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Abstract

In this paper, we investigate the use of interactive effect or linear factor models in regional

policy evaluation. We contrast treatment effect estimates obtained by Bai (2009)’s least

squares method with the popular difference in difference estimates as well as with estimates

obtained using synthetic control approaches as developed by Abadie and coauthors. We show

that difference in differences are generically biased and we derive the support conditions that

are required for the application of synthetic controls. We construct an extensive set of

Monte Carlo experiments to compare the performance of these estimation methods in small

samples. As an empirical illustration, we also apply them to the evaluation of the impact on

local unemployment of an enterprise zone policy implemented in France in the 1990s.

Keywords: Policy evaluation, Linear factor models, Synthetic controls, Economic geography,

Enterprise zones
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1 Introduction1

It is becoming more and more common to evaluate the impact of regional policies using the tools of

program evaluation derived from micro settings (see Blundell and Costa-Dias, 2009, or Imbens and

Wooldridge, 2011 for surveys). In particular, enterprise and empowerment zone programs have

received a renewed interest over recent years (see for instance, Busso, Gregory and Kline, 2012,

Ham, Swenson, Imrohoroglu and Song, 2012, Gobillon, Magnac and Selod, 2012). Those programs

consist in a variety of locally targeted subsidies aiming primarily at boosting local employment or

the employment of residents. Their evaluations use panel data and methods akin to difference in

differences that offer the simplest form of control of local unobserved characteristics that can be

correlated with the treatment indicator. Nonetheless, specific issues arise when studying regional

policies and the tools required to evaluate their impact or to perform a cost-benefit analysis are

different from the ones used in more usual micro settings.

The issue of spatial dependence between local units is important in the evaluation of regional

policies. Outcomes are likely to be spatially correlated in addition to the more usual issue of

serial correlation in panel data. There is thus a need for a better control of spatial dependence

and more generally of cross-section dependence when evaluating regional policies. This is why

more elaborate procedures than difference in differences are worth exploring and the use of factor

or interactive effect proved to be attractive and fruitful in micro studies (Carneiro, Hansen and

Heckman, 2003). Interactive effect models facilitate the control for cross-section dependence not

only because of spatial correlations but also because areas can be close in economic dimensions

which depart from purely geographic characteristics. This is the case for instance when two local

units are affected by the same sector-specific shocks because of sectoral specialisation even if these

units are not neighbors.

Second, a key issue in policy evaluation is that treatment and outcomes might be correlated

because of the presence of unobservables. It should also be acknowledged when using regional

data that those unobservables differencing local units might be multidimensional because the

1We are grateful to participants at seminars in Duke University, INED in Paris, Toulouse School of Economics,

CREST in Paris, ISER at Essex and at the 2012 NARSC conference in Ottawa, for useful comments as well as to

Sylvain Chabé-Ferret for fruitful discussions. We also thank DARES for financial support. The usual disclaimer

applies.
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underlying cycles of economic activities of local units are likely to be multiple. Interactive effect

models are aimed precisely at allowing the set of unobserved heterogeneity terms or factor loadings

that are controled for to have a large dimension.

Moreover, the estimation of linear factor models in panels is relatively easy and asymptotic

properties of estimates are now well known (Pesaran, 2006, Bai, 2009). Yet, there are only a few

attempts in the literature to conduct regional policy evaluations using factor models (Kim and

Oka, 2013) or using a kindred conditional pseudo-likelihood approach (Hsiao, Ching and Wan,

2012).

The contributions of this paper are threefold. We first provide results concerning the theoretical

set-up. We clarify restrictions in linear factor models under which the average treatment on

the treated parameter is identified. We analytically derive the generic bias of the difference-in-

differences estimator when the true data generating process has interactive effects and the set of

factor loadings is richer than the standard single-dimensional additive local effect. Moreover, we

derive from extant literature conditions on the number of treatment and control groups as well

as on the number of periods under which factor model estimation delivers consistent estimates of

the average treatment on the treated parameter.

Contrasting the estimation of linear factor models with the alternative method of synthetic

controls is our second contribution. This alternative method was proposed by Abadie and Gardeaz-

abal (2003) and its properties have been developed and vindicated in a model with factors (Abadie,

Diamond and Hainmuller, 2010). Under the maintained assumption that the true model is a lin-

ear factor model, we show that synthetic controls are equivalent to interactive effect methods

whenever matching variables (i.e. factor loadings and exogenous covariates) of all treated areas

belong to the (convexified) support of matching variables of control areas, a case that we call the

interpolation case. This is not true any longer in the extrapolation case, that is, when matching

variables of one treated area at least, do not belong to the support of matching variables in the

control group.

Our third contribution is that we evaluate the relevance and analyze the properties of in-

teractive effect, synthetic control and difference-in-differences methods by Monte Carlo experi-

ments. We use various strategies for interactive effect estimation. First, a direct method estimates

the counterfactual for treated units by linear factor methods in a restricted sample where post-
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treatment observations for treated units are excluded. The second method estimates a linear factor

model which includes a treatment dummy and uses the whole sample. Propensity score matching

underlies the third method in which the score is conditioned by factor loading estimates obtained

using the first method. Imposing common support constraints on factor loadings when estimating

the counterfactual for treated units by linear factor methods provides the fourth method. We

contrast these Monte Carlo estimation results with the ones we obtain by using synthetic controls

and difference in differences.

We finally provide the results of an empirical application of these methods to the evaluation of

the impact of a French enterprise zone program on unemployment exits at the municipality level

in the Paris region. This extends our results in Gobillon et al. (2012) in which we were using

conditional difference-in-differences methods. We show that the estimated impact is robust to the

presence of factors and therefore to cross-section dependence. We also look at other empirical

issues of interest such as the issue of missing data about destination when exiting unemployment

as well as entries into unemployment.

In the next Section, we briefly review the meager empirical literature that use factor models to

evaluate regional policies. We construct in Section 3 the theoretical set-up and write restrictions

leading to the identification of the average treatment on the treated in linear factor models. Next,

we derive the bias of difference in differences and describe the linear factor model estimation

procedures. We derive the conditions that contrast their asymptotic properties with those of

synthetic control methods. Monte Carlo experiments reported in Section 4 evaluate the small

sample properties of the whole range of our estimation procedures. The empirical application and

estimation results are presented in Section 5 and the last section concludes.

2 Review of the litterature

Kim and Oka (2013) estimate an interactive effect model following Bai (2009) and provide a

policy evaluation of the impact of changes in unilateral divorce state laws on divorce rates in the

US. They find that interactive effect estimates are smaller than difference-in-differences estimates.

Furthermore, they estimate their model varying the number of factors and find that the model

selection procedures proposed by Bai and Ng (2003) are not informative.

Hsiao, Ching andWan (2012) use an interactive effect model to study the effect on Hong Kong’s
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domestic product of two policies of convergence with mainland China that were implemented at

the turn of this century. Their observations consist in various macroeconomic variables measured

every quarter over ten years for Hong Kong and countries either in the region or economically

associated with Hong-Kong. The authors argue that interactive models can be rewritten as models

in which interactive effects can be replaced by summaries of outcomes for other countries at the

same dates using a conditioning argument. Indeed, common factors can be predicted using this

information but this entails losses of information since information at current period only is used

to construct these predictions.

Interestingly, Ahn, Lee and Schmidt (2013) analyze an interactive effect model and their

method potentially provides effi ciency improvements over the procedure of Hsiao, Ching and Wan

(2012). The authors show that the conditional likelihood function (or pseudo-likelihood function

associated to the normal distribution), conditional on a number of period outcomes equal to the

number of factors can be written as a function that does not depend on individual factor loadings.

Assuming out any remaining spatial correlation, they show that conditional likelihood estimates

are consistent for fixed T .

Overall, in a large N and T environment, the most prominent estimation methods were pro-

posed by Pesaran (2006) who uses regressions augmented with cross section averages of covariates

and outcomes, and by Bai (2009) who uses principal component methods. Westerlund and Urbain

(2011) review quite extensively differences between these methods.

3 Theoretical Set-Up

Consider a sample composed of i = 1, ..., N local units observed at dates t = 1, ..., T . A simple

binary treatment, Di ∈ {0, 1}, is implemented at date TD < T so that for t > TD > 1, the units

i = 1, ..., N1 are treated (Di = 1). Units i = N1 + 1, ..., N are never treated (Di = 0). For each

unit, we observe outcomes, yit, which might depend on the treatment and the average effect of the

treatment on the treated is our parameter of interest. In Rubin’s notations, we denote by yit (d)

the outcome of an individual i at date t if in treatment status d (where d = 1 in case of treatment,

and d = 0 in the absence of treatment). This hypothetical status should be distinguished from

random variable Di describing the actual assignment to treatment in this experiment.
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The average effect of the treatment on the treated can be written when t ≥ TD:

E (yit (1)− yit (0) |Di = 1) = E (yit (1) |Di = 1)− E (yit (0) |Di = 1) (1)

A natural estimator of the first right-hand side term is its empirical counterpart since the

outcome in case of treatment is observed for the treated at periods t > TD. In contrast, the second

right-hand side term is a counterfactual term since the outcome in the absence of treatment is not

observed for the treated at periods t > TD. The principle of evaluation methods relies on using

additional restrictions to construct a consistent empirical counterpart to the second right-hand

side term (e.g. Heckman and Vytlacil, 2007). For instance, it is well known that difference-in-

differences methods are justified by an equal trend assumption:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0) for t ≥ TD. (2)

under which the counterfactual can be written as:

E (yit (0) |Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0) + E(yi,TD−1(0) | Di = 1) for t ≥ TD,

in which all terms on the right-hand side are directly estimable from the data.

The object of this section is to generalize the usual set-up in which difference in differences

provide a consistent estimate of the effect of the treatment on the treated (TT) to a set-up

allowing for higher-dimensional unobserved heterogeneity terms. Local units treated by regional

policies could indeed be affected by various common shocks describing business cycles related for

instance to different economic sectors. Associated factor loadings would describe the heterogeneity

of exposition of local units to these common shocks. A single dimensional additive local effect as in

the set up underlying difference-in-differences estimation is unlikely to describe this rich economic

environment. Furthermore, we know that difference in differences can dramatically fail when

heterogeneity is richer than what is modelled (Heckman, Ichimura and Todd, 1997).

In this paper, we restrict our attention to linear models because the number of units is rather

small although extensions to non-linear settings could follow the line of Abadie and Imbens (2011)

at the price of losing the simplicity of linear factor models. The route taken by Conley and

Taber (2011) to deal with small sample issues might also be worth extending to our setting. More

specifically, linearity makes one wary of issues of interpolation and extrapolation that we shall
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highlight in the general framework of linear factor models as well as in the approach of synthetic

controls proposed in the seminal paper by Abadie and Gardeazabal (2003).

We present in the first sub-section the maintained specification of a linear factor model and

we discuss identifying assumptions. Next, we show that the conventional difference-in-differences

estimate is generically biased. We propose an estimation method by linear factor models including

a treatment dummy and derive a rank condition for the identification of the average treatment on

the treated. We also propose a direct estimation method by constructing the counterfactual term

in equation (1) using the samples of control and treated units albeit the latter before treatment

only (see Heckman and Robb, 1985 or Athey and Imbens, 2006). Finally, we describe the approach

of synthetic controls and analyze its properties when the true model has interactive effects.

