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Abstract

The possibility of capturing and sequestering some fraction of the CO2 emissions arising

from fossil fuel combustion, often labeled as carbon capture and storage (CCS), is drawing an

increasing amount of attention in the business and academic communities. We present here a

model of endogenous growth in which the use of a non-renewable resource in production yields

�ows of pollution whose accumulated stock negatively a¤ects welfare. A CCS technology

allows, via some e¤ort, for the partial reduction of CO2 emissions in the atmosphere.

We characterize the social optimum and how the availability of the CCS technology a¤ects

it, and we study the decentralized economy�s trajectories. We then analyze economic policies.

We �rst characterize the �rst-best policy. We derive the expression of the Pigovian carbon

tax, and we give a full interpretation of its level, which is unique. We then study the impacts

of three di¤erent second-best policies: a carbon tax, a subsidy to sequestered carbon, and

a subsidy to labor in CCS. The �rst two tools foster CCS activity; so does the third, but

only if it is coupled with one of the other two. While the tax postpones resource extraction,

the two subsidies accelerate it �possibly yielding a rise in short-term CO2 emissions. The

e¤ects on growth are more complex. If the weight of the CCS sector in the economy is high,

the tax will generally be detrimental to output growth, while the subsidies can foster it in

the long-term. Finally, the carbon tax has a negative impact on the output level in the

short-term, contrary to the subsidies.
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1 Introduction

The exploitation of fossil resources raises two concerns. The �rst one is scarcity, because fossil

resources are exhaustible by nature. The second one is related to the greenhouse gases (GHG)

emissions associated with their combustion. Numerous models deal with this double issue; some

of them in the context of partial equilibrium (e.g. Sinclair, 1992; Withagen, 1994; Ulph and Ulph,

1994; Hoel and Kverndokk, 1996; Farzin and Tahvonen, 1996; or Tahvonen, 1997) and others

within general equilibrium growth frameworks (Stollery, 1998; Schou, 2000, 2002; Groth and

Schou, 2007; or Grimaud and Rouge, 2008). A common feature of those papers lies in the fact

that reducing carbon emissions necessarily means extracting less resource. Indeed, a systematic

link between resource extraction and polluting emissions, in the form of a simple functional

relation (e.g. linear), is generally made. In terms of economic policy, it is therefore equivalent to

tax either the pollution stream or the resource use itself. Nevertheless, it is now well known that

abatement technologies that allow the reduction of emissions for a given amount of extracted

resource exist. In particular, the possibility of capturing and sequestering some fraction of

the carbon embedded in fossil fuels, whether this capture occurs pre- or post-combustion, has

recently caught a lot of attention. This has been reinforced by its recent demonstrated viability

(for an overview, see IPCC special report, 2005). This process, often referred to as carbon

capture and storage or carbon capture and sequestration (CCS), consists in separating carbon

from hydrogen in the pre-combustion process or in separating carbon dioxide from other �ux

gases in the post-combustion process in an energy production plant. Once captured, the CO2 is

injected into a reservoir1 for long-term storage. So, the availability of CCS technologies means

that the simple relation between resource extraction and carbon emissions is partially broken.

Here we consider the availability of such an abatement technology in the context of a theor-

etical general equilibrium model with endogenous growth and a polluting exhaustible resource.

We study how the socially optimal trajectories of the economy are modi�ed by the availability of

the CCS option, and how the �rst-best outcome can be restored in the decentralized economy.

We also study the impact of three di¤erent second-best policies: a carbon tax, a subsidy to

sequestered carbon and a subsidy to labor in the CCS activity. Endogenous growth allows us

in particular to analyze the e¤ects of the availability of the CCS technology and the economic

policy tools on growth, along the transition path and at the steady-state.

1The sequestration reservoirs include depleted oil and gas �elds, depleted coal mines, or deep saline aquifers.
Those various deposits di¤er in their respective capacities, their costs of access or their e¤ectiveness in storing
the carbon permanently.
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Numerous uncertainties still surround the sizable deployment of carbon capture technologies,

especially with regard to the ecological consequences of massive carbon injection. The social

acceptance of this abatement technique is also uncertain - for a survey on these issues, see for

instance Jepma and Hauck (2011). Nevertheless, this technological option has become promising

for the fossil energy extractive industry. For instance, Grimaud et al. (2011) show in an empirical

model that, insofar as the right climate policy is implemented - that is, a carbon tax in their

model -, the percentage of carbon sequestered can exceed 50%.

We develop a Romer-type endogenous growth model in which the production of �nal good

requires the input of an extracted resource, whose stock is available in limited quantities. This

resource use generates polluting emissions, which we take to be CO2 emissions, whose �ow

in turn adds to the pre-existing stock of the pollutant - which features partial natural decay.

Finally, this stock enters the utility function as an argument and thus allows gauging how

pollution accumulation negatively a¤ects welfare. We then consider that a CCS technology is

available. Via some e¤ort, it allows for the partial reduction of the level of CO2 release. We thus

distinguish between the total potential CO2 emission associated to one unit of fossil resource

(henceforth referred to as total carbon content per unit of resource) and the e¤ective emissions,

i.e. the fraction that remains after CO2 removal. Note that we do not account for geological

CO2 leakage - on this issue, see for instance van der Zwaan and Gerlagh (2009). The implication

in terms of climate change policy is then straightforward: the �rst best outcome can only be

restored by taxing pollution, i.e., emissions remaining after sequestration, and not by taxing

the resource itself2. However, for various reasons, it is likely that the tax cannot be set at its

Pigovian level in the real world. Hence, we study second-best policies: a second-best tax on

e¤ective carbon emissions, a subsidy to sequestered carbon, and a direct subsidy to labor used in

CCS activity. In this second-best world, such complementary policies can be Pareto-improving.

This analysis constitues the main contribution of our paper. We show that it is important to

understand how these policies a¤ect the time pro�le of the total price paid by resource users.

This time pro�le determines the resource extraction path, and hence, indirectly, the path of

CCS activity, carbon emissions, R&D and output.

We �rst depict the socially optimal trajectories of the economy, and we study how such

trajectories are a¤ected by the availability of the CCS technology. Then we fully characterize

the trajectories of the decentralized economy, and we derive the expression of the Pigovian levels

2Here we assume that the regulator is able to fully measure the greenhouse gases emissions. This may not be
systematically the case: while emission data is fairly reliable in industrialized countries, collecting accurate data
on industrial activities from developing regions and deducting the emissions may prove more di¢ cult.
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and growth rates of the economic policy tools, and we give a full interpretation of them. In the

general case, at the social optimum as well as in the decentralized equilibrium, the economy is

always in transition; we nevertheless obtain closed-form solutions. This allows us to study the

impacts of the three di¤erent types of second-best economic policies.

A strand of literature tackles the question of CCS within calibrated empirical models - see

for instance Edenhofer et al. (2005); Gerlagh and van der Zwaan (2006); van der Zwaan and

Gerlagh (2009); Golombek et al. (2011); Grimaud et al. (2011); or Kalkuhl et al. (2012).

The focus of our paper is on the theoretical side of the issue. Several authors have studied

the links between carbon abatement, optimal climate policy and technical change in theoretical

models. In particular, Goulder and Mathai (2000) show that the presence of induced technical

change generally lowers the time pro�le of optimal carbon taxes. Moreover, e¤orts in R&D shift

part of the abatement from the present to the future. In a similar framework, Gerlagh et al.

(2008) study the link between innovation and abatement policies under certain assumptions, in

particular, the fact that patents can have a �nite lifetime. In these studies, the authors use

partial equilibrium frameworks in which baseline CO2 emissions are exogenous, and �nal (or

e¤ective) carbon emissions are endogenous as there is an abatement activity with dedicated

technical progress. Hoel and Jensen (2010) show, in a two period model, that if the climate

policy is imperfect - that is, if it can only be implemented in the second period -, cost reductions

are more desirable in the CCS than in the renewable sector in particular because they postpone

resource extraction.

Many recent contributions take into account the availability of a CCS technology. Most of

them are placed in the context of partial equilibrium frameworks: see for instance La¤orgue

et al. (2008), Narita (2009), Amigues et al. (2011) or Rickels (2011). These papers mainly

focus on socially optimal issues, and in particular they study the optimal time pro�le of carbon

sequestration. Lontzek and Rickels (2008) and Ayong le Kama et al. (2009) study the same

questions, but they also consider a decentralized economy. However, they do not study the

impact of economic policies on the decentralized equilibrium. Most of these papers consider

a carbon ceiling; in this case, La¤orgue et al. show that CCS is implemented only when the

ceiling is reached. When the CCS cost function is convex however, as in Rickels, it is optimal to

sequester carbon before the ceiling. Similarly, the CCS activity has to start from the short run

when there is no ceiling but a damage function, as in Ayong le Kama et al. Finally, technical

progress is not explicitly considered in these studies.
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Our main results can be summarized as follows3. At the social optimum, the greatest e¤ort

in abatement should happen today4 - this contrasts with the result of La¤orgue et al. (2008)

presented in the previous paragraph. We also show that the availability of the CCS technology

modi�es the socially optimal trajectories of the economy. It speeds up the optimal pace of

resource extraction, as it relaxes the environmental constraint. While it diminishes polluting

emissions in the long run, it fosters them in the short run when the rise in resource extraction,

and thus of potential emissions, is less than proportionally compensated by the CCS activity.

Lastly, the availability of such a technology is detrimental to the socially optimal growth of

output as a result of the acceleration in resource extraction combined with a negative e¤ect on

R&D e¤ort.

