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This paper provides a systematic study of planning procedures with public goods in which 
local truthful revelation of preferences is a dominant strategy. These procedures are said to be 
strongly locally individually incentive compatible (SLIIC). We first characterize the (time 
invariant) continuously differentiable planning procedures that are SLIIC. Then, we study 
properties such as balancedness, cheatproofness with respect to coalitions, neutrality, individual 
rationality and we point out the connection with the MDP procedures. 

1. INTRODUCTION 

Planning with public goods was studied by Dreze and de la Vallee Poussin (1971) and 
Malinvaud (1972) in a class of dynamic procedures called the MDP processes. In these 
procedures, each consumer reports his marginal rates of substitution between public 
goods and a private good at each instant. The planning bureau uses this information to 
alter the allocation of public goods and to make transfers of private good. Over time, 
the plan converges to a Pareto optimum. Moreover, along the way, the utility of each 
consumer continually increases; i.e. the procedure is individually rational. Champsaur 
(1976) showed that the class of MDP procedures is "neutral" or "unbiased"; that is, 
that any individually rational Pareto optimum is the limit point of a member of this class 
(see Champsaur, Dreze and Henry (1977) for a comprehensive study of stability and of 
existence of solutions in such procedures). 

One important question about MDP processes concerns the incentive for truthful 
revelation of marginal rates of substitution. Dreze and de la Vallee Poussin (1971) 
showed that truthful revelation is a local' maximin strategy and consequently also globally 
maximin. They also observed that at the stopping point of a process, revelation of true 
marginal rates of substitution forms a Nash equilibrium. Malinvaud (1971) suggested 
that MDP procedures would converge even if agents "lied" along the way. Indeed, 
Roberts (1979) proved that if, at each instant, consumers report their Nash equilibrium 
strategies of the local revelation game (by the local revelation game, we mean that 
consumers report so as to maximize the instantaneous increase of utility; Nash equilibrium 
is unique, but the equilibrium strategies are untruthful except at the stopping point2), 
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172 REVIEW OF ECONOMIC STUDIES 

the procedure still converges to a Pareto optimum, although at a slower speed than 
under truthful revelation. 

Modelling consumers' behaviour by Nash equilibrium implicitly entails one of two 
alternative assumptions. Either one assumes that consumers know each other's preferen- 
ces and so can directly calculate the Nash equilibrium, or one supposes that equilibrium 
is reached through an iterative adjustment procedure. 

One way of avoiding both assumptions is to devise a procedure ensuring that at 
each instant truthful revelation is a dominant strategy (i.e. is optimal regardless of what 
other consumers do) for the consumer. 

Green and Laffont (1979) devised planning procedures with this incentive property 
but these were neither individually rational nor balanced.3 Using the differential approach 
of Laffont and Maskin (1980), Fugigaki and Sato (1980) exhibited a class of generalized 
MDP procedures which are balanced and for which truthful behavior is a locally dominant 
strategy. One member of this class, moreover, is individually rational; consequently this 
individually rational procedure converges to a Pareto optimum (see Section 4 below). 

In this paper we provide a systematic study of planning procedures with public goods 
in which local truthful revelation of preferences is a dominant strategy. These procedures 
are said to be strongly locally individually incentive compatible (SLIIC). 

In Section 2 we set up a model with one private and one public good4 and define 
our terms. In Section 3 we completely characterize the continuously differentiable 
planning procedures that are SLIIC. We give necessary and sufficient conditions for the 
transfers to be balanced at each instant. Finally, we show that there exist no twice 
continuously differentiable planning procedure which is proof from manipulation by 
coalitions. Section 3 characterizes the class of SLIIC, balanced, individually rational 
procedures that converge to Pareto optima for the case of two consumers. This class is 
very large, and in fact is neutral. Yet it contains only one member of the MDP family. 

When the number of agents is greater than two, no MDP procedure is SLIIC. 
However, as with two consumers, the class of SLIIC procedures that are Pareto optimal, 
balanced, and individually rational is large. In Section 4 we characterize this class 
(assuming differentiability) for an arbitrary number of consumers. 

2. THE MODEL 

We consider economies with N consumers and two commodities: one private good 
available from initial endowments and one pure public good which can be produced 
from the private good. 

Each consumer i is characterized by a smooth strictly concave utility function 
Ui(xi, y), defined on the non-negative orthant of R2, where xl denotes the consumption 
of private good and y denotes the level of public good, and by a positive endowment 
w' of private good. 