3.1 Interactive linear effects and restrictions on conditional means

In the conventional case of difference in differences (DID) in which covariates are controlled for (see

for instance Blundell and Costa-Dias, 2009), the outcome in the absence of treatment is specified

as a linear function:

yit (0) = xitβ + λ̃i + δ̃t + εit (3)

in which xit is a 1×K vector of individual covariates, and λ̃i and δ̃t are individual and time effects.

A limit to this specification is that individuals are all affected in the same way by the time effects.

To allow for interactions and make the specification richer, we specify the outcome in the absence

of treatment as a function of the interaction between factors varying over time and heterogenous

individual terms called factor loadings as:

yit (0) = xitβ + f ′tλi + εit (4)

λi is a L× 1 vector of individual effects or factor loadings, and ft is a L× 1 vector of time effects

or factors. Note that this specification embeds the usual additive model by letting λi =
(
λ̃i, 1

)′
and ft =

(
1, δ̃t

)′
as, in that case, f ′tλi = λ̃i + δ̃t.

The true process generating the data is supposed to be given by equation (4) and is completed

by the description of the outcome in case of treatment:

yit (1) = yit (0) + αit (5)
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which, in contrast to the linear specification above, is not restrictive.

There are a few usual assumptions that complete the description of the maintained true model.

First, we shall assume that we know the number of factors in the true model described by equation

(4). Various tests regarding the number of factors might be useful to implement (Bai and Ng, 2002,

Moon and Weidner, 2010b) but these are fragile (Onatski, Moreira and Hallin, 2011). Moreover,

we adopt the assumption that factors are suffi ciently strong so that the consistency condition for

the number of factors and consequently for factors and factor loadings is satisfied (for alternative

views see Onatski, 2012 or Pesaran and Tosetti, 2011). This condition reflects the fact that factor

loadings can be separated from the idiosyncratic random terms at the limit.2

Moreover, we do not specify the dynamics of factors in the spirit of Doz, Giannone and Reichlin

(2011). Their specification imposes more restrictions on the estimation although inference is more

diffi cult to develop. This is why we stick to the limited information framework which does not

impose conditions on the dynamics of factors although it could be done in the way explained

by Hsiao, Ching and Wan (2012). Furthermore, the only available explanatory variables are

not varying over time in our empirical application. This corresponds to the low rank regressor

assumption as defined by Moon and Weidner (2010a) and under which identifying assumptions

are of a particular form. At this stage however we prefer to stick to the more general format.

A final comment is worth making. In treatment evaluation, lagged endogenous variables are

at times included as matching covariates in order to control for possible ex-ante differences. In

spirit, this is very close to a model with interactive effets because it is well known that a simple

linear dynamic panel data model like:

yit = αyit−1 + ηi + uit

can be rewritten as a static model:

yit = αtyi0 +
(
1− αt

) ηi
1− α + νit

in which νit is an AR(1) process. Factors are αt and 1− αt, and factor loadings are yi0 and ηi
1−α .

This argument could be generalized to more sophisticated dynamic linear models.

2It does not mean that the treatment parameter is not identified under alternative assumptions.
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3.1.1 Restrictions on conditional means

To complete the description of the true data generating process, we now present and comment the

main restrictions on random terms. To keep notations simple and conform with the usual panel

data set up, we generally consider that factors ft are fixed while factor loadings λi are supposed

to be correlated random effects.

We first assume that idiosyncratic terms εit are "orthogonal" to factor loadings and that

explanatory variables are strictly exogenous:3

εit ⊥ (λi, xi)

in which x′i = (x′i1, ...x
′
iT )′ is a [T,K] matrix. This would be without loss of generality when

orthogonality is defined as the absence of correlation as in Bai (2009). Because of the next

assumption we will adopt, we prefer to interpret orthogonality as mean independence and the

translation of the above assumption is therefore that:

Assumption A1: E(εit | λi, xi) = 0.

Second, we extend the usual assumption made in difference-in-differences estimation by assuming

that the conditioning set now includes unobserved factor loadings:

yit(0) ⊥ Di | (xi, λi)⇔ εit ⊥ Di | (xi, λi)

and we write this condition as a mean independence restriction:

Assumption A2: E(εit | Di, λi, xi) = E(εit | λi, xi).

Note that we do not suppose that (λi, xi) and Di are uncorrelated and selection into treatment

can freely depend on observed and unobserved heterogeneity terms.

Finally, define the average treatment effect over the periods after treatment as:

αi =
1

T − TD + 1

T∑
t=TD

αit

so that our main parameter of interest is the average treatment on the treated over the periods

after treatment defined as:4

3The extension to the case with weakly exogeneous regressors would follow Moon and Weidner (2010a) for

instance.
4In the case T → ∞, those definitions should be interpreted as limits. Note also that it is generally easy to

design estimates for time-specific treatment parameters such as E(αit | Di = 1) by restricting the post-treatment

observations to period t only.
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Definition ATT:

α = E(αi | Di = 1) =
1

T − TD + 1

T∑
t=TD

E(αit | Di = 1).

Assumptions A1 and A2 are the main restrictions in our set-up and Definition ATT defines our

parameter of interest.

3.2 The generic bias of difference-in-differences estimates

If the true data generating process comprises interactive effects, we now show that the difference-

in-differences estimator is generically biased although we exhibit two interesting specific cases in

which the bias is equal to zero. For simplicity, we omit covariates or, since covariates are assumed

to be strictly exogenous, implicitly condition on them in this subsection. We also assume for

simplicity that the probability measure of factor loadings in the treated population, dG(λi | Di =

1), and in the control population dG(λi | Di = 0), are dominated by the Lebesgue measure so

that both distributions are absolutely continuous.

We shall show that the condition which is implied by Assumption A2:5

E(yit(0)− yi,TD−1(0) | Di = 1, λi) = E(yit(0)− yi,TD−1(0) | Di = 0, λi) for t > TD (6)

does not imply equation (2) under which the difference-in-differences estimator is consistent.

Indeed:

E(yit(0)− yi,TD−1(0) | Di = 1) = E [E(yit(0)− yi,TD−1(0) | Di = 1, λi)] ,

=
∫
E(yit(0)− yi,TD−1(0) | Di = 1, λi)dG(λi | Di = 1).

Replacing the integrand using equation (6) yields:

E(yit(0)− yi,TD−1(0) | Di = 1) =

∫
E(yit(0)− yi,TD−1(0) | Di = 0, λi)dG(λi | Di = 1). (7)

Two special cases are worth noting. Firstly, the integrand in the previous expression does not

depend on λi in the restricted case in which there is a single factor ft = 1 and a single individual

effect associated with this factor. In this case, equation (7) can be written as:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0)
∫
dG(λi | Di = 1)

= E(yit(0)− yi,TD−1(0) | Di = 0),

5This condition is slightly weaker than A2 because it considers differences between periods.
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which yields equation (2) describing equality of trends.

Alternatively, (perfectly) controled experiments also enables identification through difference

in differences in spite of using the alternative argument that dG(λi | Di = 1) = dG(λi | Di = 0).

The same equation (2) holds and the treatment parameter is consistently estimable by difference

in differences.

This implication is not true in general and we can distinguish two cases. If the conditional

distribution of λi in the treated population is dominated by the corresponding measure in the

control population i.e.:

∀λi such that dG(λi | Di = 0) = 0 we have dG(λi | Di = 1) = 0, (8)

the support of the treated units is included in the support of the non treated units. We shall

describe from now on cases in which support condition (8) holds as an instance of interpolation

and if such a condition is not satisfied, as an instance of extrapolation.

In the interpolation case, let:

r(λi) =
dG(λi | Di = 1)

dG(λi | Di = 0)
<∞

which is well defined because of the support condition (8) and because distributions are absolutely

continuous. Write equation (7) as:

E(yit(0)− yi,TD−1(0) | Di = 1) =

∫
E(yit(0)− yi,TD−1(0) | Di = 0, λi)r(λi)dG(λi | Di = 0) (9)

which in turn implies that:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0)

+Cov (yit(0)− yi,TD−1(0), r(λi) | Di = 0)

The second term in the right hand side can be interpreted as the differential trend in outcomes

which is due to the time varying effects of factors interacted with unobserved factor loadings. If

there is indeed a factor loading associated to a time-varying factor, the second term is not equal

to zero except under special circumstances as seen above. In the interpolation case, the second

term describes the bias in DID estimates.

In the alternative case of extrapolation, the bias term is derived in a similar way although its

interpretation is less clear since it mixes issues of non inclusive supports with the time varying

effect of factors.
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3.3 Interactive Effect Estimation in the Whole Sample

We now explore interactive effect methods and exhibit conditions under which these methods

allow the identification of the average treatment on the treated parameter.

The observed outcome verifies:

yit = yit(0)1{Dit = 0}+yit(1)1{Dit = 1}

and using equations (4) and (5), it can be written as:

yit = αitItDi + xitβ + f ′tλi + εit (10)

in which Di is the treatment indicator, and It = 1{t ≥ TD} is an indicator of treated periods. We

maintain Assumptions A1 and A2 that allow the correlation between Di and λi to be unrestricted

so that selection into treatment can depend on factor loadings. Similarly, the correlation between

It and ft is unrestricted so that the implementation of the treatment can be correlated with

economic cycles which are described here by factors.

We shall rewrite equation (10) as:

yit = αItDi + xitβ + f ′tλi + εit + (αit − α)ItDi (11)

in which α is the average treatment on the treated parameter as in Definition ATT.

We now exhibit conditions under which α can be estimated using interactive effect procedures

as proposed by Bai (2009). We start with the case β = 0 which requires a weak rank condition and

then extend it to the general case with covariates which requires a stronger additional assumption

albeit easy to interpret.

3.3.1 Average Treatment Effect on the Treated in the Absence of Covariates

We shall prove that the parameter of interest α is identified under the two conditions that It is

not equal to a linear combination of factors ft and that the probability of treatment is positive.

We continue considering that T is fixed as well as factors ft and treatment It and we analyze

identification as if factors ft were known. This argument extends to the case in which T tends to

infinity by taking limits.

Stack individual observations in individual vectors of dimension [T, 1] :

yi = αDiI[1:T ] + F ′λi + εi + ∆iI[1:T ]Di (12)
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in which yi = (yi1, ., yiT )′, I[1:T ] = (I1, ., IT )′, F = (f1, ., fT ), εi = (εi1, ., εiT )′ and

∆i = diag (αi1 − α, ..., αiT − α) is a matrix of dimension [T, T ]. Set MF = I − F ′(FF ′)−1F and

multiply the previous equation to obtain:

MFyi = αDiMF I[1:T ] +MF εi +MF∆iI[1:T ]Di. (13)

A necessary condition of identification of α using the latter equation stacked over the different

individual units is that:

I ′[1:T ]MF I[1:T ] > 0 and E(Di) > 0, (14)

which means that I[1:T ] is not equal to a linear combination of factors and that the probability

of being treated is positive. This is related to the rank condition underlying the identification of

parameters as in Proposition 3 in Bai (2009, p.1259). Furthermore, this condition is also necessary

in equation (12) because the correlation between λi and Di is unrestricted.

This condition is also suffi cient since E(Di)I
′
[1:T ]MF I[1:T ] is invertible and because we now show

that:

α = (E(DiI
′
[1:T ]MF I[1:T ]))

−1E(DiI
′
[1:T ]MFyi) = (E(Di)I

′
[1:T ]MF I[1:T ])

−1E(DiI
′
[1:T ]MFyi). (15)

Indeed, the correlation between the two right-hand side terms of equation (13), the regressor

DiMF I[1:T ] and the error term MF εi + MF (αi − α)I[1:T ]Di, is equal to zero. There are two terms

in this correlation that we analyze in turn.