Due to the availability of CCS technology, the Pigovian carbon tax is unique, which contrasts

with the standard result obtained in a context without abatement, as in Dasgupta and Heal

(1979), Sinclair (1992), Groth and Schou (2007) or Grimaud and Rouge (2008) for instance. In

these models, there are an in�nity of optimal taxes which have the same dynamics, but di¤er in

their levels. Here, the tax level matters and especially allows for setting the optimal abatement

e¤ort level. The optimal carbon tax is equal to both the sum of discounted social costs of one

unit of carbon and the cost of sequestering this unit. We study its properties, and we show that

it is an increasing function of time.

The second-best carbon tax fosters CCS activity and postpones resource extraction, as well as

polluting emissions. Here, as polluting emissions stem from the use of non-renewable resources,

if no carbon abatement technology was available, a more stringent environmental policy would

generally enhance economic growth, since it leads to postponing resource extraction (see for

instance Groth and Schou, 2007, or Grimaud and Rouge, 2008). When CCS technology becomes

available, we show that this result is not always true: the impact of this climate policy on output

growth is more complex. It depends on the relative strengths of its e¤ects on extraction and

R&D. Basically, if the weight of the CCS sector in the economy is high, the tax is likely to be

detrimental to growth. However, the level of output in the short term is unambiguously reduced

because of the e¤ect on resource extraction.

The subsidy to sequestered carbon is a perfect substitute to the carbon tax with regard to its

3We often resort to the distinction between short and long-term. In a Hotelling world, where the whole stock
of resource is asymptotically exhausted, any increase (resp. decrease) in resource extraction at date t generates
changes for all subsequent dates. The short-term refers to the period during which resource extraction is also
increased (resp. decreased), that is, the current period and its neighborhood (i.e, the �rst generations), whereas
the long-term refers to the period during which resource use is consequently decreased (resp. increased), that is,
the distant future.

4We show that this result can be slightly altered if one expects a high rate of technical progress in the CCS
technology.
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impact on CCS activity. However, the e¤ects of the two policy instruments on resource use are

opposite: with the subsidy, extraction is faster. Therefore, a kind of (weak) green paradox can

occur here in the sense that this environmental or green policy can foster short-term emissions (on

the issue of green paradox in other contexts, see e.g. Sinn, 2008, Gerlagh, 2011, or van der Ploeg

and Withagen, 2012). This happens when the higher resource use overcomes the abatement

impact of the CCS activity. The e¤ects of both policies on output can also be opposite. In

the short run, the subsidy is unambiguously bad for growth. In the longer term, the overall

impact depends, as before, on the relative strengths of the e¤ects on resource extraction and

R&D. If the weight of the CCS sector in the economy is high, it can foster growth in the long

term, contrary to the carbon tax. Moreover, we show that, unlike the tax, the subsidy prompts

greater output level in the early periods. This last point should be considered when taking into

account public acceptance issues. Indeed, this subsidy could be seen as a good complementary

tool to a second-best carbon tax since it alleviates the burden of the climate policy in the short

term.

Another result is that the subsidy to labor in CCS alone does not trigger any CCS activity.

This tool has an e¤ect only when it is used jointly with a carbon tax or a subsidy to sequestered

carbon. In this case, it also stimulates CCS activity. However, its impact on the dynamics of

resource extraction, carbon emissions and the level and growth of output are similar to those of

the subsidy to sequestered carbon, and thus they can be opposite to the e¤ects of the carbon

tax.

The remainder of the paper is organized as follows. We present the model and we portray

the social optimum in section 2. We characterize the equilibrium in the decentralized economy

in section 3, and we study the �rst-best economic policy and the impact of the second-best

policies in section 4. Finally, we conclude in section 5.

2 Model and welfare

2.1 The model

At each date t 2 [0;+1), the �nal output is produced using the range of available intermediate

goods, labor and a �ow of resource. The production function is

Yt =

�Z At

0
x�itdi

�
L�Y tR


t ; �+ � +  = 1; (1)
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where xit is the amount of intermediate good i, LY t the quantity of labor employed in the

production sector, and Rt is the �ow of non-renewable resource. At is a technological index

which measures the range of available innovations. The production of innovations writes

_At = �LAtAt, � > 0; (2)

where LAt is the amount of labor devoted to research, and � is a constant characterizing the

e¢ ciency of R&D activity.

To each available innovation is associated an intermediate good produced from the �nal

output:

xit = yit; i 2 [0; At]: (3)

The non-renewable resource is extracted from an initial �nite stock S0. At each date t, a

�ow � _St is extracted. This implies the following standard law of motion:

_St = �Rt: (4)

There are no extraction costs, as it is the case in most endogenous growth models with polluting

non-renewable resources (see for instance Schou, 2000, 2002 or Groth and Schou, 2007)5.

Pollution is generated by the use of the non-renewable natural resource within the production

process. In case of no abatement, the pollution �ow would be a linear function of resource use:

hRt, where h > 0: In this way, hRt can be seen as the carbon content of resource extraction or,

equivalently, as maximum potential pollution at time t. Nevertheless, �rms can abate part of

this carbon so that the actual emitted �ow of pollution is

Pt = hRt �Qt; (5)

where Qt is the amount of carbon that is removed from the potential emission �ow. The ratio

Pt=hRt thus represents the e¤ective emissions per unit of carbon content at date t, that is,

the quantity of carbon actually emitted in the atmosphere relative to the carbon that would

be emitted with the same extraction level but without the CCS option. Qt=hRt is the rate of

sequestration, that is, the amount of sequestered carbon relative to the total carbon content of

5Our main results are obtained in the case of no extraction costs. This allows to avoid heavy computational
complexity. For general optimal solutions in the presence of extraction costs à la André and Smulders (2004) in
a model with no abatement, see for instance Grimaud and Rouge (2008). Using data on the prices of fossil fuels
over the last century, Gaudet (2007) shows that, despite high volatility, these prices remained approximatively
constant, or at most weakly increased.
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the �ow Rt of extracted resource.

We assume that Qt is produced from two inputs, the pollution content hRt and dedicated

labor LQt, according to the following Cobb-Douglas abatement technology67:

Qt = (hRt)
�L1��Qt , 0 < � < 1, if LQt < hRt (6)

and

Qt = hRt, if LQt � hRt,

that is, the pollution �ow is fully abated as soon as LQt = hRt
8. The ratio LQt=hRt represents

the CCS e¤ort, i.e. the amount of labor devoted to this activity, per unit of carbon content.

The Cobb-Douglas form allows simple analytical developments. For any given hRt, the total

cost of labor, LQt = Q
1=(1��)
t (hRt)

��=(1��), is an increasing and convex function of Qt. The

marginal and average labor costs, respectively @LQt=@Qt = [1=(1� �)]Q�=(1��)t (hRt)
��=(1��)

and LQt=Qt = Q
�=(1��)
t (hRt)

��=(1��), are also increasing functions of Qt: Given any quantity

of potentially emitted carbon hRt, it is the e¤ort in terms of labor only that enables pollution

abatement. Introducing capital in the technology (6) would certainly improve the model by

making it more realistic - the same applies for production functions (1) or (2). However, this

would add a fourth state variable, which would prevent us from obtaining closed-form solutions

in the transition toward the steady-state.

Similar technologies can be found in Stokey (1998), Copeland and Taylor (2004) or Aghion

and Howitt (1998). In the latter, output is an increasing function of a technological index, and

the pollution �ow is an increasing function of the output level and of this index. However, there

are two main di¤erences here. First, pollution is a by-product of the resource use, and not

of output; second, pollution can be abated by using more labor - and not through a di¤erent

technological index. Finally, note that, for the sake of simplicity, we do not consider storage

constraints9.
6More generally, one could have considered the technology Qt = (hRt)�(�LQt)1��, 0 < � < 1, if LQt < hRt=�

and Qt = hRt, if LQt � hRt=�, with � > 0. Here, we normalize � at one.
7Note that, contrary to Goulder and Mathai (2000) or Gerlagh et al. (2008) for instance, we do not consider

technical progress in abatement. Of course, such assumption would be more realistic. For instance, one can
consider the function Qt = (hRt)�(AQtLQt)1��, where AQt grows over time at exogenous rate. However, in this
endogenous growth framework, it would make our computations much more complex; in particular, it prevents
us from getting a closed-form solution for Rt. We nevertheless show how such formulation can generalize certain
results of our paper later in the text.

8 In the following sections, we make an assumption on parameters so that this corner solution never occurs.
9At the local scale, such constraints can be important, especially when transportation costs are non negligible

(on this issue, see for instance La¤orgue et al., 2008, in a partial equilibrium framework). Here, we implicitly
assume that carbon sinks are large enough to store any stock of CO2.
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The �ow of pollution Pt adds to the existing stock Zt. We assume Zt = Z0 +
R t
0 Pse

�(s�t)ds,

with Z0 > 0, and � is the (supposed constant) positive rate of natural decay. This gives the

following law of motion10
�
Zt = Pt + �(Z0 � Zt). (7)

Production �ow Yt is used for consumption (Ct) and for the production of intermediate

goods:

Yt = Ct +

Z At

0
yitdi. (8)

Population is assumed constant, normalized at one, and each individual is endowed with one

unit of labor. Thus we have:

1 = LY t + LAt + LQt: (9)

So, the key trade-o¤s in this model are characterized through the allocation of labor between

the three activities that are production, research and sequestration.

