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Abstract

The main contribution of this paper is to propose a bootstrap method for inference on
integrated volatility based on the pre-averaging approach, where the pre-averaging is done
over all possible overlapping blocks of consecutive observations. The overlapping nature
of the pre-averaged returns implies that the leading martingale part in the pre-averaged
returns are k,-dependent with k, growing slowly with the sample size n. This motivates
the application of a blockwise bootstrap method. We show that the “blocks of blocks”
bootstrap method is not valid when volatility is time-varying. The failure of the blocks
of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when
volatility is stochastic. To preserve both the dependence and the heterogeneity of squared
pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with
the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of
this method for percentile and percentile-t intervals. Our Monte Carlo simulations show
that the wild blocks of blocks bootstrap improves the finite sample properties of the ex-
isting first order asymptotic theory. We use empirical work to illustrate its use in practice.
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1 Introduction

Estimation of integrated volatility is complicated by the existence of market microstructure
noise. This noise represents the discrepancy between the true efficient price of an asset and
its observed counterpart and is caused by a multitude of market microstructure effects (such
as bid-ask bounds, the discreteness of price changes and the existence of rounding errors, the
gradual response of prices to a block trade, the existence of data recording errors such as prices
entered as zero, misplaced decimal points, etc).

In frictionless markets, and when the log-price process follows a continuous semimartingale,
realized volatility computed as the sum of squared intraday returns converges to the integrated
volatility as the sampling frequency goes to infinity (see e.g. Andersen, Bollerslev, Diebold, and
Labys (2001), Barndorff-Nielsen and Shephard (2002)). See also related work discussed in Jacod
and Protter (1998) and Barndorff-Nielsen and Shephard (2001). However, realized volatility
is no longer consistent for integrated volatility under the presence of market microstructure
noise. This has motivated the development of alternative estimators. One popular method is
the pre-averaging approach first introduced by Podolskij and Vetter (2009) and further studied
by Jacod et al. (2009). The basic underlying idea consists of first averaging out the noise by
computing pre-averaged returns and then computing a realized volatility-like estimator using
the pre-averaged returns. Although the pre-averaged realized volatility estimator is consistent
for integrated volatility, its convergence rate is much slower than that of realized volatility
(when there is no noise) and this can result in finite sample distortions that persist even at very
large sample sizes. For this reason, the bootstrap is a useful alternative method of inference in
this context.

In this paper, we propose a bootstrap method that can be used to estimate the distribution
and the variance of the pre-averaged realized volatility estimator of Jacod et al. (2009). Our
proposal is to resample the pre-averaged returns instead of resampling the original noisy returns.
To be valid, the bootstrap needs to mimic the dependence and heterogeneity properties of the
(squared) pre-averaged returns. When pre-averaging occurs over overlapping blocks of returns,
as in Jacod et al. (2009), the leading martingale part in the squared pre-averaged returns are
k,-dependent, where k,, denotes the block length of the interval over which the pre-averaging
is done and n denotes the sample size. Since k, is proportional to y/n, k, — oo as n — oo,
which implies that the pre-averaged returns are strongly dependent. This suggests that a block
bootstrap applied to the pre-averaged returns is appropriate and its application amounts to a
“blocks of blocks” bootstrap, as proposed by Politis and Romano (1992) and further studied by
Biithlmann and Kiinsch (1995) (see also Kiinsch (1989)). Nevertheless, as we show here, such
a bootstrap scheme is not valid when volatility is time-varying. The reason is that squared

pre-averaged returns are heterogenously distributed (in particular, their mean and variance are



time-varying) and this creates a bias term in the blocks of blocks bootstrap variance estimator
when volatility is stochastic. Thus, to handle both the dependence and heterogeneity of the
squared pre-averaged returns, we propose a novel bootstrap approach that combines the wild
bootstrap with the blocks of blocks bootstrap. We name this novel approach the wild blocks
of blocks bootstrap. One of our main contributions is to show that this method consistently
estimates the variance and the entire distribution of the pre-averaged estimator of Jacod et al.
(2009). We provide a proof of the first order asymptotic validity of this method for constructing
bootstrap unstudentized (percentile) as well as bootstrap studentized (percentile-t) intervals.

The pre-averaging approach can also be implemented with non-overlapping intervals, as in
Podolskij and Vetter (2009). However, the overlapping methods is expected to provide more
precise estimates of the integrated variance. We provide intuition of this in Section 2.2.

Gongalves, Hounyo and Meddahi (2014) study the consistency of the wild bootstrap for
the non-overlapping estimator of Podolskij and Vetter (2009). The wild bootstrap exploits
the asymptotic independence of the pre-averaged returns when these are computed over non-
overlapping intervals. This method is no longer valid when overlapping intervals are used
to compute pre-averaged returns since these are strongly dependent. For this reason, a new
bootstrap method is needed for the Jacod et al.’s (2009) approach. Although the wild blocks
of blocks bootstrap that we propose here requires the choice of an additional tuning parameter
(the block size), we suggest an empirical procedure to select the block size that performs well
in our simulations.

Other estimators of integrated volatility that are consistent under market microstructure
noise include the subsampling approach of Zhang et al. (2005) (see also the multiscale realized
volatility estimator of Zhang (2006)) and the realized kernel estimator of Barndorff-Nielsen et
al. (2008) (the maximum likelihood-based estimator of Xiu (2010) is also a recent addition
to this literature). The bootstrap could also be useful for inference in the context of these
estimators. Indeed, Zhang et al. (2011) showed that the asymptotic normal approximation is
often inaccurate for the subsampling realized volatility estimator[T| whose finite sample distri-
bution is skewed and heavy tailed. They proposed Edgeworth corrections for this estimator
as a way to improve upon the standard normal approximation. Unfortunately, Zhang et al.
(2011) provided the Edgeworth corrections of the normalized statistic (where the denominator
equals the variance of the estimator in population) rather than studentized statistic (where
the denominator is a consistent estimator of the estimator’s variance), while Gongalves and
Meddahi (2008) proved that Edgeworth corrections based on normalized statistic is worse than
the asymptotic theory when there is no noise.

The main reason why we focus on the pre-averaging approach here is that it naturally lends

!Similarly, Bandi and Russell (2011) discussed the limitations of asymptotic approximations in the context
of realized kernels and proposed an alternative solution.



itself to the bootstrap. In particular, we resample the pre-averaged returns instead of the
individual returns and exploit the dependence and heterogeneity properties of the pre-averaged
returns to prove the consistency of the bootstrap.

