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1. Introduction

Since the seminal work of Nash [10], the notion of Nash equilibrium for N -person games has

become the key concept to analyse strategic interaction situations and plays a major role not

only in economics but also in biology, computer science, etc. The existence of Nash equilibria

generally relies on nonconstructive fixed-point argument as in the original work of Nash. They

are therefore generally hard to compute especially for a large number of players. A traditional

question in game theory and theoretical economics is whether the analysis of equilibria simplifies

as the number N of players becomes so large that one can use models with a continuum of agents.

Indeed, since Aumann’s seminal works [1,2] models with a continuum of agents have occupied a

distinguished position in economics and game theory. The challenging new theory of Mean-Field

Games of Lasry and Lions [6–8] shed some new light on this issue and renewed the interest in the

rigorous derivation of continuum models as the limit of models with N players, letting N tend to

infinity. Mean-Field Games theory addresses complex dynamic situations (stochastic differential

games with a large number of players) and in the sequel, we will only consider simpler static

situations.

In [11], Schmeidler introduced a notion of non-cooperative equilibrium in games with a

continuum of agents, having in mind such diverse applications as elections, many small buyers

from a few competing firms, drivers that can choose among several roads. Mas-Colell [9]

reformulated Schmeidler’s analysis in a framework that presents great analogies with the

Monge-Kantorovich optimal transport problem. Indeed, in Mas-Colell’s formulation, players

are characterised by some type (productivity, tastes, wealth, geographic position, etc.), whose

probability distribution µ is given. Each agent has to choose a strategy so as to minimise a cost

that not only depends on her type but also on the probability distribution of strategies resulting

from the behaviour of the rest of the population. A Cournot-Nash equilibrium then is a joint

probability distribution of types and strategies with first marginal µ (given) and second marginal

ν (unknown) that is concentrated on cost minimising strategies. The difficulty of the problem lies

in the fact that the cost depends on ν. For relevant applications, this dependence can be quite

complex since there may be both attractive (mimetism) and repulsive (congestion) effects in the

cost.

Another situation where one looks for joint probabilities (or couplings) is the optimal transport

problem of Monge-Kantorovich. In the Monge-Kantorovich problem, one is given two probability

spaces (Θ,µ) and (X, ν), a transport cost c and one looks for the cheapest way to transport µ to ν

for the cost c. In Monge’s original formulation, one looks for a transport T between µ and ν i.e. a

measurable map from Θ to X such that T#µ= ν where T#µ denotes the image of µ by T i.e.

T#µ(B) = µ(T−1(B)), ∀B ⊂X measurable

that minimises the total transport cost

∫
Θ

c(θ, T (θ))µ(dθ) .

Since there may exist no transport map between µ and ν and the mass conservation constraint

T#µ= ν is highly nonlinear, Kantorovich relaxed Monge’s formulation in the 1940’s by

considering the notion of transport plan (that allows mass splitting and therefore convexifies

Monge’s problem). A transport plan between µ and ν is by definition a joint probability measure

on Θ ×X having µ and ν as marginals. Denoting by Π(µ, ν) the set of transport plan between µ

and ν, the least cost of transporting µ to ν for the cost c then is the value of the Monge-Kantorovich

optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫
Θ×X

c(θ, x) γ(dθ, dx) .
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In the case where we have as same source and target space, a compact metric space X with

distance dX , the previous definition defines the usual 1-Wasserstein metric, W1:

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫
X×X

dX(x, y) γ(dx, dy)

which is well-known to metrize the weak-∗ topology. We refer the reader to the textbooks of

Villani [12,13] for a detailed exposition of optimal transport theory.

The purpose of the present article is twofold:

• emphasise the role of optimal transport theory as a simple but powerful tool to obtain

rigorous passage from Nash to Cournot-Nash as the number of players tends to infinity

(see Theorem 4.2),

• give an account of [3,4] which identifies some classes of games with a continuum

of players for which Cournot-Nash equilibria can be characterised thanks to optimal

transport and actually computed numerically in some nontrivial situations.

