdBt] , (23)

d(qot + qnt ) = (qot + qnt ) [(r + aθ) dt+ σdBt]− dHt, (24)

Ht =

∫ t

0

1{qot+qnt =1}d(qot + qnt ). (25)

When the stake of the old investors reaches one, they become the sole investors in

the fund again, and their capital evolves according to (19) and (20). We denote this

moment as τ1. Let τq∗ denote the time when the funds of the original investors reach

a level q∗ and the manager reopens the fund to new inflows. The manager’s expected

fees from new investors are

W n(q∗) = Et

[∫ τ1

τq∗

e−rskqnt dHt+s

]
, (26)
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where Ht given by (25). The present value of these fees is

Ee−rτq∗W n(q∗).

While W n(q∗) decreases in q∗ and reaches maximum at q∗ = 0, Ee−rτq∗ increases in q∗.

Thus, in setting q∗ that solves

sup
q∗
Ee−rτq∗W n(q∗), (27)

the manager faces a trade-off between the amount of fees she can generate from new

investors and how quickly she can receive these fees.

Gambling affects the distribution of τq∗. In particular, if the manager takes on

hidden tail risk and realizes a low return, the manager can exercise her option to raise

new funds sooner. This greatly reduces the cost of gambling and therefore provides

strong incentives to engage in risk-shifting. Of course, the option to raise new funds

is only of value to managers whose reputation is good enough that they are still able

to attract new flows after a loss. Therefore, incentives to take on hidden-tail risk are

highest for managers with a good reputation. However, this result depends on the

assumption made in this section that the manager does not renegotiate her contract

as her reputation improves. In the next section, we show that when the manager is

paid the maximum surplus she can generate, it is conversely a manager with a low

reputation who has the highest incentives to gamble. This is because a manager who

is perceived to be highly skilled has much to lose if her reputation becomes tarnished.

Under the 2/20 contract, however, a good manager does not generally extract the

maximum surplus, which makes gambling less costly. We have

PROPOSITION 6: Suppose that the manager commits to the contract described in (i)

and (ii). In addition, suppose that the manager has an option to reopen her fund to

new investors who supply funds as long as they expect to break even. If r > σ2/10 there
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then exists π such that for all π ≥ π, the manager with a reputation π gambles.

Proof of Proposition 6: See Appendix.

Proposition 6 shows that an option to receive more inflows, even if it occurs only

once, is sufficient to create gambling incentives. This suggests that typical performance

fees may be problematic in practice given that hedge funds are typically open-ended

and do actually have the option to increase their capital.

B. Optimal Contract with Contingent Bonus Deferral

Under the strong - and in our view unrealistic - assumption that the manager can

commit not to renegotiate a contract after her reputation has improved, very simple

contracts can eliminate risk shifting. For example, fully insuring the manager by guar-

anteeing a fixed wage equal to aπ0 per period would eliminate any incentives to gamble.

This is not feasible in the more realistic environment with one-sided commitment con-

sidered here. The manager can walk away from such an insurance contract as soon as

her reputation improves.

When commitment is one-sided, contracts must be structured in such a way that

the continuation utility of the manager at any date is at least as large as her outside

options given her current reputation. This implies that a contract for a given initial π0

cannot be determined in isolation. Instead, all contracts for all initial skill levels depend

on each other through the channel of managerial outside options. In this section we

present contracts that eliminate risk shifting. They exploit the fact that the impact of

gambling on investors beliefs vanishes in the long run.

Before constructing these contracts, we illustrate the way they work using the

following simple contract. Suppose that investors and the manager sign the following

contract at date 0. The investors commit to invest one unit in the fund at each date

between 0 and T . The manager does not receive any payment until date T , at which
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she receives a single payment wT such that:

wT =
aπT
r

(
erT − 1

)
. (28)

Suppose, for now only, that after date T the manager no longer works. The date-0

present value of the payment is

E0

[
e−rTwT

]
=
aπ0

r

(
1− e−rT

)
,

which is exactly the present value of the excess returns that investors expect to receive

between 0 and T if the manager uses her alpha-generating technology throughout. The

contract resembles a deferred bonus with clawback provisions, whereby the manager

receives a single terminal payment that is contingent on her entire track record over

the period [0, T ], as summarized by πT .

Consider the manager’s incentives to gamble at date 0 given such a contract. As in

(13), if the manager decides to gamble she chooses a distribution µ that solves:

Π(π, T ) ≡ max
µ

∫ ∞
0

E0

[
πTR

a
σ2

1− πT + πTR
a
σ2
|π0 = π

]
dµ(R) (29)

s. t.

∫ ∞
0

Rdµ(R) = 1.

The manager will not be tempted to gamble at date 0 if and only if

Π(π0, T ) = π0. (30)

The following lemma establishes important properties of Π(π, T ).

LEMMA 5: For all π ∈ (0, 1), the function Π(π, T ) decreases with respect to T , and

is equal to π for all T sufficiently large. Furthermore, there exists π such that for all

π ≥ π, Π(π, 0) = π.
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Proof of Lemma 5: See Appendix.

Because Π(π, T ) decreases with respect to T, date-0 gambling becomes less appeal-

ing as the payment date becomes more remote. This formalizes the insight that the

impact of gambling on investors’ beliefs diminishes over time. Lemma 5 implies in

particular that we can define for all π

τ(π) ≡ inf {t ≥ 0 : Π(π, t) = π} . (31)

If T ≥ τ (π0) then the manager does not gamble at date 0. As the reputation of the

manager improves, incentives to gamble decrease. Lemma 5 shows that a manager with

a sufficiently high reputation does not gamble even if the payment is made at date-0.