The rest of this paper is organized as follows. In the next section, we first introduce the
setup, our assumptions and review the existing asymptotic theory of Jacod et al. (2009). Section
3 contains the bootstrap results. In Section 3.1 we show that the blocks of blocks bootstrap
is consistent only when volatility is constant whereas Section 3.2 describes the wild blocks of
blocks bootstrap and shows its consistency under stochastic volatility and i.i.d. noise. Section
4 presents the simulation results whereas Section 5 contains an empirical application. Section
6 concludes. Two appendices are provided. Appendix A contains the tables with simulation
results whereas Appendix B is a mathematical appendix with the proofs.

A word on notation. In this paper, and as usual in the bootstrap literature, P* (E* and
Var*) denotes the probability measure (expected value and variance) induced by the bootstrap
resampling, conditional on a realization of the original time series. In addition, for a sequence
of bootstrap statistics Z*, we write Z* = op« (1) in probability, or Z* —F" 0, as n — oo,
in probability, if for any ¢ > 0, § > 0, lim, o, P [P*(|Z}| > §) > ¢] = 0. Similarly, we write
Z' = Op« (1) as n — oo, in probability if for all € > 0 there exists a M. < oo such that
lim, .o P[P*(|Z:] > M.) > ¢] = 0. Finally, we write Z* —% Z as n — oo, in probability, if
conditional on the sample, Z* weakly converges to Z under P*, for all samples contained in a

set with probability P converging to one.

2 Setup, assumptions and review of existing results

2.1 Setup and assumptions

Let X denote the latent efficient log-price process defined on a probability space (2°, F°, P?)
equipped with a filtration (f?)tzo . We model X as a Brownian semimartingale process defined

by the equation

t t
X = Xy +/ asds —|—/ osdWs, t >0, (1)
0 0

where a = (a;),-, is an adapted cadlag drift process, o = (0¢),5, is an adapted cadlag volatility
process and W = (W,),5, a standard Brownian motion.

The object of interest is the quadratic variation of X, i.e. the process

t
Ct:/ olds,
0

also known as the integrated volatility. Without loss of generality, we let ¢ = 1 and define
C) = fol o2ds as the integrated volatility of X over a given time interval [0, 1], which we think

of as a given day.



The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads,
gradual response of prices to block trades, etc, prevent us from observing the true efficient price
process X. Instead, we observe a noisy price process Y, observed at time points ¢ = % for
1=20,...,n, given by

Y, =X, + e, (2)

where ¢; represents the noise term that collects all the market microstructure effects.

In order to make both X and Y measurable with respect to the filtration, we define a new
probability space (Q, (Ft)1>0 » P), which accommodates both processes. To this end, we follow
Jacod et al. (2009) and assume one has a second space (9 (F1),50 - P1), where Q! denotes RO
and F?! the product Borel-o-field on Q. Next, for any ¢ € [0, 1], we define Q¢ (w(o), dy) to be the
probability measure on R, which corresponds to the transition from X, (w(o)) to the observed
process Y;. In the case of i.i.d. noise, this transition kernel is rather simple (see e.g. equation
(2.7) of Vetter (2008)), but it becomes more pronounced in a general framework. P (w(®, dw®)
denotes the product measure ®;¢jo,1]Q¢ (w(o), ) . The filtered probability space (Q, (]:t)te[o,l] , P>
on which the process Y lives is then defined with Q = Q*x Q! F = FOxF', F, = (o, Fo X FL,
and P (dw©, dw®) = PO (w®) P! (0@, dw®) .

We assume that ¢; is centered and independent, conditionally on the efficient price process
X. In addition, we assume that the conditional variance of ¢; is cadlag. Assumption 1 below

collects these assumptions.

Assumption 1.

(i) E(&|X) =0 and ¢ and €, are independent for all £ # s, conditionally on X.
(ii) ay = F (¢?|X) is cadlag and F (¢8) < oc.

Assumption 1 amounts to Assumption (K) in Jacod et al. (2009). As they explain, this
assumption is rather general, allowing for time varying variances of the noise and dependence
between X and e. See Jacod et al. (2009) for particular examples of market microstructure noise
that satisfy Assumption 1. However, empirically the conditional independence assumption on
¢ may be unrealistic especially at the highest frequencies (see e.g. Hansen and Lunde (2006)).
We will investigate the impact of autocorrelated noise on the bootstrap performance in Section
4.

2.2 The pre-averaged estimator and its asymptotic theory

We observe Y at regular time points %, for i = 0,...,n, from which we compute n intraday

returns at frequency %,

=Y —Yia, 1=1,...,n.
n n

5



Given that Y = X + €, we can write

r, = (Xi —Xﬂ) + (61 _€ﬂ> ET‘S—FAEZ‘,

n

where r{ = X — Xi-1 denotes the %—frequency return on the efficient price process. Under

n

Assumption 1, the order of magnitude of Ae; = €: — €i-1 is Op (1). In contrast, the ex-post

3l

variation of r{ is given by f(lz/_n /n o2ds. The order of magnitude of r¢ is then Op (nil/ 2) .
This decomposition shows that the noise completely dominates the observed return process as
n — oo, implying that the usual realized volatility estimator is biased and inconsistent. See
Zhang et al. (2005) and Bandi and Russell (2008).

To describe the Jacod et al. (2009) pre-averaging approach, let k, be a sequence of integers

which will denote the window length over which the pre-averaging of returns is done. Similarly,
1
let g be a weighting function on [0, 1] such that g (0) = g (1) = 0 and [ g (s)*ds > 0, and assume

0
g is continuous and piecewise continuously differentiable with a piecewise Lipschitz derivative
¢'. An example of a function that satisfies these restrictions is g () = min (z,1 — ).

We introduce the following additional notation. Let

1 1
01(5) = [ 4wy (w=)du and 63(5) = [ () g(u—s)du,
and for i = 1,2, let ¢; = ¢, (0). For instance, for g (z) = min (z,1 — z), we have that ¢y =1

and ¢y = 1/12.
Fori=0,...,n—k,+1, the pre-averaged returns Y; are obtained by computing the weighted

sum of all consecutive %—horizon returns over each block of size k,,,

> J
Y, = Zg (k_) Titj-
=1 "
The effect of pre-averaging is to reduce the impact of the noise in the pre-averaged return.
Specifically, as shown by Vetter (2008),

Xi—Zg(k%) (Xisi = Xeesmr) —OP< %)

o kng(i> (m,_m_1>zop(;)
=T\, S N

Thus, the impact of the noise is reduced the larger k, is. To get the efficient n=/* rate of

and

convergence, Jacod et al. (2009) propose to choose a sequence of integers k, such that the

following assumption holds.