Moreover 

au' 
U_ ~(xi,y)>O foranyx'>0,y>0 

ax' 

U'(0,y)=oo foranyy_0 

U dU (x', y)_0 forx'i0, y0 
y* ay /aJ 
Ili(xi y)_dU (xiy)/ - (xi,y) ay ax' 

T(O, y) =O for any y ?0. 
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The production possibilities are described by a smooth cost function G (y) such that 

dG 
dy Y=YY> 

d2G 
dy2 (y) > 0 for any y-0. 

we assume that for all {x'} such that E x =E wi 

Li=l 1(X% So)-1Y(0)>?S 

so that positive levels of the public good are always socially desirable. 

Definition 1. A planning procedure is an N- tuple of strategy spaces S x ... *x SN 
and functions Y( ), X'(),...,XN(.) from S'x X XSN to RN+1 such that at each 
instant t 

dy y=y(1t) .. N0) (1) 

dx ' _ i =Xi (s l(t),. * N (t)) i =l1.. N (2) 

where 

SNteS' X ... XSN s (t)-( (t)S ,s()sSx x 

is an N- tuple of announced strategies at instant t. 

(1) specifies the rate of change of the quantity of public good; (2) describes the rates 
of change of the private good allocations. The procedure starts at time 0, when y (0) = 0 
and x'(0)= w', i = 1,..., N. 

As well as considering it as a dynamic system, we can view a planning procedure 
as a static game in which each agent announces a global strategy (s ( *)), and where the 
outcome is a stationary point of the dynamic system (1) and (2). However we know 
from the incentives literature (Hurwicz (1972) and others) that there exist no procedure 
for which consumers have dominant strategies whose equilibrium outcomes are always 
Pareto optimal. To obtain positive results we must therefore weaken the incentives 
requirement if Pareto optimality is to be maintained. We shall do this by assuming that 
consumers are myopic; i.e. we suppose that they maximize their instantaneous pay 
off-the rate of change of their utility level, dU'/dt. 

Given this type of behaviour, we study the class of planning procedures for which, 
at each instant, the optimal strategy of each consumer is a dominant strategy. 

Observe that 

dt (x' (t) y (0))= i (xi(t),y(t))[rii(xi(t),y(t))Y(s(t))+X'(s(t))]. dt ax' 

Thus, under the myopia assumption, each consumer maximizes 

IIi (x i)(t)I y(t))Y(s(t)) +X (s(t)). 

At each instant, a consumer acts as if he had a linear utility function defined by III. 
From Green and Laffont ((1979) theorems 4-7) we know that, in searching for a 

procedure with instantaneous dominant strategies there is no loss of generality in assuming 
that a consumer's strategy space coincides with the space of marginal rates of substitution. 
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In this case, a strategy (for consumer i) is just the announcement of a marginal rate 
of substitution, ql'(t). Equivalently, consumer i can announce a net marginal rate of 

N substitution, At(t), defined as follows: Let A' t= 0, i = 1,... ,N, Y.= A' = 1, be ex-ante 
defined shares in the marginal cost of the public good. 

Then 

t(t)-t (x l (t), Y (t))-f (x l (t), y (t))- A iRy (y (t)) 
is the announced net marginal rate of substitution (0 (t) e R). 

Let 

di(t)--I (x (t), y (t))- A "Y (y (t)) 

be the true (net) marginal rate of substitution. 

d d U xi 

W (t), Y_(d)U-(x i (t), y (t)) [1 i (t)y~ (t) + T(t)] 

with 

- i (t), Y (t) + A i (t)y (t) +()+A" t 0 

and r(O)_ =0. 
The i' are transfers of private good beyond those needed to finance the public good. 

They play a major role in inducing the right incentives. For convenience, we shall 
henceforth consider U'( ), WI( ), 6'( ) as functions of r' and y instead of xi and y. 

We can summarize the above discussion by the following definitions: 

Definition 2. A local direct revelation planning procedure is a planning procedure 
for which the strategy of each agent at each instant is an announced (net) marginal rate 
of substitution 6'(t), i.e. S' = 11R, and 

Y = Y(6'(t), . . . 
,) 

or 

ri = i(Wl (t), Y .,) [N (t)). ) (0 

Announcing his true net marginal rate of substitution 6' is a dominant strategy for 
consumer i at a given instant if 

for all Si and 6-i6 

Definition 3. A strongly locally individually incentive compatible (SLIIC) planning 
procedure is a local direct revelation planning procedure for which revelation of the true 
(net) marginal rate of substitution is a dominant strategy at each instant for every 
consumer. 

