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Abstract

Price caps are often used by policy makers to "regulate markets". Previous analyses have

focussed on the "supply side" impact of these caps, and derived the optimal price cap, which max-

imizes investment and welfare. This article expands the analysis to include the "demand side"

impact of price caps: when prices can no longer rise, customers must be rationed to adjust demand

to available supply. This yields two new �ndings, that contradict previous analyses. First, the

welfare-maximizing cap is higher than the capacity-maximizing cap, since increasing the cap in-

creases gross surplus when customers are rationed. Second, in somes cases, the capacity-maximizing

cap leads to lower capacity and welfare than no cap. These �ndings underscores the importance

for policy makers to examine the impact on customers when they impose price caps.

Keywords: price caps, imperfect competition, rationing, investment incentives

JEL Classi�cation: L13, L94

1 Introduction

Price caps are widely used policy instruments. In electricity markets for example, System Operators

and policy makers impose caps on prices, either formally or through operating practices (Joskow

(2007)). Rent controls, in place in various jurisdictions, constitute a form of price cap. Regulation of

1



infrastructure, for example telecommunication and electric power networks, often relies on price caps.

Prices of medical procedures and drugs are capped in many countries (Schut and Van de Ven (2005),

Mougeot and Naegelen (2005)). Salary caps exist in many sport leagues (Késenne (2000)). Following

the 2008 �nancial crisis, the possibility of capping extremely high compensations, for example those

of traders and CEOs, has been discussed in Europe and in the United States. Economic analysis of

price caps (reviewed below) has sofar focussed on their impact on supply. By extending the analysis

to include their impact on demand, in particular rationing, this article provides new insights. Policy

makers should therefore carefully assess the demand-side impact of price caps in decision making.

Economists have long held reservations about the use of price caps. The argument can be framed

using a simple two-period model1. Firms (or individuals) invest in period 1, and receive pro�ts in

period 2, during which a cap is imposed on prices. Conventional wisdom is that increasing the cap

increases prices, hence pro�ts in period 2, hence investment in period 1, hence lead to higher overall

welfare.

While this result holds if the industry considered is perfectly competitive, matters are more complex

if competition is imperfect and demand in period 2 uncertain. Earle et al. (2007) and Zöttl (2011)

show that, under mild assumptions on the shape of the demand function, contrary to the previous

result, increasing the cap in a certain range reduces investment.

The intuition for this surprising result is that price caps also have a second impact on investment

incentives: increasing the cap reduces the probability that the cap is binding, which reduces expected

pro�ts, hence investment. Earle et al. (2007) show that the �rst e¤ect dominates if the price cap

is close the marginal cost, while the second e¤ect dominates if the cap is su¢ ciently high. Building

on this analysis, Zöttl (2001) derives the capacity-maximizing price cap for a certain class of demand

functions, and shows that this cap leads to higher investment and welfare than the absence of cap.

These results are extremely important, as they provide strong justi�cation for the use of price caps.

However, the previous analysis is incomplete, that ignores the demand-side impact of price caps:

when a cap is imposed, demand must be rationed. By including rationing in the analysis, this article

shows that price caps are less bene�cial than suggested by the previous literature.
1Recent articles, for example Evans and Guthrie (2012), and Roques and Favva (2009), have examined the dynamic

e¤ects of price caps. While they re�ne our understanding of the supply-side e¤ects of price caps, they have not addressed
the demand side e¤ects, which is the contribution of this article.
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Consider, as in Earle et al. (2007) and Zöttl (2011) that demand in period 2 varies, and is uncertain

at the time of investment in period 1. When the cap is binding, prices can no longer rise, hence cannot

reduce demand. Some form of rationing is required to adjust demand to available supply. In power

markets, System Operators administratively decide which customers to cut, a practice known as rolling

blackouts. In other markets, �rst-come �rst-served is the method of rationing. In other situations,

non monetary bene�ts, such as knowledge of the sellers, family ties, a¢ liation to a political party, or

social status may be used for rationing.

The marginal welfare impact of increasing the price cap is thus the sum of two terms: (i) the

marginal impact on capacity, as identi�ed by Earle et al. (2007) and Zöttl (2011), and (ii) the

marginal impact on gross consumers surplus. The capacity maximizing price cap sets �rst the term

to zero. Under reasonable assumptions, increasing the cap increases gross surplus when customers

are rationed: demand is lower, hence less stringent rationing is required. Thus, welfare increases by

increasing the cap from the capacity maximizing level. This intuition is formalized in Proposition 1.

The analysis can be further expanded. Suppose that a fraction of consumers does not respond

to prices. This is the case in the power industry, where some customers face a �xed retail price,

that does not vary in real-time to follow the wholesale price. This is also the case in the health-care

industry, where the price for most drugs and procedures does not vary as demand varies. Demand

is adjusted to available supply through two channels: price increase for price-reactive customers,

and rationing for constant-price customers. The need to maintain consistency between these two

adjustment mechanisms imposes an upper limit on admissible price caps.

In this setting, Proposition 2 derives a su¢ cient condition for the capacity-maximizing cap to

induce lower capacity than no cap, even under Zöttl (2011) su¢ cient conditions.

Finally, by combining Propositions 1 and 2, Proposition 3 proves that, if the capacity-maximizing

cap leads to lower capacity than no cap, imposition of a price cap reduces welfare. Thus, by including

their impact on rationing Proposition 3, weakens previous results on the desirability of price caps.

The situation described in Proposition 3 is empirically relevant, as illustrated on a simpli�ed

representation of the French electric power market.

The policy implications of this analysis are straightforward: when considering price caps, policy
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makers and analysts should not only examine their impact on supply, but also their impact on demand,

in particular rationing of excess demand. The welfare impact of this rationing should be evaluated,

as it may exceed the supply-side bene�ts of the cap.

This article brings together two strands of the literature. On the supply side, the analysis of price

cap under uncertainty was initially developed by Earle et al. (2007). The peak-load pricing analysis,

that underpins the analysis, was initially developed by Boiteux (1949), and Crew and Kleindorfer

(1976). This article builds on the previously discussed two-stage Cournot model developed by Zöttl

(2011), which incorporate price caps into peak-load pricing.

On the demand side, this article applies the formalism of rationing, in particular the Value of Lost

Load, developed in the electricity economics literature, as summarized for example by Joskow and

Tirole (2007) and Stoft (2002). The dichotomy between "price reactive" customers and "constant

price customers" was developed by Borenstein and Holland (2005) and Joskow and Tirole (2007).

This article is structured as follows. Section 2 presents the setup and the equilibrium Cournot

investment. It expends Zöttl (2011) by considering an additional �and empirically relevant �case.

Section 3 proves the di¤erence between the capacity-maximizing and the welfare-maximizing caps.

Section 4 extends the analysis to include constant price customers. Section 5 proves that, in this

case, no price cap may sometimes yields higher welfare than the capacity maximizing cap. Section 6

illustrates the analysis on the French power markets. Finally, Section 7 presents concluding remarks

and avenues for further research. Technical proofs are presented in the Appendix.

2 Cournot competition with uncertain demand and a price cap

2.1 Demand, supply, and curtailment

Underlying demand All customers are homogenous. Individual demand is D (p; t), where p is the

electricity price, and t � 0 is the state of the world, distributed according to cumulative distribution

F (:), and probability distribution f (:) = F
0
(:), common to all stakeholders.

Inverse demand P (Q; t) is de�ned by D (P (q; t) ; t) = Q. Gross consumers surplus is S (p; t) =R D(p;t)
0 P (q; t) dq.
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Assumption 1 8t � 0, 8q � Q, the inverse demand P (Q; t) satis�es

Pq (Q; t) < min (0;�qPqq (Q; t)) and Pt (Q; t) > q jPqt (Q; t)j � 0:

Pq < 0 requires inverse demand to be downward sloping. Pq (Q; t) < �qPqq (Q; t) implies that the

marginal revenue is decreasing with output

@2

@q2
(qP (Q; t)) = 2Pq (Q; t) + qPqq (Q; t) < 0;

and guarantees existence and unicity of a Cournot equilibrium.

Pt > 0 orders the states of the world, Pt (Q; t) > q jPqt (Q; t)j implies that the marginal revenue is

increasing with the state of the world

@2

@t@q
(qP (Q; t)) = Pt (Q; t) + qPqt (Q; t) > 0;

and that the Cournot output and pro�t (de�ned later) are increasing.

Assumption 1 is met for example if demand is linear with constant slope P (Q; t) = a (t) � bQ,

with b > 0 and a0 (t) > 0.

In this and the next Section, all customers face and respond to the spot price. In Sections 4 and

later, we introduce constant price customers.

Supply This article considers a single production technology, with marginal cost c > 0 and invest-

ment cost r. The peak load pricing literature proves that a single technology is su¢ cient to analyze

total installed capacity, that depends solely on the characteristics of the marginal technology (see for

example Boiteux (1949) for the perfect competition case and Zöttl (2011) for the imperfect competition

case).

I assume consuming the �rst unit is valuable P (0; t) > c and E [P (0; t)] > (c+ r). This guarantees

existence of a positive equilibrium investment.

Imperfect competition The industry is composed of N producers, that play a two-stage game:

in stage 1, producer n installs capacity kn; in stage 2 he produces qn (t) � kn in state t and sells it
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entirely in the spot market. Producers are assumed to compete à la Cournot in the spot markets,

facing inverse demand P (Q; t). Stage 2 can be interpreted as a repetition of multiple states of the

world over a given period (for example one year), drawn from the distribution F (:).

The game is solved by backwards induction: producers �rst compute spot market pro�ts from a

Nash equilibrium given installed capacities
�
k1; :::; kN

�
in each state of the world t; then they make

their investment choice in stage 1 using the expectation of these spot market pro�ts.

Q (t) =

NX
n=1

qn (t) and K =

NX
n=1

kn are respectively aggregate production in state t and aggre-

gate installed capacity. KC is the equilibrium capacity referred to as the "Cournot" capacity in the

following.

Price cap and curtailment To limit the exercise of market power, policy makers impose a cap �pW

on the spot price. In power markets, the price cap may be a formal cap, or the result of operational

practices that depress prices (see Joskow (2007)). The price cap must be higher than the long-term

marginal cost of the �rst unit, otherwise it would block any investment. At the other extreme, the

price cap must be binding in some states of the world, otherwise it would be useless. Anticipating on

Lemma 1 below, de�ne KC (p) the Cournot capacity when the price cap is p. The highest binding cap

is p1, uniquely de�ned by

lim
t!+1

P
�
KC (p1) ; t

�
= p1:

Then, �pW veri�es

(c+ r) � �pW � p1:

The �rst state of the world for which the price cap is binding for productionQ is denoted t̂0
�
Q; �pW

�
,

and uniquely de�ned by

P
�
Q; t̂0

�
Q; �pW

��
= �pW :

If the price cap is never binding, t̂0
�
Q; �pW

�
! +1.

For states of the world where the cap is binding, the price cannot rise to lower demand. When

this occurs and the �rms produce at capacity, administrative action is required to curtail (or ration) a

fraction of customers, hence to reduce demand to match available supply. To describe the economics

or rationing, I use the formalism developed in the electric power literature, that can be applied to
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other industries.

The serving ratio is denoted  2 [0; 1]:  = 0 means full curtailment, while  = 1 means no

curtailment. For state t, D (p; ; t) is the demand for (�xed) price p and serving ratio , and S (p; ; t)

is the gross consumer surplus. By construction, D (p; 1; t) � D (p; t) and S (p; 1; t) � S (p; t).

Since customers are homogeneous, there is no basis to discriminate among them. Thus, curtailment

is proportional, for example proceeds by geographic zones. This yields

D (p; ; t) = D (p; t) :

Joskow and Tirole (2007) illustrate on a simple example how the net surplus (S (p; ; t)� pD (p; ; t))

depends on the information consumers hold about the curtailment. Suppose �rst rationing is perfectly

anticipated, i.e., consumers know exactly who will be rationed. The fraction  of customers that will

not be curtailed consumes normally, hence receives surplus S (p; t) per customer. The fraction (1� )

of customers that will be curtailed does not attempt to consume, hence receives no surplus. At the

aggregate level, this yields

S (p; ; t) = S (p; t) :

If rationing is not perfectly anticipated, customers who end up not being curtailed may refrain

from consuming, hence receive no surplus. Conversely, consumers that end up being curtailed may

attempt to consume, hence derive a negative surplus when they are curtailed (e.g., they step in an

elevator and �nd out power is cut).