Assumption 2. For § € (0, 00), we have that

% :9+0(n_1/4). (3)

This choice implies that the orders of the two terms (X; and ¢;) are balanced and equal to
Op (n™'/*). An example that satisfies (3) is k,, = [6/n].
Based on the pre-averaged returns Y;, Jacod et al. (2009) propose the following estimator

of integrated volatility,

1 n—kn+1 @Z) n
PRV, = p— r2, 4
ok 2 Y g, @

where 1), and vy are as defined above.

The first term in is an average of realized volatility-like estimators based on pre-averaged
returns of length k, whereas the second term is a bias correction term. As discussed in Jacod
et al. (2009), this bias term does not contribute to the asymptotic variance of PRV,.

In order to give the central limit theorem for PRV, we introduce the following numbers
that are associated with g,

1 1
0, = /gbi (s)¢p;(s)ds, and V¥;; = —/sqﬁi (s) @; () ds.
0 0
For the simple function ¢ (x) = min (z,1 — x), ®1; = 1/6, $15 = 1/96 and P9y = 151/80640.
Under Assumption 1 and (k,, 0) satisfying , Jacod et al. (2009) show that as n — oo,

nit (PR, — f o%ds)

—5t N(0,1), 5
N ©0.1) )
where —*! denotes stable convergence, and
4 1 oo a?
V=— Dopf0t 4+ 20152 + Oy —= | d 6
¢%/o < 200 + 2P i + 1183) s (6)

is the conditional variance of PRV,,. To estimate V consistently, Jacod et al. (2009) propose

n—kn+1 n—2kp+1 i+2kp—1
. 4D, —4 4 (DP1p Doty -2 2
305 — ng? \ 3 (5 i=0 j=itkn
n—2kn,+1
1 [Py OSPXTN @22@&%) ~ 99
+ — |3 2 + TiTiga: 7
o ( Y3 V3 V3 2 ik g

i=0
Together with the CLT result , we have that

nit (PRV, — [ o%ds)

T, = — N(0,1).

S

Va



We can use this feasible asymptotic distribution result to build confidence intervals for inte-
grated volatility. In particular, a two-sided feasible 100(1 — «)% level interval for fol o2ds is
given by:

IC’%ea&l,a = (PRVn - zl_a/gnfl/‘l ‘A/n, PRVn + Zl_a/znil/zl \/ Vn) > (8)

where 2,_q/2 is such that ® (21_a /2) =1—a/2, and ® (-) is the cumulative distribution function
of the standard normal distribution. For instance, zgg75 = 1.96 when a = 0.05.

Note that the pre-averaging approach can also be implemented with non-overlapping inter-
vals, as in Vetter (2008) and Podolskij and Vetter (2009). By Theorem 3.7 of Vetter (2008),
we can also build confidence intervals for integrated volatility based on the non-overlapping
pre-averaged realized volatility estimator. In particular, a two-sided feasible 100(1 — )% level

interval for fol o2ds based on non-overlapping intervals, is given by:

IORY 1 o= (PRVHPV — 21_agan V4 VPV PRVPY 4 zl_a/gn_1/4\/\7npv> :

where PRVPY and VPV are the non-overlapping pre-averaged realized volatility estimator and
a consistent estimator of the asymptotic variance, respectively. Following Corollary 3.3 and 3.6
of Vetter (2008), we have that

(71 L5
1 & 5 2y/n
PV _ 2 PV _
PRVn - % Z an 2n92w2 Z r?, ) d V 3w2 Z }/;k‘n
=0

=0

It is well known that the pre-averaged estimator based on overlapping blocks is more effi-
cient than the pre-averaged estimator based on non-overlapping returns. In particular, for the
parametric model of zero drift, constant volatility ¢ > 0 and constant conditional variance
of €, oy = a > 0, if we choose for example the weight function g () = min (z,1 — x), some
simple derivations shows that the "optimal” choice of # which minimizes the asymptotic vari-
ance V given in @ is approximately equal to 4.777y/a/o. Under this special setting, using
0 = 4.777\/a/ o, the non-overlapping pre-averaged estimator of Podolskij and Vetter (2009) has
an asymptotic variance that is approximately equal to 20.110%/a, whereas the overlapping es-
timator of Jacod et al. (2009) has a variance equal to 8.54503/a (this is very close to the lower
bound 803/a derived by Gloter and Jacod (2001)). Therefore, based on efficiency, we should
choose the overlapping approach of Jacod et al. (2009) rather than the non-overlapping one.
However, as shown by our simulation results (see Appendix A), we find that the pre-averaging
approach leads to important coverage probability distortions when returns are not sampled
too frequently. This motivates Gongalves, Hounyo and Meddahi (2014) to propose the wild
bootstrap as alternative method of inference for the Podolskij and Vetter’s (2009) estimator.

Here, we focus on bootstrapping the more efficient pre-averaged realized volatility estimator of



Jacod et al. (2009).

3 The bootstrap

The goal of this section is to propose a bootstrap method that can be used to consistently
estimate the distribution of n'/4 (PRVn - fol 03d$> as well as for the studentized statistic

nl/4 (PRVn — fol U?ds) / \/V_n . This justifies the construction of bootstrap percentile and percentile-
t confidence intervals for integrated volatility, respectively.

Gongalves and Meddahi (2009) proposed bootstrap methods for realized volatility in the
absence of market microstructure noise. In their ideal setting, intraday returns r; (conditionally
on the path of the volatility o and the drift a) are uncorrelated, but possibly heteroskedastic
due to stochastic volatility, thus motivating the use of a wild bootstrap method.

When intraday returns are contaminated by market microstructure noise, they are no longer
conditionally uncorrelated, as in Gongalves and Meddahi (2009). This implies that the wild
bootstrap is no longer valid when applied to r;. Instead, a block bootstrap method applied to
the intraday returns would seem appropriate.