Definition 4. A strongly locally coalitionally incentive compatible (SLCIC) plan- 
ning procedure is a SLIIC planning procedure such that revelation of the true (net) 
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marginal rates of substitution is a dominant strategy at each instant for every coalition 
of consumers. 

Before studying SLIIC planning procedures, we require a few more definitions. 

Definition 5. A planning procedure is n-times continuously differentiable or C' 
iff the functions Y('), T1(.)...., TN(.) are Cn. 

Definition 6. A planning procedure is balanced iff: 

ZN .1 = (t) =0 VtOt0O 

Note that if a procedure is balanced, then ENZ1 i =0 at each instant. 
An allocation (y, 1,... ., TN) is Pareto optimal iff 

N ^ 

>2=lA 0'(r, y) = 0 (4) 

ZNi=l = 0. (5) 

(4) is the Lindahl-Samuelson condition, and (5) is the feasibility constraint for the private 
good. The necessity and sufficiency of (4) and (5) for Pareto optimality follows from the 
convexity of preferences and technology, non-satiation in the private good, and the 
boundary conditions rl'(0, y) = 0 and EI=1 FIT(W, 0)--y(0)>0. 

Definition 7. A balanced planning procedure is Pareto optimal iff its stationary 
points are Pareto optimal allocations; i.e. 

Y(O', ... 06N)=0 <* N0j=0 N 

T' (Od, ,N)=0 i=1 ... N Ei= 0 

Definition 8. A planning procedure is convergent iff the solutions of the dynamic 
system (3) converge to its stationary points. 

Definition 9. A planning procedure is dynamically efficient iff it is balanced, Pareto 
optimal and convergent. 

A useful property for proving the dynamic efficiency of a procedure is individual 
rationality. An allocation is individually rational if no consumer considers it worse than 
his initial endowment. 

Definition 10. A planning procedure is individually rational if: 

dU' 
Vi = 1, . . .,N dt (ri(t), y(t))0'O Vt?O. 

Definition 11. A class of planning procedures is neutral or unbiased iff each 
individually rational Pareto optimal allocation is the limit point of a member of the class. 

3. CHARACTERIZATION OF SLIIC PLANNING PROCEDURES 

Our first step will be to characterize planning procedures that are SLIIC, without worrying 
about efficiency, balance, or individual rationality. 
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Theorem 1. A C'-planning procedure is SLIIC iff: 
(i) Y(6) is weakly increasing in each component 
(ii) T'(0) = -1J os(alasi)Y(s, 0-i) ds +h'(O i) 

where h () is an arbitrary function of 0-i, i = 1,... , N. 

Proof. At each instant the maximand of consumer i is 

1y(Oi a, + T'(6', ai) 

A necessary condition for 0' = 6' to be a dominant strategy is that 6' be a solution of 
the first order condition of the consumer's maximization problem. 

__a 
i,Oi aT'N1 ' (6,6 )+- (',6 49)= 0 forany 0 eR (6) ao' aol 

Since we seek procedures for which the truth is always a dominant strategy, (6) 
must hold for any 6' E=R. Consequently we have an identity: 

*aY aT' N 

6a'i (6' ?-)+ (' ) =0 for any (, 0 1) eR* (7) 

Integrating (7), we derive 

T' (a) s (s, a ds +h'( (8) 

To see that Y(*) must be weakly increasing let 6', 6' be any two values of consumer 
i's marginal rate of substitution. For 6' to be a dominant strategy when it is the truth, 
we must have in particular 

O' y( 0, 0 )+ V(0i, 0 >- O_aY (0-, -i+ Ti(Oi -i(9 

Similary when 06 is the truth 

0 y(0, 6-')+T (o', 6'),oy(O', 0-)+T'(0o, -i). (10) 

Adding (9) and (10) yields: 

(e, - 0 ) [ Y(0 o )-Y(#, " )] '-. 