When curtailment occurs, the Value of Lost Load (V oLL) represents the value consumers would

place on an extra unit. Formally, it is de�ned as

v (p; ; t) =

@S
@

@D
@

(p; ; t) :

If rationing is perfectly anticipated, the V oLL is always higher than the price:

v (p; ; t) =

@S
@

@D
@

(p; ; t) =
S (p; t)

D (p; t)
> p;
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and is increasing in price:

@v

@p
=
D (p; t) @S(p;t)@p � S (p; t) @D(p;t)@p

(D (p; t))2
=
pD (p; t)� S (p; t)

(D (p; t))2
@D (p; t)

@p
=
p� v (p; ; t)
D (p; t)

@D (p; t)

@p
> 0:

It seems reasonable to assume these properties also hold when rationing is not perfectly anticipated.

Consumers are always willing to pay at least as much for one unit when they are curtailed as they are

when they are not curtailed. Ceteris paribus, this value increases as price increases.

When curtailment occurs, the serving ratio for installed capacity K and constant price p is deter-

mined such that

D (p; �; t) = K:

The impact of increasing p on consumers�surplus is

dS
dp
=
@S
@p

+
@S
@

@�

@p
=
@S
@p

� v (p; �; t) @D
@p
;

since, from the de�nition of �,

@�

@p
= �

@D
@p

@D
@

) @S
@

@�

@p
= �@S

@

@D
@p

@D
@

= �v (p; �; t) @D
@p
:

An increase in price p reduces the gross surplus, but also reduces demand, valued at v. If rationing is

anticipated,
@S
@p

� v@D
@p

= p
@D

@p
� v@D

@p
= � @D

@p
(v � p) > 0;

the demand e¤ect is larger than the surplus e¤ect, hence an increase in price increases the gross

surplus. Again, it seems reasonable that this assumption holds for other rationing technologies. These

points are formalized in the following:

Assumption 2 The V oLL is higher than the price, and, ceteris paribus, increasing in price:

v (p; ; t) > p and
@v

@p
> 0:
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The total impact of an increase in price is an increase in gross consumer surplus:

dS
dp
=
@S
@p

+
@S
@

@�

@p
> 0:

As previously mentioned, the formalism of V oLL has been developed in the power industry (hence

its name). It applies more generally in any situation where rationing occurs.

2.2 Equilibrium investment

Suppose �rst no price cap is imposed. The peak load pricing literature shows that two periods must

be separated in describing the structure of the equilibrium: o¤-peak, when production is lower than

capacity, �rms play a standard Cournot equilibrium with marginal cost c. Aggregate production in

state t is the Cournot output, denoted QC (c; t), and de�ned by

P
�
QC ; t

�
+
QC

N
Pq
�
QC ; t

�
= c:

Wholesale price is P
�
QC (c; t) ; t

�
, and individual pro�t is Q

C(c;t)
N

�
P
�
QC (c; t) ; t

�
� c
�
.

The �rst on-peak state of the world, denoted t̂ (K; c), is such that the Cournot output is equal to

the aggregate capacity K:

QC
�
c; t̂
�
= K , P

�
QC

�
c; t̂
�
; t̂
�
+
QC

N

�
c; t̂
�
Pq
�
QC

�
c; t̂
�
; t̂
�
= c:

t̂ (K; c) is increasing in both arguments by inspection.

On-peak, in state t � t̂ (K; c), �rms produce at capacity, wholesale price is P (K; t), and individual

pro�t is KN (P (K; t)� c).

Suppose now a price cap is imposed. Two situations may occur: either the price cap is binding

o¤-peak, i.e., the Cournot price reaches the cap before the Cournot output reaches aggregate capacity,

or the price cap is binding on-peak, i.e., the Cournot output reaches aggregate capacity before the

price reaches the cap. The latter situation occurs if and only if

t̂ (K; c) � t̂0
�
K; �pW

�
: (1)
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It is more likely is competition is stronger (N larger) and the cap higher. For example, as N ! +1,

t̂ (:; :)! t̂0 (:; :), and condition (1) is always met since c < �pW .

The marginal value of capacity when all producers invest kn = K
N is denoted 	

�
K; �pW

�
. The

functional form of 	
�
K; �pW

�
depends on which constraint is binding �rst. 	

�
K; �pW

�
is thus de�ned

piecewise, as shown below:

Lemma 1 The equilibrium capacity KC
�
�pW
�
is characterized by:

	
�
KC ; �pW

�
= 0

where 	
�
K; �pW

�
is de�ned as follows:

1. If the price cap is reached on-peak (i.e., t̂ (K; c) � t̂0
�
K; �pW

�
),

	
�
K; �pW

�
= 	1

�
K; �pW

�
=

Z t̂0(K;�pW )

t̂(K;c)

�
P (K; t) +

K

N
Pq (K; t)� c

�
f (t) dt+

Z +1

t̂0(K;�pW )

�
�pW � c

�
f (t) dt�r:

(2)

2. If the price cap is reached o¤-peak (i.e., t̂0
�
K; �pW

�
< t̂ (K; c)),

	
�
K; �pW

�
= 	2

�
K; �pW

�
=

Z +1

t̂0(K;�pW )

�
�pW � c

�
f (t) dt� r: (3)

Proof. If the price cap is reached on-peak, Zöttl (2011)derives 	1
�
K; �pW

�
and proves the solution

of 	1
�
K; �pW

�
= 0 is the unique symmetric equilibrium. Intuition for 	1

�
K; �pW

�
is as follows. A

marginal capacity increase has no impact o¤-peak. On peak, it generates marginal pro�t (p� c). If the

cap is not binding, it also yields a price reduction, hence the net e¤ect is
�
P (K; t) + K

N Pq (K; t)� c
�
.

When the cap is binding, there is price no reduction, and the net e¤ect is
�
�pW � c

�
.

The formal proof for the price cap reached o¤-peak is presented in Appendix A. Intuition for

	2
�
K; �pW

�
is as follows. When the cap is binding, the wholesale price is set at the cap. O¤-peak,

�rms produce below capacity, hence a marginal increase in capacity has no impact of pro�ts. On-

peak arises when demand for price �pW reaches capacity, i.e., for t = t̂0
�
K; �pW

�
. On-peak, �rms

produce at capacity. A marginal increase in capacity generates additional margin
�
�pW � c

�
. This

yields 	2
�
K; �pW

�
. Appendix A proves this constitutes the unique symmetric equilibrium.
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Lemma 1 extends Zöttl (2011) Theorem 1 by including the case t̂0
�
K; �pW

�
< t̂ (K; c). This is an

empirically relevant extension: since power markets are highly concentrated, and price caps often very

low, imperfectly competitive price may reach the cap before generation produces at capacity. This

occurs for example in the numerical illustration presented in Section 6.

One surprising implication of Lemma 1 is that, if the cap is reached o¤-peak, the optimal capacity

does not depend on the number of �rms. This is counter-intuitive for Cournot games. The intuition is

that, since the cap binding o¤-peak, on-peak arises when demand at the price cap equals the capacity

(i.e., t̂0
�
K; �pW

�
), which does not depend on the number of �rms. Then, on-peak, price is set at the

cap, which again does not depend on the number of �rms.

This result underscores the complexity of the analysis of the imposition of price caps.

3 Capacity and welfare-maximizing caps for price reactive consumers

3.1 Capacity-maximizing cap

Di¤erentiation of �rst-order conditions (2) and (3) yield:

dKC

dp
=
1� F

�
t̂0
�
KC (p) ; p

��
� (p� c) f

�
t̂0
�
KC (p) ; p

�� @t̂0(KC(p);p)
@p�

� @	
@K

� : (4)

where @	
@K = @	1

@K (resp. @	
@K = @	2

@K ) if the price cap is reached on-peak (resp. o¤-peak). The

denominator is positive. The �rst term of the numerator is positive and the second term negative.

These two terms illustrate the two impacts of a price cap on installed capacity: on the one hand,

increasing the cap raises the per unit pro�t when the cap is binding, hence increases investment

incentives. On the other hand, it reduces the probability that the cap is binding, hence the �rm loses

the margin (p� c) for the relevant states of the world. As observed by Earle and al. (2007), under

reasonable assumptions on demand and distribution of states of the world, the �rst e¤ect dominates

when the cap is close to (c+ r), while the second e¤ect dominates when the price is high enough.

This produces a capacity-maximizing cap, as derived by Zöttl (2011). For the reader�s convenience,

the proof is presented in the Appendix B. Its main steps are summarized below.

KC (p) is continuously di¤erentiable on the compact set [(c+ r) ; p1], thus, admits a maximum. If

Pt (D ((c+ r) ; 0) ; 0) > rf (0), which I assume holds, dK
C

dp (c+ r) > 0, hence (c+ r) is not a maximum.
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p1 is not a maximum either: we can �nd �pW < p1 such that KC (p1) < KC
�
�pW
�
. Therefore, the

maximum of KC (p) is interior, hence veri�es dKC

dp = 0. This constitutes a necessary condition, as

KC (p) may admit multiple extrema.

3.2 Welfare-maximizing cap

The social welfare depends on which constraint is reached �rst. Suppose �rst the cap is reached

on-peak. Social welfare is then

W (K; p) = W1 (K; p) =

Z t̂(K;c)

0

�
S
�
P
�
QC ; t

�
; t
�
� cQC

�
f (t) dt+

Z t̂0(K;�pW )

t̂(K;c)
(S (P (K; t) ; t)� cK) f (t) dt

+

Z +1

t̂0(K;�pW )

�
S
�
�pW ; �; t

�
� cK

�
f (t) dt� rK;

where the serving ratio � is such that D
�
�pW ; �; t

�
= K. The �rst term corresponds to o¤-peak,

the second to on-peak before the cap is binding, and the last to on-peak when the cap is binding

and rationing occurs, in which case, consumers surplus is S
�
�pW ; �; t

�
. Since output is a continuous

function of the state of the world, so is surplus. Only the derivatives of the integrands appear in dW
d�pW

.

Thus,

dW1

d�pW
=

@W1

@K

dKC

d�pW
+
@W1

@�pW

=

 Z t̂0(KC(�pW );�pW )

t̂(KC(�pW );c)

�
P
�
KC

�
�pW
�
; t
�
� c
�
f (t) dt+

Z +1

t̂0(KC(�pW );�pW )

�
@S
@

@�

@K
� c
�
f (t) dt� r

!
dKC

d�pW

+

Z +1

t̂0(KC(�pW );�pW )

�
@S
@p

+
@S
@

@�

@p

�
f (t) dt:

Aggregate capacity has no impact on the o¤-peak surplus, hence only on-peak terms appears in dW1

d�pW
.

Expression of the last integrand has already been computed. To compute the second integrand, observe

that, from the de�nition of �,

@�

@K
=

1
@D
@

) @S
@

@�

@K
=

@S
@

@D
@

= v (p; �; t) :
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Thus,

dW1

d�pW
=

 Z t̂0(KC(�pW );�pW )

t̂(KC(�pW );c)

�
P
�
KC

�
�pW
�
; t
�
� c
�
f (t) dt+

Z +1

t̂0(KC(�pW );�pW )

�
v
�
�pW ; �; t

�
� c
�
f (t) dt� r

!
dKC

d�pW

+

Z +1

t̂0(KC(�pW );�pW )

�
@S
@p

� v
�
�pW ; �; t

� @D
@p

�
f (t) dt:

Observing that v
�
�pW ; �; t

�
� c =

�
v
�
�pW ; �; t

�
� �pW

�
+
�
�pW � c

�
and inserting the �rst-order condi-

tion de�ning KC yields

dW1

d�pW
=

 Z t̂0(KC(�pW );�pW )

t̂(KC(�pW );c)
�K

C

N
Pq
�
KC ; t

�
f (t) dt+

Z +1

t̂0(KC(�pW );�pW )

�
v
�
�pW ; �; t

�
� �pW

�
f (t) dt

!
dKC

d�pW
(5)

+

Z +1

t̂0(KC(�pW );�pW )

�
@S
@p

� v
�
�pW ; �; t

� @D
@p

�
f (t) dt:

The term multiplying dKC

d�pW
is positive, since v

�
�pW ; �; t

�
> �pW by Assumption 2. The last integral

is positive by Assumption 2.