The first term is equal to 0 by construction (Assumption A2):

E(I ′[1:T ]MFDiMF εi) = E(I ′[1:T ]MFDiMFE(εi | Di)) = 0 (16)

since Di is a scalar random variable and variables in the time dimension are supposed to be fixed.

The second term of the correlation above is more interesting and can be written as:

E(I ′[1:T ]MFDiMF∆iI[1:T ]Di) = E(I ′[1:T ]MFDiMFE(∆iI[1:T ] | Di)Di), (17)

which is equal to zero by construction of ∆i since by Definition ATT:

E(∆iI[1:T ] | Di = 1) = E(
T∑

t=TD

(αit − α) | Di = 1) = 0.

Multiplying (13) by I ′[1:T ]MFDi and taking the expectation gives (15). This ends the proof that

the average treatment on the treated parameter α is identified under rank condition (14).
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3.3.2 The Case with Covariates

In the general case with covariates, we can write equation (11) as:

yi = αDiI[1:T ] + xiβ + F ′λi + εi + ∆iI[1:T ]Di

Multiplying this equation by MF , we obtain:

MFyi = αDiMF I[1:T ] +MFxiβ +MF εi +MF∆iI[1:T ]Di. (18)

Denote the linear prediction of Di as a function of xi as:

Di = vec(xi)
′γ +Dix,

and rewrite equation (18) as:

MFyi = αDixMF I[1:T ] +MF ε̃i +MF∆iI[1:T ]Di, (19)

in which ε̃i = εi + xiβ + α.vec(xi)
′γI[1:T ]. Because xi and vec(xi) are uncorrelated with Dix, the

same non correlation condition as in equation (16) is valid since we have from Assumptions A1 and

A2 that E (εi |Di, xi ) = 0. Thus, the second condition derived from equation (17) that remains

to be checked refers to the equality to zero of:

E(∆iI[1:T ]DiDix) = E(∆iI[1:T ]DiDi)− E((∆iI[1:T ]Divec(xi)
′γ) = −E(∆iI[1:T ]Divec(xi)

′γ),

because of the argument employed after equation (17) that uses Definition ATT. This correlation

is equal to zero under the suffi cient condition given by:

E(αit | Di = 1, xi) = E(αit | Di = 1),

since it implies that:

E(∆iI[1:T ] | Di = 1, xi) = E(∆iI[1:T ] | Di = 1) = 0,

by Definition ATT as above. This condition is stronger than necessary as it would be suffi cient

to condition on the scalar variable vec(xi)γ.6 Note also that the linear interactive model could be

6In this case, developments following Wooldridge (2005) might be appropriate but we do not follow up this

route in this paper.
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generalized by conditioning on covariates or interacting covariates with the treatment indicator

and this would substantially weaken this condition as in the static evaluation case (Heckman and

Vytlacil, 2007).

Consistency and other asymptotic properties of this method can be derived from Bai (2003)

when N −→∞ and T →∞. Note also that condition (14) also implies that N1 tends to∞ when

N −→∞. Estimation could also proceed with the estimation method proposed by Ahn, Lee and

Schmidt (2013) and thence dispenses with the assumption that T →∞.

3.4 Direct Estimation of the Counterfactual

Assumptions A1 and A2 imply that a direct estimation strategy for the treatment on the treated

effects can also be adopted. Estimate first the interactive effect model (4) using the sample com-

posed of non treated observations over the whole period and of treated observations before the

date of the treatment t < TD. Orthogonality assumption A2 makes sure that excluding obser-

vations i ∈ {1, ., N1} and t ≥ TD does not generate selection. Second, orthogonality assumption

A1 renders conditions stated by Bai (2009) valid and the derived asymptotic properties of linear

factor estimates hold under identifying restrictions as stated in Moon and Weidner (2010b).

Various asymptotics can then be considered:

• If N and T tend to∞, then β, ft and λi for the non treated are consistently estimated (Bai,

2009).

• If additionally the number of periods before treatment TD tends to∞, then λi for the treated

units are consistently estimated.

As for the counterfactual term to be estimated in equation (1), we have for t > TD:

E (yit (0) |Di = 1) = E (xitβ + λ′ift |Di = 1) (20)

To estimate this quantity, we replace parameters λi, i = 1, ..., N1, β and ft when t > TD by their

consistently estimated values in the right-hand side expression (computed as detailed in Appendix

A.2), and take the empirical counterpart of the expectation. Namely, the treatment on the treated

at a given period is derived by using equation (1) and can be written as:

E (yit (1)− yit (0) |Di = 1) = E(αit | Di = 1) = E (yit (1) |Di = 1)−E (xitβ + λ′ift |Di = 1) (21)
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and its estimate is obtained by replacing unknown quantities by their empirical counterparts.

The average treatment on the treated effect is then obtained by exploiting Definition ATT and

averaging equation (21) over the periods after treatment.7

An additional word of caution about identification is necessary since the rank condition (14)

developed in the previous section also applies although it is not as simple to derive. This is

summarized in the next proposition:

Proposition 1 Suppose that rank condition (14) does not apply and that the treatment indicator

IT is a linear function of factors:

IT = F ′δ

in which δ is a [L, 1] vector and F is the matrix of factors as defined above. Then for any value of

the treatment effect α, there exists an observationally equivalent factor model in which the value

of the treatment effect is equal to zero.

Proof. Let α be any value and write equation (12) as

yi = αITDi + F ′λi + ε̃i

in which ε̃i includes any idiosyncratic variation of the treatment effect across individuals and

periods. By replacing IT = F ′δ, we get:

yi = αF ′δDi + F ′λi + ε̃i,

= F ′(αδDi + λi) + ε̃i,

which provides the alternative factor representation in which the value of the treatment effect is

equal to zero.

This result implies that condition (14) applies to the estimation method derived in this section

as well as to any other estimation method analyzed below.

3.5 A single-dimensional factor model

It is well known since Rubin and Rosenbaum (1983) that conditions A1 and A2 imply the condition:

E(εit | Di = 1, p(xi, λi)) = 0

7The variance of the estimator can be computed using formulas in Bai (2003) and Bai (2009).
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in which the distinction between observed variables xi and unobserved variables λi does not matter.

Let µi = p(xi, λi) denote the propensity score.

The condition above suggests the following strategy:

1. Estimate factors and factor loadings using the sample of controls and the subsample of

treated observations before treatment as detailed in Subsection 3.4.

2. Regress Di on xi and λ̂i and construct the predictor of the score µ̂i.

3. Match on the propensity score à la Heckman, Ichimura and Todd (1998), or, under some

conditions, use a single factor model associated to µ̂i.

3.6 Synthetic controls

The technique of synthetic controls proposed by Abadie and Gardeazabal (2003) and further

explored by Abadie, Diamond and Hainmueller (2010, ADH thereafter) proceeds differently. It

focuses on the case in which the treatment group is composed of a single unit and uses a specific

matching procedure of this treated unit to the control units whereby a so-called synthetic control

is constructed. We shall proceed in the same way although as we have potentially more treated

units, we shall repeat the procedure for each of them and then aggregate the result over various

synthetic controls to yield the average treatment on the treated.8

3.6.1 Presentation

We follow the presentation by ADH (2010). An estimator of yit(0) for a single treated unit i ∈

{1, ., N1} after treatment t ≥ TD is the outcome of a synthetic control “similar” to the treated

unit which is constructed as a weighted average of non-treated units. We impose similarity of

characteristics xit between treated units and synthetic controls, by weighting characteristics xjt of

8An alternative would be to aggregate the treated units into a single unit first. By analogy with what is done

in non-parametric matching, this procedure seems more restrictive because constructing a single synthetic control

leads to less precise estimates than when constructing various synthetic controls. Nonetheless, support conditions

for the validity of the synthetic control method that we find might justify such an approach because support

requirements are weaker in the "aggregate" case.
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control units, j ∈ {N1 + 1, ., N} in such a way that

N∑
j=N1+1

ω
(i)
j xjt = xit for t = 1, ., T (22)

where ω(i)j is the weight of unit j in the synthetic control (such that ω(i)j > 0 and
N∑

j=N1+1

ω
(i)
j = 1).

Similarity between pretreatment outcomes is also imposed in ADH (2010):

N∑
j=N1+1

ω
(i)
j y

(k)
j = y

(k)
i (23)

where y(k)j =
TD−1∑
t=1

ktyjt is a weighted average of pretreatment outcomes in which k = (k1, ., kTD−1)

are weights differing across periods (y(k)i for the treated unit is defined similarly). A set of such pre-

treatment outcome summaries can be generated using various vectors of weights, k. Nevertheless,

the most general setting is when we consider all pretreatment outcomes, yjt, for t = 1, ..., TD − 1.

Indeed, taking linear combinations of pretreatment outcomes or considering the original ones is

equivalent in this general formulation and we dispense with the construction of y(k)j and y(k)i .

The average treatment on the treated for unit i is estimated as:

α̂i =
1

T − TD + 1

∑
t≥TD

[
yit −

N∑
j=N1+1

ω
(i)
j yjt

]
. (24)

In practice, one needs to determine the weights that allow us to construct the synthetic control.

Weights should ensure that the synthetic control is as close as possible to the treated unit i and

thus that conditions (22) and (23) are verified. Denote zj = (yj1, ., yj,TD−1, xj1, ., xjT )′ (resp. zi)

the list of variables over which the synthetic control is constructed (i.e. pretreatment outcomes

and exogenous variables). Weights are computed using the following minimization program:

Min

ω
(i)
j

∣∣∣∣∣ω(i)j >0,
N∑

j=N1+1
ω
(i)
j =1

(
N∑

j=N1+1

ω
(i)
j zj − zi

)′
M

(
N∑

j=N1+1

ω
(i)
j zj − zi

)
(25)

in which M is a weighting matrix.9 Note that the resulting weight ω(i) is a fonction of the data

(zi, zN1+1, ., zN).

9M can be chosen in various ways (see Abadie et al, 2010, for some guidance). In our case we set M to the

identity matrix.
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3.6.2 Synthetic controls and interactive effects

We now describe this procedure in an interactive effect model as first suggested by AHD (2010).

Nonetheless, we show that the absence of bias implies constraints on the supports of the factor

loadings and of exogenous variables and is related to the developments in Section 3.2 above.

To proceed, we need to introduce additional notations. Our linear factor model can be written

at each time period as:

Yt (0) = β′X ′t + f ′tΛU + εt for the untreated,

yit (0) = β′x′it + f ′tλi + εit for each treated individual
(26)

where ΛU = (λN1+1, ..., λN) is (L,N − N1) and ft is a L column vector. Similarly, Yt (0) and εt

are (N −N1) row vectors and Xt is a (N −N1, K) matrix.

As weights ω(i) =
(
ω
(i)
N1+1

, ..., ω
(i)
N

)
are obtained by equation (25), we have: yit (0) = Yt (0)ω(i) + ηit for t < TD,

x′it = X ′tω
(i) + ηitX for t = 1, ..., T

(27)

Note that the construction of the synthetic control by equation (27) is allowed to be imperfectly

achieved and the discrepancy is captured by the terms ηit and ηitX . We thus acknowledge that

characteristics of the treated unit, zi = (yi1, ., yi,TD−1, xi1, ., xiT )′, might not belong to the cone

CU generated by the characteristics of control units. First, there are small sample issues when

the number of pre-treatment periods, TD − 1, and of covariates, KT , is larger than the number

of untreated units, N − N1. In other words, cone CU lies in a space whose dimension is lower

than the number of vector components, TD − 1 + KT . Second and more importantly, even if

TD−1+KT < N−N1, vector zi might not belong to this cone because supports of characteristics

for treated and control units differ. Terms ηit and ηitX capture this discrepancy.