One complication arises in this context: the statistic of interest is not symmetric in the
observations and the block bootstrap generates blocks of observations that are conditionally
independent. In particular, since the first term in PRV, is an average of the squared pre-
averaged returns Y2, it depends on all the products of intraday returns inside blocks of size
k,. If we generate block bootstrap intraday returns, these will be independent between blocks,
implying that the bootstrap statistic may look at many pairs of intraday returns that are
independent in the bootstrap world. This not only renders the analysis very complicated
but can induce biases in the bootstrap estimator. To avoid this problem when dealing with
statistics that are not symmetric in the underlying observations, Kiinsch (1989), Politis and
Romano (1992) and Bithlmann and Kiinsch (1995) studied the “blocks of blocks” bootstrap,
where one applies the block bootstrap to appropriately pre-specified blocks of observations. In
our context, the blocks of blocks bootstrap consists of applying a traditional block bootstrap
to the squared pre-averaged returns Y;2. As we will see next, this approach is not valid when
volatility is time-varying. The reason is that when volatility is stochastic, squared pre-averaged
returns are not only dependent but also heterogeneous. The block bootstrap does not capture
this heterogeneity unless volatility is constant?l In order to capture both the time dependence
and the heterogeneity in Y;?, we propose a novel bootstrap procedure that combines the wild
bootstrap with the block bootstrap.

Although the consistent estimator of integrated volatility is PRV, only the first term in

2See Gongalves and White (2002) for a discussion of the impact of mean heterogeneity on the validity of the
block bootstrap for the sample mean.



PRV, drives the variance of the limiting distribution of PRV,,. In particular, as Jacod et al.
(2009) have shown, the second term is a bias correction term which does not contribute to
the asymptotic variance (it only ensures that the estimator is well centered at the integrated

volatility). For this reason, our proposal is to bootstrap only the first contribution to PRV,

__ 1 et
PRV, = 1_/;2.
w2kn ;

This statistic depends only on the pre-averaged returns, to which we apply a particular boot-
strap scheme. More specifically, let {YZ* 1=0,1,....,n—k, + 1} denote a bootstrap sample
from {YZ e =0,1,....n—k, + 1}. The bootstrap analogue of PRV, is

PRV* — PRV, — 1 S

2n92¢2 i—1 v
wherd?]
n—kn+1
PRV, = V2,
" kan lz:; ‘

Since the (conditional) expected value of n'/* (PRV,* — PRV,,) induced by the bootstrap resam-
pling methods considered in this paper is not always zero, we center PRV," around E* (PRV,") .

Thus, we use the bootstrap distribution of

n' (PRV; — E* (PRV;)) = n'/* (PRV, — E* (PRV,) )

as an estimator of the distributio of nl/4 (PRVn - fol 0§d3>.
Next, we consider the blocks of blocks bootstrap approach applied to PRV » and show that

it is asymptotically invalid when volatility is time-varying. This motivates a new bootstrap
method that combines the wild bootstrap with the block bootstrap, which we study in the last

subsection.

3.1 The blocks of blocks bootstrap

To describe this approach, let N,, = n — k, + 2 denote the total number of pre-averaged returns
and let b,, denote the block size. We suppose that N,, = J,,-b,, so that .J,, denotes the number of

blocks of size b,, one needs to draw to get N,, = n—k,, +2 bootstrap observations. The blocks of

3This implies that our bootstrap statistic actually contains the bias term. Nevertheless, since this term is
evaluated on the original sample rather than on the bootstrap data, our bootstrap method does not capture the
added uncertainty caused by estimation of this term. Our simulations show that despite this, the bootstrap is
very accurate, outperforming the asymptotic normal approximation.

4In particular, we can explicitly compute the bootstrap expectation of PRVZ (and we do so in (@) and )7
for the blocks of blocks bootstrap and the wild blocks of blocks bootstrap, respectively. For instance, under
the wild blocks of blocks bootstrap scheme, using an external random variable n with mean 1, it follows that
E*(PRV)}) = PRV,.

10



blocks bootstrap generates a bootstrap resample {Y;*_l i=1,..., Nn} by applying the moving
blocks bootstrap of Kiinsch (1989) to the scaled pre-averaged returns {}71»_1 i=1,... ,Nn}.

Letting Iy, ...,I;, be ii.d. random variables distributed uniformly on {0,1,..., N, — b,},
we set

Yi*—1+(j—1)bn = Yi,HIj forl1<j<J,and1<1i<hb,.

The bootstrap analogue of PRV n is

N J b
o 1 no 1 n 1 n N 1 B
PRV, = V2 =— —y V2.,
kan Z; ! Jn ; bn =1 kn ¢2 L=t
= = =1 —— —
=21+
where we let Z; = f—:iﬁ%l. Note that in our setup, ¥; = X; + & = Op (n~'/*) given that

ko is such that k,/\/n = 6 + o (n~'/*). This implies that Y2, = Op (n"'/?) and therefore
Zi =t Y2 s Op (1),

We can easily show that

P L& (1 . Nobu (1 bn
E (PRVn):J—n;E (E;ZBH) "N b 11 ]2:: (b_zzj-i-z‘)- (9)

Similarly,

Vi o= Var (n1/4]§]§‘//;> — V/nE"* (Ji Jn 1 i <ij+i — £ (FE‘//;>>>2

b"

- Vi (L3 (g (PV)) )

. { No=bn [ 1 bn o, 2
- Ve 5 (5 (B (7)) "

1=

Our next result studies the convergence of V.* when b, = (p + 1) k,,, and p > 1 is either fixed

as n — 0o or p — 0o after n — oo (which we denote by writing (n,p). — o0). To emphasize

seq
the dependence of V¥ on p we write V7 .

Lemma 3.1 Suppose Assumption 1 holds and k, — oo as n — oo such that Assumption 2
holds. Let V,r, = Var* <n1/4P/}\%T/:;> denote the moving blocks bootstrap variance of n”‘lﬁf\%T/Z
based on a block length equal to b, = (p+ 1) ky,, where p > 1. Then,

a) For any fized p > 1, as n — oo,

% P
Vn,p—>v;7+Bp7

11



where

U?OZt

4 1 1 1 o?
2 o 4 h
Y (p>t_¢_§{<¢22+p+1q/22) 90t+2(@12+p+1‘1/12> 7 +(¢11+p+1\1/11)§

B,=0(p+1)

1 2 1 2
. ([
[ (e o) a- ([ o+ gge)a) ]
P

b) When o0, = o and a4 = « are constants, B, = 0 for any p > 1 and V, — V =
lim,,_,o, Var (n1/4PRVn) as p — oo. In this case, V7, LV oas (n,p).., — 0o.

seq
. P
c) More generally, when o, and/or «; are stochastic, V7, — oo as (n, p),,, — o©.