Hence Y is weakly increasing. 
Observe that this last argument does not require differentiability. When differentia- 

bility holds, this condition can be derived from the local second order condition of the 
above maximization problem. Indeed the second derivative is 

2 2i 
.aidY (0 i+dT (6'i (1 

Using (7) and evaluating (11) at Oi = 6 we have: 

-dY (J' a-i) ay 

The second-order condition becomes: 

_-a0, (6', 6 i) c 0 or (6', 0 for any (6", 6')E RN 

It remains to check that these necessary conditions are indeed sufficient; i.e. that 
6' = 6' is a global maximum of consumer i's maximization problem. We must verify that 
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jY(i -) T(J' o-')>6J'Y(o' 6')?T'(6', 6') forany(Gi 6i)ERR (12) 

Using (8) and integrating by parts, we can rewrite (12) as 

(6'i - 6') Y(6' 0i) ?J Y(s', 0) ds', 
& 

which holds from the weak monotonicity of Y(O', O-i). 

Given this complete characterization of SLIIC planning procedures, we can now 
impose additional desiderata. 

Theorem 2. Suppose that Y(6) is weakly increasing and CN. There exists a balanced 
SLIIC CN_planning procedure with public good allocation rule Y(O) iff: 

N 

361 aoN Y(6) O. 

Proof. If transfers are balanced, 

ZN=1 Ti(0) O. (13) 

From (8), (13) is equivalent to 

s (s1,0-1) ds+h1(0-1)=0. (14) 

Diff erentiating with respect to 01,..., ON (14) yields: 

N 

(E=l 0 ,i6w1 N Y(O)-O (15) 

which implies: 
N 

ao'*** aoNY(O) 0 since Y() isCN (16) 

Conversely, if (16) holds, we can reintegrate it to construct h'(@) functions such that 
transfers are balanced. 11 

Theorem 3. A balanced SLIIC planning procedure is Pareto optimal if: 

Y(0)=O ? X N oi=lO 

Proof. Obvious. 

Theorem 4. There exists no C2-SLCIC Pareto optimal planning procedure. 

Proof. Consider a coalition of two agents, say agents 1 and 2. They choose (61, 02) 

to maximize the following objective function 

^1 ^2 Jay 011 1,62ay2 2 22t- 
S' 6Y(') ds'- s 2-(s2 602)ds2+h (6d)+h2(d ). 

O As O As 



178 REVIEW OF ECONOMIC STUDIES 

Hence, the first order conditions are: 

^1 ( 22) aay6)_0 06 
2 

2 af Y (s2, 0-2)ds2 (17) 

(l'1+62) 8rai _ 2 dY j9)| al dY2 (s', dsa+ 2'-'=? (17) 

For (60, 62) to be a joint dominant strategy for the coalition, (17) and (18) must 
hold as identities when d = 6', 62= 0'2 from the same argument as used in Theorem 1. 

In particular (17) yields: 

__ 1 _ _2 ay1)=O. 

(0l+a6 a68 ~ s ( _ ldY0 _| 2 2 ,l(s2,6 2) ds2 + 6h l (a2)-O. (19) 

Differentiating (19) with respect to 62 gives: 
20 2 d Y2 a2dY a2Y 

ao ao a ____0 2 ____ 

(6?2 626 )6 ~ 6a1 

or 

Similarly (18) yields aY/ay2iO. 
Considering all coalitions of two agents successively, we conclude that Y(6) must 

be a constant K. But then Y(a) clearly does not satisfy the condition of Theorem 3. 
Therefore the procedure is not Pareto optimal. 2 

We next seek to construct dynamically efficient SLIIC planning procedures. This 
objective is easily reached if one can design Pareto optimal, balanced procedures that 
are individually rational. We show below that this is possible. 

4. PARETO OPTIMALITY, INDIVIDUAL RATIONALITY, 
AND NEUTRALITY WHEN N = 2 

Because the arguments are especially simple, we begin with the case N = 2. In Section 
5 we extend to arbitrary N. 

A complete characterization of autonomous9 SLIIC, Pareto optimal, balanced, 
individually rational C2- planning procedures is provided in the following theorem. 

Theorem 5. A two-person C2 planning procedure is SLIIC, Pareto optimal, balanced 
and individually rational if 

(i) Y(O) = A(O 1) - A(-02), A strictly increasing and continuously differentiable 
(ii) T'(O) = -lo' s'(d/ds')A\(s') ds + Jo2 s2(d/ds)2A\(-s2) ds2. 

T2(R) = -TY(O E = 

Proof. From Theorem 2, balance requires: T(8 2l(6) = -T 2(2). 