The paper is organised as follows. Section 2 recalls the classical results of Nash regarding

equilibria for N -person games. In Section 3, we define Cournot-Nash equilibria in the framework

of games with a continuum of agents. In Section 4, we give asymptotic results concerning the

convergence of Nash equilibria to Cournot-Nash equilibria as the number of players tends to

infinity. In Section 5, we give an account on recent results from [3,4] which enable one to find

Cournot-Nash equilibria using tools from optimal transport and perform numerical simulations.

2. Nash equilibria

An N -person game, consists of a set of N players i∈ {1, · · · , N}, each player i has a strategy

space Xi, setting

X :=ΠN
i=1Xi

and for x∈X , setting x= (xi, x−i)∈X =Xi ×Πj 6=iXj , the cost function of player i is a function

Ji : X =Xi ×X−i →R where X−i :=Πj 6=iXj .

In this classical setting a Nash-equilibrium is defined as follows:

Definition 2.1 (Nash equilibrium). A Nash-equilibrium is a collection of strategies x=

(x1, · · · , xN ) = (xi, x−i)∈X such that, for every i∈ {1, · · · , N} and every xi ∈Xi, one has:

Ji(xi, x−i)≤ Ji(xi, x−i).

The fundamental theorem of Nash states the following existence result for Nash equilibria:

Theorem 2.1 (Existence of Nash equilibria). If:

• Xi is a convex compact subset of some locally convex Hausdorff topological vector space,

• for every i ∈ {1, · · · , N}, Ji is continuous on X and for every x−i ∈X−i, Ji(., x−i) is quasi-

convex on Xi,

then there exists at least one Nash equilibrium.

Since the convexity assumptions in the theorem above are quite demanding (and rule out the

case of finite games, i.e. the case of finite strategy spaces Xi), Nash also introduced the mixed
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strategy extension. A mixed strategy for player i is by definition probability measure πi ∈P(Xi)

and given a profile of mixed strategies (π1, · · ·πN )∈ΠN
i=1P(Xi), the cost for player i reads

J i(π1, · · ·πN ) :=

∫
X

Ji(x1, · · ·xN )⊗N
j=1 πj(dxj).

A Nash equilibrium in mixed strategies then is a Nash-equilibrium for the mixed strategy

extension of the game. Since, as soon as the strategy spaces are metric compact spaces, this

extension satisfies the continuity and convexity assumptions of Theorem 2.1, Nash’s second

fundamental result states that:

Theorem 2.2 (Existence of Nash equilibria in mixed strategies). Any game with compact metric

strategy spaces and continuous costs has at least one Nash equilibrium in mixed strategies. In particular,

finite games admit Nash equilibria in mixed strategies.

3. Cournot-Nash equilibria

Since the seminal work of Aumann [1,2], games with a continuum of players have received a lot of

attention in game theory and economics. The setting is the following: agents are characterised by a

type θ belonging to some compact metric space Θ. The type space Θ is also endowed with a Borel

probability measure µ∈P(Θ) which gives the distribution of types in the agents population.

Each agent has to choose a strategy x from some strategy space, X , again a compact metric

space. The cost of one agent does not depend only on her type and the strategy she chooses

but also on the other agents’ choice through the probability distribution ν ∈P(X) resulting

from the whole population strategy choice. In other words, the cost is given by some function

F ∈ C(Θ ×X × P(X)) where P(X) is endowed with the weak-∗ topology (equivalently, the 1-

Wasserstein metric W1). In this framework, an equilibrium can conveniently be described by a

joint probability measure on Θ ×X which gives the joint distribution of types and strategies

and which is consistent with the cost-minimising behaviour of agents, this leads to the following

definition:

Definition 3.1 (Cournot-Nash equilibrium). A Cournot-Nash equilibrium for F and µ is a γ ∈

P(Θ ×X) such that:

• the first marginal of γ is µ: ΠΘ#γ = µ,

• γ gives full mass to cost-minimising strategies:

γ

({
(θ, x)∈Θ ×X : F (θ, x, ν) = min

y∈X
F (θ, y, ν)

})
=1.

where ν denotes the second marginal of γ: ΠX#γ = ν.