In light of the foregoing, we are now ready to define an optimal contract. There

are two matters that the fixed-date single-payment contract outlined above does not

address. First, while setting the payment date at τ (π0) deters date-0 gambling, there

is no guarantee that the manager will not be tempted to gamble as the payment date

approaches. Second, it is necessary to check that if the manager enters into a new single-

payment contract after the current one expires, this does not affect her incentives to

gamble within the current contract.

We construct the optimal contract as follows. At date 0, the investors commit to

pay wT0 =
aπT0

r

(
erT0 − 1

)
at a random date T0 which is defined as follows. Initially, T0

is equal to τ (π0). Then for all n ≥ 1, if T(n−1)∆t = 1, then the payment is made and the

contract ends. Otherwise, the date is revised as Tn∆t = max
{
T(n−1)∆t − 1; τ(πn∆t)

}
.

After the payment of this current contract is made, a new similar contract is initiated

at date T with initial reputation πT . We have:

PROPOSITION 7: If the manager is compensated according to a sequence of single-

payment contracts such that a contract that starts at date t promises the payment

aπT
r

(
erT − 1

)
at a random date T defined as above, she never gambles and extracts the

maximum expected surplus.
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Proof of Proposition 7: Investors can commit to this contract because by con-

struction, investors break even ex-ante. We therefore only need to prove two remaining

results: first that the manager’s continuation utility is higher than her outside option

at any date, and second that the manager never finds it optimal to gamble.

In respect of the first point, we define the random payment date of the current

contract as T . At date t, the manager expects to receive:

Et

[
e−r(T−t)

(
wT +

aπT
r

)]
=
ertaπt
r
≥ aπt

r
.

In respect of the second point, we observe that by construction, the random pay-

ment date T is such that the manager has no incentive to gamble in order to increase

the expected payment from the current contract. It may still be the case that the

manager finds it worthwhile to gamble to increase her expected payoff on the subse-

quent contracts that follow the terminal payment of the current one. Notice that from

Lemma 5, the case that is the most conducive to gambling is if all the payments from

subsequent contracts were made once and for all at date T . Even in this case, the

expected payment is aπT
r

, which is proportional to wT = aπT
r

(
erT − 1

)
, and thus not

conducive to gambling.

Q.E.D.

Notice that this contract can be implemented in practice with share grants to the

manager instead of cash bonuses provided that i) the manager is sufficiently senior

or important within the firm that her decisions actually affect the share price, ii)

the vesting schedule is stochastic, depending on the manager’s entire track record as

described above.

It is interesting to compare this contract with the one that emerges from models

of dynamic moral hazard such as, for example, DeMarzo and Sannikov (2006) or He

(2009). In these models, an agent may secretly divert cash flows instead of reporting

her entire output to the principal. The optimal contract in this case consists, as in
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ours, in adjusting the present value of the future payments promised to the agent as

her track record evolves.

However, the timing conditions of the future payments are rather different in those

contracts compared with ours. In our contract it is crucial that the investors can com-

mit to not accelerating the timing of payments upon observing a stellar performance.

In moral-hazard models, a stellar track record results in accelerated payments being

made to the agent.

This difference arises because the contracts are driven by different economic con-

siderations. In our model, a stream of fixed promised payments would completely

eliminate any risk-shifting incentives. However, such fixed payments are not viable

because investors are forced to adjust the manager’s continuation value as her repu-

tation improves. If not, a good track record would lead the manager to repudiate her

current labor contract and sign a new one that reflects her new improved reputation.

The necessity of adjusting the continuation value creates risk-shifting incentives that

can be addressed by the investors’ commitment to deferring payments.

In contrast, in moral-hazard models, an adjustment of continuation values is meant

to provide the agent with incentives to report the highest possible output instead of

diverting some of it. Thus, the sooner the agent reports high income, the better.

C. Current Financial Reforms and Contingent Bonus Deferral Con-

tract

There is a widely shared view that inappropriate compensation schemes within the

financial services industry were one of the ingredients that led to the financial crisis

that erupted in 2008. According to “Principles for Sound Compensation Practices,”

published by the Financial Stability Forum (FSF) and summarizing the outcome of

multiple surveys of financial institutions “over 80 percent of market participants believe

that compensation practices played a role in promoting the accumulation of risks that

33



led to the current crisis.”

In the face of these compensation issues, public authorities around the world have

issued guidelines for compensation reforms. These guidelines prominently feature the

deferral of bonuses and the introduction of clawback mechanisms. For example, in

the U.S., the Guidance on Sound Incentive Compensation Policies, jointly issued by

several authorities,5 lists four methods of making compensation more sensitive to risk,

including “deferral of payment” with explicit mention of clawbacks, “longer perfor-

mance periods”, and a “reduced sensitivity to short-term performance”. The Financial

Stability Forum points to similar tools, and writes: “One way to align time horizons is

to place a portion, and in some cases up to the entirety, of any given year’s bonus grant,

both cash and equity, into the equivalent of an escrow account. All or part of the grant

is reversed if the firm as a whole performs poorly, or if the exposures the employee

caused the firm to assume in the year for which the bonus was granted perform poorly

(a clawback).”

The industry is gradually beginning to follow this guidance. The International In-

stitute of Finance, surveying the practices of 37 financial institutions representing more

than half of global banking activity, concludes6: “The industry has begun to take steps

to strengthen the link between delivery of deferred compensation and the continued

performance of the individual. Over 40% of the firms surveyed include performance-

based criteria in their deferred compensation schemes, although in a majority of cases

this takes simply the form of a penalty for gross misconduct or large-scale unexpected

losses. A number of firms have developed more sophisticated approaches that incorpo-

rate a final payout multiplier that adjusts compensation up or down based on current

year or historical performance.”