The household�s instantaneous utility function depends on both consumption, Ct, and the

stock of CO2, Zt. The intertemporal utility function is:

U =

Z +1

0
[lnCt � !Zt] e��tdt; � > 0 and ! � 0: (10)

The separability of the utility function allows to simplify the computations. This means that,

though the impact of a change in the pollution stock on the marginal utility of consumption

could be considered positive or negative, we take it as nil. Concerning environmental preferences,

as Goulder and Mathai (2000) say, the damage function can be regarded as convex or concave.

Here, we simply consider a linear relationship.

2.2 Welfare analysis

2.2.1 Social optimum

We present the socially optimal trajectories of the economy. The social planner maximizes

U =
R +1
0 (lnC � !Z)e��tdt subject to (1)-(4) and (7)-(9). The planned economy is always in

transition; however, we obtain closed-form solutions. All computations and results are given in

Appendix 1, where we fully depict the socially optimal transition time-paths of all variables. In

this section, we focus only on the most relevant trade-o¤s. Hereafter, we denote by gXt = _Xt=

10Such formulation is standard in the literature. As Goulder and Mathai (2000) or Gerlagh et al. (2008) point
out, the dynamics of the stock of carbon are more complex in reality. We could consider a non constant rate of
decay, for instance. However, such formulation would make the model much less tractable.
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Xt the growth rate of any variable Xt, and by Xo
t its socially optimal level.

We obtain

LoQt =

�
�!(1� �)
�(�+ �)

�1=�
hRot : (11)

Thus the ratio LoQt=hR
o
t is constant, which implies Q

o
t=hR

o
t and P

o
t =hR

o
t constant. We now

explain where this result comes from - we will see that, in particular, it depends on the functional

forms we have chosen for CCS, carbon accumulation in the atmosphere and utility. Recall �rst

that, in this model, the main trade-o¤s are characterized through the allocation of labor between

its three competing uses: production (LY ), research (LA) and CCS (LQ). The social planner

allocates labor between these sectors so that a marginal increase of this input in any sector

yields the same variation of intertemporal utility. On the one hand, �LoQt = 1 yields an increase

in Qt and thus a decrease in pollution Pt: �Pt = ��Qt = �(1 � �)(hRt=LQt)
�, from (5) and

(6). �Pt is a linear function of (hRt=LQt)�; it stems from the fact that the CCS technology

(6) is Cobb-Douglas, homogeneous of degree 1, which implies that the partial derivatives are

homogeneous of degree 0 and thus only depend on the inputs ratio. By assumption, we have Zt =

Z0 +
R t
0 Pse

�(s�t)ds, thus �Zv = �Pte�(t�v) = �(1� �)(hRt=LQt)
�e�(t�v) for all v � t. Finally,

using (10), we have �1Ut = �
R +1
t !�Zve

��(v�t)dv = [!(1� �)(�+ �)] =(hRt=LQt)�. The fact

that �1Ut is a linear function of (hRt=LQt)� stems from the fact that the rate of CO2 decay is

constant and utility is separable and linear in Zt. On the other hand, we show in Appendix 1

(section i) that �LoAt = 1 yields �2Ut = �=�. By equalizing �1Ut and �2Ut, one gets equation

(11).

We also have

Rot =


�0e
�t +B

; (12)

in which �0 = B=(e
B�S0
 � 1) and B = (1��)!h

�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
. Moreover, we get

goRt = goLQt = goQt = goPt =
��

1 + (e
B�S0
 � 1)e��t

: (13)

As shown in Appendix 1 (section iv), since B > 0, goRt < 0 for all t. LoQt=hR
o
t being constant,

this means that LoQt decreases over time. In other words, the important e¤ort in CCS should

occur today: the social planner places the strongest sequestration e¤orts in the short run and

progressively diminishes them over time.
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Finally, the socially growth rate of the economy is

goY t = goAt + (=(1� �))goRt: (14)

Remark: Suppose now that there is technical progress in the CCS function. For instance,

assume Qt = (hRt)
�(AQtLQt)

1��, where AQt grows over time at exogenous rate. In this case,

equation (11) becomes LoQt=hR
o
t = [�!(1� �)=�(�+ �)]1=� A(1��)=�Qt , and one gets Qot=hR

o
t =

[�!(1� �)=�(�+ �)](1��)=� A(1��)
2=�

Qt . Then, if technical progress in CCS is high, LoQt and Q
o
t

increase over time: our result can be reversed. In other words, the socially optimal e¤ort in

CCS can increase over time over some intervals of time. As mentioned above, our basic model

does not feature technical progress in CCS because it would make our computations much more

complex and would prevent us from getting a closed-form solution for Rt.

Finally, the economy asymptotically tends to a steady-state which corresponds to the state

the economy would immediately jump to if environmental preferences were nil (! = 0).

2.2.2 Impact of CCS on the socially optimal trajectories

In order to study the impact of carbon abatement on the socially optimal paths, we consider

the social optimum in the case where the CCS technology is not available. We denote by Xo?
t

the optimal level of any variable Xt in this case - Xo
t still standing for the optimal value in the

CCS case. We provide the optimal levels and growth rates in the no-CCS case in Appendix 2.

We now compare the optimal growth rates of resource extraction in the two cases. We obtain

the following inequality:

goRt < go?Rt .

The literature has shown that the laissez-faire resource extraction is too fast (see for instance

Withagen, 1994), and thus that gR is too low. Here, this inequality shows that if a CCS tech-

nology is available, the optimal extraction is faster than in the absence of such technology, and

thus less restrictive. In other words, CCS allows to partially relax the environmental constraint;

the sacri�ce made in the early periods is reduced.

The impact of CCS on the optimal pollution paths is less obvious. We �rst consider the

near term. Two opposite e¤ects drive the pollution path. First, hRo?t < hRot , that is, potential

emissions are fostered. Indeed, since resource extraction is increased, carbon emissions tend to

rise as well. At the same time, CCS activity tends to reduce pollution. Thus, according to the

relative strengths of these two e¤ects, the introduction of a CCS technology can entail either
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a rise or a fall in the socially optimal polluting emissions in the short run. In the case where

the positive e¤ect on extraction dominates the impact of the CCS activity, carbon emissions are

stimulated11. In the long term, CCS unambiguously induces lower emissions. Indeed, we have

shown that extraction decreases; thus, whatever the amount of sequestered carbon, pollution

decreases.

We now turn to the e¤ect of CCS on optimal growth. First, Lo?Qt and Q
o?
t are obviously nil.

Moreover, LoY = Lo?Y = ��=�(1 � �) (see equation (40) in Appendix 1, and Appendix 2). This

implies LoAt < Lo?At : the amount of labor devoted to R&D is lower in the "CCS case" as CCS

is a third competing use for labor. So there is a �rst e¤ect on research which is detrimental to

growth - such mechanism also occurs in growth models with renewable resources, as in Smulders

and Gradus (1996) for instance. Here, it is reinforced by an additional mechanism which we

have presented above: resource extraction is faster (goRt < go?Rt ). Thus, we have the following

inequality: goY t = �LoAt + (=(1� �))goRt < go?Y t = �Lo?At + (=(1� �))go?Rt . In other words, CCS

is detrimental to economic growth, because of the lower e¤ort in R&D and the acceleration of

resource extraction.

Finally, CCS fosters consumption levels in the early stages. Indeed, we have seen that the

amount of labor in production remains unchanged by the introduction of the CCS technology,

and that resource extraction is increased in the near term. If we consider a su¢ ciently short

period of time during which the reduced growth of knowledge does not o¤set these two e¤ects,

then the production level is fostered. Hence, the optimal short-run consumption levels are

greater in an economy with CCS.

3 Decentralized Economy

We now study the equilibrium trajectories of the decentralized economy, which will enable us to

study the impacts of climate policies in the following section. Since we study a Romer model,

there are two �rst basic distortions: the standard public good character of knowledge and

the monopolistic structure of the intermediate sector. Moreover, a third distortion arises from

polluting emissions whose accumulated stock harms welfare. In order to correct these distortions,

we introduce three economic policy tools: a unit subsidy to the use of intermediate goods, a

research subsidy, and a tax on polluting emissions. Note that the climate policy does not consist

of a tax on the polluting resource, as in Groth and Schou (2007) or Grimaud and Rouge (2008).

11This result can be related to Goulder and Mathai (2000), in which a more e¢ cient abatement technology
leads to higher pollution levels in the short-run. However, baseline emissions are exogenous in their model, and
pollution rises because abatement falls.
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Indeed, the basic externality is polluting emissions and, as an abatement technology is available,

a tax on these emissions and a tax on the polluting resource are no longer equivalent. The

latter tax would only modify the extraction path, and would have no impact on CCS activity.

Conversely, as we will show below, the tax on carbon emissions has two main e¤ects: it leads

to postponing extraction (as in models without abatement) and it yields incentives to produce

optimal e¤orts in carbon abatement at each date t.

For many reasons, e.g. lack of international political consensus, the Pigovian level of the

carbon tax is not always implementable. Hence we consider two additional economic policy

tools aimed at -partially- compensating, in a second-best world, the fact that the carbon tax

cannot be set at its �rst-best level. The �rst is a subsidy to sequestered carbon 12. The second

is a subsidy to labor devoted to CCS, which can be considered as observable as sequestered

carbon.

3.1 Agents�behavior

The price of the �nal good is normalized at one, and wt, pit, pRt, and rt are, respectively, the

wage, the price of intermediate good i, the price of the non-renewable resource, and the interest

rate on a perfect �nancial market.