Part a) of Lemma shows that when the bootstrap block size b, is a fixed proportion of
the pre-averaging block size k,,, the blocks of blocks bootstrap variance converges in probability
to V, + B,, where B, is a bias term due to the fact that volatility is time-varying. When both
the volatility o, and oy, the conditional variance of ¢, are constants, B, is equal to zero for any
value of p. If p — oo (i.e. if b, /k,, = 00 as n — 00), then V,, L V', the asymptotic variance of
n'/*PRV,,. Therefore, under these conditions, |7 LoV oas (n,p) — oo sequentially. Although
this result does not necessarily imply the consistency of V,*  towards V' as (n,p) — oo jointly
(because sequential convergence does not by itself imply joint convergence), it is a first step in
that direction (see in particular Lemma 6 of Phillips and Moon, 1999). We do not pursue the
derivation of the joint limit of V7  here because that would distract us from the main message
of Lemma (3.1, which is the invalidity of the blocks of blocks bootstrap variance estimator when
o, and/or oy are time varying. In this more general and practically relevant case, part c¢) of
Lemma shows that V7, diverges to oo in probability as (n,p),,., — 0. The main reason for
this inconsistency result is that B, Ly 0 as p — oo. Notice that even though the limit derived
in part ¢) is sequential, we can conclude that the same result holds as (n, p) — oo jointly. The
argument is as follows. Suppose it was the case that V', LoV = limVar (nl/ 4PRVn) , as
(n,p) — oo jointly. Then by Lemma 5 of Phillips and Moon (1999), we should have that

V¥ (p) 5 V sequentially as (n,p),., — 00, which is in contradiction with the result of part c).

seq
Hence, V7, cannot converge in probability to V', as (n,p) — oo jointly. More generally, we can
show that if the joint limit of V', exists, then by the same argument, it must coincide with the

sequential limit. Since we actually proved that V', AN sequentially as (n,p)_ . — oo, this

seq
implies V¥, must diverge as (n,p) — oo jointly.
Lemma [3.1] suggests that the blocks of blocks bootstrap is consistent for the variance of

PRV, only under constant volatility, constant conditional variance of noise and if we let the
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bootstrap block size b, grow at a faster rate than the pre-averaging block size k,. This result
is related to a consistency result of the blocks of blocks bootstrap established in Bithlmann
and Kiinsch (1995). As they showed, when the statistic of interest is an average of smooth
functions of blocks of consecutive stationary strong mixing observations of size k,, where k,
tends to infinity, the crucial condition for the block bootstrap to be valid is that the block size
b, grows at a faster rate than k,. This is because the blocks over k, observations (which in
our case correspond to the pre-averaged returns) are strongly dependent for |i — j| < k,,, where
k, — oo, and b, must be large enough to capture this dependence. Biihlmann and Kiinsch
(1995) consider observations generated from a stationary strong mixing process and therefore
they do not find any bias problem related to heterogeneity. Nevertheless, this becomes a
problem in our context when volatility is stochastic. Therefore, a different bootstrap method
is required to handle both the time dependence and the heterogeneity of pre-averaged returns.

Note that the inconsistency of the blocks of blocks bootstrap variance estimator for the
asymptotic variance of PRV,, when the volatility is time-varying is not in contrast to the i.i.d.
bootstrap results in Gongalves and Meddahi (2009) for realized volatility (in the absence of
noise). In particular, the i.i.d. bootstrap variance estimator of Gongalves and Meddahi (2009)

(cf. page 287) for the asymptotic variance of the realized volatility is given by

2

nil(rf)“— (i(rff)Q—H’?/olafdt— (/Olafdt> :

=1

TV
=Vem <oo

which is equal to 2 fol ofdt (i.e. the asymptotic conditional variance of the realized volatility)
only when the volatility is constant.

This means that even in the absence of noise, when the volatility is time-varying we would
not use the ii.d. bootstrap method of Gongalves and Meddahi (2009)) to compute standard
errors of statistics based on functional of realized volatility. However, note that although the
i.i.d. bootstrap method in Gongalves and Meddahi (2009) does not consistently estimate the
asymptotic variance of realized volatility, their bootstrap method is still asymptotically valid
for studentized (percentile-t) bootstrap intervals. This is not necessary the case for the blocks
of blocks bootstrap method applied to PRV,,. The main reason is that when the volatility is
time-varying, and the bootstrap block size b, grow faster than k, (i.e., the more realistic case

of choice of b,), V.5, Ly 50 as (n,p) — oo jointly.

4 The wild blocks of blocks bootstrap

In this section, we propose and study the consistency of a novel bootstrap method for pre-

averaged returns based on overlapping blocks of k, intraday returns. It combines the blocks
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of blocks bootstrap with the wild bootstrap and in this manner gets rid of the bias term B,
associated with the blocks of blocks bootstrap variance V¥ in ((10)).

Here, let b, a sequence of integers such that
by, o n’, (11)

where § € (0, 1), and assume that J, is such that J, - b, = N,,. Let vq,...,v;, beii.d. random

variables whose distribution is independent of the original sample. Denote by py = E* (U?) its

g-th order moments. For j =1,...,J,, let

bn

_ 1 — o
Bj = b Z Y14 G-,
" =1
denote the block average of the squared pre-averaged returns )712_1 -1
let n; = ’UJQ-. We then generate the bootstrap pre-averaged squared returns as follows,

Yo for block j, we also

}71'*—214-(]'—1)1% = _j+1 + (}_/;2_14_(]'_1)1)” — Bj+1) U for 1 S] < Jn — 1 and for 1 < 1 < bn- (12)

For the last block j = J,,, Bjy; is not available and therefore we let

Y2 Govp, = Bi+ (Yiiagovp, — Bj)my, for 1 <i <b,. (13)

Our method is related to the wild bootstrap approach of Wu (1986) and Liu (1988). More

specifically, in Wu (1986) and Liu (1988), the statistic of interest is X,,, where X; is indepen-
2

dently but heterogeneously distributed with mean p; and variance o;. Their wild bootstrap

generates X as
X=X+ (X;— X)) mi, for 1 <i <,

where 7; is i.i.d. (0,1). Liu (1988) shows that the bootstrap distribution of v/n (X;; — X,,) is
consistent for the distribution of +/n ()_(n — ﬂn), where f, = n'>", p;, provided
IS (i — fin)* — 0 (and some other regularity conditions).

Our bootstrap method can be seen as a generalization of the wild bootstrap of Wu (1986)
and Liu (1988) to the k,-dependent case. In particular, here the statistic of interest is an

average of blocks of observations of size k,,
_ 1 O
PRV, = — Z;,
W&

= Nnp 1
T kn 2
Z; is independent of Z; for all |i — j| > k.

where Z; Y2, has time-varying moments and is k,-dependent (conditionally on X), i.e.