Interestingly, the stochastic payment dates that we introduce in this section strongly

resemble this introduction of bonus deferral and clawbacks. While our optimal contract

follows the spirit of these reforms, we believe that it also introduces some important

caveats. Our model suggests that setting the bonus payment date once and for all is in
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general not optimal, even if the terminal bonus is adjusted for subsequent performance.

Additionally, it is important to commit to adjusting the payment date as events unfold.

For example, our analysis shows that a three-year deferral might induce excessive risk

taking at the end of year 2 if the manager has not performed well and the bonus is due

in one year.

III. Conclusion

Financial innovation has come under severe criticism after the crisis that erupted in

2007 . Several papers have documented that a number of structured products appeared

mostly to be aimed at exploiting investors’ weaknesses or ignorance.7 In this paper, we

suggest that by enlarging the set of financial instruments available to fund managers,

financial innovation may exacerbate agency costs even when investors are sophisticated,

provided that investors cannot perfectly monitor the positions of the fund managers.

We introduce a novel framework to study this agency problem between managers

and investors. In this framework, managers’ compensation depends on investors’ per-

ception of their ability to generate excess returns above a fair compensation for risk

(alpha). The managers can temporarily distort the perception of these alpha-generating

skills by trading a rich menu of financial instruments.

The model delivers two main implications. First, in the absence of careful contract-

ing, this friction may lead managers to take on hidden-tail risk in order to distort their

perceived skills temporarily. Second, while current compensation reforms based on the

deferral and clawback of bonuses appear to be an appropriate tool for addressing this

issue, in their current form these reforms miss the point that the payment dates must

be dynamically adjusted as the cumulative performance of the manager evolves.

In general, there are ways of dealing with risk shifting in delegated asset man-

agement other than through the design of compensation. Possible solutions include

increased transparency, or restrictions on the set of instruments that managers can
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trade. In this paper we focus on solving the risk-shifting problem using compensation

design alone. This makes the problem more challenging. Future research could com-

bine optimal contracting with these additional means of addressing the risk-shifting

problem. On the other hand, we assume that positions are always valued at a fair

market price. Instruments that are more difficult to value such as illiquid securities

or exotic derivative contracts are likely to provide fund managers with additional risk-

shifting incentives if trading losses can be concealed for some time. Future research

could further explore these channels in an attempt to engage in risk transformation.
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Notes

1Our results are also broadly supported by empirical findings of Brown, Harlow, and

Starks (1996) and Chevalier and Ellison (1997), who show that mutual fund managers

tend to take on more risk following their disappointing performance.

2In an equilibrium with gambling, unlike in an equilibrium without gambling, the

manager and investors possess different information about the manager’s ability. While

the manager knows whether she gambled or not, investors can only imperfectly infer

this from the observed returns. This creates room for signaling, whereby a truly skilled

manager would like to distinguish herself credibly from a lucky gambler. Solving for

such equilibria with asymmetric information is a very difficult problem and is beyond

the scope of this paper.

3See, for example, G. Zuckerman, “Andor Haunted by a Bad Bet,” July 15th, 2004,

Wall Street Journal; A. Stone, “Hedge Funds: Fees Down? Close Shop,” Bloomberg

Business Week, August 7th, 2005; or “Hedge-Fund Closures: Quitting While They’re

Behind,” The Economist, February 18th, 2012.

4This assumption makes gambling less likely because it decreases the manager’s

expected fees from opening the fund to new investors, and thus makes gambling more

costly.

5Office of the Comptroller of the Currency, Federal Reserve, Federal Deposit Insur-

ance Corporation, Treasury, and Office of Thrift Supervision.

6In “Compensation in Financial Services, Industry Progress and the Agenda for

Change,” March 2009. The International Institute of Finance is the leading global

association of financial institutions.
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7For example, Coval, Jurek, and Stafford (2009a) and Coval, Jurek, and Stafford

(2009b) contended that senior CDO tranches aimed at exploiting the misperception

of correlation risk by rating agencies, and that of systematic exposure by investors.

Henderson and Pearson (2011) considered a class of structured equity products offered

at prices that are hard to reconcile with purchasers’ rationality.
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Appendix. Proofs

Proof of Lemma 1: As ∆t→ 0, the optimal fund size and maximal expected surplus

solve

lim
∆t→0

q(π) = arg max
q
q(πa− βq

1
α−1 ),

lim
∆t→0

v(π) = max
q
q(πa− βq

1
α−1 ).

Direct computations show that

lim
∆t→0

q(π) =

(
α− 1

αβ
aπ

)α−1

,

lim
∆t→0

v(π) = β1−α (α− 1)α−1

αα
(aπ)α .

Q.E.D.

Proof of Proposition 1: We first show point-wise convergence. That is, we establish (6)

for a fixed π0 = π. By Bayes’ theorem, πn∆t, the perceived skills at date n∆t, satisfy

πn∆t =
π0ϕn∆t

1− π0 + π0ϕn∆t

, (A1)

where

ϕn∆t = exp

{
a

σ2

(
a

(
θ − 1

2

)
n∆t+ σBn∆t

)}
(A2)

is the likelihood ratio process. Let us introduce the continuous-time process (πt)t≥0

that obeys

dπt =
a

σ
πt(1− πt)dBt, π0 = π,

where Bt = 1
σ

(
θat+ σBt − a

∫ t
0
πsds

)
. Then (Bt)t≥0 is a standard Wiener process

under the agents’ filtration (see Liptser and Shiryaev (1978)). Further, as ∆t → 0

and n∆t → t, πn∆t → πt a.s. (see Liptser and Shiryaev (1978)). Hence, V (π) can be
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written as

V (π) = E0

∫ ∞
0

e−rtv(πt)dt,

s.to dπt =
a

σ
πt(1− πt)dBt, π0 = π. (A3)

By the Feynman-Kac formula, the function V solves the following linear second-order

differential equation:

a2

2σ2
π2(1− π)2V

′′
(π)− rV (π) + v(π) = 0. (A4)

From (A3) it follows that

V (0) = v(0)/r, V (1) = v(1)/r. (A5)

The corresponding homogeneous equation

a2

2σ2
π2(1− π)2V

′′
(π)− rV (π) = 0 (A6)

has two regular singular points at 0 and 1. All solutions of the homogeneous equation

are linear combinations of the two independent solutions

g (π) = (1− π)
1
2

+ 1
2
ψπ

1
2
− 1

2
ψ, ψ =

√
1 + 8rσ2/a2,

h(π) = g(1− π).