A similar analysis shows that, if the price cap is reached o¤-peak,

W (K; p) = W2 (K; p) =

Z t̂0(QC ;�pW )

0

�
S
�
P
�
QC ; t

�
; t
�
� cQC

�
f (t) dt

+

Z t̂0(K;�pW )

t̂0(QC ;�pW )

�
S
�
�pW ; t

�
� cD

�
�pW ; t

��
f (t) dt+

Z +1

t̂0(K;�pW )

�
S
�
�pW ; �; t

�
� cK

�
f (t) dt� rK;

and

dW2

d�pW
=

 Z +1

t̂0(KC(�pW );�pW )

�
v
�
�pW ; �; t

�
� �pW

�
f (t) dt

!
dKC

d�pW
+

Z +1

t̂0(KC(�pW );�pW )

�
@S
@p

� v
�
�pW ; �; t

� @D
@p

�
f (t) dt:

(6)

Again, the term multiplying dKC

d�pW
and the second integral are positive.

The analysis above yields the following:

Proposition 1 Increasing the cap from the capacity-maximizing cap always increases welfare. If

KC (:) is globally concave, the unique capacity-maximizing cap is lower than the welfare-maximizing

cap, which is strictly lower than p1.
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Proof. As seen previously, the capacity-maximizing cap p̂W veri�es dKC

d�pW

�
p̂W
�
= 0. Then,

dW

d�pW
�
p̂W
�
=

Z +1

t̂0(KC ;p̂W )

�
@S
@p

� v
�
p̂W ; �; t

� @D
@p

�
f (t) dt > 0:

Thus, a marginal increase in the cap always increases welfare.

Since W
�
KC (p) ; p

�
is continuous on the compact set [(c+ r) ; p1], a welfare maximizing cap �pW�

exists. If KC (:) is globally concave, KC (:) hence W (:) are increasing on the left of p̂W . �pW� cannot

be lower than p̂W . Finally,

dW

d�pW
(p1) =

dW1

d�pW
(p1) =

 Z +1

t̂(KC(p1);c)
�K

C (p1)

N
Pq
�
KC (p1) ; t

�
f (t) dt

!
dKC

d�pW
< 0;

thus p1 cannot be welfare maximizing, therefore �pW� < p1.

Proposition 1 extends the previous analyses of price caps, which have focussed on their impact on

supply, and have ignored their impact on demand, in particular customers rationing. In other words,

previous analyses have concentrated on the �rst term in dW
d�pW

and ignored the second.

This second term matters for policy makers. In addition to modify investment incentives, imposing

a price cap when demand varies and the good is non storable means to some customers must be

curtailed. Curtailment reduces welfare, as consumers are willing to pay more when curtailed than

when they are not.

A direct and counterintuitive consequence of Proposition 1 is that KC
�
�pW�� < KC

�
p̂W
�
: to

maximize welfare, lower capacity than the maximum must be installed. The intuition is that the gains

from reducing curtailments exceed the gains from additional capacity.

Policy makers should therefore attempt to quantity the impact of rationing when deciding on the

imposition of price caps.

Proposition 1 shows that imposing the optimal price cap increases welfare compared to the never

binding cap, which justi�es the use of price cap. As will see in Sections 4 and later, it does not always

hold if a fraction of customers face constant prices.

Finally, it is worth observing that even the welfare-maximizing cap yields lower capacity than
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�rst-best K�, uniquely de�ned by

	0 (K
�; c) =

Z +1

t̂0(K�;c)
(P (K�; t)� c) f (t) dt� r = 0: (7)

The marginal social value of capacity is simply the on-peak expected di¤erence between the price and

the marginal operating cost. At the optimum, this marginal value equals the marginal investment

cost.

Suppose �rst the price cap is binding on-peak. Inserting equation (7) into equation (3) yields

	1
�
K�; �pW

�
=

Z t̂0(K�;�pW )

t̂(K�;c)

�
P (K�; t) +

K�

N
Pq (K; t)� c

�
f (t) dt+

Z +1

t̂0(K�;�pW )

�
�pW � c

�
f (t) dt

�
Z +1

t̂0(K�;c)
(P (K�; t)� c) f (t) dt

= �
Z t̂(K�;c)

t̂0(K�;c)
(P (K�; c)� c) f (t) dt+

Z t̂0(K�;�pW )

t̂(K�;c)

K�

N
Pq (K; t) f (t) dt

�
Z +1

t̂0(K�;�pW )

�
P (K�; t)� �pW

�
f (t) dt

< 0:

Since 	1 (:; :) is decreasing in its �rst argument, KC
�
�pW
�
< K� for all �pW binding on-peak. The

same argument applies to caps binding o¤-peak. Thus KC
�
�pW�� < K�.

Even the optimal cap yields lower investment than the �rst best, for two reasons: �rst, imperfect

competition leads to strategic under-investment. This produces the �rst two terms in the equation

above (that disappear is the cap is binding o¤-peak). However, even if competition is perfect, i.e.,

N ! +1 and t̂ (:; :)! t̂0 (:; :), a cap reduces investment compared to the �rst best: when the cap is

binding, producers value the good at the cap �pW , and not its true underlying value P (K; t). Since the

latter is higher than the former when the cap is binding by construction, this yields under-investment.

4 Introducing constant price customers

Suppose now only a fraction � > 0 of customers face and react to real time wholesale price ("price

reactive" customers), while the remaining fraction (1� �) of customers face constant price pR in

all states of the world ("constant price" customers). For example price reactive customers purchase
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directly from the wholesale spot markets, while retailers serve constant price customers. The economics

of retailing in this setting are discussed for example by Borenstein and Holland (2005) and Léautier

(2014).

The presence of constant price customers is an essential characteristic of electric power markets,

hence the analysis presented below uses electricity market vocabulary.

The analysis also apply to other markets where a fraction of customers pay the same price for

the good irrespective of market conditions. Consider health care provision. In many countries, most

customers pay the same price for a medical procedure, whether demand is high or low compared to

supply. For example, the cost of a receiving an injection of a in�uenza vaccine is the same in the fall,

before the �u season, and in the spring, after the �u season. Rationing is organized through waiting

times (Schut and Van de Ven (2005)).

Having consumers pay a constant price, independent of the state of the world, may be a technical

imperative, or a policy decision. In the electric power industry, the impossibility to measure consump-

tion in real time and inform users about real time prices, has lead to a large fraction of customers

facing a constant price. This constraint is progressively lifted by the advent of smart meters. Yet, few

countries to date have embraced real-time pricing, for fear of transferring price risk onto households.

In the health care industry, other reasons, for example transaction costs, or an imperative of fairness,

may justify the use of �xed prices.

This article is not discussing the appropriateness of �xed price policies. It examines how introduc-

ing constant price customers interacts with the imposition of price caps.

4.1 Constant price customers, selective curtailment, and residual inverse demand

To introduce the notation, suppose �rst no price cap imposed.

Since a fraction of customers does not react to real time price, there may be instances when the

System Operator (SO) has no alternative but to curtail demand, i.e., to interrupt supply.

Assumption 3 The SO has the technical ability to curtail "constant price" consumers while not

curtailing "price reactive" customers.

Assumption 3 holds only partially today in electricity markets: most SOs can only organize

curtailment by geographical zones, and cannot di¤erentiate by type of customer. It will hold fully in a
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few years, when "smart meters" are rolled out, as is mandated in most European countries and many

US states.

De�ne � (Q; t) the residual inverse demand curve with possible curtailment of constant price cus-

tomers

� (Q; t) = P

 
Q� (1� �)D

�
pR; �; t

�
�

; t

!
(8)

where � is the optimal serving ratio in state t for production Q.

Price reactive customers face the wholesale spot price � (Q; t), hence are never curtailed at the

optimum. O¤-peak, demand is low, and �rms play a symmetric Cournot equilibrium with residual

demand � (Q; t). On-peak, demand is equal to installed capacity K, and the wholesale price is � (K; t).

As long as � (K; t) � v
�
pR; 1; t

�
, constant price customers are not curtailed in state t. If � (K; t) >

v
�
pR; 1; t

�
, then, � < 1 is set to equalize constant price customers�V oLL and the wholesale price:

v
�
pR; �; t

�
= � (K; t) :

For production Q, de�ne2 �t (Q) the �rst state of the world for which the price equal the V oLL:

� (Q; �t) = v
�
pR; 1; �t

�
:

Under perfect competition, price equals marginal cost when Q � K, hence the V oLL may be reached

only on-peak. If demand is elastic enough, price may never reach the V oLL, in which case �t (Q)! +1.

If competition is imperfect and residual demand is very inelastic (e.g., � very low), the price may

reach the V oLL o¤-peak. In that case, there exists �t such that

�
�
QC (c; �t) ; �t

�
= v

�
pR; 1; �t

�
:

For t � �t, as long as the market is o¤-peak, the SO sets the wholesale price at v
�
pR; 1; t

�
. No rationing

2�t is a function of all the parameters of the residual demand function, in particular � and pR. The notation �t (Q) is
used since the dependency on production Q is the most important. This simpli�cation is used for all functions used in
the analysis.
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occurs, since there is spare capacity. On-peak is reached when

�D
�
v
�
pR; 1; t

�
; t
�
+ (1� �)D

�
pR; 1; t

�
= K , � (K; t) = v

�
pR; 1; t

�
, t = �t (K) :

On-peak, constant price customers are curtailed, and the price is the V oLL for the optimal curtailment:

� (K; t) = v
�
pR; �; t

�
.

I assume that the �xed price pR is su¢ ciently high for the V oLL to always be higher than the

long-term marginal cost of production, i.e.,

v
�
pR; 1; 0

�
> (c+ r) ;

otherwise constant price customers would never be served.

Additional assumptions on the inverse demand and rationing technology are required to ensure

that � (Q; t) is well-behaved, in particular satis�es Assumption 1. I use the following notation: if no

rationing occurs, �q =
1
�Pq

�
Q�(1��)D(pR;t)

� ; t

�
; when rationing occurs, �q =

@v
@K = @v

@
@�

@K .

Assumption 4 Properties of the inverse demand and rationing technology. For all t � 0, Q � q � 0,

� 2 (0; 1] 0, pR > 0, and  2 (0; 1]: (i) the marginal revenue does not increase as production increases,

�q (Q; t) + q�qq (Q; t) � 0, (ii) the marginal revenue increases as the state of the world increases,

�t (Q; t)+q
���qt (Q; t)�� > 0, (iii) the V oLL does not increase as the serving ratio increases, @v@ � 0 and

increases as the state of the world increases @v
@t > 0, and (iv)

�
�
�
@D
@p

@v
@t +

@D
@t

�
+ (1� �) @D@t

�
> 0.

If no rationing occurs, Pt (Q; t) > 0 and Pq (Q; t) < 0 are su¢ cient to guarantee that �t (Q; t) >

0, �q (Q; t) < 0.

Suppose now rationing occurs for t � �t (K). As shown in Appendix C, @v@ � 0 guarantees that

@�

@K > 0 and @v
@K � 0. Conditions (i) and (ii) ensure that the second derivatives of v

�
pR; �; t

�
have

the desired properties. Conditions (iii) and (iv) guarantee that the optimal serving ratio decreases as

the state of the world increases: @�

@t < 0. If curtailment occurs in state �t, it also occurs in all states

t � �t. Furthermore, price increases as the state of the world increases: dvdt > 0.

Assumption 4 holds for example if inverse demand is linear with constant slope: P (q; t) = a (t)�bq

where b > 0 and a
0
(t) > 0, and rationing perfectly anticipated: S (p; ; t) = S (p; t). If no rationing
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occurs,

� (Q; t) =
a (t)� bQ� (1� �) pR

�
(9)

is linear, hence satis�es conditions (i) and (ii).

Since rationing is anticipated,

v
�
pR; ; t

�
=
S
�
pR; t

�
D (pR; ; t)

= a (t)� b
D
�
pR; t

�
2

=
a (t) + pR

2
: (10)

@v
@ = 0, and

@v
@t =

a
0
(t)
2 > 0, and v

�
pR; �; t

�
satis�es conditions (i) to (v).

Under Assumption 4, previous derivations apply if we replace P (Q; t) by � (Q; t). Thus, with a

slight abuse, I use the same notation. For example, the Cournot equilibrium output QC (c; t) is de�ned

by

�
�
QC ; t

�
+
QC

N
�q
�
QC ; t

�
= c;

and t̂ (K; c) by

QC
�
c; t̂
�
= K , �

�
QC

�
c; t̂
�
; t̂
�
+
QC

�
c; t̂
�

N
�q
�
QC

�
c; t̂
�
; t̂
�
= c:

4.2 Admissible price caps

Suppose now a cap �pW is imposed. The introduction of constant price customers also modi�es the set

of admissible caps. The minimum price cap is unchanged: �pW � (c+ r).