To preserve the serial dependence, we divide the data into J, non-overlapping blocks of

size b, and generate the bootstrap observations within a given block j using the same external

random variable 7n;. This preserves the dependence within each block. When there is no
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dependence, we can take b, = 1, in which case our bootstrap method amounts to Liu’s wild
bootstrap with one difference: instead of centering each bootstrap observation Z around the
overall mean 15}\2‘// n, we center Z* around Z;;;. The reason for the new centering is that
p; in our context does not satisfy Liu’s condition £ Y% | (u; — fin)®> — 0 (unless volatility is
constant). Hence centering around PRV » does not work here. Instead, we show that centering
around Z;, yields an asymptotically valid bootstrap method for PRV » even when volatility
is stochastic.

The bootstrap data generating process and 1) yields a bootstrap sample {1_/0*2, ey }7;,3 1}

which we use to compute
—~— % Nn
PRV

1 _
n E Y;*—Q )
kan i—1 !

the wild blocks of blocks bootstrap analogue of PRV n- Let

j b§:7’1+]1

be the bootstrap analogue of B;. Given , we have that for j =1,...,J, — 1,

B]* = Bj—l—l + (B] - Bj—H) N5,

whereas from , B;‘ = Bj for j = J,. This implies that we can write

T g * b %
PRV, = Zb Z 11+] 1)bn %k ZB ok By,
Jn—l b,

= 77/}2]{‘ Z J+1+ BJ—H) ] ¢2

We can now easily obtain the bootstrap mean and variance of PRV *. In particular,

. b [ . Jn—1
E* <PRVn> = Tk (; Bji1+ BJn> ka Z Bj1) E* (n;), (14)

2hvn

and
1/2b2 Jn-l ~ )
V2k2 Z (Bj = Bjs1) Var® ().

Our next result studies the convergence of V,* when b, satisfies such that 1/2 < § < 2/3.

To prove the consistency of V* for V' we impose the following additional condition.

Vi=Var (n'PRV,) =

Assumption 3. o; is locally bounded away from zero and is a continuous semimartingale.

This assumption rule out jumps in o; and is common in the realized volatility literature
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(e.g., equation (3) of Barndorff-Nielsen et al. (2008) or equation (3) of Gongalves and Meddahi
(2009)). We can prove the following results.

Lemma 4.1 Suppose Assumptions 1, 2 and 3 hold and the block size b, satisfies such that
1/2<6<2/3. Let V) =Var* (n“‘lﬁf\%T/Z) denote the wild blocks of blocks bootstrap variance

of n”‘lﬁl\%ﬁ/; based on a block length equal to b, and external random variables n; ~ i.i.d. with

mean E* (n;) and variance Var* (n;) = 1/2. Then,

p lim V' =V = lim Var (n/*PRV,),

n—oo n—o0

This result shows that if we let 6 > 1/2, i.e., b, grow faster than k, (i.e., b,/k, — 0)
but such that b,/n — 0 and Var* (n;) = 1/2, the wild blocks bootstrap variance estimator
is consistent for the asymptotic variance of PRV, under Assumptions 1, 2 and 3. Given the
consistency of the bootstrap variance estimator, and the fact that it is possible to obtain an
exact and explicit formula of V¥, one may simply use V" in place of Vi given by as
alternative consistent estimator of V. Together with the CLT result , we have that

nt/4 (PRVn - fol afds)
V*

n

—** N(0,1).

As alternative method of inference (which does not require any resampling of one’s data), we
can use this feasible asymptotic distribution result to build confidence intervals for integrated

volatility. In particular, a two-sided feasible 100(1 — a))% level interval for fol o2ds is given by:

ICsngi—a = (PRVe = 21 VNV PRV, + 21 opon V) 15)

Feas,1—«

where
Jn—1
nl/2b2 & -

J=1

Z1_ay2 is such that ® (zl_a/2) =1—a/2, and ¢ (-) is the cumulative distribution function of
the standard normal distribution.

The structure of the wild blocks of blocks bootstrap method somehow seems to be related
to the ideas in the recent paper of Mykland and Zhang (2014). To see this, it may be helpful
to rewrite V¥ given by as follows

, (17)

where
bn

A 1 =5
B; = ok Z Y14 G-1ba

=1
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denote the analogue of PRV » computed for the block j. Hence, one can show that the formula
for V* (given by ) is related to the general nonparametric method proposed by Mykland
and Zhang (2014). In particular, given results in equations (7) and (11) in Mykland and Zhang
(2014), it is easy to see that under some regularity conditions the asymptotic variance (AVAR)

of many estimators, say © = fol 0,dt, in the high-frequency literature can be estimated based

on - 1 o 2
j=1

where éj is the estimator © calculated on the j-th block and such that ©; = f(]]bfl/;n In 0,dt.
More precisely, under some regularity conditions (including negligible edge effect and continuous

spot process 6;) equations (7) and (11) in Mykland and Zhang (2014) amount to,

Jf (6501 - éj)z - <2§AVAR (6;-65)+ g (%")2 [ 5]1> (1+o,(1),  (19)

and
Jn—1

AVAR (@ - @) - <Z AVAR (éj . @,-)) (1+0,(1)), (20)

respectively, where [5, 5] is the total quadratic variation of the spot process gt over the whole

1
interval from 0 to 1. Given (19) and (20), it follows that

wan(6-0) =13 (0,0 -0) (%) [ a0y e

Thus, if %” can be taken to be small enough, then one can simply use , i.e., a one scale
estimator by ignoring the [5, 5] term. Note that given the normalization of AVAR in Mykland
1

and Zhang (2014) (cf. footnote 1), we have AVAR=AVAR,, = n~ 2V, where © is such that

n (6 —0) ot N(0,V), for some o > 0. Thus, in our context, the one scale estimator formula

applied to © = @T/n with oo = 1/4, gives
L L N
AVAR (6-0) = 5 ; (Byon = B;) =n2v.