We now analyze what consequences this construction has on the estimation of the treatment

effect. The estimated treatment effect given by equation (24) is a function of

yit −
N∑

j=N1+1

ω
(i)
j yjt = yit(1)− Yt (0)ω(i) = αit + yit(0)− Yt (0)ω(i)

= αit + ηit,

in which we have extended definition (27) to all t ≥ TD. The absence of bias of the LHS estimate

with respect to E (αit) can thus be written as E(ηit) = 0. To write this condition as a function of
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primitives, we need to replace dependent variables by their values in the model described by (26).

This delivers:

ηit = yit(0)− Yt (0)ω(i) = β′x′it + f ′tλi + εit − (β′X ′t + f ′tΛU + εt)ω
(i),

= β′(x′it −X ′tω(i)) + f ′t(λi − ΛUω
(i)) + εit − εtω(i).

Considering that β and ft are fixed and taking expectations yields:

E(ηit) = β′E(x′it −X ′tω(i)) + f ′tE(λi − ΛUω
(i)) + E(εit − εtω(i)),

' β′E(x′it −X ′tω(i)) + f ′tE(λi − ΛUω
(i)),

in which we have used the result derived by ADH (2010) that E(εit − εtω(i)) tends to 0 when the

number of pretreatment periods TD tends to∞.10 This expression should be true for any value of

β and ft and the absence of bias thus implies that:

E(x′it −X ′tω(i)) = 0 and E(λi − ΛUω
(i)) = 0. (28)

A suffi cient condition is established in Appendix B:

Lemma 2 If the support of exogenous variables and factor loadings of the treated units is a subset

of the support of exogenous variables and factor loadings of the non treated units and this latter

set is convex and bounded then condition (28) is satisfied at the limit when N −N1 →∞.

We call this case the interpolation case and this relates to the familiar support condition in

the treatment effect literature and to the domination relationship between probability measures

in the treated and control groups seen in equation (8) above.

If this property is not true, the synthetic control method is based on extrapolation since it

consists in projecting λi and xit onto a cone to which they do not belong and this generates a

bias. For instance, to compute the distance between λi and the convex cone conv (ΛU), we could

use the support function (see Rockafellar, 1970) and show that:

d (λi, conv (ΛU)) = inf
q∈RL

[
max

j∈{N1+1,...,N}
(q′λj)− q′λi

]
in which λj is the j-th column of ΛU . Statistical methods to deal with inference in this setting

could be derived from recent work by Chernozhukov, Lee and Rosen (2013) but this is out of the

scope of this paper.

10The main diffi culty there is to take into account that ω is a random function of zi and zj .
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3.6.3 Constraints on linear factor models

The conditions of interpolation implies constraints on the linear factor model that can be imposed

when estimating the parameters involved in (20). They are developed in Appendix A.2.

4 Monte Carlo experiments

4.1 The set-up

The data generating process is supposed to be given by a linear factor model:

yit = αiItDi + f ′tλi + εit

in which the treatment effect, αi, is homogeneous or heterogenous across local units (but not

time for simplicity) and the number of factors L is variable. Residuals εit are supposed to be

independently and identically distributed. We always include additive individual and time effects,

i.e. λi = (λi1, 1, λi2, ...)
′ and ft = (1, ft1, ft2...)

′ as most economic applications would require. We

did not include any other explanatory variables than the treatment variable itself.

The data generating process is constructed around a baseline experiment and several alter-

native experiments departing from the baseline in different dimensions such as the distribution

of residuals, the number of local units and periods, the correlation of treatment assignment and

factor loadings, the structure of factors, the support of factor loadings and the heterogeneity of the

treatment effect, αi. Experiments are described in detail below. The Monte Carlo aspect of each

experiment is given by drawing new values of {εit}i=1,.,N,t=1,.,T only and the number of replications

is set to 1000.

In the baseline, individual and period shocks εit are drawn in a zero-mean and unit-variance

normal distribution and we experiment an alternative in which shocks are drawn in a uniform

distribution [−
√

3,
√

3], the bounds being chosen to get a zero mean and a unit variance.

The numbers of treated units, N1 (resp. total, N) and the numbers of periods before treatment,

TD, (resp. total, T ) as well as the number of factors L are fixed at relatively small values in line

with our empirical application developed in the next section and more generally with data used

in the evaluation of regional policies. In the baseline experiment, we fix (N1, N) = (13, 143),

(TD, T ) = (8, 20) and L = 3 (including one additive factor). We also experiment with (N1, N) =
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(25, 275), (TD, T ) = (4, 10) and L varying in the set {2, 4, 5, 6}.

The values of factors ft and factor loadings, λi are drawn once and for all in each experiment.

Factors, ft, for t = 1, ., T, are drawn in a uniform distribution on [0, 1] (except the first factor

which is constrained to be equal to 1). Alternatively, we also experiment in having the second

factor in ft given by a. sin(180.t/T ) with a > 0 large enough.

The support of factor loadings, λi, is the same for treated units as for untreated units in

our baseline experiment. They are drawn in a uniform distribution on [0, 1] (except the second

factor loading which is constrained to be equal to 1). In an alternative experiment, we construct

overlapping supports for treated and untreated units. This is achieved by shifting the support of

factor loadings of treated units by .5 or equivalently by adding .5 to draws. In another experiment,

supports of treated and untreated units are disjoint by shifting the support of treated units by 1.

Because the original support is [0, 1], this means that the intersection of the supports of treated

and non-treated units is now reduced to a point. Note that adding .5 (resp. 1) to draws of treated

units creates a correlation between factor loadings and the treatment dummy Di equal to .446

(resp. .706).

The treatment effect is constant, αi = α, in our baseline experiment while in alternative

experiments, the treatment effect is correlated with the second individual factor, the first factor

loading, λi1 being the standard linear fixed effect. The heterogenous treatment parameter is thus

written as αi = α + r.
(
λi2 − 1

N1

∑N1

i=1
λi2

)
. This specific form is retained to make sure that the

average treatment on the treated is equal to α by construction as we have: 1
N1

∑N1

i=1
αi = α.

In practice, we fix α = .3 which is a value close to ten times the one obtained in our empirical

application, and r = 1.

We evaluate six estimation methods:

1. A direct approach using pretreatment period observations for control and treated units and

post-treatment periods for the non treated only to estimate factors ft and λi in the equation:

yit (0) = f ′tλi + εit (29)

as in Section 3.4. The estimation procedure follows Bai’s method and is based on an EM

algorithm which is detailed in Appendix A.2. A parameter estimate of α is then recovered
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from equation (21) replacing the right-hand side quantities by their empirical counterparts.

This estimator is labelled “Interactive effects, counterfactual”.

2. An approach whereby we estimate parameter α applying Bai’s method to the linear model

in which a treatment dummy is the only regressor:

Yit = αItDi + f ′tλi + εit

as in Section 3.3. The resulting estimator is labelled “Interactive effects, treatment dummy”.

3. A matching approach (Subsection 3.5) by which equation (29) is first estimated as in the first

estimation method. This yields estimates of λi from which a propensity score discriminating

treated and untreated units is computed. We use a logit specification for the score and

construct the counterfactual outcome in the treated group in the absence of treatment at

periods t > TD using the kernel method proposed by Heckman, Ichimura and Todd (1998).

If we denote the score predicted by the logit model by µ̂i, the counterfactual of the outcome

for a given treated local unit i at a given post-treatment period is constructed as:

Ê (yit (0) |Di = 1) =
∑N

j=N1+1
Kh

(
µ̂i − µ̂j

)
yjt

/∑N

j=N1+1
Kh

(
µ̂i − µ̂j

)
for t > TD

where Kh (·) is a normal kernel whose bandwidth is chosen using a rule of thumb (Sil-

verman, 1986). An estimator of the average treatment on the treated is the average of

yit − Ê (yit (0) |Di = 1) over the population of treated local units for dates t > TD. The

resulting estimator is labelled “Interactive effects, matching”.

4. An approach similar to “Interactive effects, counterfactual” in which we impose the con-

straint λi = ΛUω
(i) for any unit i when estimating (29). ΛU is the L × (N −N1) matrix

comprising untreated factor loadings and ω(i) are weights obtained in the synthetic control

method. The estimation method is detailed in Appendix A.2 and the estimator of α is re-

covered from (21) replacing right-hand side quantities by their empirical counterpart. This

estimator is labelled “Interactive effects, constrained”.

5. The synthetic control approach (Subsection 3.6) whereby the average treatment on the

treated is obtained by averaging equation (24) over the population of treated units. The

resulting estimator is labelled “Synthetic controls”.
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6. A standard difference-in-differences approach whereby we compute the FGLS estimator tak-

ing into account the covariance matrix of residuals (written in first difference). Recent

research presented in Brewer, Crossley and Joyce (2013) suggests that this is the appropri-

ate procedure if assumptions underlying difference in differences are satisfied. The resulting

estimator is labelled “Diff-in-diffs”.

In our simulations, the number of iterations for Bai’s method involved in methods (1) to (4)

is fixed to 20, and the number of iterations for the EM algorithm involved in method (1) and (4)

is fixed to 1. When an estimation method using Bai’s approach is implemented, we use the true

number of factors.11

4.2 Results

Our parameter of interest is α and we report the empirical mean, median and standard error of each

estimator for every Monte-Carlo experiment. Results in the baseline case are presented in column

1 of Table 1, and unsurprisingly, show that the estimated treatment parameter exhibits little bias

for all methods controling for interactive factors: “Interactive effects, counterfactual”, “Interactive

effects, treatment dummy”, “Interactive effects, matching”, “Interactive effects, constrained”and

“Synthetic controls”. Similarly, the method of “Diff-in-diffs”is unbiased in spite of not accounting

for interactive factors since factor loadings are orthogonal to the treatment indicator in the baseline

experiment.

Interestingly, among methods allowing for interactive factors, those with constraints are the

ones achieving the lowest standard errors (“Interactive effects, constrained”and “Synthetic con-

trols”) since using constraints that bind in the true model increases identification power. Note also

that the standard error is larger when using the method “Interactive effects, counterfactual”than

when using the method “Interactive effects, treatment dummy”as the structure of the true model

after treatment in the treated group is not exploited. "Diff-in-diffs" standard errors lie between

those values.

In Columns 2 and 3 of Table 1, we report results when shifting by .5 or 1 the support of

individual factors for the treated. These shifts have two consequences. First, the validity conditions

11Monte-Carlo simulations are implemented in R. Weights ω(i) in methods (4) and (5) are computed using the

R procedure lsei and the minimization algorithm solve.QP.
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are now violated for interactive effect estimation which uses support constraints (“Interactive

effects, constrained”) and for synthetic controls. Second, they make factor loadings correlated

with the treatment dummy. Results show that all methods are severely biased except “Interactive

effects, counterfactual”, “Interactive effects, treatment dummy”and more surprisingly “Diff-in-

diffs”, a case which we investigate further below. The two first methods are designed to properly

control for interactive effects and factor loadings whatever the assumption about supports or about

correlations between factor loadings and treatment.