From here, formulas (6) and (7) are standard results in the theory of inhomogeneous

differential equations. The function G is the Dirichlet-Green function for the differen-

tial operator associated with the homogeneous differential equation (see, for example,

Driver (2003)).

We now show that V (π,∆t) converges to V (π) uniformly in π as ∆t→ 0. We have
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V (π)− V (π,∆t) = E

[
∞∑
n=0

∫ (n+1)∆t

n∆t

(
e−rtv(πt)− e−rn∆tv(πn∆t)

)
dt|π0 = π

]
.

Thus, it is enough to show that ∀ε > 0, ∃∆t such that ∀∆t < ∆t and ∀π ∈ [0, 1]

sup
s≤∆t

sup
π∈[0,1]

|E (v(πs)− v(π)) | < ε. (A7)

By change of variables (A7) can be written as

sup
s≤∆t

sup
π∈[0,1]

|E (v̂(π,Bs, s)− v̂(π, 0, 0)) | < ε,

where

v̂(π, x, t) = v

(
π exp

{
a
σ2

(
a
(
θ − 1

2

)
t+ σx

)}
1− π + π exp

{
a
σ2

(
a
(
θ − 1

2

)
t+ σx

)}) . (A8)

Because v is uniformly continuous over [0,1] it is enough to show that ∀π ∈ [0, 1] and

∀ε > 0, ∃∆t such that ∀∆t < ∆t

sup
s≤∆t
|E (v̂(π,Bs, s)− v̂(π, 0, 0)) | < ε. (A9)

This follows from the weak convergence of the measures induced by Bs to the measure

concentrated at 0 as s→ 0.

Q.E.D.

Proof of Proposition 2: Suppose that investors believe that the manager invests in

her private technology. In this case, if the manager does invest in her private technology

then πt evolves according to (A3). If, on the other hand, she invests in the risk-free

asset, πt evolves as

dπ =
a

σ
π(1− π)

(
r′ − r +

σ2

2
− (πa− c(qt))

)
dt.
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Suppose that at time t the manager allocates xt percentage of her funds to her alpha-

generating technology and invests the rest in the risk-free asset. Then her continuation

utility is

V (π, x) = E0

∫ ∞
0

e−rtv(πt)dt, (A10)

s.to dπt =
a

σ
πt(1− πt)

(
(1− xt)

(
r′ − r +

σ2

2
− (πa− c(qt))

)
+ xtdBt

)
, π0 = π.

The optimal investment policy xt that maximizes (A10) satisfies the HJB equation:

sup
x∈[0,1]

x2ψ2
2V
′′ + (1− x)ψ1V

′ − rV + v = 0, (A11)

where

ψ1 =
a

σ
πt(1− πt)

(
r′ − r +

σ2

2
− (πa− c(qt))

)
< 0,

ψ2 =
a

σ
πt(1− πt) > 0.

If xt ≡ 1 then πt is a martingale and by Jensen’s inequality (v(π) = πα)

Ev(πt) ≥ v(π0).

Therefore, at the optimal investment policy xt, rV (π, x) ≥ v(π). Thus (A11) implies

that the optimal policy is indeed xt ≡ 1.

Q.E.D.

Proof of Proposition 3: Suppose that the manager gambles and realizes a return R

over [0,∆t], and from then on invests in her alpha-generating technology. Let
(
πRn∆t

)
n∈N

denote the process under the manager’s filtration of her skills as perceived by investors

who believe instead that she has invested in her storage technology at date 0. These
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investors believe that

R = e

(
r+θa−c(q0)−σ

2

2

)
∆t+σB∆t .

From (A1) and (A2) it follows that

πR∆t =
π0R

a
σ2 e

a
σ2

(
σ2

2
+c(q0)−r−a

2

)
∆t

1− π0 + π0R
a
σ2 e

a
σ2

(
σ2

2
+c(q0)−r−a

2

)
∆t
,

∀n ≥ 0, πR(n+1)∆t =
πR∆t

ϕ(n+1)∆t

ϕ∆t

1− πR∆t + πR∆t
ϕ(n+1)∆t

ϕ∆t

. (A12)

As ∆t→ 0

lim
∆t→0

πR∆t =
π0R

a
σ2

1− π0 + π0R
a
σ2
,

and

lim
∆t→0

ϕ(n+1)∆t

ϕ∆t

=
πt

1− πt
1− π0

π0

.

Therefore,

lim
∆t→0, n∆t→t

πRn∆t =
πtR

a
σ2

1− πt + πtR
a
σ2
. (A13)

Q.E.D.

Proof of Proposition 4: Part 1. We first show that if σ2 > αa then the manager

does not engage in risk shifting. Proposition 2 demonstrates that the manager will not

invest in the alternative technology at the risk-free rate, provided that r′ < r − σ2/2.

We now show that she will not invest in any risky gamble as well.

Suppose the manager believes that she is skilled with probability π. At the same

time, suppose that investors believe that the manager is skilled with probability π′ and

that the manager never engages in risk shifting. We show that the manager has no

incentives to deviate by taking a one-shot risky gamble in this case.