Incentive compatibility requires: 

dY' (o1), dY2 (6 2) 0. 

d6' - 

o 
dO 2 
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From Theorem 3, Pareto optimality requires: 

Y'(O1) =_y2(_-1) 

Let denote A(-) Y'(*). Then, Y(O) =A(O')_A(-02). 

To avoid the existence of stationary points different from the Pareto optima, A(-) 
must be strictly increasing. 

From Theorem 1, 

T1() = -|s1 dA1(s 1) dsl+h 1(02) 

s ds 

20 =r02 2dA T(6)=-j S ds2 (--s2)dds2+h2(O'). 

To ensure balance, we must have 

l(o el1dA 1 02 2dA 
Tl(8)= s ds (s )dsl+J S2 d2(_ s2)ds2+K 

02 

2dA el 1dA T 2(0) = _| 2 d (_ S2) dS2+ | sldd1 (S 1) 6ds'-K, 0 S 2(s)s+ 

for some constant K. 
It remains to show that with Y and Ti so defined the procedures are individually 

rational if and only if K = 0. 

dU' aui 
dU = dxU (x'(t), y (t)) [6'Y(O) + T'(0)] dit ax' 

with aU'l/ax >0 and, after integration by parts, 

1 
el 

~~~~~1 dA / 

Is+62 2dA 
'Y(6)?T1(6)=1 1[A(1)_A(_02)]f s ci (s ) J-s )ds 

61 

=_ | A(s)ds _ (0 1 + 02)A(_02) +K ? O 
_02 

where, from the monotonicity of A(-), the last expression is non-negative for all (01, 02) 

if and only if K - 0. 
Similarly, 

61 

02y(o)+ T2(0) = (o1+02)A(01)_ A(s) ds -K, 
_02 

which is non-negative for all (6 1, 02) if and only if K '?O. 0. 

Thanks to individual rationality, the dynamic efficiency of the SLIIC procedures 
defined in Theorem 5 is easily proved. Our assumptions ensure that the feasible set is 
bounded. Taking U1( * ) + U2( *) as a Lyapunov function, the procedures are quasi-stable 
in the Uzawa sense; that is, any limit point of the trajectory is a stationary point. Stability 
then follows since, from the strict convexity of preferences and technology, stationary 
points are Pareto optimal and there is a unique Pareto optimum that Pareto dominates 
all points on the trajectory.8 
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Remark 1. If A(s)-s, Y(0) = '? + 02, 

(691)2 (62 )2 1 1. 
T'() - 2 +2 

-- 2 

(0) =_ (692)2 (1 )2 = _ 2 + 1 2 
T2(8)=_( 2 =2 2 -6 f-y 

this is the MDP procedure with equal surplus sharing. 
By varying A(-), a whole family of SLIIC dynamically efficient planning procedures 

can be constructed. 
For example take A(s) =s3; then y(0) = (01)3 + (02)3 

T1(0) =- 3(61)4 + 3(02)4 

T2(0) = _ 3(02)4 + 3(01)4 

Remark 2. Since incentive compatibility is a "closed" property (that is, inequality 
(9) is weak), even a non-differentiable point-wise limit of a differentiable sequence {A'l} 
definies a SLIIC procedure. To ensure that only Pareto optima are stationary points of 
the limit procedure, the limit function must be strictly increasing. 

As Champsaur and Rochet (1981) showed, it is a simple matter to see that the class 
C of two-person, individually rational, dynamically efficient SLIIC planning procedures 
is neutral. Consider the portion of the Pareto frontier that Pareto dominates the initial 
endowment. There are two extreme points on this curve, namely the ones where either 
consumer 1 (point a) or consumer 2 (point 3) is no better off than with his initial 
endowment. To demonstrate neutrality, one need only show that members of C come 
arbitrarily close to attaining point a. By symmetry, the same is true of point 3. Then, 
by continuity the entire portion of the Pareto frontier is attainable. Champsaur and 
Rochet (1981) pointed out that if in Theorem 5 we take A(s) = eas then as a tends to 
infinity, the corresponding stationary point converges to a. 

5. SLIIC PLANNING PROCEDURES WHEN N>2 