The method “Interactive effects, matching”does not work well because non-treated units close

to treated units in the space of factor loadings are hard to find since the support for the treated has

been shifted. As expected, the bias obtained for “Interactive effects, constrained”and “Synthetic

controls” is large. These methods indeed impose that individual effects of treated units can be

expressed as a linear combination of individual effects of non-treated units. These constraints are

violated with a positive probability when the treated unit support is shifted by .5, and always

violated when the support is shifted by 1.

[ Insert Table 1 ]

To investigate further the cause of the surprising small bias of “Diff-in-diffs” in the previous

Table, we modified the structure of factors in the experiment. The first factor in ft is now given

by 5. sin(180.t/T ). Table 2 shows that the “Diff-in-diffs”method can generate much larger biases

in this alternative setting while biases of other methods remain the same. It is even the case

that small sample biases of “Interactive effects, counterfactual”, “Interactive effects, treatment

dummy”become smaller in this alternative experiment.

[ Insert Table 2 ]

Results reported in Table 3 replicate the baseline experiment by drawing simulated residuals

in a uniform distribution
[
−
√

3,
√

3
]
instead of a normal distribution. Biases and standard errors

are much smaller, yet all previous conclusions hold.

[ Insert Table 3 ]

We then make the number of factors vary between two and six (including individual and time

additive effects) to assess to what extent the accuracy of estimates decreases with the number of
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factors. Results reported in Table 4 show that for the first three methods “Interactive effects, coun-

terfactual”, “Interactive effects, treatment dummy”and “Interactive effects, matching”, the bias

does not vary much and remains below 10%. Interestingly, whereas the standard error markedly

increases with the number of factors for the method “Interactive effects, counterfactual”, it in-

creases much more slowly for the method “Interactive effects, treatment dummy”. This occurs

because factor loadings of the treated are estimated using pre-treatment periods only in the for-

mer case whereas in the latter case all periods contribute to the estimation of factor loadings.

When using methods with constraints “Interactive effects, constrained”and “Synthetic controls”,

the bias can be larger than 10% but standard errors remain small. As in the baseline case, the

bias of “Diff-in-diffs”is rather small although we know from the previous analysis that changing

the structure of factors could make the bias larger.

[ Insert Table 4 ]

We also experimented with shorter pre-treatment and post-treatment periods by fixing (TD, T ) =

(4, 10). Interestingly, results reported in Table 5 show that among methods taking into account

interactive factors, the bias does not vary much except for the method “Interactive effects, coun-

terfactual”for which it becomes close to 100%. This can be explained by the poor identification

of the model since the specification includes three individual factors which are estimated from

three pre-treatment periods only. Standard errors unsurprisingly decrease with sample size for all

methods.

[ Insert Table 5 ]

We also ran alternative simulations using data comprising a larger number of local units,

(N1, N − N1) = (25, 250). Results reported in Table 6 show that, among methods taking into

account interactive factors, the bias is close to zero for the first three methods “Interactive effects,

counterfactual”, “Interactive effects, treatment dummy”and “Interactive effects, matching”. The

bias is larger for the methods “Interactive effects, constrained” and “Synthetic controls”, but

smaller for “Diff-in-diffs”.

[ Insert Table 6 ]

Finally, experiments in which treatments are heterogenous yield results close to those with ho-

mogenous treatments and to save space are not reported here.
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There are two interesting conclusions in this analysis which bear upon our empirical applica-

tion. First, the method of “Interactive effect, counterfactual” seems to be dominated in terms

of bias and precision by the method “Interactive effect, treatment dummy” in all experiments

and we shall thus retain only the second method. Second, the three methods “Interactive effects,

matching”, “Interactive effects, constrained”and “Synthetic controls”seem to behave similarly.

Therefore, we shall retain only one method, synthetic controls, for our application.

5 Empirical Application

This application is motivated by the evaluation reported in Gobillon et al. (2012) of an enterprise

zone program implemented in France on January 1, 1997.

A survey of enterprise zone programs in the US and the UK is presented in this article as well

as many particulars that we do not have the space to develop here.12 The fiscal incentives given

by the program to enterprise zones were uniform across the country and consisted in a series of

tax reliefs on property holding, corporate income, and above all on wages. The key measure was

that firms needed to hire at least 20% of their labor force locally (after the third worker hired) in

order to be exempted from employers’contributions to the national health insurance and pension

system. This is a significant tax exemption that represents around 30% of whole labor costs (gross

wage). It is expected that this measure would affect labor demand for residents of these zones and

decrease unemployment. This is why we analyzed the impact of such a program on unemployment

entries and exits over this period.

We restrict our analysis to the Paris region in which 9 enterprise zones ("Zones Franches

Urbaines") were created in 1997. Municipalities or groups of municipalities had to apply to the

program and projects were selected taking into account their ranking given by a synthetic indi-

cator. This indicator whose values have never been publicly released, aggregates five criteria: the

population of the zone, its unemployment rate, the proportion of youngsters (less than 25 years

old), the proportion of workers with no skill, and finally the income level in the municipality in

which the enterprise zone would be located. An additional criterium is that the proposed zone

should have at least 10,000 inhabitants. Nevertheless, the views of local and central government

12A data appendix in Section C completes this brief presentation.
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representatives who intervened in the geographic delimitation of the zones also played a role in the

selection process. It thus suggests that although the selection of treated areas should be condi-

tioned on the criteria of the synthetic indicator, it is likely that there is suffi cient variability in the

selection process due to political tampering. In consequence, assumptions underlying matching

estimates are not a priori invalid if observed heterogeneity is controled for. Indeed, the supports

of the propensity score in treated and non treated municipalities largely overlap though there are

some outliers (see Table B2 in the Appendix).

In Gobillon et al. (2012), we provided evidence that controling for the effect of individual

characteristics of the unemployed when studying unemployment exits only moderately affect the

treatment evaluation. For the sake of simplicity, this is why we use raw data at the level of each mu-

nicipality in the present empirical analysis. Furthermore, the destination after an unemployment

exit, be it a job, non employment or unknown, is quite uncertain in the data since unemployment

spell is often terminated because the unemployed worker is absent at a control. Many exits to a

job might be hidden in the category “Absence at a control”. The empirical contribution of our

paper is that we investigate not only exits to a job as in Gobillon et al. (2012) but also unknown

exits as well as entries into unemployment. More generally, we assess the robustness of the re-

sults when using estimation methods which deal with the presence of a larger set of unobserved

heterogeneity terms than difference in differences.

5.1 Data

We use the historical file of job applicants to the National Agency for Employment (“Agence

Nationale pour l’Emploi” or ANPE hereafter) for the Paris region. This dataset covers the large

majority of unemployment spells in the region given that registration with the national employ-

ment agency is a prerequisite for unemployed workers to claim unemployment benefits in France.

We use a flow sample of unemployment spells which started between July 1989 and June 2003

and study exits from unemployment between January 1993 and June 2003. This period includes

the implementation date of the enterprise zone program (January 1, 1997) and allows us to study

the effect of enterprise zones not only in the short run but also in the medium run. These un-

employment spells may end when the unemployed find a job, drop out of the labor force, leave

unemployment for an unknown reason or when the spell is right censored.
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Regarding the geographic scale of analysis, given that enterprise zones are clusters of a signif-

icant size within or across municipalities, it would be desirable to try to detect the effect of the

policy at the level of an enterprise zone and comparable neighboring areas. Nevertheless, our data

do not allow us to work at such a fine scale of disaggregation and we retain municipalities as our

spatial units of analysis. Municipalities have on average twice the population of the enterprise

zone they contain. In consequence, any effect at the municipality level measures the effect of local

job creation net of within-municipality transfers.

The Paris metropolitan region on which we focus is inhabited by 10.9 million people and

subdivided into 1,300 municipalities. We only use municipalities which have between 8,000 and

100,000 inhabitants as every municipality comprising an enterprise zone has a population within

this range. Using propensity score estimation, we select control municipalities whose score is

close to the support of the score for treated municipalities and this restricts further our working

sample to 148 municipalities (135 controls and 13 treatments). On average, about 300 unemployed

workers find a job each semester in each of those municipalities. In view of these figures, we chose

semesters as our time intervals since using shorter periods would generate too much sampling

variability.

Descriptive statistics relative to exits to a job, exits to non-employment, and exits for unknown

reasons can be found in Appendix C.

5.2 Results

In Table 7, we report estimation results of the enterprise zone treatment effect obtained with the

most promising methods that were evaluated in the Monte Carlo experiments.13 As explained at

the end of the previous section, we use the interactive effect model with a treatment dummy and

the synthetic control approach, and contrast them with the most popular method of difference in

differences.

Standard errors of the “Interactive effect, treatment dummy”estimates are computed using

independently and identically distributed disturbances, an assumption we justify below. More

originally, we derive a confidence interval for the synthetic control estimate which, as far as we

13The only slight modification is that for the FGLS first difference estimate, the covariance matrix is kept general

enough to allow for serial correlation of unknown form.
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know, has not been derived in the literature. We construct this confidence interval by inverting a

test statistic whose distribution is obtained by using permutation between local units under the

(admittedly strong) assumption of independently and identically distributed disturbances across

local units.

The procedure is as follows. Set the treatment effect to α0 and substract this value to post

treatment outcomes of treated units. Next, draw 1000 times without replacement 13 units in

the whole population (treated and controls) and consider them as the new treated units while

the other 135 are the new controls. Construct synthetic controls in each sample and estimate

treatment effects. Derive from the empirical distribution of estimates the p-value associated to

the null hypothesis that the treatment parameter is equal to zero. Inverting this test for different

values of α0 yields the confidence interval that is reported in Table 7. In practice, we apply the

procedure for a large range of values for α0 around the estimated treatment effect. Bounds of the

confidence interval at the 95% level are the values of α0 at which the p-values are equal to 5%.

We analyze three outcomes at the level of municipalities constructed for each 6-month period

between July 1993 and June 2003: exit from unemployment to a job, exit from unemployment

for unknown reasons and entry into unemployment. The outcome describing unemployment exits

(to a job or for unknown reasons) is defined as the logarithm of the ratio between the number

of unemployed workers exiting during the period and the number of unemployed at risk at the

beginning of the period. Entries are similarly defined. Table 7 reports results using our three

estimation methods for each outcome.

Starting with exits to a job, we find a small positive and significant treatment effect using

the interactive effect method in line with the “Diff-in-diffs” estimate and with the findings in

Gobillon et al. (2012) in which we used difference in differences but with a more limited number

of periods.14 The size of the interactive effect estimate is slightly larger than the difference-

in-differences estimate and tends to increase with the number of factors that are included in

the estimation. In contrast, the “Synthetic control” estimate is negative and surprisingly quite

precisely estimated.

[ Insert Table 7 ]

In the Monte Carlo experiment, those differences were interpreted as an issue of disjoint sup-

14This was based on an analysis distinguishing short-run and long-run effects of the program.
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ports. We plot in Figure 1, the additive local effect (i.e. the factor loading associated to the con-

stant factor) and the multiplicative factor loading for each control unit (circle) and each treated

unit (triangle) in the case where the model includes only two factors. This graph does not exhibit

any evidence against the null hypothesis that the support of factor loadings for the treated units

is included in the corresponding support for the controls. We tried to construct a test using per-

mutation techniques (Good, 2005) and we failed to reject the null hypothesis of inclusion of the

supports. In the absence of formal analyses of this test in the literature, we do not know however

if this result is due to the low power of such a test.