Suppose the manager takes a gamble and realizes return R. Let W (π, π′, R,∆t) be

the expected utility of the manager conditional on realization a first-period return R.

Similar to the proof of Proposition 3 one can show that investors’ perception of the

46



manager’s skills πRt is

πRt =
πtR

a
σ2

(1− πt) (1−π′)π
(1−π)π′

+ πtR
a
σ2
. (A14)

Proposition 1 implies that

lim
∆t→0

W (π, π′, R,∆t) =

∫ 1

0

G (π, x) v

(
xR

a
σ2

(1− x) (1−π′)π
(1−π)π′

+ xR
a
σ2

)
dx. (A15)

Differentiating twice w.r.t. R shows that this function is concave in R when σ2 ≥ αa.

Hence the manager has no incentives to take a one-shot risky gamble in this case.

Because this holds for arbitrary heterogeneous priors π, π′, this implies that multi-

period deviations cannot be desirable by backward induction.

Part 2. We now show that if σ2 < αa, rσ2 > a2

2
α (α− 1) then for π0 = π small

enough, there exists a one-period gamble which makes the manager better off. Let

R = (1− ρ)−σ
2/a, ρ ∈ [0, 1). Consider the following gamble:

 R Prob. 1/R

0 Prob. 1− 1/R,

From (A15) the expected net gain from the above one-period gamble over perpetual

investment in the efficient storage technology is

∫ 1

0

G (π, x)xαu(x, ρ)dx, (A16)

where

u(x, ρ) =
(1− ρ)σ

2/a

(1− ρ(1− x))α
− 1. (A17)

Since σ2 < αa, there exists x̄ and some ρ̂ ∈ (0, 1) such that for all x ∈ [0, x̄],

(1−ρ̂)σ
2/a

(1−ρ̂(1−x))α
> 1 + ε for some ε > 0 and therefore, u(x, ρ̂) > ε > 0. Thus for π

small enough ∫ 1

0

G (π, x)xαu(x, ρ̂)dx >

∫ 1

π

G (π, x)xαu(x, ρ̂)dx.
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Using (7) we have

∫ 1

π

G (π, x)xαu(x, ρ̂)dx =
2σ2

ψa2
g(π)

∫ 1

π

xα−
3
2
− 1

2
ψ(1− x)−

3
2

+ 1
2
ψu(x, ρ̂)dx. (A18)

rσ2 > a2

2
α (α− 1) implies that ψ > 2α− 1. Therefore, the integral

∫ 1

π

xα−
3
2
− 1

2
ψ(1− x)−

3
2

+ 1
2
ψu(x, ρ̂)dx

diverges as π → 0. In this case, its sign is determined by the sign of u(·, ρ̂) in the

neighborhood of 0, which is positive. Thus, the net gain from the gamble is positive.

Q.E.D.

Proof of Lemma 3: Suppose that investors believe that the manager does not

gamble. Then their posterior probability about her ability upon observing R is

π1(R) =
π0χR

a/σ2

π0χRa/σ2 + 1− π0

, χ = e−a(a−σ2)/2σ2

.

If the manager does not gamble, she expects to get

γ(π0e
a + 1− π0) + π0. (A19)

Consider π0 such that

4π0(1− π0) < χ (1 + γ(ea − 1))−2 . (A20)

Suppose that the manager deviates and enters into a gamble that generates gross return√
1−π0

π0χ
with probability 1/

√
1−π0

π0χ
and 0 otherwise. Direct computations show that in

this case, the manager expects to get

γ +
1

2

√
π0χ

1− π0

. (A21)
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Comparing (A21) with (A19) one can see that the manager obtains a higher utility if

she gambles, provided that (A20) holds.

Q.E.D.

Proof of Lemma 4: We solve for an equilibrium in which the manager invests in

her private technology with probability 1 − q and gambles otherwise. If the manager

gambles, she receives 0 with probability x and a return between z and z + dz with

probability (1− x)ϕ(z)dz. For the ease of computations, we write ϕ(z) as

ϕ(z) =
1

z
√

2πσ2
e− ln2(z)/2σ2

g(z), (A22)

where g(z) ≥ 0. In such an equilibrium, upon observing a realized return z, investors’

posterior is8

π1(z) = π0
(1− q)χza/σ2

+ q(1− x)g(z)

(1− q) (π0χza/σ
2 + 1− π0) + q(1− x)g(z)

, χ = e−a(a−σ2)/2σ2

. (A23)

Let Eµ (E0) be the expectation operator if the manager gambles (invests in her

alpha-generating technology). When the manager gambles she takes the investors’

posterior π1 in (A23) as given and chooses a gamble that solves

supEµπ1(z)

s. to Eµz = 1.

We show in the electronic appendix that the solution to this problem coincides with

the solution to its dual problem:

inf
(A,B)∈R2

A+B

s. to ∀z ≥ 0, A+Bz ≥ π1(z), (A24)
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where A and B are some real numbers.

The dual problem admits a simple and practical interpretation: it minimizes the

value at one of a straight line that is above the graph of π1(z). The optimal gamble

then has its support included in the set where this line coincides with π1(z). We also

show in the electronic appendix that this solution can be realized with a binary gamble.

In this particular case, a binary gamble cannot be the equilibrium solution, however,

because it would be detected. Thus it must be that π1(z) has linear portions that

coincide with the minimal straight line A+Bz.

Given that π1(z) is first convex then concave, it is easy to see that there must be

two real numbers z1 and z2 such that π1(z) = Bz for z ∈ 0 ∪ [z1, z2] and π1(z) < Bz

otherwise. Figure 1 Panel (b) illustrates this for a particular numerical example. The

interval [z1, z2] is the support of the gamble when it does not yield 0.