The highest binding cap p1, which was the upper bound for admissible caps when � = 1, is no

longer suitable when � < 1. Instead, the V oLL v is the natural upper bound for �pW . To see why,

suppose �pW > v. When the cap is binding on-peak, the wholesale price is set at �pW > v. The SO

must then curtail all constant price customers, since their V oLL is lower than the opportunity cost of

power. This is irrealistic.

To be admissible, a price cap must be lower than the V oLL. When the cap is binding, the SO

curtails constant price customers, who pay �xed price pR, before price reactive customers, who pay

�pW as long as v
�
�pW ; 1; t

�
> v

�
pR; �; t

�
where � is the optimal serving ratio for constant price

consumers. This condition is always veri�ed if rationing is perfectly anticipated, and I assume it holds

at the equilibrium, i.e., that the equilibrium capacity and the elasticity of residual demand are high
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enough that price reactive customers need not be curtailed.

At this point, it is helpful to discuss how V oLL is used in power markets. In this work, I assume the

SO knows exactly the V oLL in every state of the world. While this assumption is highly unrealistic

in practice, it constitutes a useful analytical benchmark.

In reality, regulators, SOs and economists have little idea of the V oLL. Estimation is extremely

di¢ cult, because the V oLL varies dramatically across customer classes, states of the world, and

duration and conditions of outages. Estimates vary in an extremely wide range from 2 000 $=MWh

in the British Pool in the 1990s to 200 000 $=MWh (see for example, Cramton (2000)). In practice,

the SO uses her best estimate of the average V oLL, and prioritizes curtailment by geographic zones

(using criteria such as economic activity, political weight, network conditions, etc.), thus implementing

a third best.

Both approaches produce downward sloping demand curves, and are analytically equivalent.

How do we formalize the condition �pW � v? If the V oLL is a number (e.g., 20; 000 e=MWh), all

caps lower than this number are admissible.

In this article, the SO uses the true V oLL, derived from the underlying demand function. Suppose

�rst the V oLL is reached on-peak. A cap is admissible if and only if:

p � v
�
pR; 1; �t

�
KC (p)

��
: (11)

Suppose now the V oLL is reached o¤-peak. As previously seen, on-peak is reached for t = �t (K).

Therefore, cap binding on-peak is admissible if and only if it satis�es condition (11).

The natural candidate for maximum admissible cap is the smallest �xed point of v
�
pR; 1; �t

�
KC (:)

��
,

de�ned by

� = v
�
pR; 1; �t

�
KC (�)

��
: (12)

I prove in Appendix D that � exists, and satis�es

t̂0
�
KC (�) ;�

�
= �t
�
KC (�)

�
:

To understand this result, observe that "the price cap is lower than the V oLL" is equivalent to "the
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price cap is reached before the V oLL", i.e., t̂0
�
KC (p) ; p

�
� �t
�
KC (p)

�
. For the maximum admissible

cap, the price cap and the V oLL are reached simultaneously.

4.3 Summary of constant price customers

It is helpful to summarize the changes created by the introduction of constant price customers. First,

inverse demand P (Q; t) is replaced by residual inverse demand � (Q; t) in all expressions.

Second, when the wholesale price reaches the cap �pW , only constant price customers are curtailed.

Third, the maximum admissible cap is �, is lower than or equal to p1.

Given that the cap is admissible, two situations may occur. First, the cap is reached o¤-peak. As

long as �D
�
�pW ; t

�
+ (1� �)D

�
pR; t

�
< K, no curtailment occurs. On-peak, generation produces at

capacity and curtailment of constant price consumers occurs.

Alternatively, the price cap may be reached on-peak. Then, for t � t̂0
�
K; �pW

�
, generation produces

at capacity and no curtailment occurs. For t > t̂0
�
K; �pW

�
, curtailment of constant price consumers

occurs.

Since the price cap is by construction lower than the V oLL, curtailment of constant price customers

is driven by the imposition of the cap, and the serving ratio is determined by

�D
�
�pW ; t

�
+ (1� �)D

�
pR;�; t

�
= K:

Since price reactive customers do not face the opportunity cost of the good, the serving ratio is not

"optimal".

5 Capacity and welfare maximizing price caps with constant price

customers

The analysis presented in this Section extends previous results, in particular Zöttl (2011), in two

directions. First it provides slightly more general su¢ cient conditions for the existence of a price

maximizing cap. Second, and more importantly, it shows that, contrary to the analysis presented by

Zöttl (2011), the price maximizing cap may lead to a lower welfare than no price cap. To simplify the

notation, I use p and no longer �pW to represent the price cap.
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5.1 Capacity maximizing cap

Analysis similar to the case � = 1 yields:

Proposition 2 Suppose

�t
�
�D (c+ r; 0) + (1� �)D

�
pR; 0

�
; 0
�
> rf (0) ; (13)

and, for all p 2 [(c+ r) ;�],

2 +
1

h
�
t̂0
�  f 0 �t̂0�

f
�
t̂0
� � �t2

�t

!�
KC (p) ; p

�
> 0; (14)

where h (t) = f(t)
1�F (t) is the hazard rate.

If

�t
�
KC (�) ; t̂0

�
KC (�) ;�

��
< (�� c)h

��
t̂0
�
KC (�) ;�

���
; (15)

there exists a unique capacity maximizing cap p̂ < �:

If condition (15) is not met, the capacity maximizing cap is p̂ = �, the maximum admissible cap.

In this case, � is also the welfare maximizing cap, and if @v
@K = 0, equilibrium capacity is lower than

if no cap was imposed.

Proof. The formal proof is presented in Appendix E. Since KC (:) is continuously di¤erentiable on

[(c+ r) ;�], a maximum exists. Condition (13) is equivalent to dKC

dp (c+ r) > 0, and condition (15)

is equivalent to dKC

dp (�) < 0. Thus, if condition (15) holds, there is at least one p̂ 2 ((c+ r) ;�) such

that dK
C

dp (p̂) = 0. Finally, condition (14) guarantees that d
2KC

dp2
(p̂) < 0, hence there exists a unique

capacity-maximizing cap p̂ 2 ((c+ r) ;�). This proves the �rst part of the Proposition.

If condition (15) does not hold, then dKC

dp (p) � 0 for all p 2 [(c+ r) ;�]: the unique capacity-

maximizing cap is p̂ = �.

From Proposition 1, p� = � since dW
dp (p) > 0 for all p 2 [(c+ r) ;�]. It remains to prove that

KC (�) � KC
1. Suppose for example the V oLL is reached o¤-peak, Appendix A proves K

C
1 is de�ned

by

	4
�
KC
1
�
=

Z +1

�t(KC
1)

�
v
�
pR; �; t

�
+
K

N
vq
�
pR; �; t

�
� c
�
f (t) dt� r = 0:
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The equilibrium capacity for the maximum admissible cap � is de�ned by

	2
�
KC (�) ;�

�
=

Z +1

t̂0(KC(�);�)
(�� c) f (t) dt� r = 0:

Then, if vq = 0,

	4
�
KC (�)

�
=

Z +1

�t(KC(�))

�
v
�
pR; �; t

�
� c
�
f (t) dt�

Z +1

t̂0(KC(�);�)
(�� c) f (t) dt

=

Z +1

�t(KC(�))

�
v
�
pR; �; t

�
� �

�
f (t) dt > 0

since t̂0
�
KC (�) ;�

�
= �t

�
KC (�)

�
. Thus, KC (�) < KC

1. A similar analysis proves the result holds

if the V oLL is reached on-peak.

Proposition 2 extends Zöttl (2011) derivation of the capacity-maximizing cap in multiple directions.

First, it covers the realistic case of a fraction of constant price customers. Second, it derives the

capacity-maximizing cap when the cap is reached o¤-peak. This is an important extension, as this

case seems fairly realistic as long as a small fraction is price responsive. Third, it provides a more

general su¢ cient condition for the existence of a unique capacity-maximizing cap, as Zöttl (2011) had

limited his analysis to separable demands P (Q; t) = t� ~P (Q).

Finally, Proposition 2 shows that, while a capacity-maximizing cap always exists if the su¢ cient

conditions are met, this cap may lead to lower capacity than the absence of cap. This stands in sharp

contrast with Zöttl (2011) Theorems 4 and 6. The intuition is that introduction of constant price

customers imposes that the cap be lower than the V oLL, and not the highest binding cap. When

condition (15) is not met, a marginal increase in the cap, if it was feasible, would lead to higher

investment. This contrasts with the case � = 1, where a reduction in the cap from the highest binding

cap leads to higher investment. Then, if vq = 0, the never binding cap leads to higher investment.

5.2 Welfare with and without a cap

We now compare the welfare with and without a cap.

Proposition 3 If the welfare maximizing cap yields lower investment than no cap, imposing a price

cap reduces welfare.
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Proof. The details of the proof are presented in Appendix F. As shown in Section 3, introducing a

cap has an impact on installed capacity and on rationing. Appendix F shows that, for K � KC
1, an

increase in capacity increases welfare. Second, the intuition of Proposition 1 extends to the presence

of constant price customers: a cap increases rationing, hence reduces gross surplus. This then yields

the result.

Proposition 3 holds in particular if p� = � and vq = 0, but holds as long as KC (p�) � KC
1.

It reverses an important result. When a share of customers face a �xed price, no cap may lead to

higher welfare than even the welfare-maximizing cap. This result has a "contradictory instruments"

�avor. Imposing a �xed price for a fraction of customers and a cap on price reactive customers may

be perceived as protecting customers against exercise of market power. Yet, in some instances, the

interaction between the �xed price and the price cap leads to lower overall welfare than if only �xed

prices were imposed.

6 Illustration on a speci�c case

The previous analysis indicates that, if condition (15) is not met, imposing a price cap reduces welfare.

In this Section, I examine, for an illustrative example, the range of validity of condition (15).

6.1 Model speci�cation

Suppose that (i) demand is linear with constant slope P (Q; t) = a (t)� bQ, and a (t) = a0 � a1e��2t,

(ii) states of the world are distributed according to f (t) = �1e
��1t, and (ii) rationing is perfectly

anticipated. This speci�cation provides an adequate representation of actual demand, while leading

to closed-form expressions.

This speci�cation satis�es condition (14). The hazard rate of the exponential distribution is

h (t) = �1 = �f
0
(t)

f(t) . Then,

�t =
a1�2e

��2t

�
) �t2 = ��2�t ,

�t2

�t
= ��2:
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Thus,

2 +
1

h
�
t̂0
�  f 0 �t̂0�

f
�
t̂0
� � �t2

�t

!
= 2 +

1

�1
(��1 + �2) = 1 +

�2
�1
=
�+ 1

�
> 0:

6.2 Critical thresholds

Conditions (1) and (11) are naturally expressed as functions of p. However, for the numerical im-

plementation, we �x p and let K vary to determine Kc (p). Therefore, it is helpful to recast these

conditions as functions of K. The �rst on-peak state of the world t̂ (K; c) is de�ned by

a
�
t̂
�
= �c+ (1� �) pR + N + 1

N
bK;

the �rst on-peak state of the world for which the cap is binding t̂0 (K; p) by

a
�
t̂0
�
= �p+ (1� �) pR + bK;

and the �rst on-peak state of the world for which price reaches V oLL �t (K) by

a (�t (K)) =
2

2� �bK + pR:

The price cap is reached on-peak (condition (1)) if and only if

t̂ (K; c) � t̂0 (K; p), bK � �N (p� c) = bK2 (p; �;N) :

For a given p, the pro�t function and the marginal value of capacity are de�ned piecewise for K � K2

and K > K2.

The price cap is admissible, i.e., the price cap is lower than the V oLL (condition (11) ) if and only

if

p � v
�
pR; 1;KC (p)

�
() t̂0

�
KC (p) ; p

�
� �t
�
KC (p)

�
,

�p+ (1� �) pR + bKC (p) � 2

2� �bK
C (p) + pR , bKC (p) � (2� �)

�
p� pR

�
= bK3 (�; p) :
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Admissibility of the price cap provides a lower bound for the admissible values of KC (p).