A Cournot-Nash equilibrium γ is called pure if it is of the form γ = (id, T )#µ for some Borel map T :

Θ→X (that is agents with the same type use the same strategy).

By a standard fixed-point argument, see Schmeidler [11] or Mas-Colell [9], one obtains:

Theorem 3.1 (Existence of Cournot-Nash equilibria). If F ∈ C(Θ ×X × P(X)) where P(X) is

endowed with the weak-∗ topology, there exists at least one Cournot-Nash equilibrium.

The continuity assumption above is actually rather demanding and the aim of Section 5 is

to present some results of [3,4] for existence and sometimes uniqueness under less demanding

regularity assumptions.
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4. From Nash to Cournot-Nash

Our aim now is to explain how Cournot-Nash equilibria can be obtained as limits of Nash

equilibria as the number of players tends to infinity. What follows is very much inspired by

results from the Mean Field Games theory of Lasry and Lions, see in particular the notes of

Cardaliaguet [5], following P.-L. Lions’ lectures at Collège de France. The main improvement with

respect to [5] is that we deal with a situation with heterogeneous players and therefore cannot

reduce the analysis to symmetric equilibria.

Let X and Θ be compact and metric spaces with respective distance dX and dΘ and let ΘN :=

{θ1, · · · , θN} be a finite subset of the type space Θ. Consider an N -person game where all the

agents have the same strategy space X . We assume that the cost of player i, depends on her type

θi ∈ΘN , her strategy xi and is symmetric with respect to the other players strategies x−i:

JN
i (xi, x−i) = JN (θi, xi, x−i) = JN (θi, xi, (xσ(j))j 6=i) for every σ ∈ SN−1,

where SN−1 denotes the set of permutations of {1, · · · , N} \ {i}. We moreover assume that there

is a modulus of continuity ω such that for every for every N , every (θi, θj)∈ΘN ×ΘN , every

(xi, x−i) and (yi, y−i) in XN , one has

∣∣∣JN (θi, xi, x−i)− JN (θj , yi, y−i)
∣∣∣≤ ω

(
dΘ(θi, θj)

)
+ ω (dX(xi, yi))

+ ω


W1


 1

N − 1

∑

j 6=i

δxj ,
1

N − 1

∑

j 6=i

δyj




 (4.1)

For further reference, let us observe, following [5] that the W1 distance above is nothing but the

quotient (by permutations) distance:

W1


 1

N − 1

∑

j 6=i

δxj ,
1

N − 1

∑

j 6=i

δyj


= min

σ∈SN−1

1

N − 1

∑

j 6=i

dX(xj , yσ(j)). (4.2)

As in [5, Theorem 2.1], under (4.1), one can extend JN to Θ ×X × P(X) by the classical Mc Shane

construction i.e. by defining for every (θ, x, ν)∈Θ ×X × P(X), the cost FN (θ, x, ν) by the

formula:

FN (θ, x, ν) = inf
(x

−i,θi)∈XN−1×ΘN



JN (θi, x, x−i) + ω(dΘ(θi, θ)) + ω


W1


ν,

1

N − 1

∑

j 6=i

δxj








 .

The previous assumptions are therefore equivalent to the fact that player i’s cost is given by

JN
i (xi, x−i) = JN (θi, xi, x−i) =FN


θi, xi,

1

N − 1

∑

j 6=i

δxj




with FN a sequence of uniformly equi-continuous functions on Θ ×X ×P(X).

Theorem 4.1 (Pure Nash equilibria converge to Cournot-Nash equilibria). Let xN = (xN1 , · · · , xNN )

be a Nash equilibrium for the game above, and define:

µN :=
1

N

N∑

i=1

δθi , νN :=
1

N

N∑

i=1

δxN
i

and γN :=
1

N

N∑

i=1

δ(θi,xN
i
)

Assume that, up to the extraction of sub-sequences,

µN ∗
⇀µ, νN

∗
⇀ν, γN

∗
⇀γ and FN → F in C(Θ ×X × P(X))

then γ is a Cournot-Nash equilibrium for F and µ in the sense of Definition 3.1.
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Proof. First set

ν̃Ni :=
1

N − 1

∑

j 6=i

δxN
j
.