We emphasize that the paper by Mykland and Zhang (2014) goes much further in developing
the asymptotic variance estimator, including estimators with hard edge effect and allowing non
continuous spot process. In particular, Mykland and Zhang (2014) show that by subsampling
and averaging one can still use a result akin to when é; is a general semimartingale. In
addition, they argue that subsampling and averaging can at the same time help to deal with
hard edge effect (which can lead the additivity in to fail. Thus, the final estimator is more
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complicated and is based on two- or multi-scale construction. Their approach aims to avoid using
the information on the asymptotic variance of 6 (for instance, no need to know the closed form
of the AVAR). However, this is not without consequences for their method. For example they
have to introduce an additional layer of blocks to implement the bias-correction term. The
asymptotic variance estimator of O can also go negative in finite samples, which is not the
case of the bootstrap. This relationship with Mykland and Zhang (2014), in particular the way
both method managed blocks of adjacent summands suggests that our wild blocks of blocks
bootstrap approach may be applied very generally in the field of nonparametric estimation with
infill asymptotic. The exploration of this is beyond the scope of this paper.
Our next result proves the consistency of the bootstrap distribution of n'/* (FE‘// ; — E* (ﬁ/ Z)) :

Theorem 4.1 Suppose Assumptions 1, 2 and 8 hold such that for anye > 2, E (ef@ﬁ)) < 00,
and the block size b, satisfies such that 1/2 < § < 2/3. Let ERT/:; be the pre-averaged

realized volatility estimator based on a block length equal to b, and an external random variable
n; ~ ii.d. (E*(n;),Var* (n;)) such that Var* (n;) = %, and for some ¢ > 2 E* ;|7 < A <

0o. Then

P (o (PR = (PRV.)) <) = (o (v [ o) <)

Theorem justifies using the wild blocks of blocks bootstrap to construct bootstrap per-

sup -0 asn — .

z€R

centile intervals for integrated volatility. Specifically, a 100 (1 — «) % symmetric bootstrap

percentile interval for integrated volatility based on the bootstrap is given by

I = (PRV, —n~Yip;_,, PRV, +nVipi_,), (22)

perc 11—«

where pj_, is the 1 —a quantile of the bootstrap distribution of ‘nl/‘l (@T/n - B (Ffﬁﬂl)) ‘ .
Next, we propose a consistent bootstrap variance estimator that allows us to form bootstrap
percentile-t intervals. More specifically, we can show that the following bootstrap variance

estimator consistently estimates V" for any choice of the external random variable 7;:
- n/202 Var* ( = 2
V* — +1 .
n %k2 E* 2:: ]

Our proposal is to use this estimator to construct a bootstrap studentized statistic,

i (PR, — e (PV))
T = ,

n

~

V*

n

the bootstrap analogue of T,.
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Theorem 4.2 Suppose Assumptions 1, 2 and 3 hold such that for anye > 2, E (ef(%g)) < 00,

and the block size b, satisfies such that 1/2 < 6 < 2/3. Let m; be the pre-averaged
realized volatility estimator based on a block length equal to b, and an external random variable
n; ~ i.i.d. (E*(n;),Var*(n;)) such that for some ¢ > 2 E* |n;|"™* < A < 0o. Then

sup |P* (T < z) — P (T, < z)| =" asn — oc.
z€eR

Theorem [4.2|justifies constructing bootstrap percentile-t intervals. In particular, a 100 (1 — o) %

symmetric bootstrap percentile-t interval for integrated volatility is given by

ICs 1 0= (PRVn —q;_ Y4V, PRV, + q;_ 0V f/n> : (23)
or alternatively we can use

o = (PRVa = ai_an™ Vi PRV + gi_an /Y ). (24)

perc—t,1—a

where ¢j_,, is the (1 — a)-quantile of the bootstrap distribution of |T7}|.

5 Monte Carlo results

In this section, we compare the finite sample performance of the bootstrap with the feasible
asymptotic theory for confidence intervals of integrated volatility in the case of i.i.d. and
autocorrelated market microstructure noise.

We consider two data generating processes in our simulations. First, following Zhang et
al. (2005), we use the one-factor stochastic volatility (SV1F) model of Heston (1993) as our

data-generating process, i.e.
dX; = (p— 1 /2) dt + 0d By,
and
dvy = k(@ — 1) dt + (I/t)l/2 AW,
where v; = o2, and we assume Corr(B,W) = p. The parameter values are all annualized.
In particular, we let p = 0.05/252, Kk = 5/252, a = 0.04/252, v = 0.05/252, p = —0.5. For

i=1,...,n, we let the market microstructure noise be defined as €. ~ i.i.d.N (0, «). The size

of the noise is an important parameter. We follow Barndorff-Nielsen et al. (2008) and model
the noise magnitude as €2 = o/ fol otds. We fix €2 equal to 0.0001, 0.001 and 0.01 and let

a = 24/ fol oids. These values are motivated by the empirical study of Hansen and Lunde
(2006), who investigate 30 stocks of the Dow Jones Industrial Average.

We also consider a more realistic two-factor stochastic volatility (SV2F) model analyzed by

19



Barndorff-Nielsen et al. (2008), wherd|

dX; = adt+ o, dWy,
op = s-exp(fo+ PiTu + BaTau)
dryy = aymdt + dByy,
dryy = QoToudt + (1 4 ¢79p) dBay,
corr (AWy, dBy) = 1, corr (AW, dBay) = .

We follow Huang and Tauchen (2005) and set a = 0.03, 5y = —1.2, f; = 0.04, 5 = 1.5,
a; = —0.00137, ay = —1.386, ¢ = 0.25, p; = s = —0.3. We initialize the two factors at the
start of each interval by drawing the persistent factor from its unconditional distribution, 779 ~
N <O, %), and by starting the strongly mean-reverting factor at zero.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23400, so that
[0, 1] is thought to span 6.5 hours. The observed Y process is generated using an Euler scheme.
We then construct the %—horizon returns r; = Y/, — Y(;_1)/n» based on samples of size n.

We use two different values of #: 6 = 1/3, as in Jacod et al. (2009), and § = 1, as in
Christensen, Kinnebrock and Podolskij (2010). The latter value corresponds to a conservative
choice of k,,. We also follow the literature and use the weight function g (z) = min (z,1 — x) to
compute the pre-averaged returns.