For the values of c, pR, � and N estimated (and discussed below), K3 (�; p) > K2 (p; �;N) >

K4 (�;N) for all possible values of p. In particular, if the price cap is admissible, KC (p) � K3 (�; p),

then the cap is reached o¤-peak, KC (p) � K2 (p; �;N). This simpli�es the analysis, as shown below.

6.3 Equilibrium capacity

Since the price cap is binding o¤-peaking,

	(K; p) = 	2 (K; p) =

Z +1

t̂0(K;p)
(p� c) f (t) dt = (p� c)

�
e��2 t̂0(K;p)

��
� r:

Equation (3) yields

(p� c)
�
a0 � bKC (p)� (1� �) pR � �p

a1

��
= r

,

bKC (p) = a0 � pR � �
�
p� pR

�
� a1

�
r

p� c

� 1
�

:

This immediately yields

b
dKC (p)

dp
= ��+ 1

�

a1r
1
�

(p� c)
�+1
�

and

b
d2KC

�
�pW
�

dp2
= ��+ 1

�2
a1r

1
�

(p� c)
2�+1
�

< 0:

KC (p) is globally concave. Since limp!+1
dKC(p)
dp = �� < 0, if

b
dKC (c+ r)

dp
=
a1
�r
� � < 0;

there exists a unique capacity-maximizing cap �p > (c+ r) de�ned by

�p = c+

 
a1r

1
�

��

! �
1+�

:

Assuming �p is admissible, i.e., �p � �, �p is increasing in c and r, increasing in a1, and decreasing

�. A more inelastic demand, either due to lower underlying elasticity (higher a1) or to lower share of
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price reactive customers (lower �), leads to a higher capacity maximizing cap.

6.4 Maximum admissible price cap �

After algebraic manipulations, the function g (p) becomes

g (p) = p� v
�
pR; 1; �t

�
KC (p)

��
=
2p+ a1

�
r
p�c

� 1
� � a0 � pR

2� � :

Therefore,

g
0
(p) =

1

2� �

 
2� a1

�

�
r

p� c

� 1
� 1

p� c

!
:

We verify that g (:) decreasing then increasing. Since limp!+1g (p) = +1, if g (c+ r) = 2(c+r)+a1�a0�pR
2�� <

0, � is uniquely de�ned by

g (�) = 0() �+
a1
2

�
r

�� c

� 1
�

=
a0 + p

R

2
: (16)

Observe that
a0 + p

R

2
= lim
t!+1

v
�
pR; t

�
= lim
t!+1

�
�
KC
1; t

�
= p1:

Equation (16) illustrates that � < p1. Equation (16) also indicates that � does not depend on �.

Since equation (16) does not provide a closed-form expression of �, I use the equivalent condition

g (�p) � 0 to obtain a closed-from expression of the condition �p � �:

g (�p) � 0, �p+
a1
2

�
r

�p� c

� 1
�

� a0 + p
R

2
:

Observing that
a1
2

�
r

�p� c

� 1
�

=
1

2
r

1
1+�a

�
1+�

1 (��)
1

1+� ;

algebraic manipulations yield

�p � �, c+

�
1 +

��

2

� 
a1r

1
�

��

! �
1+�

� a0 + p
R

2
: (17)

27



As � decreases, the left-hand side of condition (17) increases, which renders the condition more

di¢ cult to meet. This con�rms previous intuition: lowering � increases �p while not a¤ecting �.

The impact of underlying demand elasticity � on condition (17) is ambiguous, since both a1 on

the left hand-side and a0 on the right-hand side are impacted by change in �.

6.5 Numerical illustration

I estimate the parameters of the model using the realizations of electricity demand for every half-hour

in France in 2010, a set of data known as a load duration curve. a0; a1, �, and bQ1, where Q1 = a0�p0
b

is the maximum demand for price p0, are the parameters to be estimated. � is estimated by Maximum

Likelihood. The same load duration curve provides an expression of a0 and a1 as a function of bQ1.

The average demand elasticity � is then used to estimate bQ1. Of course, estimates of the short-run

elasticity of demand are very uncertain. I test two values of elasticities, � = �0:01 and � = �0:1

at price p0 = 100 e=MWh, that correspond respectively to the lower bound and upper bound of

estimates reported by Lijesen (2007). Following this procedure, Léautier (2014) estimates

for � = �0:18>>>>>>><>>>>>>>:

bQ1 = 1 873 e=MWh

a0 = 1 973 e=MWh

a1 = 1 236 e=MWh

� = 1:78

and

for � = �0:018>>>>>>><>>>>>>>:

bQ1 = 18 727 e=MWh

a0 = 18 827 e=MWh

a1 = 12 360 e=MWh

� = 1:78

:

Investment and operating costs are those of a Gas Combustion Turbine, as provided by the In-

ternational Energy Agency (median case, IEA (2010)): c = 72 e=MWh and r = 6 e=MWh. The

regulated price is pR = 50 e=MWh, close to the average of the energy component electricity price in

most European markets3. For simplicity, network charges, retail margins and taxes are excluded from

the analysis, as they vary across customer classes. Industry experts suggest � = 2% is a lower bound

for the current share of price reactive customers in most market, and � = 10% would be an upper

bound. As will be shown below, the price cap is reached before �rms produce at capacity, thus the

number of �rms does not matter.
3Eurostat, Table 2 Figure 2 from http://epp.eurostat.ec.europa.eu/statistics_explained/images/a/a1/Energy_prices_2011s2.xls
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6.5.1 Low price elasticity

Consider �rst the case � = �0:01. Equation (16) is solved numerically to yield � = 9; 237 e=MWh.

Since � vary, I express the Cournot capacity as a percentage of the �rst-best capacity. KC (p) =K� (�)

for p 2 [c+ r;�] is presented below for � = 2% (blue line on top), � = 5% (purple line intermediate),

and � = 10% (brown line at the bottom).

The capacity-maximizing cap p� and the maximum capacity KC (p�) =K� (�) for each value of �,

are:

� (%) 2 5 10

p� (e=MWh) 6; 793 3; 810 2; 470

KC (p�) =K� (�) (%) 98:3 97:5 96:7

:

For all values of �, there exists a unique interior capacity-maximizing cap, i.e., p� < �. Further-

more, Cournot capacity at p� is very close to the �rst-best.

The optimal price cap p� is higher than the caps in place in most US markets, and except for the

case � = 10%, higher than the 3; 000 e/MWh cap on the day-ahead market in continental Europe

and the 5; 000 $=MWh cap in e¤ect in Texas.
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6.5.2 High price elasticity

Consider now � = �0:1. Equation (16) is solved numerically to yield � = 974 e=MWh. Why is

� = 974 e=MWh much lower than the caps in e¤ect in Europe and in Texas? Policy makers use

their estimate of the V oLL to set the cap, and not the V oLL consistent with the underlying demand

function. Thus, their estimate of the V oLL is consistent with demand elasticity of � = �0:01 (at price

100 e/MWh, assuming demand is linear), and inconsistent with demand elasticity of � = �0:1. This

low elasticity bias is consistent with the view held by many policy makers and commentators that

electricity is an essential good, and that disruptions are very costly.

KC
�
�pW
�
=K� (�) is presented below � = 2% (blue line on top), � = 5% (purple line intermediate),

and � = 10% (brown line at the bottom).

The capacity maximizing price cap p� and the maximum capacity are:

� (%) 2 5 10

p� (e=MWh) 974 927 621

KC (p�) =K� (�) (%) 97:7 96:3 94:4

:
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For � = 2%, p� = �: the capacity cap is the highest admissible cap. Thus, Cournot capacity is

strictly lower than without a cap, although the numerical di¤erence is small. For higher values of �,

p� < �.

The resulting Cournot capacity is slightly further away from the �rst-best.

7 Concluding remarks

Price caps are often used by policy makers to "regulate markets". Previous analyses have focussed on

the "supply side" impact of these caps, and derived the optimal price cap, which maximizes investment

and welfare. This article expands the analysis to include the "demand side" impact of price caps: when

prices can no longer rise, customers must be rationed to adjust demand to available supply. This yields

two new �ndings, that contradict previous analyses. First, the welfare-maximizing cap is higher than

the capacity-maximizing cap, since increasing the cap increases gross surplus when customers are

rationed. Second, in some cases, the capacity-maximizing cap leads to lower capacity and welfare

than no cap. These �ndings underscores the importance for policy makers to examine the impact on

customers when they impose price caps.

These �ndings are particularly relevant for the electric power industry where caps are frequently

imposed to limit the exercise of market power. They also apply to other industries, such as housing,

where rent controls are often imposed, and health care, where a fraction of customers face constant

prices, and caps on prices are sometimes imposed.

It would be important to test empirically these �ndings. An illustrative model of the power

industry shows that no price cap producing higher welfare than any cap arises for realistic values of

the parameters. I would like to test this hypothesis using a di¤erent speci�cation and demand for the

power industry. Closed-form solutions may not obtain, but numerical analysis will con�rm (or in�rm)

the �ndings. It would also be interesting to test other industries, for example housing and health care,

where price controls are prevalent, and market power, at least in some local markets, a possibility.
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A Proof of Lemma 1

Consider N producers, each with installed capacity kn, ordered such that k1 � ::: � kN . �n (kn;k�n)

is producer�s n pro�t for the two-stage game.

A.1 Price cap binding on-peak

Suppose the price cap �pW is binding on-peak: t̂ (K; c) � t̂0
�
K; �pW

�
. Technical supplement G derives

the equilibrium capacity in that case. Lemma 2 presented in Technical supplement G characterizes

the equilibrium of the energy markets as follows: there exists N critical states of the world 0 � t1 �

t2 � ::: � tN such that, for t 2 [tj ; tj+1 ], all producers i � j produce their entire capacity ki, while all

producers n > j produce �j+1 (k1 ; :::; kj ; t) de�ned on [tj ; tj+1 ] as the solution of a "modi�ed Cournot

condition":

�

 
jX
i=1

ki + (N � j)�j+1 ; t
!
� c+ �j+1�q

 
jX
i=1

ki + (N � j)�j+1 ; t
!
= 0:

bQ (t) = Pj
i=1 k

i + (N � j)�j+1 (t) is increasing in t. For t � t1 , bQ (t) = QC (c; t). For t � tN , all

producers produce their entire capacity kn, hence bQ (t) =PN
n=1 k

n.

A.2 Price cap binding o¤-peak

Suppose the price cap is reached o¤-peak: t̂0
�
K; �pW

�
< t̂ (K; c). Without loss of generality since we

are ultimately looking for a symmetric equilibrium, suppose the price cap is binding before t1, i.e.,

there exists ~t0 2
�
0; t1

�
such that �

� bQ �~t0� ; ~t0� = �pW .

De�ne ~q1 (t) by �
�
N ~q1 (t) ; t

�
= �pW . qn = ~q1 (t) for all n � 1 is the unique equilibrium for t � ~t0,

as long as producer 1 is not constrained. To prove the result, it is helpful to ensure that the Cournot

price �
� bQ (t) ; t� is increasing with the state of the world. This requires a slightly stronger Assumption

than Assumption 4:

Assumption 5 For all t � 0, Q � 0, � 2 (0; 1] 0, and pR > 0,

�t (Q; t)

�
1 +

Q�qq (Q; t)

�q (Q; t)

�
> Q�qt (Q; t) :
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Then, 8t > ~t0

�
� bQ (t) ; t� > �� bQ �~t0� ; ~t0� = �pW ;

hence

�
�
N ~q1 (t) ; t

�
= �pW < �

� bQ (t) ; t�
()

~q1 (t) >
bQ (t)
N

:

This is the classical result: in each state of the world, a price cap reduces �rms�ability to reduce

output.

Suppose all �rms n > 1 produce ~q1 (t), while �rm 1 considers deviating. A negative deviation is

unpro�table since it reduces output but cannot increase price, which is capped at �pW . Then, since

~q1 (t) >
bQ(t)
N and the marginal revenue is decreasing,

@�1

@q1
�
~q1 (t) ; :::; ~q1 (t) ; t

�
= �

�
N ~q1 (t) ; t

�
+ ~q1 (t) �q

�
N ~q1 (t) ; t

�
� c

< �
� bQ (t) ; t�+ bQ (t)

N
�q

� bQ (t) ; t�� c = @�n

@qn

 bQ (t)
N

; :::;
bQ (t)
N

; t

!
= 0:

A positive deviation is not pro�table. qn = ~q1 (t) for all n � 1 is a symmetric equilibrium. Since the

pro�t function is concave, this equilibrium is unique.