Since xN = (xN1 , · · · , xNN ) is a Nash equilibrium we have,

∀y ∈X, FN (θi, x
N
i , ν̃Ni )≤ FN (θi, y, ν̃

N
i ) .

Hence, using W1(ν̃
N
i , νN )≤ diam(X)/N , we obtain

∀y ∈X, FN (θi, x
N
i , νN )≤ FN (θi, y, ν

N ) + εN ,

where εN := 2ω(diam(X)/N) tends to 0 as N goes to ∞. Summing over i and dividing by N

gives

∫
Θ×X

FN (θ, x, νN ) γN (dθ, dx)≤

∫
Θ

min
y∈X

FN (θ, y, νN ) µN (dθ) + εN .

Since FN (., ., νN ) converges in C(Θ ×X) to F (., ., ν), letting N tend to ∞ in the previous

inequality, we obtain:

∫
Θ×X

F (θ, x, ν) γ(dθ, dx)≤

∫
Θ

min
y∈X

F (θ, y, ν) µ(dθ) .

Since γ obviously has marginals µ and ν, we readily deduce that γ is a Cournot-Nash equilibrium

for F and µ.

As already discussed above, not all the games have a pure Nash equilibrium. So that the

previous result might be of limited interest. This is why, we now consider the mixed strategy

extension which always has Nash equilibria as recalled in Section 2.

Theorem 4.2 (Nash equilibria in mixed strategies converge to Cournot-Nash equilibria). If

Assumption (4.1) holds for ω(t)=Kt, then the conclusions of Theorem 4.1 applies to the extension in

mixed strategies with the extended cost

J
N
(θi, πi, π−i) :=

∫
XN

JN (θi, x, x−i) πi(dx)⊗j 6=i πj(dxj) .

This theorem is a direct consequence of the fact that for uniformly Lipschitz JN , the extension

in mixed strategies still satisfies (4.1):

Lemma 4.1. Under the Assumptions of Theorem 4.2, the extended cost J
N

satisfies

∣∣∣JN
(θi, πi, π−i)− J

N
(θj , ηi, η−i)

∣∣∣≤K dΘ
(
θi, θj

)
+KW1 (πi, ηi)

+K min
σ∈SN−1

1

N − 1

N∑

j=1, j 6=i

W1(πj , ησ(j)) .

for every N ∈N, (θi, θj)∈Θ2
N , (πi, π−i) and (ηi, η−i) in P(X)N .
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Proof. The inequality
∣∣∣JN

(θi, πi, π−i)− J
N
(θj , πi, π−i)

∣∣∣≤K dΘ
(
θi, θj

)

is obvious by integration. Let Γ ∈Π(πi, ηi) be such that
∫
X×X

dX(x, y)Γ (dx, dy) =W1(πi, ηi) .

We have:

∣∣∣JN
(θi, πi, π−i)− J

N
(θi, ηi, π−i)

∣∣∣≤
∫
XN−1

(∫
X×X

∣∣∣JN (θi, x, x−i)− JN (θi, y, x−i)
∣∣∣Γ (dx, dy)

)
⊗j 6=i πj(dxj)

≤K

∫
X×X

dX(x, y)Γ (dx, dy) =KW1(πi, ηi).

Let σ∈SN−1 and for j 6= i, let then Γj ∈Π(πj , ησ(j)) be such that

∫
X×X

dX(x, y)Γj(dx, dy) =W1(πj , ησ(j)).

Then define Γ ∈P(XN−1 ×XN−1) by
∫
XN−1×XN−1

ϕΓ :=

∫
XN−1×XN−1

ϕ(x−i, y−i)⊗j 6=i Γj(dxj , dyj) .