3.1.1 Household

The representative household maximizes (10) subject to her budget constraint _bt = rtbt + wt +

�t�Ct+Tt, where bt is her total wealth, �t represents total pro�ts - including the resource rent

pRtRt - in the economy and Tt is a lump-sum subsidy (or tax). One gets the following standard

Ramsey-Keynes condition:
_Ct
Ct
= rt � �: (15)

3.1.2 Non-renewable resource sector

On the competitive natural resource market, the maximization of the pro�t functionR +1
t pRsRse

�
R s
t rududs, subject to _Ss = �Rs, Ss � 0, Rs � 0, s � t, yields the standard

equilibrium �Hotelling rule�:
_pRt
pRt

= rt. (16)

As usual, the transversality condition is limt!+1 St = 0.

12We thank an anonymous referee for suggesting this tool.
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3.1.3 Final sector

The �nal sector maximizes the following pro�t function:

�Y t =

�Z At

0
x�itdi

�
L�Y tR


t �

Z At

0
pit(1� s)xitdi� wtLY t � wt(1� ')LQt � pRtRt (17)

�� th(Rt � h��1R�tL
1��
Qt ) + �t(hRt)

�L1��Qt .

s and ' are constant rates of subsidy to the use of intermediate goods and labor in the CCS

activity, respectively. � t is a unit tax on polluting emissions Pt (i.e., hRt � (hRt)�L1��Qt ) and �t

is a subsidy to sequestered carbon Qt. The �rst-order conditions of this program are:

@�Y t
@xit

= �x��1it L�Y tR

t � pit(1� s) = 0, for all i (18)

@�Y t
@LY t

= �Yt=LY t � wt = 0; (19)

@�Y t
@Rt

= Yt=Rt � pRt � � th(1� �h��1R��1t L1��Qt ) + �t�h
�Rt

��1L1��Qt = 0; (20)

and
@�Y t
@LQt

= �(1� ')wt + (� t + �t)(1� �)h�R�tL
��
Qt = 0: (21)

This last condition highlights the fact that the carbon tax � and the subsidy to sequestered

carbon � have similar e¤ects on the e¤ort put into the CCS activity. We develop this point later

in section 4.2.

In this study, it is useful to identify the "total" price paid by the �nal sector for the resource.

We denote it by ~pR. Looking at the pro�t function (17), one can see that it is composed

of three elements: the price paid to resource owners (pRt), the tax paid on carbon emissions

(� th(1 � (LQt=hRt)1��) and the subsidy to sequestered carbon (�th(LQt=hRt)1��). Following

equations (17), we have

~pRt = pRt

"
1 +

� th

pRt
� (� t + �t)h

pRt

�
LQt
hRt

�1��#
� pRtMt: (22)

3.1.4 Intermediate and research sectors

Innovations are protected by in�nitely lived patents. This gives rise to a monopoly position in

the intermediate sector. The pro�t function of the ith monopolist is �mi = (pi � 1)xi(pi), where

xi(pi) is the demand for intermediate good i by the �nal sector (see (18)). Hence, the price
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chosen by the monopolist is

pit � p = 1=�, for all i. (23)

As a result, quantities and pro�ts are symmetric. One gets

xit � xt =

 
�2L�Y tR


t

1� s

!1=(1��)
(24)

and

�mit � �mt =
1� �
�

xt. (25)

The market value of a patent is Vt =
R +1
t (�ms + �s)e

�
R s
t rududs, where �s is a subsidy to

research aimed at correcting the standard distortion caused by the intertemporal spillovers13.

Di¤erentiating this equation with respect to time gives

rt =
_Vt
Vt
+
�mt + �t
Vt

, (26)

which states that bonds and patents have the same rate of return in equilibrium.

The pro�t function of the research sector is �RDt = Vt�AtLAt � wtLAt. Free-entry in this

sector leads to the standard zero-pro�t condition:

Vt =
wt
�At

. (27)

3.1.5 Government

The government�s budget constraint comprises: the carbon tax (� tQt = � t

h
hRt � (hRt)�L1��Qt

i
),

the subsidy to the use of intermediate goods (
R At
0 spitxitdi = Atsxt=�), the subsidy to re-

search (�t), the subsidy to labor in CCS ('wtLQt), the subsidy to sequestered carbon (�tQt =

�t(hRt)
�L1��Qt ) and the lump-sum subsidy (or tax) Tt (see section 3.1.1). Assuming that it is bal-

anced at each date t, it writes: � t
h
hRt � (hRt)�L1��Qt

i
�Atsxt=���t�'wtLQt��t(hRt)�L1��Qt �

Tt = 0 for all t.

3.2 Equilibrium

The preceding �rst-order conditions enable us to determine the equilibrium in the decentralized

economy, that is, the set of quantities, prices and growth rates at each date expressed as functions

13Note that Barro and Sala-i-Martin (2003), for instance, consider a direct subsidy to labor in research; our
assumption alleviates computational complexity in the present context of polluting non-renewable resources and
abatement.
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of the economic policy tools (s, �, � , ' and �). Here also, the economy is always in transition. We

fully characterize the decentralized economy in Appendix 3, where we provide all equilibrium

levels and growth rates. In this section, we focus on the variables that are relevant to our

analysis.

As we mentioned above, the three basic distortions concern research and polluting emissions.

Recall that, in the present model, there is no directed technical change14, in particular in the

abatement technology. We do not study the links between the climate policy and research

subsidies - for such analysis in a partial equilibrium framework, see for instance Goulder and

Mathai (2000) or Gerlagh et al. (2008). Thus, in order to focus on the climate policy, we assume

here that research is optimally funded. In other words, both subsidies, s and �, are set at their

optimal levels, that is s = 1� �, and �t = VtgAt (proof: see Appendix 3, section i).

3.2.1 Equilibrium with no climate policy

We �rst consider the case in which no climate policy is implemented: � t = �t = 0 at each date.

The economy immediately jumps to its steady-state, where the amount of labor devoted to CCS

is nil (see equation (28)): LQt = 0, which means that no carbon is abated (Qt = 0). This, in turn,

implies that the total potential emission is released in the atmosphere, i.e. Pt = hRt. Moreover,

since labor used in the production of the �nal good (LY ) is constant, labor devoted to the research

sector (LA = 1� LY ) is also constant15. The �ow of extraction at date t is Rt = �S0e
��t: This

implies gR = �� for all t. Finally, the growth rate of output, gY ; is equal to � � �, as in more

general endogenous growth models with non-polluting non-renewable resources. This steady-

state is obviously identical to the �rst-best steady-state when environmental preferences are nil,

that is, when ! = 0 (see section 2.2.1).

3.2.2 Equilibrium with climate policies

Now, we consider the equilibrium in presence of the climate policy tools. For obvious reasons,

it is impossible to study all types of carbon tax and subsidy pro�les. We will then limit our

analysis to speci�c types. We show in the next section (section 4.1) that the �rst-best carbon

tax is a linear function of Y . Moreover, studying the class of economic policy tools growing at

the same rate as output allows to fully characterize the equilibrium, and in particular to obtain

14For an endogenous growth model with a stock of pollution and directed technical change, see for instance
Grimaud and Rouge (2008) or Acemoglu et al. (2011).
15This property stems from an arbitrage condition in the allocation of labor between production and research

activities. A similar trade-o¤ occurs at the social optimum; we give a more detailed analysis in Appendix 1 (i).

17



a closed-form solution for resource extraction. We thus focus on a climate policy such that

� t = a1Yt and �t = a2Yt, where a1 and a2 are positive constants.

The main �ndings are the following. Labor in �nal good production, LY , is constant over

time, and LQt, the e¤ort in CCS, is given by

LQt =

�
(� t + �t)�(1� �)
(1� ')�(1� �)Yt

�1=�
hRt: (28)

Here, we assume 0 � (� t + �t)=Yt � (1 � ')�(1 � �)=�(1 � �) in order to avoid the corner

solution in which the whole carbon content of Rt is abated at any time. The �ow of resource

extraction is given by

Rt =


 0e
�t +G

, (29)

where  0 = G=(e
G�S0
 � 1) and G = h� t

Yt
� �h

�
�(1��)

(1�')�(1��)

� 1��
�
�
� t+�t
Yt

� 1
�
(see Appendix 3 (iii)).

Since � t=Yt and �t=Yt are constant, G is constant. The growth rate of resource extraction is

gRt =
��

1 + (e
G�S0
 � 1)e��t

: (30)

gRt is negative and asymptotically converges toward its long-run level ��. Along the transition,

one can see that if G > 0, then gRt is higher than its asymptotic value, while if G < 0, it is

lower. The value of G depends on the relative values of � t and �t.

Since the e¤ort in CCS (LQt), abated carbon (Qt) and pollution (Pt) are linear functions of

Rt, they also decrease over time16. Since LQt decreases over time, labor devoted to research,

LAt, increases over time and converges to the constant level 1� LY = 1� ��=�(1� �) as time

goes to in�nity. Note that the relations between the CCS e¤ort, sequestration, pollution and

extraction depend on the economic policy tools - see later the e¤ects of policies.

The growth rate of output is given by

gY t = gAt + (=(1� �))gRt. (31)

Since gAt = �LAt (see equation (2)), gAt increases over time and tends to � � ��=(1 � �).