[ Insert F igure 1 ]

Another interpretation of the discrepancy between synthetic controls and interactive effects would

come from the presence of serial correlation. When a local effect only is considered as in the

difference-in-differences method, serial correlation is still substantial and the estimate of the auto-

correlation of order 1 is around .35. In contrast, estimates of the serial correlation in the interactive

effect model are close to zero. Factor models “exhaust” serial time dependence and this is also

true for spatial dependence.15 In contrast, we do not know much about the behavior of synthetic

controls when serial correlation and spatial correlation are substantial. Interestingly, the within

estimate without any correction for serial correlation is also on the negative side and close to the

synthetic control estimate.

Results for other outcomes confirm the diagnostic that synthetic control estimates seem to

have a different behavior than interactive effect and difference-in-differences estimates. While in-

teractive effect estimates of the treatment effect are undistinguishable from zero when we analyze

exits from unemployment for unknown reasons, difference in differences yield a positive but in-

significant estimate and synthetic controls a positive and significant estimate. As we have reasons

to believe that the treatment effect should be larger for the outcome recording exits to a job than

for the outcome recording exits for unknown reasons, synthetic control estimates seem incoherent.

Nonetheless, it is true that synthetic control and interactive effect estimates for the treatment

15This result is obtained using a Moran test when the distance matrix is constructed using the reciprocal of the

geographical distance. Other contiguity schemes (for instance, when using discrete distance matrices constructed

using 5 and 10km thresholds) capture positive spatial correlations although they diminish with the number of

factors.
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effect on entries are very similar while difference-in-differences estimates seem too large.

As a robustness check, we report in Table 8 the treatment effect estimates when the propensity

score is controlled for. In the interactive effect and difference-in-differences approaches, this is done

by including among the regressors the propensity score interacted with a trend t/T to mimic the

presence of the propensity score in levels in the first difference equation as in Gobillon et al. (2012).

We also include the propensity score among variables used in the construction of synthetic controls.

Results obtained using the method “Interactive effect, treatment dummy”are very close to those

obtained in the baseline case except when studying entries. The treatment effect estimate is larger

when the specification includes four or less factors (including an additive one). Treatment effects

for the other outcomes —exits to a job and exits for unknown reasons —when using synthetic

controls are now close to zero. Results obtained with difference in differences are similar to those

obtained previously. In summary, once again, synthetic controls estimates are more sensitive to

the specification than factor models and difference-in-differences estimates. In conclusion, we have

reasons to believe that interactive effect estimates are more credible than other estimates in our

application.

[ Insert Table 8 ]

6 Conclusion

In this paper, we compared different methods of estimation of the effect of a regional policy using

time-varying regional data. Spatial dependence is captured by a linear factor structure that per-

mits conditioning on an extended set of unobserved local effects when applying methods of policy

evaluation. We show how difference-in-differences estimates are biased and how linear factor meth-

ods following Bai (2009) can be applied. We compare different versions of these interactive effect

methods with a synthetic control approach and with a more traditional difference-in-differences

approach in Monte Carlo experiments. We finally apply these methods to the evaluation of an

entreprise zone program introduced in France in the late 1990s. In both Monte Carlo experiments

and the empirical application, interactive effect estimates fare well with respect to competitors.

There are quite a few interesting extensions worth exploring in empirical analyses.

First, there is a tension between two empirical strategies in regional policy evaluations (Blun-

dell, Costa-Dias, Meghir and van Reenen, 2004). On the one hand, choosing areas in the neighbor-
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hood of treated areas as controls might lead to biased estimates since neighbors might be affected

by spillovers or contamination effects of the policy. On the other hand, non neighbors might be

located too far away from the treated areas to be good matches and therefore good controls. This

paper tackles this issue in a somewhat automatic way by letting factor loadings picking out spatial

correlation in the data. A richer robustness analysis would allow to modify the populations of

controls and treatments by playing on the distance between municipalities and locally treated

areas as we did in Gobillon et al. (2012).

Second, it is easy to extend the interactive effect procedures we have analyzed to the case in

which the treatment date varies with time. This is particularly easy in the linear factor model

and this set-up is used by Kim and Oka (2013). In addition, the variability of treatment dates

facilitates the identification of the treatment effect since the rank condition (14) used in Section 3.3

for identification purposes is no longer needed. The synthetic control approach can also be adapted

when the treatment date varies across treated units by using a variable number of pre-treatment

outcomes to construct the synthetic control.

A word of caution is also in order in case of extrapolation. When supports of exogenous vari-

ables and factor loadings of the treated units are not included in the corresponding supports of the

control units, we have seen that unconstrained interactive effect estimation methods perform better

than matching methods such as a constrained Bai method or synthetic controls. This conclusion

is nonetheless due to our Monte Carlo setting in which linear factor models only are considered.

If models were non linear, this asymmetry between methods would disappear. Extrapolation is

indeed a case in which any technique needs some untestable assumptions to achieve identification.

Bounds on outcome variations might however lead to partial identification of treatment effects.
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A Appendix

A.1 Our implementation of Bai (2009) estimation method

Notations in this subsection slightly depart from the notations used in the text since for explaining

Bai’s method it is not necessary to distinguish treated and untreated observations or include a

treatment indicator.

Model (4) can be rewritten in vector form at the individual level as:

yi = xiβ + F ′λi + εi, (30)

where:

yi = (yi1, ..., yiT )′ of dimension T × 1,

xi = (x′i1, ..., x
′
iT )
′ of dimension T ×K,

εi = (εi1, ..., εiT )′ of dimension T × 1,

F = (f1, ..., fT ) of dimension L× T.

Model (30) can also be rewritten in matrix form:

Y = X } β + F ′Λ + ε,

where:

Y = (y1, ..., yN) is a T ×N matrix,

Λ = (λ1, ..., λN) is a L×N matrix,

ε = (ε1, ..., εN) ,

X is a three-dimensional T ×K ×N matrix,

and in which the sign } defines in an adhoc way the operation of X with β. Matrix X } β =

[x1β, ., xNβ] is of dimension T ×N .
Restrictions are needed to identify Λ and F since for any invertible L × L matrix Q, we can

always write:

F ′Λ = F ′Q−1QΛ

and prove that (Λ, F ) is observationally equivalent to (QΛ, Q−1′F ). Following the literature (e.g.

Bai, 2009), we set:

FF ′/T = IL L (L+ 1) /2 restrictions,

ΛΛ′ is diagonal L (L− 1) /2 restrictions.
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Parameters are estimated minimizing the least-square objective:

SSR (β,Λ, F ) =
N∑
i=1

(yi − xiβ − F ′λi)′ (yi − xiβ − F ′λi) . (31)

The minimization program can be solved using an iteration procedure. A minimizer in β can be

computed given a value of F and Λ and minimizers in F and Λ can be computed given a value

of β. It can also be shown that choosing initial values of F and Λ, and iterating leads to one

solution which is the unique global minimizer. In line with Bai (2009), define the minimizer in β

given parameters F and Λ as:

β (Λ, F ) =

(
N∑
i=1

x′ixi

)−1( N∑
i=1

x′i (yi − F ′λi)
)
. (32)

Note that the inverse of the matrix
N∑
i=1

x′ixi can be computed once and for all, as it does not depend

on the value of the parameters.

Conversely, given a value of β, values for F and Λ can be computed as follows. Let:

Z = Y −X } β of dimension T ×N .

The least square objective function (31) can be rewritten as:

Trace
[
(Z − F ′Λ)

′
(Z − F ′Λ)

]
, (33)

and the least square solution of Λ verifies:

Λ = (FF ′)
−1
FZ = FZ/T, (34)

in which we have used the normalization FF ′/T = IL. Substituting (34) into (33) gives:

Trace
[
(Z − F ′Λ)

′
(Z − F ′Λ)

]
= Trace

[
Z ′(I − F ′F

T
)(I − F ′F

T
)Z

]
= Trace

[
Z ′(I − F ′F

T
)Z

]
= Trace (Z ′Z)− Trace

(
Z ′
F ′F

T
Z

)
= Trace (Z ′Z)− 1

T
Trace (FZZ ′F ′) ,

in which we have used the invariance of the operator Trace with respect to permutations of its

arguments.

On the right-hand side, only the second term depends on F . Hence, an estimator of F is given

by the maximization of Trace (FZZ ′F ′). The estimator for F is the first L eigenvectors (multiplied
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by
√
T because of the restriction FF ′/T = IL) associated with the L first largest values of the

matrix:

ZZ ′ =
N∑
i=1

(yi − xiβ) (yi − xiβ)′ .

Hence, given a value of β, F is obtained as a set of eigenvectors for a given matrix. Reciprocally,

for a given value of F , β can be obtained from (32) after replacing Λ using equation (34). The

minimization program becomes:

SSR (β, F ) =
N∑
i=1

(yi − xiβ)′ (I − F ′F

T
) (yi − xiβ) ,

and the least-square estimator of β is given by:

β (F ) =

(
N∑
i=1

x′i(I −
F ′F

T
)xi

)−1( N∑
i=1

x′i(I −
F ′F

T
)yi

)
.

Choosing some initial values for β or F , an iteration algorithm allows us to recover the OLS

estimates of β and F . We finally estimate Λ using equation (34).

A.2 Imposing synthetic control constraints in estimation

We use an EM algorithm to obtain estimators of all parameters when using all observations of

untreated units and pre-treatment observations of treated units only. Constraints on parameters

can be imposed at further steps. The approach proceeds in the following way:

1. Step 0: Initialisation.

We first apply Bai’s estimation developed above in the sample of the non treated group

and we get preliminary and consistent estimates f̂t, Λ̂U , β̂. For the treated units before

treatment, we perform the following OLS estimation:

yit − xitβ̂ = f̂ ′tλi + uit,

and recover estimates of individual effects λ̂i for the treated group. We stack λ̂i into Λ̂T a

consistent estimate of the corresponding matrix ΛT = (λ1, ...,ΛN1).

2. Step 1: Expectation Maximization Algorithm.

• (E)We construct an expected value for the outcome in the treated group after treatment
as if they were non treated (counterfactual):

yit(0) = xitβ̂ + f̂ ′tλ̂i,
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• (M) We reestimate Bai’s model on the whole sample where the outcomes for the treat-
ment group after treatment has been replaced by the (E) step. We thus recover con-

sistent estimates f̂ (1)t , Λ̂
(1)
U , β̂

(1)
, Λ̂

(1)
T .

3. Step 2: Imposing constraints.

Suppose that the set of weights derived for the synthetic control is ω(i).

We write for the control and treated groups:

yit = xitβ + f̂
′(1)
t λi + ε

(1)
it , t = 1, ., T if i not treated,

yit = xitβ + f̂
′(1)
t ΛUω

(i) + ε
(1)
it , t = 1, ., TD − 1 if i treated.

Estimating these equations by OLS, we recover estimates of β and ΛU that we denote β̂
(2)

and Λ̂
(2)
U . To improve effi ciency of the estimated factors ft, an additional Newton Raphson

step can be:

(a) Step 3: Estimate ft in the equations for the control and treated groups that are:

yit − xitβ̂
(2)

= f ′tΛ̂
(2)
U + ε

(2)
it , t = 1, ., T if i not treated,

yit − xitβ̂
(2)

= f ′tΛ̂
(2)
U ω(i) + ε

(2)
it , t = 1, ., TD − 1 if i treated.