When t = ~t1 characterized by ~q1 (t) = k1 () �
�
Nk1; t1

�
= �pW , producer 1 is constrained.

Similarly, for t 2
�
~tj ; ~tj+1

�
for j = 1; :::; N�1, the unique symmetric equilibrium for the (N � j) re-

maining producers is ~qj+1 (t) where �
�Pj

i=1 k
i + (N � j) ~qj+1 (t) ; t

�
= �pW . ~tN is such that �

�PN
j=1 k

j ; ~tN
�
=

�pW , hence ~tN = t̂0
�
K; �pW

�
previously de�ned. For t > ~tN , since wholesale price is �xed at �pW and

generation is at capacity, the SO must curtail constant price consumers.

Consider now producer n expected pro�t, given capacities k1 � ::: � kN , and the structure of the
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equilibrium described above:

�n (kn;k�n) =

Z ~t0

0

Q̂

N

�
�
�
Q̂
�
� c
�
f (t) dt

+
�
�pW � c

� n�1X
i=0

Z ~ti+1

~ti
~qi+1 (t) f (t) dt+ kn

�
1� F

�
~tn
��!

� rkn

Thus, for all n � N ,
@�n

@kn
=

Z +1

~tn

�
�pW � c

�
f (t) dt� r

since output is continuous, and

@2�n

(@kn)2
= �

�
�pW � c

�
f
�
~tn
� @~tn
@kn

< 0:

If there exists K such that

@�n

@kn

�
K

N
; :::;

K

N

�
=

Z +1

t̂0(K;�pW )

�
�pW � c

�
f (t) dt� r = 0;

then K
N for all n = 1; :::; N is the unique symmetric equilibrium. For any t � 0, limK!+1 � (K; t) < c,

thus limK!+1 �t
�
K; �pW

�
= +1, hence limK!+1 @�n

@kn

�
K
N ; :::;

K
N

�
= �r < 0.

If � (0; t) � �pW for all t � 0, which I assume holds, t̂0
�
0; �pW

�
= 0 and

@�n

@kn
(0; :::; 0) =

Z +1

0

�
�pW � c

�
f (t) dt� r = �pW � (c+ r) > 0:

A.3 No price cap imposed

If the V oLL is reached on-peak, the equilibrium is identical to the case � = 1, recognizing that

� (K; t) = v
�
pR; �; t

�
when curtailment occurs.

Suppose the V oLL is reached o¤-peak: �t (K) < t̂ (K; c). As before, suppose the V oLL is reached

before producer 1 reaches capacity, i.e. there exists bt0 2 �0; t1� such that �� bQ �bt0� ;bt0� = v �pR; 1;bt0�.
As long as the total generation is not at capacity, there is no rationing. Price is thus v

�
pR; 1; t

�
,

independent of output. The same argument as above shows that, qn = q̂1 (t) de�ned by �
�
Nq̂1 (t) ; t

�
=

v
�
pR; 1; t

�
for all n � 1 is the unique equilibrium for t � bt0, as long as producer 1 is not at capacity.

Similarly, for t 2
�
t̂j ; t̂j+1

�
for j = 1; :::; N � 1, the unique symmetric equilibrium for the (N � j)

36



remaining producers is q̂j+1 (t) where �
�Pj

i=1 k
i + (N � j) q̂j+1 (t) ; t

�
= v

�
pR; 1; t

�
.

Consider now producer n expected pro�t, given capacities k1 � ::: � kN , and the structure of the

equilibrium described above:

�n (kn;k�n) =

Z bt0
0

Q̂

N

�
�
�
Q̂
�
� c
�
f (t) dt

+
�
v
�
pR; 1; t

�
� c
� n�1X

i=1

Z t̂i+1

t̂i
q̂i+1 (t) f (t) dt

!

+kn

 Z �t(K)

t̂n

�
v
�
pR; 1; t

�
� c
�
f (t) dt+

Z +1

�t(K)

�
v
�
pR; �; t

�
� c
�
f (t) dt� r

!
:

Thus, for all n � N ,

@�n

@kn
=

Z �t(K)

t̂n

�
v
�
pR; 1; t

�
� c
�
f (t) dt+

Z +1

�t(K)

�
v
�
pR; �; t

�
+ kn

@v

@K

�
pR; �; t

�
� c
�
f (t) dt� r

since output is continuous. If a symmetric equilibrium
�
KC

N ; :::; K
C

N

�
exists, it satis�es:

@�n

@kn

�
KC

N
; :::;

KC

N

�
=

Z +1

�t(K)

�
v
�
pR; �; t

�
+
KC

N

@v

@K

�
pR; �; t

�
� c
�
f (t) dt� r = 0

As before, limKC

N
!+1

@�n

@kn

�
KC

N ; :::; K
C

N

�
< 0 and @�n

@kn (0; :::; 0) =
R +1
0

�
v
�
pR; �; t

�
� c
�
f (t) dt� r >

E [� (0; t)]� (c+ r) > 0, thus existence of KC

N is guaranteed.

Proving that
�
KC

N ; :::; K
C

N

�
is the unique symmetric equilibrium is a bit more complex, since we

need to treat separately an upward and a downward deviation. It is proven following the argument

presented in the Technical supplement.

B Existence and characterization of the maximum of KC (p)

Existence 	1 (:; :) and 	2 (:; :) are continuously di¤erentiable in both variables by inspection; for

any K, 	(K; :) is continuous for at �pW such that t̂ (K; c) = t̂0
�
K; �pW

�
, hence KC (:) is continuous on

the compact set [(c+ r) ; p1], thus, admits a maximum.

Furthermore, KC (:) is continuously di¤erentiable. By inspection of equation (4), the only potential
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problem could arise at the pivotal price cap p0 de�ned t̂
�
KC (p0) ; c

�
= t̂0

�
KC (p0) ; p0

�
. However,

lim
p!p0
p�p0

@	1
@K

=
KC (p0)

N
Pq
�
KC (p0) ; t̂0

�
f
�
t̂0
� @t̂0
@K

= � (p0 � c) f
�
t̂0
� @t̂0
@K

= lim
p!p0
p�p0

@	2
@K

since p0 +
KC(p0)
N Pq

�
KC (p0) ; t̂0

�
= c by construction. Thus, KC (:) is continuously di¤erentiable on

[(c+ r) ; p1].

The long-run marginal cost (c+ r) is not a maximum Let us examine dKC

dp (c+ r). We �rst

prove that a cap set at (c+ r) is binding o¤-peak. By contradiction, suppose the cap is reached

on-peak:

	1 (K; c+ r) =

Z t̂0(K;c+r)

t̂(K;c)

�
� (K; t) +

K

N
�q (K; t)� c

�
f (t) dt+ (c+ r � c)

�
1� F

�
t̂0 (K; c+ r)

��
� r

For t � t̂0 (K; c+ r), � (K; t) � (c+ r), thus � (K; t) + K
N �q (K; t)� c < r, hence

	(K; c+ r) < r
�
1� F

�
t̂ (K; c)

��
� r � rF

�
t̂ (K; c)

�
� 0:

Thus, there cannot exists KC such that 	
�
KC ; c+ r

�
= r. This constitutes a contradiction, a cap

set at (c+ r) is binding o¤-peak. By continuity, so is a cap set around (c+ r).

Since the cap is binding o¤-peak,

	(K; c+ r) = 	2 (K; c+ r) = �rF
�
t̂0 (K; c+ r)

�
:

Thus,

	
�
KC (c+ r) ; c+ r

�
= 0, F

�
t̂0
�
KC (c+ r) ; c+ r

��
= 0, t̂0

�
KC (c+ r) ; c+ r

�
= 0:

On-peak starts at t = 0. Thus,

P
�
KC (c+ r) ; 0

�
= (c+ r), KC (c+ r) = D ((c+ r) ; 0) :
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Inserting into equation (4), and observing that

@	2
@K

(K; p) = � (p� c) f
�
t̂0 (K; p)

� @t̂0 (K; p)
@K

;
@t̂0 (K; p)

@p
=

1

Pt
�
K; t̂0

� ; and @t̂0 (K; p)
@K

=
�Pq

�
K; t̂0

�
Pt
�
K; t̂0

�
yields

dKC

dp
(c+ r) =

1� rf (0) 1
Pt(KC(c+r);0)

rf (0)
�
�Pq(KC(c+r);0)
Pt(KC(c+r);0)

� = Pt
�
KC (c+ r) ; 0

�
� rf (0)

�Pq (KC (c+ r) ; 0) rf (0)
;

thus
dKC

dp
(c+ r) > 0, Pt (D ((c+ r) ; 0) ; 0)� rf (0) > 0

which I assume holds.

The �rst never-binding cap p1 is not a maximum The Cournot capacity for the highest

binding cap p1 is KC
1 = KC (p1). Since p1 is (almost) never binding, it is not binding o¤-peak,

hence KC
1 de�ned by

Z +1

t̂(KC
1;c)

�
P
�
KC
1; t

�
+
K

N
Pq
�
KC
1; t

�
� c
�
f (t) dt = r:

Introduce also

MR1 = lim
t!+1

��
P
�
KC
1; t

�
+
K

N
Pq
�
KC
1; t

���
:

MR1 < p1 since Pq (:; :) < 0. Then for �pW 2 (MR1; p1) and high enough that it is not binding

o¤-peak, the marginal value of capacity at KC
1 is

	1
�
KC
1; �p

W
�
=

Z t̂0(KC
1;�p

W )

t̂(KC
1;c)

�
P
�
KC
1; t

�
+
KC
1
N
Pq
�
KC
1; t

�
� c
�
f (t) dt+

Z +1

t̂0(KC
1;�p

W )

�
�pW � c

�
f (t) dt� r

=

Z t̂0(KC
1;�p

W )

t̂(KC
1;c)

�
P
�
KC
1; t

�
+
KC
1
N
Pq
�
KC
1; t

�
� c
�
f (t) dt+

Z +1

t̂0(KC
1;�p

W )

�
�pW � c

�
f (t) dt

�
Z +1

t̂(KC
1;c)

�
P
�
KC
1; t

�
+
K

N
Pq
�
KC
1; t

�
� c
�
f (t) dt

=

Z +1

t̂0(KC
1;�p

W )

�
�pW �

�
P
�
KC
1; t

�
+
K

N
Pq
�
KC
1; t

���
f (t) dt

>

Z +1

t̂0(KC
1;�p

W )

�
�pW �MR1

�
f (t) dt > 0:
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Thus, KC
1 < KC

�
�pW
�
, hence p1 is not the capacity-maximizing cap.

Necessary �rst-order condition The analysis above proves existence of an interior maximum,

denoted p̂W . Since KC (:) is continuously di¤erentiable, we must have dKC

dp

�
p̂W
�
= 0.

C Properties of the V oLL

When capacity is constrained and if curtailment occurs, total di¤erentiation of the energy balance

K = �D
�
v
�
pR; �; t

�
; t
�
+ (1� �)D

�
pR; ; t

�
with respect to K yields

@�

@K
=

1

�@D@p
@v
@ + (1� �)

@D
@

:

@v
@ � 0 guarantees that

@�

@K > 0 and @v
@K = @v

@
@�

@K � 0.

Total di¤erentiation of the energy balance with respect to t yields

@�

@t
= �

�
�
@D
@p

@v
@t +

@D
@t

�
+ (1� �) @D@t

�@D@p
@v
@ + (1� �)

@D
@

:

Conditions (iii) and (iv) guarantee that the optimal serving ratio decreases as the state of the world

increases: @�

@t < 0. If curtailment occurs in state �t, it also occurs in all states t � �t. Furthermore,

price increases as the state of the world increases:

dv

dt
=
@v

@

@�

@t
+
@v

@t
> 0:

D Existence and property of �

De�ne

g (p) = p� v
�
pR; 1; �t

�
KC (p)

��
:
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A root of g (:) is a �xed point of v
�
pR; 1; �t

�
KC (:)

��
. If p = c + r, the same argument as for � = 1

shows that the price cap is binding immediately: t̂0
�
KC (c+ r) ; (c+ r)

�
= 0. Then,

g (c+ r) = c+ r � v
�
pR; 1; �t

�
KC (c+ r)

��
� c+ r � v

�
pR; 1; 0

�
< 0

since �t
�
KC (c+ r)

�
� 0, vt > 0, and v

�
pR; 1; 0

�
> (c+ r) by assumption. Suppose g (:) admits a root

on ((c+ r) ; p1); i.e., there exists p < p1 such that g (p) = 0. The maximum admissible cap is the

smallest root: since g (c+ r) < 0, g (p) � 0 for p � �.