Simultaneously, gRt tends to its limit �� (see equation (30)). Thus, in the long run, gY t tends

to �� �, which we can consider positive. This is a fairly standard expression of long-run output
16 If we consider technical progress in the CCS function, for instance Qt = (hRt)

�(AQtLQt)
1��, where AQt

grows over time at exogenous rate, then (28) becomes LQt=hRt = [� t�(1� �)=(1� ')�(1� �)Yt]1=� A(1��)=�Qt .
LQt=hRt and Qt=hRt are then increasing functions of time, which is more consistent with Grimaud et al. (2011),
for instance. In this case, even if Rt decreases over time, Qt can be increasing over some intervals.
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growth in a model with non-renewable resources - see for instance Stiglitz (1974) in an exogenous

growth model without pollution. Along the transition path, however, gAt is lower than its long-

run level and gRt can be lower or higher according to the relative values of the carbon tax and the

subsidy to sequestered carbon - see comments below equation (30). Thus, over some intervals

of time, output growth can be positive or negative. We provide further elements on the impact

of the economic policy tools on output growth in the next section.

4 Economic policies

4.1 First best climate policy

We now characterize the �rst-best policy. Recall that there are three basic market failures in this

economy. Since we have set the research subsidies at their optimal levels, only the environmental

distortion remains. Hence, in order to implement the �rst-best, one just needs to set the carbon

tax at its Pigovian level. Obviously, there is no need here for the CCS tools, that is, the subsidies

to sequestered carbon and to labor in CCS. Thus we set � = ' = 0 in this section.

Proposition 1 At each date t, � ot =
!(1��)
�+� Yt is the level of the carbon tax that implements the

socially optimal path. This tax is unique, and it is generally an increasing function of time.

Proof. Comparing the optimal levels of the variables to their levels in the decentralized equilib-

rium, for instance LoQt=hR
o
t (11) and LQt=hRt (28), yields �

o
t . Then, one can easily check that

all the other variables in the decentralized economy are at their socially optimal levels.

First, note that � ot = (��t)e�t(1 � �)Yt, where �t is the co-state variable associated to

Zt, the stock of carbon, in the social planner program (see Appendix 1, equation (41)). This

socially optimal tax can be linked to the ones obtained in partial equilibrium frameworks: see

for instance Hoel and Kverndokk (1996, equation (17)), Goulder and Mathai (2000, equation

(13)) or Gerlagh et al. (2008, equation (18)). However, in our context, this tax exhibits speci�c

properties, which we comment below.

Economic interpretation of the �rst-best carbon tax

One can show that, if we use the non-speci�ed expression of the utility function, U(Ct; Zt),

the optimal tax is equal to �1
UC

R +1
t UZe

�(�+�)(s�t)ds > 0, since UZ < 017. Thus the optimal

tax is the product of two terms. The �rst, 1=UC , is the amount of consumption good that

17 Indeed, using (10), we have 1=UC = Ct = (1 � �)Yt, and �
R +1
t

UZe
�(�+�)(s�t)ds = !

�+�
: we get the result

given in Proposition 1.

19



compensates a unit change in utility. The second, �
R +1
t UZe

�(�+�)(s�t)ds; is the expression of

the optimal tax in terms of utility, that is, the sum of discounted social costs of one unit of

carbon emitted at date t, for all (present and future) times. Hence, � ot is the sum of discounted

social costs of one unit of carbon measured in terms of �nal good.

Note that the tax level matters here. Indeed, when abatement technology is available, the

social planner has to give the right incentive in terms of social costs of pollution to �rms, so

as to induce the optimal e¤ort in abatement. Thus, the optimal tax has to be equal to @Yt=

@Qt � (@Yt= @LY t)=(@Qt= @LQt), which is the cost for �rms of sequestering one unit of carbon18

- indeed, increasing CCS leads to a decrease in output through a labor transfer from the �nal

good sector to the CCS one. Since @Yt= @LY t = �Yt=LY t and @Qt= @LQt = (1��)Qt=LQt, using

the optimal values given in Appendix 1 (section vii), we get � ot as expressed in the proposition.

This sharply contrasts with the standard result of the literature without abatement which states

that the tax level generally does not matter (see Dasgupta and Heal, 1979; Sinclair, 1992; Groth

and Schou, 2007; or Grimaud and Rouge, 2008 for instance). In this context, there are an

in�nity of optimal taxes which have the same dynamics, but di¤er in their levels. Here, in a

model featuring CCS, we have shown that the socially optimal tax is unique.

Main properties of the �rst-best carbon tax

We have seen that the optimal tax level is �1UC
R +1
t UZe

�(�+�)(s�t)ds. The term�
R +1
t UZe

�(�+�)(s�t)ds

is the optimal tax expressed in terms of utility, and it is equal to !=(�+�). For obvious reasons,

it is increasing in environmental preferences, !, and decreasing in the psychological discount

rate � and the rate of natural CO2 decay �. Moreover, since we use a separable utility function

with a constant marginal disutility of the stock of CO2 !, and since � and � are constant, the

tax is constant under this form.

However, when the optimal tax is measured in terms of �nal good, its growth rate is equal

to the growth rate of output. This also comes from the utility function we have chosen: the

utility of consumption is logarithmic, as stated in equation (10). 1=UC is equal to (1��)Yt. So,

the optimal tax grows at the same rate as output - which is generally positive. The economic

intuition behind this property is the following. If gY t > 0, the marginal utility of consumption

decreases over time. Thus, the amount of �nal good that compensates the household for the

emission of one unit of carbon increases over time. Observe that the Pigovian tax is increasing

even if utility is a linear function of Zt. A convex functional form would probably reinforce this

result - see for instance the discussion on this issue in Goulder and Mathai (2000, p.34). This
18Goulder and Mathai (2000) provide a similar expression in a partial equilibrium context with exogenous

baseline emissions, that is, exogenous total carbon content in our framework (see equation (11) in their paper).

20



con�rms what is obtained by Grimaud et al. (2011) in a calibrated model, in the absence of

carbon ceiling. Finally, since go� = goY , the Ramsey-Keynes condition (15) implies g
o
� = r�� < r;

in other words, this policy will postpone resource extraction - see Dasgupta et al. (1981) on this

issue.

Remark: Ex-post interpretation of the increasing unit carbon tax.

In many growth models with climate change (see for instance Sinclair, 1992, Groth and

Schou, 2007, or Grimaud and Rouge, 2008), the socially optimal policy instrument consists of

a decreasing ad-valorem tax on resource use - which is equivalent to a tax on carbon emissions

if there is no abatement. Here we have shown that the optimal tool is an increasing unit tax

on carbon emissions. Both results can be linked. Indeed, the optimal carbon tax, which leads

the decentralized economy to postpone resource extraction, can be interpreted ex-post as a

decreasing ad valorem tax on the resource. When the optimal tax is implemented, the total

(i.e., including the price of the resource and the carbon tax) unit price paid by users for the

resource increases less fast than the unit price perceived by owners of the resource -whose growth

rate is equal to the interest rate. That is why extraction is postponed. Ex-post, this has the

same e¤ect as a decreasing ad valorem tax. Indeed, we have seen that the total price paid by

�rms for the resource is ~pRt (see 22). Using (28) and � ot = !(1��)Yt=(�+�) (see proposition 1),

~pRt is equal to pRt

�
1 +

�
1�

�
!�(1��)
�(�+�)

�(1��)=��
!(1��)hYt
(�+�)pRt

�
at the �rst-best. Thus, ~pRt can be

written as pRt(1 + �t), where �t can be interpreted as an ad valorem tax on the resource. Since

gY t = rt� � and gpRt = rt, the ratio Yt=pRt decreases over time and so does the ad valorem tax.

4.2 Impact of second-best economic policies

We suppose here that the Pigovian level of the carbon tax - stated in proposition 1- cannot

be achieved by the policy maker, and that it can only be lower than this level at each date t.

As mentioned above, many reasons could explain this situation, such as a lack of international

political consensus. In such a case, additional policies could prove useful. We thus study the

impact of second-best policies: a carbon tax � t inferior to � ot
19, the subsidy to sequestered

carbon �t and the subsidy to labor in CCS '. When they are not necessary, we drop time

subscripts for notational convenience.

19We include the carbon tax in the second-best tools when it is below its �rst-best level in order to simplify
our presentation.
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4.2.1 Carbon tax

We �rst consider the impact of the carbon tax � . We have shown in section 4.1 that the �rst-best

level of the carbon tax is strictly positive; we thus study here the impact of setting a positive

carbon tax in an economy where there is none, or, equivalently, of increasing the tax level if one

is already in place. We implicitly assume that, in either case, the tax level is below its �rst-best

level. This means that the studied policy is always Pareto-improving - even if, as we shall see,

it can be detrimental for the environment in the short run. As mentioned above, we focus on

policies such that the ratio �=Y is constant. The e¤ects of these policies on the equilibrium

trajectories of the economy are described in the following proposition.

Proposition 2 An increase in �=Y has the following impact on the economy:

(i) On CCS activity: The e¤ort by unit of carbon content (LQ=hR) and the instantaneous

rate of carbon sequestration (Q=hR) increase. E¤ective pollution by unit of carbon content

(P=hR) decreases.

(ii) On the dynamics of resource extraction, carbon emissions and CCS: Resource extraction,

carbon emissions, the e¤ort in CCS as well as CCS activity itself are postponed, i.e.: gR, gP ,

gLQ and gQ increase.

(iii) On the level and growth of output: If the weight of the CCS sector in the whole economy

is high, the tax is likely to be detrimental to growth. Since extraction is postponed, the output

level is unambiguously lowered by this policy in the short run.

Proof. See Appendix 3 (section v).