B Proof of Lemma 2

Let Y and X be some real random vectors whose supports denoted SY and SX are included in

RK . Assume that SX is convex and bounded.
Denote D the distance between Y and its projection on the convex hull generated by n inde-

pendent copies of X. Namely, let this convex hull be defined as:

ŜX,n = {Z;Z =
n∑
j=1

ωjXj, ωj ≥ 0,
n∑
j=1

ωj = 1},

so that:

D =
∥∥∥Y − ProjŜX,n(Y )

∥∥∥ .
We shall use the result that if n→∞, ŜX,n → SX in probability in the Hausdorf sense that is:

dH(ŜX,n, SX) = oP (1),

in which dH is the Hausdorf distance. The proof of this result is to be found in Dumbgen and

Walther (1996).
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Assume that SY ⊂ SX . Consider any realization y of Y and a realization Ŝx,n of ŜX,n. If

y ∈ Ŝx,n then the realization of D is zero. If y /∈ Ŝx,n then the realization of D is bounded since

SX is bounded. As by the result above dH(ŜX,n, SX) = oP (1) and y ∈ SX then:

E(D) = E(D | Y ∈ ŜX,n) Pr(Y ∈ ŜX,n) + E(D | Y /∈ ŜX,n) Pr(Y /∈ ŜX,n)

= E(D | Y /∈ ŜX,n) Pr(Y /∈ ŜX,n)→ 0 when n→∞.

C Data Appendix

We use the same data as in Gobillon et al. (2012). After eliminating the very few observations

for which some socio-economic characteristics are missing, we are able to reconstruct 8,831,456

unemployment spells in the period of interest running from July 1993 to June 2003. We aggregate

data on unemployment by municipality and semester. The municipality rate of exit to a job for

a given semester is the ratio between the number of exits to a job during the semester and the

number of unemployed workers at the beginning of the semester. The municipality rates of entry

into unemployment and exit for unknown reasons are defined in the same way.

We restrict the sample by eliminating municipalities that are too small to be eligible for an

enterprise zone and Paris districts whose population is much larger than that of any treated

municipality. This restriction leaves us with a sample of 271 municipalities (258 controls and 13

treatments) having between 8,000 and 100,000 inhabitants. There are no noticeable differences

between this restricted sample and the full sample apart from population size. Roughly speaking,

an average of 90,000 unemployed workers find a job each semester and this corresponds to about

300 exits per semester in each municipality.

The raw data used in the evaluation of the enterprise zone effect on exit to a job are described

in Figure B1. This figure reports the evolution of exit rates to a job in the sample of treated

municipalities and in three control groups: a sample composed by non-treated municipalities and

two subsamples of that group made of municipalities located at a distance within 5 kilometers,

or within a band of 5 to 10 kilometers around a treated municipality. For readability, we draw

a vertical line at first semester of 1997 (semester 8) when the policy started to be implemented.

The curves for the control groups are broadly decreasing and exhibit parallel trends throughout

the period. The curve for the treatment group slightly diverges from the trends observed for the

control municipalities between semesters 1 and 12 (second semester of 1993 to first semester of

1999). In particular, the exit rate to a job remains flat in the treatment group between semesters

7 and 8 (second semester of 1996 and first semester of 1997) when the policy enters into effect

whereas it is decreasing in the control groups. The estimation of the treatment parameter that

we undertake in the paper is a way of formalizing and testing that these diverging trends are
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statistically significant.

[Insert F igure B1]

None of these differences appears in the evolution of exit rates to non-employment and the evolu-

tion of exit rates for unknown reasons.

Next, we estimated a Probit model of EZ designation as a function of municipality control

variables among which are measures of physical job accessibility, the municipal composition of

the population in terms of nationality or education, the unemployment rate, the proportion of

young adults, and household income (proxying for the fiscal potential). We also include in the

specification the smallest distance to another municipality comprising an enterprise zone. This is

to account for the will of authorities to distribute enterprise zones more or less evenly throughout

the region.

The results of our benchmark weighted Probit specification in which weights are the (square

root of the) number of unemployed workers in the municipality appear in the first column of Table

B1.

[Insert Table B1]

In line with the selection criteria, the larger the average household income in the municipality or

the smaller the proportion of persons without a high school diploma, the less likely the munic-

ipality comprises an enterprise zone although the latter effect is hardly significant. The higher

the proportion of individuals below 25 years of age or the larger the size of the population, the

larger the probability that the municipality contains an enterprise zone. In less parsimonious

specifications not reported here, we also find that the larger the density of jobs attainable in less

than 60 minutes by private vehicle, the less likely it is that the municipality will be endowed

with an enterprise zone. This is consistent with the targeting of places with relatively lower job

accessibility. The effect of the distance to the nearest enterprise zone is not significant.

Using the results in the first column, we predicted the propensity score for each municipality.

Interestingly, it reveals that the supports of the predicted propensity scores in the treated and

control groups differ quite markedly as shown in Table B2.

[Insert Table B2]

The smallest predicted probability in the treatment group is equal to 0.08%, a low score which

is consistent with political tampering in designation. In order to satisfy the common support

condition (Smith and Todd, 2005), we further restrict the control group to municipalities whose

predicted propensity scores are larger than the value 0.04% (see Table B2). This restriction shrinks

the control group by a factor of 2 and it now includes 135 municipalities (instead of 258), which

is about ten times the number of treated municipalities (13).
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In Table B3, we report averages of explanatory variables in the treatment and control groups

to assess whether those groups are balanced.

[Insert Table B3]

Since the treatment group is small, it seems diffi cult to report averages in stratified samples defined

by the propensity score levels (Smith and Todd, 2005). We rather report them globally even if

results are less easy to interpret. The covariates of interest seem to be balanced in the two sub-

samples except for two variables: the proportion of college graduates and household income. This

explains the differences in the propensity score averages between the control and treatment group.

Nevertheless, the coeffi cient of designated municipalities in linear regressions of those covariates

on the propensity score and the designation indicator is not significant even at the 10% level which

indicates that samples are approximately balanced.
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Table 1: Monte-Carlo results, variation of support

Support difference 0 .5 1

Interactive effects, 0.009 -0.045 -0.115

counterfactual 0.004 -0.046 -0.122

[0.174] [0.204] [0.248]

Interactive effects, 0.009 -0.043 -0.093

treatment dummy 0.005 -0.046 -0.100

[0.155] [0.172] [0.284]

Interactive effects, 0.007 0.313 1.880

matching 0.006 0.308 1.920

[0.154] [0.181] [0.214]

Interactive effects, -0.008 0.413 0.732

constrained -0.005 0.418 0.720

[0.107] [0.128] [0.238]

Synthetic controls -0.017 0.661 1.510

-0.018 0.660 1.510

[0.104] [0.121] [0.185]

Diff-in-diffs 0.016 -0.052 -0.130

0.020 -0.044 -0.134

[0.136] [0.135] [0.134]

Notes: Estimation methods are detailed in Section 4.1. S = 1000

simulations are used. The average (resp. median) estimated pa-

rameter is reported in bold (resp. italic). The empirical standard

error is reported in brackets.

Data generating process: number of observations: (N1, N) =

(13, 143), number of periods: (TD, T ) = (8, 20), number of fac-

tors (including an additive one): L = 3, treatment parameter:

α = .3, time and individual effects of the non treated drawn in a

uniform distribution [0, 1], individual effects of the treated drawn

in a uniform distribution [0 + s, 1 + s] with s ∈ {0, .5, 1} reported

at the top of column, residuals drawn in a normal distribution

with mean 0 and variance 1.
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Table 2: Monte-Carlo results, variation of support, one sinusoidal factor

Support difference 0 .5 1

Interactive effects, 0.004 0.007 0.030

counterfactual 0.010 0.014 0.026

[0.158] [0.166] [0.233]

Interactive effects, 0.002 -0.009 -0.002

treatment dummy 0.006 -0.015 -0.007

[0.143] [0.154] [0.209]

Interactive effects, 0.002 0.296 1.630

matching 0.006 0.298 1.660

[0.136] [0.172] [0.171]

Interactive effects, 0.005 0.426 0.798

constrained 0.009 0.425 0.805

[0.104] [0.119] [0.213]

Synthetic controls 0.010 0.633 1.420

0.013 0.637 1.420

[0.102] [0.120] [0.206]

Diff-in-diffs -0.087 0.209 0.518

-0.087 0.204 0.519

[0.134] [0.134] [0.137]

Notes: Estimation methods are detailed in Section 4.1. S = 1000

simulations are used. The average (resp. median) estimated pa-

rameter is reported in bold (resp. italic). The empirical standard

error is reported in brackets.

Data generating process: number of observations: (N1, N) =

(13, 143), number of periods: (TD, T ) = (8, 20), number of fac-

tors (including an additive one): L = 3, treatment parameter:

α = .3, one interactive time effect is the deterministic sinusoid

5. sin (180.t/T ), other time effets and individual effects of the non

treated drawn in a uniform distribution [0, 1], individual effects

of the treated drawn in a uniform distribution [0 + s, 1 + s] with

s ∈ {0, .5, 1} reported at the top of column, residuals drawn in a

normal distribution with mean 0 and variance 1.
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Table 3: Monte-Carlo results, variation of support, uniform residuals

Support difference 0 .5 1

Interactive effects, 0.024 -0.040 -0.092

counterfactual 0.021 -0.043 -0.101

[0.179] [0.184] [0.237]

Interactive effects, 0.022 -0.040 -0.082

treatment dummy 0.024 -0.037 -0.090

[0.162] [0.168] [0.273]

Interactive effects, 0.022 0.313 1.880

matching 0.026 0.316 1.920

[0.161] [0.175] [0.213]

Interactive effects, 0.000 0.406 0.721

constrained 0.002 0.409 0.714

[0.111] [0.128] [0.237]

Synthetic controls -0.011 0.638 1.490

-0.014 0.638 1.490

[0.106] [0.120] [0.179]

Diff-in-diffs 0.026 -0.051 -0.125

0.028 -0.048 -0.130

[0.143] [0.136] [0.135]

Notes: Estimation methods are detailed in Section 4.1. There are

S = 1000 simulations are used. The average (resp. median) esti-

mated parameter is reported in bold (resp. italic). The empirical

standard error is reported in brackets.

Data generating process: number of observations: (N1, N) =

(13, 143), number of periods: (TD, T ) = (8, 20), number of fac-

tors (including an additive one): L = 3, treatment parameter:

α = .3, time and individual effects of the non treated drawn in a

uniform distribution [0, 1], individual effects of the treated drawn

in a uniform distribution [0 + s, 1 + s] with s ∈ {0, .5, 1} reported

at the top of column, residuals drawn in a uniform distribution[
−
√

3,
√

3
]
.
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Table 4: Monte-Carlo results, variation of the number of factors

Number of factors 1 2 3 4 5

Interactive effects, 0.020 0.020 0.022 0.016 0.010

counterfactual 0.019 0.024 0.020 0.019 -0.011

[0.160] [0.173] [0.226] [0.301] [0.610]

Interactive effects, 0.021 0.019 0.013 0.015 0.013

treatment dummy 0.020 0.022 0.015 0.019 0.010

[0.147] [0.147] [0.167] [0.182] [0.192]

Interactive effects, 0.018 0.015 0.011 0.021 0.015

matching 0.018 0.017 0.010 0.016 0.025

[0.149] [0.157] [0.174] [0.206] [0.234]

Interactive effects, 0.009 -0.005 -0.027 -0.011 -0.028

constrained 0.009 -0.007 -0.029 -0.014 -0.031

[0.111] [0.107] [0.109] [0.112] [0.118]

Synthetic controls 0.003 -0.016 -0.045 -0.022 -0.04

0.004 -0.017 -0.047 -0.023 -0.04

[0.110] [0.105] [0.105] [0.110] [0.116]

Diff-in-diffs 0.023 0.020 0.018 0.028 0.024

0.022 0.023 0.019 0.024 0.021

[0.137] [0.132] [0.136] [0.136] [0.136]

Notes: Estimation methods are detailed in Section 4.1. S = 1000 simulations are used.