We are now ready to solve for the manager’s gambling strategy. We first determine

B. Direct computations show

qEµπ1(z) + (1− q)E0π1(z) = π0(1− qx). (A25)

Because the manager randomizes between gambling and investing in her alpha-generating

technology, it must be that she is indifferent between gambling or investing efficiently:

Eµ (γz + π1(z)) = E0 (γz + π1(z)) ,

or

Eµπ1(z) = E0π1(z) + γπ0(ea − 1). (A26)

(A25) and (A26) together imply that

B = Eµπ1(z) = (1− qx)π0 + γ(1− q)π0(ea − 1). (A27)
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Since π1(z) = Bz for z ∈ 0 ∪ [z1, z2], we can solve for g(z) from (A23):

g(z) =


(1−q)π0χza/σ

2
(
Bz+B(1−π0)(π0χ)−1z1−a/σ2−1

)
q(1−x)(π0−Bz) if z ∈ [z1, z2],

0 otherwise.
(A28)

Continuity of π1(z) implies that it must be that

π0χz
a/σ2

i

π0χz
a/σ2

i + 1− π0

= Bzi, i = 1, 2,

or

1 = Bzi +B(1− π0)(π0χ)−1z
1−a/σ2

i , i = 1, 2. (A29)

Notice that because a > σ2, equation (A29) can have at most two solutions.

We are left with two free parameters: q and x. They are determined in equilibrium

from (i) requiring ϕ(z) to be a density and (ii) requiring the gamble to have expected

return equal to one:

∫ ∞
0

ϕ(z)dz = 1, (A30)

(1− x)

∫ ∞
0

zϕ(z)dz = 1. (A31)

Q.E.D.

Proof of Proposition 5: First, suppose that the manager is skilled so that the

excess return on the alpha-generating technology is a. Whenever qt < 1 the manager’s

continuation utility is a martingale and therefore solves

0 = −rW +Wqqt(r + a) +
1

2
Wqqσ

2q2
t . (A32)

The ODE (A32) has a general solution of the form

W (qt) = C+q
ρ+

t + C−q
ρ−

t ,
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where the constants ρ+ and ρ− solve the quadratic equation:

− r + ρ

(
r + a− 1

2
σ2

)
+

1

2
σ2ρ2 = 0. (A33)

Solving (A33), we have

ρ± =
−
(
r + a− 1

2
σ2
)
±
√(

r + a− 1
2
σ2
)2

+ 2rσ2

σ2
. (A34)

There are two boundary conditions (at 0 and at q = 1):

lim
qt→0

W (qt) = 0,

W ′(1) = k.

Thus,

W (qt) = kρ−1qρt , ρ =
−
(
r + a− 1

2
σ2
)

+
√(

r + a− 1
2
σ2
)2

+ 2rσ2

σ2
. (A35)

If the manager is unskilled then a = 0 and ρ = 1. Thus if the manager is skilled with

probability πt then her continuation utility is

W (qt) = k
(
πtρ
−1qρt + (1− πt)qt

)
. (A36)

Q.E.D.

Proof of Proposition 6: First, we compute the expected surplus that the manager

expects to get from new investors if she reopens her fund when its size is q∗. As in

Proposition 5, we first consider the case in which the manager is skilled with probability

one. Let xt = ln(qot /q
∗). Then

dxt = (r + a− 1

2
σ2)dt+ σdBt, x0 = 0. (A37)
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Letmt be the running maximum of xt, mt = max0≤s≤t xt. The manager is paid whenever

xt = mt. Whenever xt < mt the manager’s continuation utility follows a martingale

and therefore solves

0 = −rW n +W n
x (r + a− 1

2
σ2) +

1

2
W n
xxσ

2. (A38)

The ODE (A38) has a general solution of the form

W n(xt,mt) = f(mt)e
ρ+xt + g(mt)e

ρ−xt ,

where the constants ρ+ and ρ− solve the quadratic equation (A33), and therefore are as

in (A34). f(mt) and g(mt) are arbitrary functions of mt. Because limxt→−∞W
n(xt) = 0

it must be that g(mt) ≡ 0. Without loss of generality, the solution is

W n(xt,mt) = eρ(xt−mt)f(mt), ρ = ρ+.

The boundary condition at xt = mt is

f ′(mt)− ρf(mt) + k(1− q∗emt) = 0. (A39)

A general solution to (A39) is

f(mt) = k

(
qemt

1− ρ
+

1

ρ

)
+ Ceρmt , (A40)

where C is a constant. When qot reaches 1 for the first time, the stake of the new

investors in the fund becomes zero. It implies that f(− ln(q∗)) = 0, and therefore

W n(xot , ht) = k

(
xot
ht

)ρ(
1− hρt
ρ

+
ht − hρt
1− ρ

)
, (A41)
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where ht = q∗emt . Thus

W n(q∗) ≡ W n(q∗, q∗) = k

(
1− (q∗)ρ

ρ
+
q∗ − (q∗)ρ

1− ρ

)
. (A42)

Cox and Miller (1965) show that

Ee−rνq∗ =
ρ− ρ−

ρ(q∗)ρ− − ρ−(q∗)ρ
. (A43)

Thus, the present value of the opportunity to reopen the fund at date 0 if the manager

uses only her alpha-generating technology is

V = sup
q∗
k

ρ− ρ−

ρ(q∗)ρ− − ρ−(q∗)ρ

(
1− (q∗)ρ

ρ
+
q∗ − (q∗)ρ

1− ρ

)
. (A44)

Suppose at time 0, the manager takes a gamble that delivers a gross return q∗ < 1

with probability p and a gross return 1 + p(1 − q∗)/(1 − p) with probability (1 − p).