We then have by symmetry, definition of Γ and (4.1):
∣∣∣JN

(θi, πi, π−i)− J
N
(θi, πi, η−i)

∣∣∣ =
∣∣∣JN

(θi, πi, π−i)− J
N
(θi, πi, ησ(j)j 6=i

)
∣∣∣

=

∣∣∣∣
∫
(JN (θi, x, x−i)− JN (θi, x, y−i))πi(dx)Γ (dx−i, dy−i)

∣∣∣∣

≤
K

N − 1

∑

j 6=i

∫
X×X

dX(xj , yj)Γj(dxj , dyj)

=
K

N − 1

∑

j 6=i

W1(πj , ησ(j))

and since σ is arbitrary, we have

∣∣∣JN
(θi, πi, π−i)− J

N
(θi, πi, η−i)

∣∣∣≤K min
σ∈SN−1

1

N − 1

N∑

j=1, j 6=i

W1(πj , ησ(j)) .

which ends the proof.

5. Solving Cournot-Nash via the Monge-Kantorovich problem

In this final section, we give a brief and informal account of our recent works [3,4] and the

computation of Cournot-Nash equilibria in the separable case i.e. the case where, using the

notations of Section 3:

F (θ, x, ν) = c(θ, x) + V (ν, x). (5.1)

All the strategic interactions are then captured by the term V (ν, x). Typical effects that have to be

taken into account are:

• congestion (or repulsive) effects: frequently played strategies are costly. This can be captured

by a term of the form x 7→ f(x, ν(x)) where slightly abusing notations ν is identified with
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its density with respect to some reference measure m0 according to which congestion is

measured. The congestion effect leads to dispersion in the strategy distribution ν,

• positive interactions (or attractive effects) like mimetism: such effects can be captured by a

term like ∫
X

φ(x, y) ν(dy)

with φ minimal when x= y. The positive interaction effect leads to the concentration of

the strategy distribution.

In the sequel we shall therefore consider a term V (ν, x) which reflects both effects. Cournot-

Nash equilibria have to balance the attractive and repulsive effects in some sense, but their

structure is not easy to guess when these two opposite effects are present. As a benchmark, one

can think of ν being absolutely continuous with respect to some reference measure m0 and a

potential of the form

V (ν, x) = f(x, ν(x)) +

∫
X

φ(x, y) ν(dy) (5.2)

where f(x, .) is increasing and φ is some continuous interaction kernel. Note that congestion

terms, though natural in applications, pose important mathematical difficulties since they are not

regular. In particular, in the presence of such terms one cannot use the existence result stated in

Theorem 3.1.

In [3], we emphasized that the structure of equilibria, which we take pure to simplify the

exposition i.e. we look for a strategy map T from Θ to X , is as follows:

• players of type θ choose a cost-minimising strategy T (θ) i.e.

∀x∈X, c(θ, T (θ)) + V (ν, T (θ))≤ c(θ, x) + V (ν, x) .

T is called best-reply map,

• ν is the image of µ by T : ν := T#µ. This is a mass conservation condition.

The aim is to compute ν and T from the previous two conditions. In general, these two highly

nonlinear conditions are difficult to handle, but in [3,4] we identified some cases in which they can

be greatly simplified. We then obtained some uniqueness results and/or numerical methods to

compute equilibria. Roughly speaking, in an euclidean setting for instance, the best-reply condition

leads to an optimality condition relating ν and T whereas the mass conservation condition leads

to a Jacobian equation. Combining the two conditions therefore leads to a certain nonlinear partial

differential equation of Monge-Ampère type.

We shall review some tractable examples in the next paragraphs, but wish to observe that in

the separable setting, Cournot-Nash equilibria are very much related to optimal transport. More

precisely, for ν ∈P(X), let Π(µ, ν) denote the set of probability measures on Θ ×X having µ and

ν as marginals and let Wc(µ, ν) be the least cost of transporting µ to ν for the cost c i.e. the value

of the Monge-Kantorovich optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫
Θ×X

c(θ, x) γ(dθ, dx).

It is obvious that the optimal transport problem above admits solutions since the admissible set is

convex and weakly-∗ compact. Let us then denote by Πo(µ, ν) the set of optimal transport plans

i.e.

Πo(µ, ν) :=

{
γ ∈Π(µ, ν) :

∫
Θ×X

c(θ, x) γ(dθ, dx) =Wc(µ, ν)

}
.