Result (i) is due to the fact that the carbon tax makes CCS activity become more pro�t-

able. That is why the amount of labor by unit of carbon content (see equation (28)) increases.

Therefore, the instantaneous rate of CCS also increases. Simultaneously, e¤ective pollution by

unit of carbon content decreases.

The carbon tax also modi�es the dynamics of resource extraction - result (ii). One can easily

see that G � 0 if and only if �t � ��� [�(1� �)=Yt(1� ')�(1� �)]��1 ��t � � t - see equation

(29). In particular, if � t > 0 and �t = 0, then G > 0, that is, with the carbon tax alone,

the growth rate of resource extraction is higher than its value in the absence of climate policy,

��. More generally, it is straightforward that @G=@(� t=Yt) is positive (see Appendix 3, section

v). Thus, @gRt=@(� t=Yt) is positive: the carbon tax postpones resource extraction. The key

transmission channel is the resource price. To understand it, consider the total price paid by

the �nal sector for the resource, ~pRt (see (22) and (28)). The growth rate of ~pR is equal to
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gpR +gM . According to the sign of gM , the total price of the resource grows more or less rapidly

than pR. �=pR can be rewritten as (�=Y ):(Y=pR). Since �=Y is constant, and gY=pR = �� (see

equations (15) and (16)), we have g�=pR = gY � gpR = ��. Similarly, g�=pR = ��. Hence, we

obtain gM = �(1�M)=M .

In order to isolate the e¤ects of the carbon tax on the dynamics of the total price of the

resource, we assume here that �t = 0. In this case, M = 1 + �h
pR

"
1�

�
��(1��)

Y (1�')�(1��)

�(1��)=�#
. If

�=Y > 0, using the fact that 0 � � t=Yt � (1 � ')�(1 � �)=�(1 � �) - see section 3.2.2 -, it is

straightforward that M > 1; thus, gM is negative. In other words, as soon as �=Y > 0, we have

~pRt > pRt with g~pRt < rt, for all t. So, when the policy maker implements a climate policy, the

total price of the resource paid by its user, ~pR, is higher but it grows less fast; in other words,

the increase in the total price paid by the resource user between two given dates gets lower.

Hence, the instantaneous resource use �ows are reallocated over time: less resource is extracted

today, and more tomorrow. Resource extraction is thus postponed, that is, gR increases. Q;LQ

and P being proportional to R, their dynamics are a¤ected in the same way.

We now comment the e¤ects of this climate policy on the growth and level of output (result

iii). The impact on output growth is less straightforward. Equation (31) shows that two di¤erent

e¤ects drive this impact: the e¤ect of the tax on knowledge growth (gA) and the e¤ect of the

tax on the growth rate of resource extraction (gR). In the absence of CCS technology, the e¤ect

on research is nil, since the allocation of labor between production and research is unchanged

over time (see equation (42) in Appendix 3). In this case, since the climate policy postpones

resource extraction, i.e., gR increases, it unambiguously promotes output growth20. If a carbon

abatement technology is available however, the e¤ect on the research e¤ort can play a key role

since there is now a third competing use for labor. Using equations (2) and (9), we can see that

this e¤ect is the opposite to @LQ=@(�=Y ) - since, here also, LY is constant. We have shown that

LQ = [��(1� �)=�(1� �)Y ]1=� hR (equation (28)). An increase in �=Y has a positive impact on

the term between brackets: for a given level of extraction, the tax increases the price of carbon

used in the CCS process, which prompts a rise in LQ. However, as we have already seen, it also

has a negative impact on R in the short run and a positive impact in the long run. Hence, the

carbon tax has a negative impact on knowledge growth in the long run, but the short-run e¤ect

is ambiguous. Since this tax has a positive impact on gR, the overall e¤ect on output growth

20This contradicts the general �nding of models in which pollution is a by-product of production or capital, and
does not result from the use of non-renewable resources. In most of these models, when no speci�c assumptions on,
say, returns to scale on the abatement technology or the external e¤ects of environmental quality on productivity
are made, Gradus and Smulders (1993), or Grimaud (1999), show that there is a trade-o¤ between environmental
quality and economic growth. For a survey on this question, see for instance Ricci (2007).
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is ambiguous. Finally, we can conclude that, when a costly CCS technology is available, the

impact of the carbon tax on growth depends on the strength of its - possibly negative - impact

on knowledge growth. This means that it depends on the weight of the CCS activity in the

whole economy. If this weight is high, that is, if LQ is relatively high, the carbon tax is likely

to be bad for growth.

As shown above, output level is given by Y = ��=(1��)AL
�=(1��)
Y R=(1��). In the short

run, the postponement of resource extraction drives the economy to less resource use, which

negatively impacts output. In sum, the carbon tax is detrimental for output and consumption

in the early times.

4.2.2 Subsidy to sequestered carbon

Here we consider the e¤ects of the subsidy to sequestered carbon �t. As previously mentioned,

we restrict our analysis to subsidies that grow at the same rate as output, that is, �t=Yt is

constant. We study the impact of setting a positive subsidy in an economy where there is none,

or, equivalently, of increasing the level of the subsidy if it is already implemented. The e¤ects

of such policies on the equilibrium trajectories of the economy are described in the following

proposition.

Proposition 3 An increase in �=Y has the following impact on the economy:

(i) On CCS activity: Like the carbon tax, the subsidy stimulates CCS activity. The e¤ects

of the subsidy on the e¤ort by unit of carbon content (LQ=hR), the rate of carbon sequestration

(Q=hR), and e¤ective pollution by unit of carbon content (P=hR) are identical to the e¤ects of

the carbon tax - see result (i) in proposition 2.

(ii) On the dynamics of resource extraction, carbon emissions and CCS: The e¤ects on

resource extraction, carbon emissions, the e¤ort in CCS and CCS activity itself are opposite

to the e¤ects of the carbon tax - see result (ii) in proposition 2 -, that is, gR, gP , gLQ and gQ

decrease.

(iii) On the level and growth of output: In the short run, the subsidy is unambiguously

bad for growth. In the longer term, if the weight of the CCS sector in the whole economy is

high, the subsidy can promote growth. Since resource extraction is faster, the level of output is

unambiguously increased by this policy in the short run.

Proof. See Appendix 3 (section vi).

The subsidy to sequestered carbon, as the carbon tax, makes CCS activity more pro�table.

Its impact on LQ=hR, Q=hR and P=hR is summarized in equation (28). Here, �t and � t are
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perfect substitutes since they appear in a sum. Henceforth, their impacts are clearly identical

- results (i) in propositions 2 and 3. Moreover, if � t < � ot - and, in particular, if � t = 0 -, the

policy makers can always set �t = � ot � � t and restore the socially optimal LQ=hR, Q=hR and

P=hR: Nonetheless, the levels LQ, Q and P will not be socially optimal since, as we show below,

this level of subsidy does not entail a socially optimal resource extraction.

The impact of the subsidy on resource extraction is opposite to the impact of the carbon tax.

We have seen in section 4.2.1 thatG < 0 if and only if �t > ��� [�(1� �)=Yt(1� ')�(1� �)]��1 ��t�

� t. In particular, if �t > 0 and � t = 0, then G < 0, which means that, with the subsidy alone,

the extraction growth rate is lower than its value in the absence of climate policy, ��. More

generally, it is straightforward that @G=@(�t=Yt) is negative; for this reason, @gRt=@(�t=Yt) is

negative. In other words, the subsidy to sequestered carbon accelerates resource extraction. To

understand this, we study how the resource price is a¤ected by this policy. Recall that the total

price paid for the resource by the �nal sector is given by (22) and (28). We consider the symmet-

ric case of 4.2.1, that is, in order to study the e¤ects of the subsidy on the dynamics of this price,

we assume that the carbon tax is nil: � t = 0. In this case, M = 1 � �h
pR

�
��(1��)

Y (1�')�(1��)

�(1��)=�
.

Here M < 1, which means that gM > 0. In other words, the subsidy lowers the level of the

price paid for the resource but it makes it grow faster: ~pRt < pRt and g~pRt > rt for all t. This

entails a reallocation of instantaneous resource uses over time so that more resource is extracted

today and less tomorrow, that is, resource extraction is accelerated: gR decreases - result (ii) in

proposition 3.

Q;LQ and P being proportional to R, their dynamics are a¤ected in the same way. This

means that a type of green paradox can occur here. Indeed, following Sinn (2008) and subsequent

contributions like Gerlagh (2011) and Van der Ploeg and Withagen (2012), a (weak) green

paradox occurs when climate policies induce a more rapid extraction of fossil fuels, thus fostering

short-term emissions. Here, two opposite e¤ects drive short-term e¤ective emissions: more

resource is extracted, and more carbon is sequestered. If the former e¤ect overcomes the latter,

then the subsidy to CCS yields higher carbon emissions in the short run.

We now turn to the impact of this policy on output (results iii). Recall that gY = gA +

(=(1��))gR (see equation (31)). As proved above, the subsidy entails a decrease in gR. If this

e¤ect is strong, and thus dominates any possible positive impact on research, output growth

declines. More generally, we have shown in the preceding subsection that gA is a decreasing

function of LQ. The impact of the subsidy on LQ is given by equation (28). We can see that

the increase in �t=Yt has a positive e¤ect on the term between brackets. Moreover, we have
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stated that the e¤ect on R is positive in the short run and negative in the long run. Therefore,

the impact of the subsidy on knowledge growth is negative in the short run and ambiguous in

the long run. Hence, the overall e¤ect of the subsidy to sequestered carbon on output growth is

unambiguously negative in the short run. In the long run, the subsidy is detrimental to growth

if the weight of the CCS activity in the economy is low (i.e. a relatively low LQ). Conversely, if

this weight is relatively high, the subsidy can have a negative or a positive impact on growth.