In this section we generalize the characterization theorems of the previous section to 
arbitrary N. We begin (Theorem 6) by stating a characterization result that does not 
impose individual rationality. We then do the same (Theorem 7) in the case where 
balance is not imposed. Finally in Theorem 8 we prove the counterpart of Theorem 5 
forN>2. 

Theorem 6. A CN-planning procedure is SLIIC, Pareto optimal, balanced if: 
(a) Y(6) is weakly increasing 

b)(aNyla 1 .a.. N ) (0_o 

(c) Y(O) =0<* >1 6'=0 

(d) T'(0) lo"J s a Ylas 1(s, d-i) ds +hl(0-1) i=1 ..1 N. 
EN where the functions h'(*) are chosen so that Zj1 T (0) = O(such a choice is possible from 

Theorem 2). 

Proof. Obvious from previous theorems. 

Remark 3. For N i 3, the MDP procedures are not SLIIC. For an MDP procedure, 
Y(0) = Z=1 0i. In this case incentive compatible transfers must be of the form T'(0) = 
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-(0i)2/2 +h'(0-'). The transfers of the MDP procedure are, for i = 1,... ,N, 

_oi(ZN 1 Oi)?8'(Z'1 01 )28 

= -(1 N ai)(i)2+ai( 6j)2+(28i - 1)6 E 6' 

where Z 8' = 1 and, for all i, 8' >0. 
Thus the required separability of T' obtains only when 28 -1 =0. This is possible 

for all consumers if and only if N = 2. 
We can characterize Pareto optimal, individually rational SLIIC procedures as 

follows: 

Theorem 7. A CN_planning procedure is SLIIC, Pareto optimal, and individually 
rational if and only if 

(a) Y(6) is weakly increasing 

(b) Y(6)=0OZ2=16' =0 

(c) T'(6) = -6'Y(60) + j-(z ) Y(s, 0-) ds. 

Proof. From Theorem 6 we know that 

T'(0)= - s - (s,60)ds+h (6 ) 
o as 

ei 
= -6iY(6)+ Y(s, 0-') ds +h'((06) 

0 

But 

f Y(s, ) ds +h'(6)=f Y(s, 0-') ds +h-'(6) 
o -Ej?ioj 

Since Y(-) is weakly increasing and 6i _ Z (from the boundary condition 
Z JI'(x', 0)- y(0), we know that E 6' >0 when the procedure starts. Since the process 
stops as soon as E 6' = 0, we conclude that E 6' ?0 always), 

-Yj Yioj(s, 6) ds ?0 

For any 0-', y(oi 0-i) and this last integral are zero for 6' = O-js 6j so that 
individual rationality implles h (6')_ 0. However when 6' - j i', Y(0) =0, and so 
the sum of the transfers equals Zh'(0-'). Since 6' = 60 corresponds to a Pareto 
optimum, the sum of the transfers must vanish. Therefore h (06) 0, i = 1,... ,N. | 

Remark 4. Note that in the proof of Theorem 7 we establish the individual 
rationality of the procedures only for 0 such that E 6' ' 0, in particular on equilibrium 
paths starting from y = 0. This is in contrast with Theorem 5, whose procedures are 
individually rational everywhere. 

If, in addition to the requirements of Theorem 7, we require that the planning 
procedure be balanced, then, according to the Theorem we can conclude that 

J(6) = -Y(6) Zi=> 0 +zi=| Y(s, 0') ds-0. (20) 
Def. -YJ io ' 

Although (20) and (a)-(c) of theorem 7 are together necessary and sufficient for the 
procedure to be SLIIC, Pareto optimal, individually rational, and balanced, (20) is not 
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an especially transparent condition. To put it in somewhat more useful form, let us 
suppose that Y(6) is an analytic function. Then (20) holds if and only if all partial 
derivatives of J(0) vanish for 0 e 6* = 0 1 6 = 0}. 

Now 

ai = Y(O)EN 1 0j+ y(o)+y -Ej, -) 1 (6) =-Y(6)- 
8 

(6 Z 6' +oy -ji 6' 

+ E | j a(s, 0i') ds 

= 0 if 0 e 0* and (b) of Theorem 7 holds (21) 

and 

a2J (69) 
a 
aY(6> dY(6)Z61 + aY (-a2y 

a 
, 6') a(tg 12 61a(6 .i+i1a 6 1(Eo 