Suppose also that if a return q∗ is realized then the manager reopens the fund. Then

the expected continuation utility of the manager is

k

[
p

(
q∗

ρ
+W n(q∗)

)
+ (1− p)

(
p(1− q∗)/(1− p) +

1

ρ
+ V

)]
. (A45)

The manager will gamble if and only if the above utility is greater than her expected

utility if she does not gamble. Thus she will gamble if and only if

sup
q∗
W n(q∗)− (1− q∗)(1− ρ)

ρ
> V.

Direct computations show that

sup
q∗
W n(q∗)− (1− q∗)(1− ρ)

ρ
= 1.

The supremum is achieved at q∗ = 0. So the skilled manager will gamble if V < 1. By
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looking at ρ and ρ− one can see that they depend only on r/σ2 and a/σ2. Direct but

tedious calculations show that V < 1 as long as r/σ2 > 0.1.

Q.E.D.

Proof of Lemma 5: The integrand in (29) is first convex and then concave in R. We

show in the electronic appendix that this implies that the optimal gamble is a simple

binary gamble such that for some R > 1, the manager earns R with probability 1/R,

and loses everything otherwise. Therefore,

Π(π, t) ≡ sup
R≥1

Rλ−1E0[h(πt, R)|π0 = π],

where

h(π,R) =
π

1− π + πRλ
, λ =

a

σ2
. (A46)

For any R ≥ 1, h(π,R) is a concave function of π, which implies that h(πt, R) is

a super-martingale. Therefore, Π(π, t) is a decreasing function of t. As t → ∞,

E0[h(πt, R)|π0 = π] → πR−λ. Therefore, for large t, Π(π, t) ≤ πR−1, and the optimal

choice of R is one, that is not to gamble. Direct computations show that if π > λ−1
λ

then

π ≤ Π(π, t) ≤ sup
R≥1

Rλ−1h(π,R) = π.

Q.E.D.

LEMMA 6: Suppose condition 15 holds. Then there exists a finite limit

0 < lim
π→0

V (π)π−α <∞. (A47)

Proof of Lemma 6: We have

V (π) =

∫ 1

0

G (π, x)xαdx =
2σ2

a2ψ

 (1− π)
1
2

(1+ψ)π
1
2

(1−ψ)
∫ π

0
(1− x)−

1
2

(ψ+3)xα+ 1
2

(ψ−3)dx

+(1− π)
1
2

(1−ψ)π
1
2

(1+ψ)
∫ 1

π
(1− x)

1
2

(ψ−3)xα−
1
2

(3+ψ)dx

 ,
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where ψ is defined in (8). Further rσ2 > a2

2
α (α− 1) implies that ψ > 2α−1. Therefore,

∃ lim
π→0

(1− π)
1
2

(1−ψ)π
1
2

(1+ψ)

∫ 1

π

(1− x)
1
2

(ψ−3)xα−
1
2

(3+ψ)dx× π−α <∞,

and

∃ lim
π→0

(1− π)
1
2

(1+ψ)π
1
2

(1−ψ)

∫ π

0

(1− x)−
1
2

(ψ+3)xα+ 1
2

(ψ−3)dx× π−α <∞.

Q.E.D.
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Internet Appendix for

“Rewarding Trading Skills Without Inducing Gambling”

Optimal Risk Shifting - The Dual Approach

I have not edited from here onwards in accordance with your wishes In this Appendix,

we solve for the optimal payoff distribution, holding the mean constant, chosen by

an agent who seeks to maximize the expected value of a function U over this payoff.

Formally, let M denote the set of Borelian probability measures over [0,+∞). We seek

to solve for the following problem:

sup
µ∈M

∫ ∞
0

U(R)dµ(R)

s. t.

∫ ∞
0

Rdµ(R) = 1. (B1)

Given the primal problem (B1), its dual problem takes the following form:

P ∗(U) ≡ inf
(z1, z2)∈R2

z1 + z2

s. t. ∀y ≥ 0, z1 + yz2 ≥ U(y), (B2)

where z1 and z2 are some real numbers. Let P (U) and P ∗(U) denote the solution

of the primal and dual problems correspondingly. The dual problem minimizes the

value at 1 of a straight line that is above the graph of U . The next Proposition shows

that under the mild restriction (B3) on the utility function U , solutions to the primal

and dual problems coincide. Thus the dual approach generates a simple and practical

determination of P (U). The role of condition (B3) is to ensure that the infimum is

reached in the dual problem (B2). Graphically, it means that the function U does not

have an asymptote with a strictly positive slope.

57



PROPOSITION B1: Let U : [0,+∞)→ R be a continuous function such that

lim
y→+∞

U(y)

y
= 0, (B3)

then

P (U) = P ∗(U).

Proof of Proposition B1: Observe that condition (B3) implies that the set Z =

{(z1, z2) : ∀y ≥ 0, z1 + yz2 ≥ U(y)} is nonempty, closed, and there exists K such that

(z1, z2) ∈ Z → z1 ≥ K, z2 ≥ K.

The function (z1, z2)→ z1 + z2 is continuous. Thus, there exists (z∗1 , z
∗
2) ∈ Z such that

P ∗(U) = z1 + z2. Condition (B3) readily implies that z2 ≥ 0.

Let µ be a probability measure that satisfies (B1). Since for any probability measure

µ that satisfies (B1):

z∗1 + z∗2 =

∫ ∞
0

(z1 +Rz2) dµ(R) ≥
∫ ∞

0

U(R)dµ(R),

it implies that

P ∗(U) ≥ P (U).