The link between Cournot-Nash equilibria and optimal transport is then based on the

following straightforward observation: if γ is a Cournot-Nash equilibrium and ν denotes its

second marginal then γ ∈Πo(µ, ν), see [3, Lemma 2.2] for details. Hence if γ is pure then it is
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induced by an optimal transport. Optimal transport theory has developed extremely fast in the

last decades and one can therefore naturally take advantage of this powerful theory, for which we

refer to the books of Villani [12,13], to study Cournot-Nash equilibria.

(a) Dimension one

Assume that both Θ and X are intervals of the real line, say [0, 1]. The two equations of cost

minimisation and mass conservation can be simplified to characterise Cournot-Nash equilibria.

This is why under quite general assumptions on c, f and φ we prove in [4, Section 6.3] that the

optimal transport map T associated to a Cournot-Nash equilibrium satisfies a certain nonlinear

and non-local differential equation. For instance when f = log(ν), the map T corresponding to an

equilibrium solves:

T ′(θ) =C µ(θ) exp

(
−

∫θ
0
∂θc(s, T (s)) ds+ c(θ, T (θ)) +

∫1
0
φ (T (θ), T (β)) µ(dβ)

)
(5.3)

supplemented with the boundary conditions T (0) = 0 and T (1) = 1. The case of a power

congestion function f(ν) = να with α> 0, is more involved since in this case, equilibrium

densities may vanish. In this case, one cannot really write a differential equation for the transport

map but working with the generalised inverse of the transport map still gives a tractable equation

for equilibria. Hence equilibria can be computed numerically, see [4], as shown in Figure 1.
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Figure 1. The convergence to the distribution of actions ν at equilibrium in the case of f(ν) = να with α= 2 on

the left and α= 5 on the right. Here φ(x, y) := 10(2x− y − 0.4)2 , c(θ, x) = |θ − x|4/4 and µ is uniform on

[0, 1].

Let us mention that in higher dimensions, for a quadratic c and a logarithmic f , finding an

equilibrium amounts to solve the following Monge-Ampère equation, see [3, Section 4.3]:

µ(θ) = det(D2u(θ)) exp

(
−
1

2
|∇u(θ)|2 + θ · ∇u(θ) − u(θ)

)
×

exp

(
−

∫
Θ

φ (∇u(θ),∇u(θ1)) dµ(θ1)

)
. (5.4)

(b) Variational approach

In [3], we observe that whenever V takes the form (5.2) with a symmetric kernel φ then it is the

first variation of the energy

J(ν) :=

∫
X

F (x, ν(x))m0(dx) +
1

2

∫
X×X

φ(x, y) ν(dx) ν(dy) with F (x, ν) :=

∫ν
0
f(x, s) ds .
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We can thus prove that the condition defining equilibria is in fact the Euler-Lagrange equation for

the variational problem

inf
ν∈P(X)

{Wc(µ, ν) + J(ν)} . (5.5)

More precisely if ν solves (5.5) and γ ∈Πo(µ, ν) then γ actually is a Cournot-Nash equilibrium.

Not only this approach gives new existence results but also, and more surprisingly, uniqueness in

some cases since the functional above may have hidden convexity properties. In dimension one,

under suitable convexity assumptions the variational problem above can be solved numerically

in an efficient way as illustrated by Figure 2.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

Figure 2. The distribution of actions ν at equilibrium in the case φ(x, y) = (x− 1.6)4/4 + (x− y)2/200 and

µ is a distribution of support [0.5, 0.6] ∪ [3.7, 3.8]. The fact that µ has a disconnected support results in a corner

in the density ν.

(c) A two-dimensional case by best-reply iteration

For some specific forms in (5.1) where c and the potential V have strong convexity properties

with respect to x, one can look for equilibria directly by best-reply iteration. For a fixed strategy

distribution ν, each type θ has a unique optimal strategy T (ν, θ), transporting µ by this best-

reply map then gives a new measure T (ν, .)#µ, an equilibrium corresponds to a fixed-point i.e. a

solution of T (ν, .)#µ= ν. For a quadratic c, the previous equation simplifies a lot and, in [4], we

obtained conditions under which the best-reply map is a contraction for the Wasserstein metric

which guarantees uniqueness of the equilibrium and convergence of best-reply iterations. See

Figure 3 for a two-dimensional example.
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