If g (p) < 0 for all p < p1, the maximum admissible cap is the never binding cap; i.e., � = p1.

By de�nition,

�
�
KC (�) ; t̂0

�
KC (�) ;�

��
= �;

and

�
�
KC (�) ; �t

�
KC (�)

��
= v

�
pR; 1; �t

�
KC (�)

��
= �:

Since v
�
pR; 1; �t

�
KC (�)

��
= �,

�
�
KC (�) ; t̂0

�
KC (�) ;�

��
= �

�
KC (�) ; �t

�
KC (�)

��
, t̂0

�
KC (�) ;�

�
= �t
�
KC (�)

�
since �t > 0.

E Proof of Proposition 2

Since KC (:) is continuous on [(c+ r) ;�], it admits a maximum p̂ 2 [(c+ r) ;�]. From equation (4),

dKC

dp (�) < 0 if and only if

1� F
�
t̂0
�
� (�� c) f

�
t̂0
� @t̂0
@p

< 0, �t
�
KC (�) ; t̂0

�
< (�� c)h

��
t̂0
��
:

Di¤erentiation of equation (4) yields

d2KC

dp2
=

�
� @	
@K

� �
@2	
@K@p

dKC

dp + @2	
@p2

�
� @	

@p
@2	
@K2�

@	
@K

�2 ;
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hence
d2KC

dp2
(p̂) =

@2	
@p2

� @	
@K

�
KC (p̂) ; p̂

�
since

dKC

dp
(p̂) =

@	

@p

�
KC (p̂) ; p̂

�
= 0

by de�nition of p̂. Then,

@2	

@p2
= �

 
2f
�
t̂0
� @t̂0
@p

+ (p� c)
 
f
0 �
t̂0
��@t̂0

@p

�2
+ f

�
t̂0
� @2t̂0
@p2

!!
:

Observing that
@2t̂0
@p2

= � �t2

(�t)
2

1

�t
;

yields
@2	

@p2
= �@t̂0

@p
f
�
t̂0
� 
2 +

p� c
�t

 
f
0 �
t̂0
�

f
�
t̂0
� � �t2

�t

!!
:

Since; p�c�t =
1

h(t̂0)
for p = p̂,

@2	

@p2
(p̂) = �@t̂0

@p
f
�
t̂0
� 
2 +

1

h
�
t̂0
�  f 0 �t̂0�

f
�
t̂0
� � �t2

�t

!
(p̂)

!

and

2 +
1

h
�
t̂0
�  f 0 �t̂0�

f
�
t̂0
� � �t2

�t

!
(p̂) > 0, @2	

@p2
(p̂) > 0, d2KC

dp2
(p̂) < 0:

Thus, p̂ is the unique maximum of KC (:) on [(c+ r) ;�). The argument proceeds by contradiction:

if there was another p�� such that dK
C

dp (p��) = 0, then d2KC

dp2
(p��) < 0: p�� is another local maximum.

Since KC (:) is continuous, there would be a local minimum between these two local maxima, i.e. a

price p��� such that dKC

dp (p���) = 0. Then d2KC

dp2
(p���) < 0: p��� cannot be a local minimum. This

constitutes a contradiction. Hence KC (:) is concave on [(c+ r) ;�), and p̂ is the unique maximum of

KC (:) on ((c+ r) ;�).

Suppose now dKC

dp (�) > 0. � is the unique maximum of KC (:) on [(c+ r) ;�]. The proof proceeds

again by contradiction. Suppose there exists p̂ < � such that dK
C

dp (p̂) = 0. By the previous argument,

p̂ is the unique maximum, hence KC (:) is concave on [(c+ r) ;�), thus dK
C

dp (�) < 0, which constitutes
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a contradiction. Thus, dK
C

dp (p) > 0 for all p 2 [(c+ r) ;�], and � is the unique maximum of KC (:)

on [(c+ r) ;�].

F Proof of Proposition 3

The proof proceeds in three steps. First, I prove that W1 (K), the expected net surplus given

imperfect competition and absent any price cap, is a concave function of installed capacity with

a unique maximum K�
1. Second, I prove that K

C
1 < K�

1, hence W
1 (K) is increasing for K �

KC
1. Finally, I prove that imposition of a price cap reduces expected net surplus. Speci�cally, for

capacity KC (p), the expected net surplus with cap p is lower than without a cap: W
�
KC (p) ; p

�
<

W1 �KC (p)
�
. Then, since KC (p) < KC

1, the result follows.

Suppose the V oLL is reached on-peak. Consider �rst that no price cap is imposed. The net surplus

o¤-peak is

~S (t) = �S
�
�
�
QC (c; t) ; t

�
; t
�
+ (1� �)S

�
pR; t

�
� cQC (c; t) :

For capacity K, the net surplus on-peak before the price reaches the V oLL is

~S (K; t) = �S (� (K; t) ; t) + (1� �)S
�
pR; t

�
� cK;

and is

~S (K; t) = �S (� (K; t) ; t) + (1� �)S
�
pR; �; t

�
� cK

after the price reaches the V oLL.

The expected net surplus for capacity K is

W1 (K) =

Z t̂(K;c)

0

~S (t) f (t) dt+

Z �t(K)

t̂(K;c)

~S (K; t) f (t) dt+

Z +1

�t(K)

~S (K; t) f (t) dt� rK:

We have:
dW1

dK
=

Z �t(K)

t̂(K;c)

@ ~S

@K
(K; t) f (t) dt+

Z +1

�t(K)

@ ~S

@K
(K; t) f (t) dt� r:

Then,
@ ~S

@K
(K; t) = � (K; t)� c
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and

@ ~S

@K
(K; t) = � (K; t)

�
1� (1� �) @D

@

@�

@K

�
+ (1� �) @S

@

@�

@K
� c

= � (K; t) + (1� �)
�
@S
@

� @D
@
� (K; t)

�
@�

@K
� c

= � (K; t) + (1� �)
�
v
�
pR; �; t

�
� � (K; t)

� @D
@

@�

@K
= � (K; t)� c:

Thus,
dW1

dK
=

Z +1

t̂(K;c)
(� (K; t)� c) f (t) dt� r;

hence
d2W1

dK2
=

Z +1

t̂(K;c)
�q (K; t) f (t) dt�

�
�
�
t̂ (K; c) ; t

�
� c
�
f
�
t̂
� @t̂
@K

< 0:

W1 (:) is globally concave. The usual arguments show that there exists a unique K�
1 that maximizes

W1 (:), uniquely de�ned by

dW1

dK
(K�

1) =

Z +1

t̂(K�
1;c)

(� (K�
1; t)� c) f (t) dt� r = 0:

One immediately veri�es that

dW1

dK

�
KC
1
�
=

Z +1

t̂(KC
1;c)

�
�
�
KC
1; t

�
� c
�
f (t) dt� r = KC

1
N

Z +1

t̂(KC
1;c)

�
��q

�
KC
1; t

��
f (t) dt > 0;

thus

KC
1 < K�

1 )W1 �KC
1
�
< W1 (K�

1) :

Consider now a price cap p is imposed, which is reached on-peak. The net surplus after the price

reaches the V oLL is

�S (K; t) = �S (p; t) + (1� �)S
�
pR;�; t

�
� cK

where � such that

�D (p; t) + (1� �)D
�
pR;�; t

�
= K:
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Observe that

�S (K; t) < ~S (K; t)

since price reactive consumers do not face the opportunity cost of power. Thus the expected net

surplus is

W1

�
KC (p) ; p

�
=

Z t̂(KC(p);c)

0

~S (t) f (t) dt+

Z t̂0(KC(p);p)

t̂(KC(p);c)

~S
�
KC (p) ; t

�
f (t) dt

+

Z +1

t̂0(KC(p);p)

�S (K; t) f (t) dt� rKC (p)

Therefore,

W1

�
KC (p) ; p

�
= W1 �KC (p)

�
�
Z �t(KC(p))

t̂0(KC(p);p)

~S (K; t) f (t) dt�
Z +1

�t(KC(p))

~S (K; t) f (t) dt

+

Z +1

t̂0(KC(p);p)

�S (K; t) f (t) dt

= W1 �KC (p)
�
�
Z �t(KC(p))

t̂0(KC(p);p)

�
~S (K; t)� �S (K; t)

�
f (t) dt

�
Z +1

�t(KC(p))

�
~S (K; t)� �S (K; t)

�
f (t) dt

< W1 �KC (p)
�

since ~S (K; t) � �S (K; t) > 0 and ~S (K; t) � �S (K; t) > 0. For the same capacity, imposing a price cap

reduces net surplus. Then, since KC (p) < KC
1,

W1

�
KC (p) ;�

�
< W1 �KC (p)

�
< W1 �KC

1
�
;

which completes the proof.

Similar arguments apply if the cap or the V oLL are reached o¤-peak.
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G Derivation of the Cournot capacity

For the reader�s convenience, the derivation of the Cournot equilibrium capacity is presented here.

The proof follows Zöttl (2011). The main di¤erence is the introduction of rationing.

G.1 Capacity constrained Cournot equilibrium without a price cap

Producers are ordered by increasing capacity: k1 � k2 ::: � kN .

The unconstrained Cournot aggregate outputQC (t) in state t is de�ned by � (Q; t)�c+Q
N �q (Q; t) =

0. Under Assumption 4, the implicit function theorem yields:

dQC

dt
= �

�
�t +

Q

N
�qt

��
�q +

�q +Q�qq
N

��1
> 0

Lemma 2 De�ne t0 = 0. For a given vector k 2RN of generation capacities, there exists N critical

states of the world 0 � t1 � t2 � ::: � tN such that q̂n (k;t), the equilibrium output for producer n, is

characterized by

q̂n (k;t) =

8><>: �j+1 (k1 ; :::; kj ; t) if t 2 [tj ; tj+1 ] for j < n

kn if t � tn

where �j+1 (k1 ; :::; kj ; t) de�ned on [tj ; tj+1 ] is the solution of a "modi�ed Cournot condition":

�

 
jX
i=1

ki + (N � j)�j+1 ; t
!
� c+ �j+1�q

 
jX
i=1

ki + (N � j)�j+1 ; t
!
= 0

8n � N , q̂n (k;t) is continuous in all its arguments and increasing in t.

Producers expected pro�t is:

�n (kn ;k�n) =
n�1X
j=0

Z tj+1

tj
�j+1

�
�
�
Q̂
�
� c
�
f (t) dt+ kn

NX
j=n

"Z tj+1

tj

�
�
�
Q̂
�
� c
�
f (t) dt� r

#

where Q̂ (k;t) =
PN
n=1 q̂

n (k;t) is the aggregate output.

Proof. Construction of the equilibrium proceeds by induction on n � N . As seen previously, QC (t)

is increasing in t. Denote t1 the �rst state such that QC (t1) = k1. Suppose t1 ! +1, then 8t � 0,
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QC (t) < k1 � k2 � ::: � kN . Then:

�1 (k1 ;k�1) = E
�
QC (t)

�
�
�
QC (t) ; t

�
� c
��
� rk1

and @�1

@k1 = �r < 0, hence �1
�
k1
�
< 0 since �1 (0) = 0. This contradicts producer 1 individual

rationality, hence t1 exists by contradiction. Denote Q̂1 (t) = QC (t) and �1 (t) = QC(t)
N .

Suppose now we have characterized the equilibrium up until tn, de�ned by �n (k1 ; :::; kn�1 ; tn) = kn.