The average (resp. median) estimated parameter is reported in bold (resp. italic). The

empirical standard error is reported in brackets.

Data generating process: number of observations: (N1, N) = (13, 143), number of periods:

(TD, T ) = (8, 20), number of factors (including an additive one): L ∈ {2, 3, 4, 5, 6} with L

reported at the top of column, treatment parameter: α = .3, time and individual effects

drawn in a uniform distribution [0, 1], residuals drawn in a normal distribution with mean

0 and variance 1.

47



Table 5: Monte-Carlo results, variation of the number of periods

Number of periods T=20,T0=8 T=10,T0=4

Interactive effects, 0.022 -0.128

counterfactual 0.027 0.009

[0.175] [19.80]

Interactive effects, 0.025 0.022

treatment dummy 0.026 0.016

[0.153] [0.256]

Interactive effects, 0.016 0.021

matching 0.016 0.022

[0.158] [0.264]

Interactive effects, -0.001 -0.009

constrained 0.001 -0.014

[0.110] [0.142]

Synthetic controls -0.013 -0.020

-0.011 -0.029

[0.108] [0.132]

Diff-in-diffs 0.028 0.023

0.025 0.030

[0.137] [0.202]

Notes: Estimation methods are detailed in Section 4.1. S = 1000 sim-

ulations are used. The average (resp. median) estimated parameter is

reported in bold (resp. italic). The standard error is reported in brackets.

Data generating process: number of observations: (N1, N) = (13, 143),

number of periods: (TD, T ) ∈ {(4, 10) , (8, 20)} with (TD, T ) reported at

the top of column, number of factors (including an additive one): L = 3,

treatment parameter: α = .3, time and individual effects drawn in a

uniform distribution [0, 1], residuals drawn in a normal distribution with

mean 0 and variance 1.
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Table 6: Monte-Carlo results, variation of the number of units

Number of individuals N=143,N0=13 N=275,N0=25

Interactive effects, 0.007 0.003

counterfactual 0.009 0.003

[0.174] [0.126]

Interactive effects, 0.010 0.002

treatment dummy 0.012 0.005

[0.155] [0.107]

Interactive effects, 0.003 0.006

matching 0.003 0.006

[0.157] [0.117]

Interactive effects, -0.007 0.047

constrained -0.011 0.045

[0.111] [0.078]

Synthetic controls -0.016 0.069

-0.017 0.069

[0.109] [0.075]

Diff-in-diffs 0.016 0.000

0.017 0.000

[0.137] [0.098]

Notes: Estimation methods are detailed in Section 4.1. S = 1000 simulations are

used. The average (resp. median) estimated parameter is reported in bold (resp.

italic). The standard error is reported in brackets.

Data generating process: number of observations: (N1, N) ∈
{(13, 143) , (25, 275)} with (N1, N) reported at the top of column, number

of periods: (TD, T ) = (8, 20), number of factors (including an additive one):

L = 3, treatment parameter: α = .3, time and individual effects drawn in a

uniform distribution [0, 1], residuals drawn in a normal distribution with mean 0

and variance 1.
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Table 7: Estimated enterprise zone program effects on unemployment exits and entry

Number of factors 2 3 4 5 6

Exit rate to a job

Interactive effects, 0.032 0.036 0.039 0.043 0.046

treatment dummy [-0.001 ; 0.065] [-0.001 ; 0.073] [0.006 ; 0.072] [0.010 ; 0.076] [0.015 ; 0.077]

Synthetic controls -0.026

[-0.028 ; -0.024]

Diff-in-diffs 0.028

[-0.003 ; 0.059]

Exit rate for unknown reasons

Interactive effects, 0.025 0.003 0.002 0.004 0.005

treatment dummy [-0.012 ; 0.062] [-0.032 ; 0.038] [-0.029 ; 0.033] [-0.027 ; 0.035] [-0.024 ; 0.034]

Synthetic controls 0.046

[0.045 ; 0.048]

Diff-in-diffs 0.019

[-0.012 ; 0.050]

Entry rate

Interactive effects, 0.007 0.006 0.004 0.008 0.007

treatment dummy [-0.022 ; 0.036] [-0.021 ; 0.033] [-0.021 ; 0.029] [-0.023 ; 0.039] [-0.022 ; 0.036]

Synthetic controls 0.007

[0.006 ; 0.009]

Diff-in-diffs 0.020

[-0.004 ; 0.044]

Notes: Outcomes are computed in logarithms at the municipality level. The number of observations are (N1, N) = (13, 148) and the

number of periods are (TD, T ) = (8, 20). The estimated coefficient is the first reported figure. Its 95% confidence interval is given

below in brackets. For the estimation method Interactive effects, treatment dummy, the confidence interval is computed considering that

residuals are independently and identically distributed. For the estimation method Diff-in-diffs, the feasible general least square estimator

is computed assuming a constant within-municipality unrestricted covariance matrix. For Synthetic controls, the confidence interval is

computed as explained in the text under the assumption of independently and identically distributed residuals.
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Table 8: Estimated enterprise zone program effects on unemployment exits and entry controlling for propensity

score

Number of factors 2 3 4 5 6

Exit rate to a job

Interactive effects, 0.033 0.034 0.037 0.039 0.046

treatment dummy [-0.004 ; 0.070] [-0.005 ; 0.073] [0.002 ; 0.072] [0.004 ; 0.074] [0.013 ; 0.079]

Synthetic controls -0.006

[-0.008 ; -0.004]

Diff-in-diffs 0.041

[0.008 ; 0.074]

Exit rate for unknown reasons

Interactive effects, 0.022 0.008 0.006 0.015 0.014

treatment dummy [-0.017 ; 0.061] [-0.027 ; 0.043] [-0.027 ; 0.039] [-0.018 ; 0.048] [-0.017 ; 0.045]

Synthetic controls 0.004

[0.002 ; 0.006]

Diff-in-diffs 0.021

[-0.012 ; 0.054]

Entry rate

Interactive effects, 0.021 0.028 0.029 0.008 0.008

treatment dummy [-0.010 ; 0.052] [-0.001 ; 0.057] [0 ; 0.058] [-0.023 ; 0.039] [-0.021 ; 0.037]

Synthetic controls 0.003

[0.001 ; 0.005]

Diff-in-diffs 0.027

[0.002 ; 0.052]

Notes: Outcomes are computed in logarithms at the municipality level. The number of observations are (N1, N) = (13, 148) and the

number of periods are (TD, T ) = (8, 20). The estimated coefficient is the first reported figure. Its 95% confidence interval is given

below in brackets. For the estimation method Interactive effects, treatment dummy, the confidence interval is computed considering that

residuals are independently and identically distributed. For the estimation method Diff-in-diffs, the feasible general least square estimator

is computed assuming a constant within-municipality unrestricted covariance matrix. For Synthetic controls, the confidence interval is

computed as explained in the text under the assumption of independently and identically distributed residuals.
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Figure 1: Additive and multiplicative local effects, exit to a job
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Note: Local effets are estimated using the method “Interactive model, treatment

dummy” for the specification including the treatment dummy, an additive local

effect and one multiplicative local effect only. Blue circle: control municipalities,

red triangle: treated municipalities.
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Table B1: Propensity score: effect of municipality characteristics

on the probability of designation of an enterprise zone

Weighted Unweighted

Job density, 60 minutes by private vehicle -3.999* -4.171*

(2.109) (2.298)

Proportion of no diploma 37.779* 24.029

(22.249) (22.865)

Proportion of technical diplomas 20.998 0.974

(28.215) (28.900)

Proportion of college diplomas 38.978 17.299

(29.889) (31.336)

Distance to the nearest EZ -0.027 -0.035

(0.024) (0.024)

Proportion of individuals below 25 in 1990 17.125*** 11.834**

(5.156) (5.256)

Population in 1990 0.021** 0.019*

(0.009) (0.011)

Average net household income in 96 -4.975*** -2.033

(1.563) (1.593)

Constant -32.115 -16.526

(21.818) (22.537)

Nb. observations 271 271

Pseudo-R2 .542 .477

Note: ***: significant at 1% level; **: significant at 5% level; *: significant at 10% level.

Probit estimation. The dependent variable is a dummy equal to one if the municipality is designated

to receive an EZ (and zero otherwise). The sample is restricted to municipalities whose population

is between 8,000 and 100,000 in 1990. The first column reports results when weighting by the

square root of the number of unemployed workers at risk at the beginning of period 8 (1st semester

of 1997), and the second column when using no weight.
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Table B2: Frequency of non-treated municipalities by propensity score brackets of treated municipalities

Score bracket Number of non-treated municipalities

[0, .0008) 125

[.0008, .0119) 60

[.0119, .1161) 52

[.1161, .1772) 7

[.1772, .3111) 6

[.3111, .4404) 4

[.4404, .4765) 0

[.4765, .6091) 2

[.6091, .7723) 2

[.7723, .7933) 0

[.7933, .8537) 0

[.8537, .9032) 0

[.9032, .9949) 0

[.9949, 1] 0

Total 258

Note: The observation unit is a municipality having between 8,000 and 100,000

inhabitants. The propensity score is computed as the predicted probability as de-

rived from Probit estimates reported in Table B1, column (1). Each bracket bound

(excluding 0 and 1) corresponds to the propensity score of one treated municipality,

by sorting municipalities in ascending order by their estimated propensity score.
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Table B3: Average of municipality characteristics in treatment and control groups

Treatment group Control group,

propensity score > .0004

Job density, 60 minutes by public transport .838 .850

(.119) (.119)

Proportion of no diploma .536 .465

(.041) (.074)

Proportion of technical diplomas .222 .219

(.009) (.031)

Proportion of college diplomas .122 .179

(.025) (.075)

Distance to the nearest EZ 9.074 11.016

(12.193) (8.051)

Proportion of individuals below 25 in 1990 .416 .372

(.038) (.043)

Population in 1990 45.201 43.578

(18.226) (26.357)

Average net household income in 96 .375 .509

(.087) (.125)

Number of observations 13 135

Note: Standard errors are reported in parenthesis under the means. The observation unit is a municipality between 8,000

and 100,000 inhabitants. Only municipalities whose estimated propensity score is greater than .0004 are considered in the

control group. The propensity score is computed using Table B1, column (1).
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Figure B2: Exit rate to a job, by group of municipalities
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Note: The exit rates to a job are reported for semesters between 1 (2nd semester of 1993) and 20 (1st

semester of 2003). Semester 8 (1st semester of 1997) is the first semester during which some municipalities

are treated. Non-EZ: municipalities which do not include an EZ. 8,000-100,000: population between 8,000

and 100,000 in 1990. 0-Xkm: between 0 and Xkm of a municipality including an EZ. Enterprise zones:

municipalities which include an EZ.
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