In this last case, the impact of the subsidy is opposite to the impact of the carbon tax.

The e¤ect on output level in the short run is obviously also opposite to the e¤ect of the tax:

more resource is used in the early stages, which tends to increase output and consumption in

the short run.

More generally, the interest of this policy is twofold. First, for many reasons - in particular,

political consensus issues -, the �rst-best level of the carbon tax is not likely to be reached.

Then, one can think that a complementary tool, such as this subsidy to sequestered carbon,

may help to Pareto improve the trajectories of the economy. Second, we have seen that the

impacts of both policies are sometimes opposed, in particular on production and consumption

in the short run. Whereas the carbon tax entails a decrease in output, the subsidy fosters it.

In other words, the latter tool helps to reduce the burden of the climate policy in the earlier

periods. Then, one can think that mixing both policies may favor public acceptance when the

regulator has to implement her policy scheme.

Remark: We have seen that the carbon tax and the subsidy to sequestered carbon have

opposite e¤ects on the time pro�le of resource extraction: the tax postpones it while the subsidy

accelerates it. When these two policies are simultaneously applied, the e¤ect of the tax on

extraction con�icts with that of the subsidy. However, we are able to characterize the overall

e¤ect on the growth rate of resource extraction of any couple (� t;�t). Indeed, as stated in the

comments below proposition 3, resource extraction is postponed (resp. accelerated) if and only

if �t is lower (resp. higher) than ��� [�(1� �)=Yt(1� ')�(1� �)]��1 ��t � � t.

4.2.3 Subsidy to labor in CCS

We �nally consider the subsidy to labor in CCS, '. The main e¤ects of this tool are summarized

in the following proposition.

Proposition 4 The subsidy to labor in CCS ' has no impact on the economy if there is no

complementary climate policy, that is, if � t = 0 and �t = 0.
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If � > 0 and/or � > 0, ' has the following impact on the economy:

(i) On CCS activity: the e¤ects are similar to the e¤ects of the carbon tax and the subsidy

to sequestered carbon - see results (i) in propositions 2 and 3.

(ii) On the dynamics of resource extraction, carbon emissions and CCS, and (iii) on the level

and growth of output: the e¤ects are similar to the e¤ects of the subsidy to sequestered carbon -

see results (ii) and (iii) in proposition 3.

Proof. Di¤erentiating equations (28)-(30), and (44), (45), (48) and (49) in Appendix 3 with

respect to ' yields the results.

First, in the absence of the carbon tax (� t) and the subsidy to sequestered carbon (�t), a

subsidy to labor in CCS has no e¤ect on the economy. This can be observed in equations (28)

and (30). One can see that, if � = � = 0, then LQ = 0, that is, there is no CCS activity, and

gR = �� since G = 0. Indeed, carbon - sequestered or emitted - is not priced, and thus CCS

activity is not pro�table.

When � t > 0 and/or �t > 0, the subsidy to labor does have an impact. First, the pro�tability

of CCS resulting from the implementation of the carbon tax and/or the subsidy to sequestered

carbon is strengthened, thus LQt=hRt and Qt=hRt increase, and, consequently, Pt=hRt decreases

- result (i) in proposition 4. Second, the subsidy accelerates resource extraction. To understand

this, we need to analyze how this tool a¤ects the dynamics of the total price paid by the resource

user. By using equation (22), we get @M=@' < 0 and thus @gM=@' > 0. Thus, the subsidy to

labor accelerates the growth of the total price of the resource, and thus accelerates its extraction.

If � t > 0 and �t = 0, we have seen in section 4.2.1 that ~pRt grows less fast than pRt. Hence

the subsidy to labor in CCS goes against the e¤ect of the carbon tax on resource extraction.

If � t = 0 and �t > 0, as stated in section 4.2.2, ~pRt grows faster than pRt; so ' strengthens

the e¤ect of the subsidy to sequestered carbon. This obviously means that, as the subsidy to

sequestered carbon, the subsidy to labor in CCS can yield a green paradox.

When this policy is implemented together with a carbon tax � t and/or a subsidy to se-

questered carbon �t, it a¤ects output levels and growth in the same way as �t since their impact

on knowledge accumulation and resource extraction are alike. For the same reasons, this policy

can be seen as a good complement to a carbon tax since, while strengthening its impact on CCS

activity, it can favor its social acceptance by alleviating its burden at the early stages.
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5 Conclusion

We have developed an endogenous growth model with climate change that features a CCS

technology. Such abatement technology allows, for a given use of fossil fuel, endogenizing CO2

emissions.

We have fully depicted the socially optimal outcome of this economy and we have shown

that the greatest e¤ort in CCS should happen today. Moreover, the availability of a CCS

technology can yield a rise in CO2 emissions in the short run since it speeds up the pace of

resource extraction, which can o¤set the CCS activity. We have computed the �rst-best carbon

tax, which is unique and generally increasing over time.

We have fully characterized the decentralized economy�s trajectories and, when the Pigovian

carbon tax cannot be implemented, we have studied three types of second-best economic policies.

The �rst one is a standard unit tax on carbon emissions. The second and the third are subsidies

to sequestered carbon and the e¤ort in CCS, respectively, which can both favor the public

acceptance of the carbon tax.

All three tools foster CCS activity. However, the second subsidy has an e¤ect only when it

is coupled with one of the other two. The carbon tax postpones resource extraction whereas

the two subsidies accelerate it, which means that they can yield a green paradox in the form of

a rise in short-term GHG emissions. The e¤ects on growth are more complex: when the CCS

sector is important, the carbon tax is generally detrimental to output growth, while the two

subsidies can foster growth in the long term. Finally, the carbon tax has a negative impact on

output level in the short term, contrary to the subsidies.

The decarbonization of the economy and the switch to renewable or non-fossil fuel based

energy remains necessary (Gerlagh, 2006). In order to keep the model tractable, the availability

of a clean and renewable energy source has not been introduced. This so-called backstop would

not drastically alter the qualitative properties of our results. Nevertheless, it would be interesting

to study the impact of the CCS option on the adoption timing of these alternative sources

of energy. We can infer that the possibility to sequester carbon emissions would delay the

introduction of renewable energy.
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Appendix

Appendix 1: Welfare

We drop time subscripts for notational convenience. The social planner maximizes U =
R +1
0 (lnC�

!Z)e��tdt subject to (1)-(4) and (7)-(9). We assume that [�!(1� �)=�(�+ �)]1=� < 1 (see equa-

tion (11)) in order to avoid a corner solution in which carbon emissions are fully abated, i.e.

LQ = hR. Thus, it is unnecessary to incorporate a Kuhn-Tucker condition for LQ � hR. The

Hamiltonian of the program is

H = (lnC � !Z)e��t + ��A(1� LY � LQ)� �R+ �
h
h(R� h��1R�L1��Q ) + �(Z0 � Z)

i
+�

�
(

Z A

0
x�i di)L

�
YR

 � C �
Z A

0
xidi

�
;

where �, �, � and � are the co-state variables. The �rst order conditions @H=@C = 0 and

@H=@xi = 0 yield

e��t=C � � = 0; (32)

and �x��1i L�YR
 � 1 = 0; for all i. (33)

Note that this implies xi = x, for all i. @H=@LY = 0, @H=@LQ = 0 and @H=@R = 0 yield

� ��A+ ��Y=LY = 0; (34)

���A� �h�(1� �)R�L��Q = 0; (35)

and �h(1� �h��1R��1L1��Q ) + �Y=R� � = 0: (36)

Moreover, @H=@A = � _�, @H=@S = � _�; and @H=@Z = � _� yield

� _� = ��LA + �(x
�L�YR

 � x); (37)

� _� = 0; (38)

and � _� = �!e��t � ��: (39)

i) Computation of LY .

(33) can be rewritten as Y = Ax=�. Since Y = C +Ax, one gets C = (1� �)Y .
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Dividing both hand sides of (37) by � gives �g� = �LA + (x
�L�YR

 � x)�=�. The term

between brackets can be rewritten as Y=A � �Y=A, which is equal to (1 � �)Y=A. Moreover,

from (34), we have �=� = �ALY =�Y and g� + gA = g� + gY � gLY . Since (32) yields g�

= ���gC = ���gY , one gets �g� = gA+�+gLY . Plugging these results in the �rst expression

of �g�, we obtain the following Bernoulli di¤erential equation: _LY = (�(1 � �)=�)L2Y � �LY :

In order to transform this equation into a �rst-order linear di¤erential equation, we consider

the new variable z = 1=LY , which implies _z = � _LY =L2Y . The di¤erential equation becomes

_z = �z � �(1 � �)=�, whose solution is z = e�t [z0 � �(1� �)=��] + �(1 � �)=��. Replacing

z by 1=LY leads to LY = 1
e�t[1=LY 0��(1��)=��]+�(1��)=�� . Using the transversality condition

lim
t�!+1

�A = 0, one can show that LY immediately jumps to its steady-state level:

LY = ��=�(1� �): (40)

Indeed, using (34) it turns out that the transversality condition is only satis�ed when LY =

LY 0 = ��=�(1� �).