Let us show that the reverse inequality also holds. Without loss of generality,

we assume that U has a compact support (for all U satisfying (B3), there clearly

exists a continuous function V that has a compact support and such that V ≤ U and

P ∗(V ) = P ∗(U)). It is straightforward to see that

1. P ∗(U1) ≤ P ∗(U2) for U1, U2 such that U1 ≤ U2,

2. P ∗(λU) = λP ∗(U) for U and λ ∈ [0,+∞),

3. P ∗(U1 + U2) ≤ P ∗(U1) + P ∗(U2) for U1, U2.
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Thus, P ∗(·) is a positively homogeneous and subadditive functional. The Hahn-

Banach Theorem therefore implies that for any U there exists a positive linear func-

tional LU , defined on continuous functions with a compact support, such that LU ≤ P ∗

and LU(U) = P ∗(U). By the Riesz representation Theorem, there exists a Borelian

measure µU on [0,∞) such that for all V

LU(V ) =

∫ ∞
0

V (R)dµU(R).

For M > 1, let uM , vM be continuous functions with a compact support such that

uM(x) = 1 on [0,M ] , x ≥M → uM ≤ 1,

vM(x) = x on [0,M ] , x ≥M → vM ≤M.

Clearly,

P ∗(uM) = P ∗(vM) = 1

Then

LU(uM) =

∫ ∞
0

uM (R) dµU(R) ≤ P ∗(uM) = 1,

LU(vM) =

∫ ∞
0

vM (R) dµU(R) ≤ P ∗(vM) = 1.

Letting M → +∞ implies

∫ ∞
0

dµU(R) ≤ 1,

∫ ∞
0

RdµU(R) ≤ 1,

and thus

P ∗(U) = LU(U) =

∫ ∞
0

U(R)dµU(R) ≤ P (U).

Q.E.D.

PROPOSITION B2: Assume U satisfies (B3), and is continuous and increasing. If the
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solution to the problem (B1) is non-degenerate (µ(1) 6= 1) then P (U) can be attained

with a binary payoff. Moreover, if U is twice differentiable and has at most one

inflexion point, then a necessary and sufficient condition for the solution to (B1) to be

non-degenerate is that U ′(1) > U(1) − U(0). The binary payoff in this case is of the

form {0, R}, where R > 1.

Proof of Proposition B2: Let a continuous increasing function U satisfy condition

(B3). Let (z1, z2) ∈ R2 be the solution to the dual problem (B2) associated with U .

Clearly, z2 > 0. Let

S = {y ≥ 0 : z1 + z2y = U(y)} .

Condition B3 and continuity of U imply that S is a nonempty compact set. Let

y1 = minS, y2 = maxS.

We now proceed in two steps.

Step 1. First, we show that y1 ≤ 1 ≤ y2. We prove that y2 ≥ 1. The proof that

y1 ≤ 1 is symmetric. Suppose the opposite that y2 < 1 then for some ε ∈ (0, 1− y2) ,

let

η (ε) = min
y≥y2+ε

{
z1 − U(y)

y
+ z2

}
.

Condition B3 and continuity of U imply that η (ε) > 0.

Define (z′1, z
′
2) as z′1 = z1 + (y2 + ε) η (ε) , z′2 = z2 − η (ε) . The pair (z′1, z

′
2) satisfies

(B2). To see this, notice that z′1 + yz′2 = z1 + yz2 + η (ε) (y2 + ε− y) . Thus z′1 + yz′2 >

z1 + yz2 ≥ U(y) for y < y2 + ε. Further, z′1 + yz′2 ≥ z1 + yz2− η (ε) y ≥ U(y) for

y ≥ y2 + ε by definition of η (ε) . At the same time,

z′1 + z′2 = z1 + z2 + (y2 + ε− 1) η (ε) < z1 + z2,

which contradicts the definition of (z1, z2). Thus it must be that y2 ≥ 1.
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Step 2. If y1 = y2, then Step 1 implies that S = {1} , and the gamble is degenerate.

If y1 < y2, we have

z1 + y1z2 = U(y1),

z1 + y2z2 = U(y2),

so that

z1 + z2 =
1− y1

y2 − y1

U(y2) +
y2 − 1

y2 − y1

U(y1). (B4)

From (B4), P (U) = P ∗ (U) is attained with a payoff equal to y1 with probability y2−1
y2−y1

and y2 with probability 1−y1

y2−y1
.

We now prove the last part of the proposition. If U has at most one inflexion point,

condition (B3) implies that U is either concave - in which case the gamble is degenerate

- or convex then concave. Consider the latter case. If the solution is degenerate then

P ∗(U) must be solved by the tangent to U at 1, which requires U ′(1) ≤ U(1)− U(0).

Suppose now that U ′(1) ≤ U(1) − U(0). It implies that U is concave over [1,+∞)

(because U(y)−U(0)
y

is decreasing in y = 1). In this case, the tangent to U at 1 solves

P ∗(U), so the gamble is degenerate. Finally, if the solution is nondegenerate then it is

attained with a tangent that starts at 0.

Q.E.D.
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Figure 1. Taking on hidden tail risk. Figure 1 illustrates an example considered in Section C.

Parameter values are as follows: σ = 10%, a = 2σ2 = 2%, π0 = 40%, and γ = 10%. Panel (a), solid

blue line, shows a reputation of the manager at date 1 as a function of the realized gross return R

when investors believe that the manager does not gamble. The optimal gamble delivers either 0 or a

gross return of 1.23 with probability of 80%. Panel (b), solid blue line, displays a reputation of the

manager in the equilibrium in which investors rationally take into account that the manager gambles.

In equilibrium, the manager gambles with probability q = 5.6%. When she gambles, the manager loses

everything with probability x = 8.8% and obtains a gross return between 1.02 and 1.49. Panel (c)

shows the gamble’s density.
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