We now search for an equilibrium for t � tn. Suppose all generators i = 1; ::; n produce up to their

capacity ki. The pro�t of any generator j > n is:

�j (qj ;q�j ; t) = qj

0BB@�
0BB@ nX
i=1

ki + qj +
NX

i=n+1
i6=j

qi ; t

1CCA� c
1CCA

As long as producer (n+ 1) is not constrained, we have:

@�j

@qj
= �

0BB@ nX
i=1

ki + qj +

NX
i=n+1
i6=j

qi ; t

1CCA� c+ qj�q
0BB@ nX
i=1

ki + qj +

NX
i=n+1
i6=j

qi ; t

1CCA
Since the �rst-order conditions are symmetric, a symmetric interior equilibrium �n+1 (k1 ; :::; kn ; t) is

characterized by:

�

 
nX
i=1

ki + (N � n)�n+1 ; t
!
� c+ �n+1�q

 
nX
i=1

ki + (N � n)�n+1 ; t
!
= 0

Since �j (:; t) is strictly concave, �n+1 is a maximum, hence it constitutes a best response to the others�

strategies. �n+1 is increasing in t, since by the implicit function theorem:

@�n+1

@t
= �

�t + �
n+1�qt

(N � n+ 1)
�
�q +

N�n
N�n+1�

n+1�qq

� > 0
Furthermore, �n+1 (tn) = �n (tn) = kn. To see that, we observe that �n+1 (tn) veri�es:

@�j

@qj
(tn) = �

 
nX
i=1

ki + (N � n)�n+1 ; tn
!
� c+ �n+1�q

 
nX
i=1

ki + (N � n)�n+1 ; tn
!
= 0
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while �n (t) solves:

�

 
n�1X
i=1

ki + (N � n+ 1)�n ; t
!
� c+ �n�q

 
n�1X
i=1

ki + (N � n+ 1)�n ; t
!
= 0

hence, since q̂n (tn) = kn by construction:

�

 
nX
i=1

ki + (N � n) kn ; tn
!
� c+ kn�q

 
nX
i=1

ki + (N � n) kn ; tn
!
= 0

Since �j (:; tn) is strictly concave, there exists a unique value such that @�
j

@qj (t
n) = 0 hence �n+1 (tn) =

kn = �n (tn).

Producer (n+ 1) produces �n+1 (k1 ; :::; kn ; t) up to tn+1 de�ned by �n+1 (k1 ; :::; kn ; t) = kn+1. As

before, we can show by contradiction that tn+1 exists. Furthermore, since kn+1 � kn, then tn+1 � tn.

We now show that ql = kl for l � n is a best response to qj = �n+1 for j > n. Suppose

qi = ki 8i � n; i 6= l and qj = �n+1 for j > n. Then:

@�l

@ql
= �

0B@ nX
i=1
i6=j

ki + ql + (N � n)�n+1 ; t

1CA� c+ ql�q
0B@ nX
i=1
i6=j

ki + ql + (N � n)�n+1 ; t

1CA
hence

@�l

@ql

����
ql=kl

= �

 
nX
i=1

ki + (N � n)�n+1 ; t
!
� c+ kl�q

 
nX
i=1

ki + (N � n)�n+1 ; t
!

= � (�n+1 � kl) �q

 
nX
i=1

ki + (N � n)�n+1 ; t
!
> 0

since �n+1 (t) > �n+1 (tn) = kn � kj for t > tn.

We have therefore completed step (n+ 1). By induction, the structure of the equilibria holds up

until n = N , as long as we adopt the convention: tN+1 ! +1, �N+1 (t) = 0 and Q̂ (tN ) = K = Q̂ (t)

8t � tN .

From the previous discussion, q̂n (k;t) and Q̂ (k;t) are continuous and increasing in t.

The expression of pro�ts follow directly from the characterization of equilibria above.
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G.2 Capacity constrained Cournot equilibrium with price cap

Lemma 3 Suppose the capacity constraint binds before the price cap constraint, i.e., tN � �t
�
K; �pW

�
at the equilibrium. Producer n�s equilibrium pro�t for the constrained Cournot game in state t is:

�n (kn;k�n) =
n�1X
j=0

Z tj+1

tj
�j+1

�
�
�
Q̂
�
� c
�
f (t) dt (18)

+kn

8<:
NX
j=n

"Z tj+1

tj

�
�
�
Q̂
�
� c
�
f (t) dt

#
+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt� r

9=;
where tj for j = 1; :::; N is the �rst state of the world such that all producers up to j are capacity

constrained, t0 = 0 and the convention tN+1 = �t
�
K; �pW

�
, �j+1 is producer n�s output in state t 2�

tj ; tj+1
�
for j < n, and Q̂ is the equilibrium aggregate output.

Proof. In the o¤-peak states of the world where at least one generator is unconstrained, i.e., with our

previous notation t < tN (K) � �t
�
K; �pW

�
, imposition of the price cap has no impact on the equilibrium

in these states, and Lemma 2 applies.

Consider now the peak states of the world t � tN (K), and Q̂ (t) = K =

NX
m=1

km. As long as

� (K; t) � �pW , imposition of the price cap has no impact on the equilibrium in these states, and

Lemma 2 applies.

States of the world may exist where � (K; t) > �pW . Then, for t � �t
�
K; �pW

�
, p (t) = �pW . Facing a

constant price, generators individually maximize production to maximize pro�t, hence qn (t) = kn for

all n is an equilibrium. This then yields equation (18). However, the SO must ration demand.

G.3 Equilibrium investment

Lemma 4 For any (kn;k�n):

@�n

@kn
(kn;k�n) =

NX
j=n

"Z tj+1

tj

 
�
�
Q̂
�
� c+ kn�q

�
Q̂
� @Q̂
@kn

!
f (t) dt

#
+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt� r:

(19)
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For any kN � K
N

@2�N

(@kN )2

�
K

N
; :::;

K

N
; kN

�
=

Z �t(K;�pW )

tN

h
2�q

�
K̂; t

�
+ kN�qq

�
K̂; t

�i
f (t) dt (20)

+kN�q

�
K̂; �t

�
K̂; �pW

��
f
�
�t
�
K̂; �pW

�� @�t�K̂; �pW�
@kN

< 0

where K̂ = kn + N�1
N K. Furthermore, �n

�
K
N ; ::;

K
N

�
is globally concave.

Proof. The �rst-order derivative of pro�t function is:

@�n

@kn
=

NX
j=n

"Z tj+1

tj

 
�
�
Q̂
�
� c+ kn�q

�
Q̂
� @Q̂
@kn

!
f (t) dt

#
+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt� r +�1

where

�1 = kn

NX
j=n

��
�
�
Q̂ (tj+1) ; tj+1

�
� c
�
f (tj+1 )

@tj+1

@kn
�
�
�
�
Q̂ (tj ) ; tj

�
� c
�
f (tj )

@tj

@kn

�

+q̂n (tn)
�
�
�
Q̂ (tn) ; tn

�
� c
�
f (tn)

@tn

@kn
� kn

�
�pW � c

�
f
�
�t
�
K; �pW

�� @�t �K; �pW �
@kn

= 0

since q̂n (tn) = kn and �
�
Q̂
�
�t
�
K; �pW

��
; �t
�
K; �pW

��
= �pW . This proves equation (19).

Suppose kN � KC

N while kn = KC

N for all n < N . Equation (19) yields:

@�N

@kN

�
KC

N
; :::;

KC

N
; kN

�
=

Z �t(K;�pW )(K)

tN (K)

�
� (K; t) + kN�q (K; t)� c

�
f (t) dt+

Z +1

�t(K;�pW )(K)

�
�pW � c

�
f (t) dt�r:

Thus:

@2�N

@ (kN )2

�
KC

N
; :::;

KC

N
; kN

�
=

Z �t(K;�pW )

tN

h
2�q

�
K̂; t

�
+ kN�qq

�
K̂; t

�i
f (t) dt

+kN�q

�
K̂; �t

�
K; �pW

��
f
�
�t
�
K; �pW

�� @�t �K; �pW �
@kN

< 0:
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This proves equation (20). Then, selecting kN = K
N proves the global concavity of �n

�
K
N ; ::;

K
N

�
.

Lemma 5 KC solution of

Z �t(K;�pW )(KC)

tN (KC)

�
�
�
KC ; t

�
+
KC

N
�q
�
KC ; t

�
� c
�
f (t) dt+

Z +1

�t(KC ;�pW )(KC)

�
�pW � c

�
f (t) dt = r

is the only symmetric equilibrium investment.

Proof. If kn = K
N , for all n, all producers are constrained simultaneously: t

n = tN for all n. The �rst

order derivative (19) then becomes:

@�n

@kn

�
K

N
; :::;

K

N

�
=

Z �t(K;�pW )(K)

tN (K)

�
� (K; t) +

K

N
�q (K; t)� c

�
f (t) dt+

Z +1

�t(K;�pW )(K)

�
�pW � c

�
f (t) dt�r:

@�n

@kn (0; :::; 0) =
R �t(K;�pW )
0 (� (0; t)� c) f (t) dt +

R +1
�t(K;�pW )

�
�pW � c

�
f (t) dt � r > �pW � (c+ r) > 0

since � (0; t) > �pW > (c+ r) by equation (??). limK!+1 @�n

@kn

�
K
N ; :::;

K
N

�
= �r < 0. Hence KC > 0

such that @�
n

@kn

�
KC

N ; :::; K
C

N

�
= 0 exists.

We now prove that
�
KC

N ; :::; K
C

N

�
is an equilibrium. Consider �rst a negative deviation: k1 � KC

N

while kn = KC

N for all n > 1. Total installed capacity is K = k1 + N�1
N KC � KC .

@�1

@k1

�
k1 ;

KC

N
; :::;

KC

N

�
=

Z tN (K)

t1

 
�
�
Q̂
�
+ k1�q

�
Q̂
� @Q̂
@k1

� c
!
f (t) dt

+

Z �t(K;�pW )(K)

tN (K)

�
� (K) + k1�q (K)� c

�
f (t) dt

+

Z +1

�t(K;�pW )(K)

�
�pW � c

�
f (t) dt� r

=

Z tN (K)

t1

 
�
�
Q̂
�
+ k1�q

�
Q̂
� @Q̂
@k1

� c
!
f (t) dt

+

Z �t(K;�pW )

tN (K)

�
� (K) + k1�q (K)� c

�
f (t) dt

�
Z �t(KC ;�pW )

tN (KC)

�
�
�
KC
�
+
KC

N
�q
�
KC
�
� c
�
f (t) dt

+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt�

Z +1

�t(KC ;�pW )

�
�pW � c

�
f (t) dt
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tN (K) � tN
�
KC
�
and �t

�
K; �pW

�
(K) � t�pW

�
KC
�
since K < KC . Then:

@�1

@k1

�
k1 ;

KC

N
; :::;

KC

N

�
=

Z tN (K)

t1

 
�
�
Q̂
�
+ k1�q

�
Q̂
� @Q̂
@k1

� c
!
f (t) dt

+

Z tN(KC)

tN (K)

�
� (K) + k1�q (K)� c

�
f (t) dt

+

Z �t(K;�pW )

tN (K)

�
� (K) + k1�q (K)�

�
�
�
KC
�
+
KC

N
�q
�
KC
���

f (t) dt

+

Z �t(KC ;�pW )

�t(K;�pW )

�
�pW � �

�
KC
�
� K

C

N
�q
�
KC
��
f (t) dt:

�
�
Q̂
�
+k1�q

�
Q̂
�
�c =

�
k1 � �N

�
�q

�
Q̂
�
@Q̂
@k1 � 0 for t 2

�
t1; tN (K)

�
. �
�
K; tN (K)

�
+k1�q

�
K; tN (K)

�
=

c, and �t (K) + k
1�qt (K) � 0, hence � (K) + k1�q (K) � c � 0 for t 2

�
tN (K) ; tN

�
KC
��
. �q (Q) +

q�qq (Q) < 0, hence � (K)+k
1�q (K) � � (K)+KC

N �q (K) � �
�
KC
�
+KC

N �q
�
KC
� �
k1 � KC

N

�
�q

�
Q̂
�
@Q̂
@k1 �

0 for t 2
�
tN (K) ; �t

�
K; �pW

�
(K)

�
. Finally, �

�
KC
�
� �pW for t � t�p

W (KC), hence �pW � �
�
KC
�
�

KC

N �q
�
KC
�
� 0 for t 2

h
�t
�
K; �pW

�
(K) ; t�p

W (KC)
i
. Thus, @�

1

@k1

�
k1 ; K

C

N ; :::; K
C

N

�
� 0: a negative devi-

ation is not pro�table.

From equation (20), @�
N

@kN

�
KC

N ; :::; K
C

N ; kN
�
is decreasing for kN � KC

N , hence @�
N

@kN

�
KC

N ; :::; K
C

N ; kN
�
�

0: a positive deviation is not pro�table.

Therefore,
�
KC

N ; :::; K
C

N

�
is a symmetric equilibrium. Furthermore, KC is the only symmetric

equilibrium since �n
�
K
N ; :::;

K
N

�
is globally concave.
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