a 2 

+Yj a(I 1)2(s, (SI) ds. (22) 

therefore, if N >2, (21) implies that, since (a2J/a('1)2)(0) vanishes for 0 e 0*, 

da (0) = ? for 0 e 0*. (23) 

Continuing iteratively, we find that, for given k, if for all t <k, (atY/a(6'1))(6) =0 for 
6 e 6*, then 

k+1 
( 

=_N 
k?1 

ky ky 

a(6)k? (6)= Z=1 6 a(61)k+l ()-K (1)k (6)?+Zi0 a(t1)k (-EjZ i 6, 6') 
0' ak+l1 

+ J z I?a(6r)k +1 (S, 6') ds. (24) 

Thus for k ? N - 2 and 0 e 0* 

ak 

a(92)k )0. 

Next, observe that for 1 < a ?'N - 2 and 0 e 6* 

aa+1J 
(0)=_yN a a+1Y aay a_ 

+(6) #9 z2t 
(1)a ,r 

1 ( 1a (-E j a i a-1 (6) 

a(61)aa6r ' a(6 ,ar ( )a( a6 

,aay aay 

+ a(61)a (6)??i( 1)ra(1)a (Z..61 I 6 

ei aa 1 

Therefore 

aay 

a(6'1) 6 
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Continuing iteratively, suppose that, for any m <N and for all a1,.. ., am with a = 

Ei=Lai<N-2 andEim2as<k 

,)ay. ) (6) = O for66 = E (25) 
a(o1) a, ... ( 

ma 

Thenforb1, . . .,bm withb= im=lbi _N-2 andim2bi =k, 

ab?lJ(0) N i abl y(0) 

a(ol)bl1l1a(2)b2 .( m )bm9 a(ol)bl?l b (62)b2 a (Gm )bm 

b ab y(0) 

-ba1 ,( . )b a ( mi)b 

=~2 (bi 1) ,a(o)1l b+1(6 2)b2 .y(i)bi-1 ...(m)b 

0 Jr ab+l y(O) 

+Zr>m jY E roi l( 1)bl+1 a(02)b2 . . . a(o m)bm 

Therefore 

da q)b1 +1 ld(192) b2 ... (qm )b= -bi l y(d)b for a 6* 

and we obtain 

1 y(b ) =0 for E *. (26) 

Combining (24)-(26) we conclude that (25) holds for all m and {b1... , bm} such that 
E bi 'N-2. 

Condition (26) and its symmetric counterparts are not only necessary for balance 
but, in conjunction with (a)-(c) of Theorem 7 and (b) of Theorem 6 they are sufficient 
as well. 

Theorem 8. An analytic planning procedure (i.e. one where Y is analytic) is SLIIC, 
individually rational, Pareto optimal, and balanced if and only if 

(a) Y(6) is weakly increasing 
(b) Y(O) = 0 if and only if EiN, oi = O 
(c) T1(0)= -6iY(0)+Js 

0 
j Y(s, 0-i) ds 

(d) y, F(0) lao 1 -,@aoN) (0) _o 

(e) (43ay(6)/a(6w)a1 a(GN)aN)-0 for all {ai,... ,aN} such that Zi=lai=a- 
N-2 and OeO*. 

Proof. We have already demonstrated the necessity of (a)-(e). To see that they 
are sufficient, consider the case N = 3; the generalization to N >3 is straightforward. 
From (d), we may write 

Y(6) = Y (62, 06)+ Y2(01 63)+ y3(61 62). 
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Therefore 
ei 

J(0) = T'(0) =- 0 Y(0)+i, j|__ Y(s, 0 ') ds 

01 02 

= J (Y2(s, 03) + Y3(S, 02)) dS +J (yl(S, 3) + Y3(61, s)) ds (27) 

03 

+J (yl (02, S) + y2(0 1, S)) ds. 

-Ej O30j 

Observe that for 0 e 0*, J(0) = 0. Furthermore, 

J= y2(01, o3) + Y3(1', 02) + yl(-Zj02 Oj, o3) + y3(0, 8-Yj?2 0') 

+ Y1(2 jO O) +y2(0 1 _ E53Oj) +02 
a3 

1 ,s) ds 

= 1 a1( , s) ds+ (,s)d,fo(b 

ao, 10ja 

+02 Y Y( (js)ds? + , 
3 ay2 (@- s) ds 36' (6) 

= I ( de ) (d ,s )+ da-( , s_81) ds 

2~~~~~~ 

But from (e), 

6 Y s) + ay2 
_s_ )=o for alls. 

Therefore, 

Similarly 

622 a03 

HenceJ(2)(00. -d 
Let us consider, as one application of Theorem 8, the class of procedures proposed 

by Fugigaki and Sato (1981). In this class, the function Y(O) takes the form 

Y )=(EN _1 0i)b, 

where b is a positive integer and 

a= c sign = 

for some positive constant c. Clearly all members of the class satisfy conditions (a) and 
(b) of Theorem 8. Condition (d) is satisfied if and only if b_-c-N -1, whereas (a) holds 
if and only if b r N - 1. Therefore, as Fugigaki and Sato showed the only members of 
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their class that are SLIIC, Pareto optimal, individually rational and balanced are those 