The optimal level of LY results from an arbitrage in the allocation of labor between produc-

tion and research activities. The heuristic argument is the following. Suppose a marginal increase

of labor in production, �LY t = 1; at date t. This leads to an increase in production and thus in

consumption: �Yt = �Ct = �Yt=LY t. Since Ct = (1 � �)Yt, one gets �Ct = �Ct=(1 � �)LY t,

which yields the following increase in utility: �Ut = �Ct=Ct = �=(1 � �)LY t: Assume now

�LAt = 1; at date t. This leads to an increase in knowledge, �As, and thus in net production:

�Ys = (@Ys=@As � xs)�As, for all s � t. Since @Ys=@As = Ys=As, and xs = �Ys=As, one gets

�Ys = (1 � �)Ys�As=As. Moreover, As = A0e
R s
0 �LAudu, thus dAs = As�dLAt = �As, for all

s � t. This yields �Ys = �(1��)Ys. Since �Ys = �Cs and Cs = (1��)Ys, one gets �Cs = �Cs.

The increase in the instantaneous utility at s is thus �. Finally, since
R +1
0 e��tdt = 1=�, we see

from (10) that the increase in the intertemporal utility is equal to �=�. Equating both increases

in the intertemporal utility leads to LY = ��=�(1� �):

ii) Computation of �.

The solution for equation (39) is � = e�t(
R t
0 !e

�(�+�)sds + �0): Moreover, the transversality

condition associated to Z writes

lim
t�!+1

�Z = lim
t�!+1

e�t
hR t
0 !e

�(�+�)sds+ �0

i h
X0 +

R t
0 Pse

�(s�t)ds
i
= 0.

We obtain �0 =
R +1
0 (�!)e�(�+�)sds; which gives � = e�t

R +1
t (�!)e�(�+�)sds = e��t

R +1
t (�!)e�(�+�)(s�t)ds
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= e��t
R +1
0 (�!)e�(�+�)udu. Finally, we get

� = �!e��t=(�+ �): (41)

� is the discounted value at t = 0 of the social cost of one unit of carbon emitted at date t,

expressed in terms of utility. This expression can be linked to the value of the optimal carbon tax

at date t, measured in �nal good, in proposition 1: � o = [!(1� �)=(�+ �)]Y = ��e�t(1��)Y .

iii) Computation of LQ.

Using (41), (35) becomes ���A + !e��th�(1 � �)R�L��Q =(� + �) = 0. Using (32), (34) and

(40), we get ��A = �e��t=�. Plugging this result into the preceding one, we get (11).

iv) Computation of R.

Using (36), (41) and (11), we obtainR = 
�0e

�t+B , in whichB =
(1��)!h
�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
:

Since we have assumed [�!(1� �)=�(�+ �)]1=� < 1 at the beginning of this appendix, then

B > 0.

We compute �0 using the constraint
R +1
0 Rtdt = S0. We have S0 =

R +1
0


�0e

�t+Bdt =R +1
0

e��t

�0+Be
��tdt. Consider the new variable u = �0 +Be��t, which gives du = ��Be��tdt. We

have S0 =
R �0
�0+B

�
�B

du
u = �

�B ln
�

�0
�0+B

�
. From this equation, one obtains �0 = B=(e

B�S0
 � 1):

Finally, we get goRt =
��

1+(eB�S0=�1)e��t .

v) Computation of Q and P .

Plugging (11) into Q = (hR)�L1��Q , one gets Q =
�
�!(1��)
�(�+�)

�(1��)=�
hR.

Then, using P = hR�Q ; we have P =
�
1�

�
�!(1��)
�(�+�)

�(1��)=��
hR.

vi) Computation of x.

(1) can be rewritten as Y = (Ax)x��1L�YR
 . Since Ax = �Y and using (40), we get

x = �1=(1��)(��=�(1� �))�=(1��)R=(1��):

vii) Computation of growth rates.

The growth rates directly follow from the log-di¤erentiation of the preceding results.

In summary, one gets:

LoY = ��=�(1� �);

LoQt =

�
�!(1� �)
�(�+ �)

�1=�
hRot ;

LoAt = 1� LoY � LoQt;
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Rot =


�0e
�t +B

;

where �0 = B=(e
B�S0
 � 1) and B = (1��)!h

�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
,

Qot =

�
�!(1� �)
�(�+ �)

�(1��)=�
hRot ;

P ot =

"
1�

�
�!(1� �)
�(�+ �)

�(1��)=�#
hRot ;

goAt = �LoAt;

goRt = goLQt = goQt = goPt =
��

1 + (e
B�S0
 � 1)e��t

;

goY t = goAt + (=(1� �))goRt:

Appendix 2: Welfare in the no-CCS case

When no CCS technology is available, maximizing welfare leads to the following results (recall

that we denote by Xo?
t the optimal level of any variable Xt in this case):

Lo?Y = ��=�(1 � �), Lo?A = 1 � ��=�(1 � �), Ro?t = 

�?0 e
�t+B?

, go?R = ��

1+(e
B?�S0

 �1)e��t
,

go?A = �Lo?A , g
o?
Y = �Lo?A +(=(1��))go?R , where �

?
0 =

B?

e(B
?�S0=)�1

and B? = (1��)!h=(�+�):

Since B < B?, we have goRt < go?Rt .

Appendix 3: Equilibrium in the decentralized economy

Here also, we drop time subscripts for notational convenience.

i) Computation of LY

In this paper, we focus on climate policy and its impacts on the economy. Hence we assume

that research is optimally funded; in other words, we assume that both subsidies to research, s

and �, are set at their optimal levels. As in the standard case, the optimal level for the subsidy

to the demand for intermediate goods, s, is 1� �. This can be shown as follows. Equation (3)

shows that the marginal cost of xi is equal to 1. Thus, the socially optimal price paid by the

�nal sector, pi(1 � s), must be equal to 1. From (23), the monopoly price is pi = 1=� (> 1).

Hence, we have (1� s)=� = 1, that is, s = 1� �.

The optimal value of the subsidy to research � is obtained in what follows.

Equation (18), in which pi(1 � s) = 1 (from (23)), can be rewritten Y = Ax=�. Since

Y = C +Ax, one gets C = (1� �)Y , as it is the case at the social optimum.
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From (15) and (26), we have r = �+ gC = gV +
�m+�
V , where gC = gY .

From (27) and (19), after log-di¤erentiation, we get gV = gw�gA = gY �gLY �gA. Moreover,

from (19), (25) and (27), we obtain �m=V = �(1 � �)AxLY =��Y ; since Ax = �Y , we get

�m=V = �(1 � �)LY =�. Plugging these two results into the expression of r given above yields

� = �gLY � gA+ �(1��)LY =�+�=V . It is now obvious that, if �=V = gA = �LA, the previous

equation becomes the following Bernoulli di¤erential equation _LY = (�(1 � �)=�)L2Y � �LY :

This equation is identical to the equation obtained in Appendix 1 (section i). We thus solve it

in the same way, only this time we use the transversality condition of the household�s program.

One can show that LY immediately jumps to its steady-state level:

LY = ��=�(1� �): (42)

ii) Computation of LQ, Q and P .

From (19), (21) and (42), we have Y �(1 � �)=� = (� + �)(1 � �)(hR=LQ)
�=(1 � '). This

yields

LQ =

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�1=�
hR. (43)

Plugging (43) into (6), we get

Q =

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�(1��)=�
hR. (44)

Finally, (44) and (5) yield

P =

"
1�

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�(1��)=�#
hR. (45)

iii) Computation of R.

Basically, R is obtained from (20). In order to express R as a function of time and of the

climate policy, we need to rewrite three elements of this equation. First, LQ=hR is obtained

from (43). Secondly, using (15) in which gC = gY , we get Y = Y0e
R t
0 (ru��)du. Finally, from (16),

we have pR = pR0e
R t
0 rudu. Plugging these three results into (20) yields R = 

(pR0=Y0)e�t+G
, where

G = h�
Y ��h

�
�(1��)

(1�')�(1��)

� 1��
� �

�+�
Y

� 1
� . Since �=Y and �=Y are assumed constant, G is constant.

Hence using the condition
R +1
0 Rtdt = S0 and the method used in Appendix 1 (section iv), one

gets:

R =


 0e
�t +G

, (46)
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where  0 = G=(e
G�S0
 � 1).

iv) Computation of the rates of growth.

The growth rates directly follow from the log-di¤erentiation of the preceding results. We

obtain

gA = �

"
1� ��

�(1� �) �
�
(� + �)�(1� �)
(1� ')�(1� �)Y

�1=�
hR

#
; (47)

and gR = gLQ = gQ = gP =
��

1 + (e
G�S0
 � 1)e��t

: (48)

Finally, we know that xi � x (see equation (24)) and Y = Ax=�: Replacing x by its value in (1)

gives Y = ��=(1��)AL
�=(1��)
Y R=(1��): Thus we have

gY = gA + (=(1� �))gR: (49)

v) Impact of carbon tax.

In order to analyze the impact of a change in �=Y on the economy, one has to study its

impact on G. One gets: (1=h) @G
@(�=Y ) = 1 �

�
(� t+�t)�(1��)
Yt(1�')�(1��)

�(1��)=�
, which is positive, since we

assume 0 � (� t + �t)=Yt � (1�')�(1� �)=�(1� �). Then, using equations (28)-(30), and (44),

(45), (48) and (49), the results described in proposition 2 follow.

vi) Impact of the subsidy to sequestered carbon.

Here, we have @G
@(�=Y ) < 0. As in subsection v), the results described in proposition 3 follow.
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