where b = N - 1 (Theorem 8 was established for analytic functions Y, but easily extends 
to functions that are piece-wise analytic). 

There are, of course, many procedures, other than these of Fugigaki and Sato, that 
satisfy the conditions of Theorem 9. For example, in the case N =3, set 

yl(02 0 ) = (2 + 3)3 (28) 

For three consumers, condition (e) of Theorem 8 reduces to 

2 ( 3)+ aY(01 02)=0 (29) 
aol ayo 

ao 3 (920 a93)oai2(01, 03)=0 (30) 

a (1, 3)+a (01,02)=0 (31) 

for 0 e 0*. From (28) and (29) 

1Y3,6 0 2) =-3 (12 +(_19 1_ C2))2 = 3(0 1)2 

Hence 

y3(01', 02) = -3(0 )202 + h td 1). (32) 

From (28) and (30) 

ao2 0, )=-3(03 + (-0'-1 03))2 =3(01)2 

Thus 

y2(01' 02) = -3(01)203 +K(01). (33) 
From (31)-(33) 

-601(8 1 _ 02) + K'(0 1) - 60 102 + h'(0 1) = 0. 

Therefore 

h '(0 1) =-K'(O ) - 6(O 1)2 

and so 

h (0 1) =-K(O 1) - 2(0 1)3 

we conclude that 

Y(0) = (02 + 043)3 - 3(601)2093 _3(01)202 - 2(01)3. (34) 

It can easily be verified that Y defined by (34) vanishes only if 0 E 0*. Y is not increasing 
for all values of 0. However, if we define Y* by (34) where Y is increasing and by some 
other rule(s) satisfying (a), (b), (d), and (e) where Y is not, the procedure corresponding 
to Y* will be SLIIC, individually rational, Pareto optimal, and balanced. 

This example suggests, and inspection of conditions (d) and (e) of Theorem 8 
confirms, that to generate the family of all SLIIC, individually rational, Pareto optimal, 
and balanced procedures, we can simply vary Y'(0-1) (where Y(8) = Z Y'(0-') by virtue 
of (d)). Once Y'(0'1) is fixed, the other Y'(0 ') (i $ 1) are determined uniquely by (e). 
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Thus the space of procedures is of the same dimension as the space of functions of 
Y1(01-). Of course, given Yl, we must check that the corresponding Y satisfies (a) and 
(b). 

First version received December 1980; final version accepted July 1982 (Eds.) 

NOTES 
1. "Locally maximin" means "maximizes the minimum instantaneous payoff". "Globally maximin" 

means "maximizes the minimum ultimate payoff". The instantaneous payoff is the gradient of the utility 
function whereas the ultimate payoff is the utility of the final allocation. 

2. Hurwicz (1972) and Roberts (1979) showed that truthful behaviour cannot constitute a global Nash 
equilibrium. However, Champsaur and Laroque (1980) showed that, if the procedure is truncated at time T, 
then the global Nash equilibrium allocations converge to Lindahl equilibria as T tends to infinity. 

3. A planning procedure is individually rational if consumers' utilities are non-decreasing at each instant. 
The procedure is balanced if the transfers sum to zero at each instant. 

4. Generalization to several public goods is straightforward. 
5. For simplicity of exposition we do not take into account the constraint that y must remain positive. 

However, given the boundary condition _ rii (x', 0) --y (0) >0, all the procedures in the class we characterize 
satisfy this constraint automatically. 

6. 0-i = (01. i-1i+1 . N) (Si, 0-i) = (01. 0i-1 ,si,i+. N) 

7. We assume here that agents who form a coalition share their information truthfully. See Laffont and 
Maskin (1980) for more on coalitional behaviour. 

8. See Champsaur, Dreze and Henry (1977) for details. 
9. We restrict the analysis to planning procedures defined by time independent functions Y and T. 
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