In order to reduce finite sample biases associated with Riemann integrals, we follow Jacod
et al. (2009) and Hautsch and Podolskij (2013) and use the finite sample adjustments version

of the pre-averaged realized volatility estimator,

1/} " -1 n 1 n—kn+1 wkn n
PRV§:<1— L ) — > YRl
2n62y5m n—kny+ 25"k, 2n6%)5n

=0 i=1

kn, . ) 2 kn, , ~
where 7" = k, ; <g (ﬁ) —g (%)) and Yy" = é ;gQ (ﬁ) . Similarly, V,, as defined in

(7)) replaces @y, &)12 and P9y by their Riemann approximations,

En S ko (N2 L[k 2 En 1 < En (N tkn (s L g, En

O =k | D_ (61" (1) — 5 (@1 () |, @5 == (> el () o5 (j) — o1 (0) ¢ (0) | , and
=1 ™ o\i=1

- (S eror -3 er o).

i
n =1

5The function s-exp is the usual exponential function with a linear growth function splined in at high values
i D s- = if ¢ < . — _exp(zo) : _ 5).
of its argument: s-exp(x) = exp(x) if x < o and s-exp(x) Teo—atie it x > x,, with 2o = log(1.5)
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where

)=k S (g (i,;l

i=j+1

)=o) (=) o () e

¢2”<j>=k"2_1g(k%>g(i,;j).

i=j+1

Tables 1, 2, 3 and 4 give the actual rates of 95% confidence intervals of integrated volatility
as well as the average lengths of the confidence intervals for the SV1F and the SV2F models,
respectively, computed over 10,000 replications. Results are presented for eight different sam-
ples sizes: n = 23400, 11700, 7800, 4680, 1560, 780, 390 and 195, corresponding to “l-second”,
“2-second”, “3-second”, “5-second”, “15-second”, “30-second”, “lI-minute” and “2-minute” fre-
quencies. In our simulations, bootstrap intervals use 999 bootstrap replications for each of the
10,000 Monte Carlo replications. We consider the bootstrap percentile method computed at
the 95% level. To generate the bootstrap data we use a two point distribution n; = 1132- with

v; ~ i.i.d. such that:

{ (1)1/4 =15 with prob p = Y3
Uj =

2 2 25
NGRS

(%)1/4 =15 with prob 1—p= NG

7
for which p3 = +/2 and i = 5/2, implying that Var* (n;) = 1/2. This choice of 7; is asymptot-
ically valid when used to construct bootstrap percentile as well as percentile-t intervals. The
choice of the bootstrap block size is critical. We follow Politis, Romano and Wolf (1999) and
use the minimum volatility method to choose the bootstrap block. Details of the algorithm are

given in Appendix A.

5.1 1i.i.d. noise

In this subsection, we simulate results for the case of i.i.d. market microstructure noise. For
the CLT-based intervals and the wild blocks of blocks bootstrap-based intervals, Tables 1 and
2 show that for the two models, all intervals tend to undercover. The degree of undercoverage
is especially large for smaller values of n, when sampling is not too frequent. The SV2F
model exhibits overall larger coverage distortions than the SV1F model, for all sample sizes.
Results are sensitive to the value of the tuning parameter §. When 6 = 1/3, larger market
microstructure effects induce larger coverage distortions. In particular, the coverage distortions
are very important when €2 = 0.01 in comparison to the case where market microstructure
effects are moderate or negligible (€2 = 0.001 and &2 = 0.0001). This reflects the fact that
for this value of 6, k, is not sufficiently large to allow pre-averaging to remove the market
microstructure bias. The pre-averaged estimator is biased in finite samples and this explains

the finite sample distortions. In contrast, for the conservative choice of k,, results are not very
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sensitive to the noise magnitude. The reason is that the larger is the block size over which the
pre-averaging is done, the smaller is the impact of the noise.

In all cases, the wild blocks of blocks bootstrap outperforms the existing first order asymp-
totic theory. As expected, the average chosen block size is larger for larger sample sizes, but our
results show that it is not sensitive to the noise magnitude. This is because the noise magnitude
is almost irrelevant for the intensity of the autocorrelation of the square pre-averaged returns

(as confirmed by simulations not reported here).

5.2 Autocorrelated noise

In a second set of experiments, we look at the case where the market microstructure noise
is autocorrelated. Empirically the conditional independence noise assumption is somewhat
unrealistic for ultra-high frequency data (see, among others, Hansen and Lunde (2006)). This
is in fact one of the motivations behind the approach of Hautsch and Podolskij (2013). Their
results relax the conditional independence assumption on € to allow for ¢-dependent noise,
at the cost of not allowing for time varying variances of the noise process and dependence
between X and e. Indeed, the main consistency result for Jacod et al. (2009) pre-averaged
estimators (cf. their Theorem 3.1) still holds. The key difference is that the limit (of the
required bias-correction term) now depends on the higher order autocorrelations of the noise
process instead of depending on a; = FE (€2|X) (in particular, a; is replaced by the long run
variance p® = p (0)+2>"7_, p(k), where p (k) = Cov (€1, €141) , and ¢ is the order of dependence
of the noise process (€;),5,). The main implication is that the bias correction for pre-averaged
realized volatility must d_epend on an estimator of p?. Hautsch and Podolskij (2013) discuss an

estimator of p? given by

q
/0721 = Pn (0) —f-Qan(k),
k=1

where p, (0),...,p, (q) are obtained by a simple recursion,
pu(q) = —m(g+1),
pn(q_l) = _7n(q)+2pn( )7
pn(q=2) = —m(@=1)+2p(qg=1) = palq),
1 n
where v, (k) = EZ:”THI“ k=0,...,q+ 1.
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This implies the following consistent estimator of integrated volatility under a ¢-dependent

autocorrelated noise process:

PRV = 1 n_iﬂ - LI (25)
——— ~~

. . new bias correction term
RV -like estimator

To obtain a feasible asymptotic procedure, Hautsch and Podolskij (2013) also propose the

following consistent estimator of V¢ = lim,,_o, Var (n'/*PRV,):

n—kn+1 n—2kn+1
2 4Py 4 802 ( D9 @22¢1 ) 2
Vrfl - Y+ y=4 Gl Y,
il 2=Vt aa\a e ) 2
4p ((I)ll D910y (I)Qz@/J%)
+ | — —2 + . 26
o\ Tty .

We conjecture that the wild blocks of blocks bootstrap remains valid when we relax the con-
ditional independence assumption on ¢; provided we use it to approximate the distribution of
PRV Indeed, the conditional independence noise assumption used in our proof in Appendix
B is not essential to guarantee the consistency of the wild blocks of blocks bootstrap variance
since we do not use any prior knowledge on ¢; apart from the k,-dependence of €. If ¢; is a
g-dependent sequence, then € becomes (k, + ¢)-dependent, and the result of Lemma still
holds, although higher order autocorrelations of € appear in the limit. So long as F (¢,|X) = 0,
€; admits asymptotic normality at the usual rate k, Y 2, (see e.g. the proof of Lemma 1 of
Hautsch and Podolskij (2013)), and if we let the block size b, grow faster than k, + ¢ and set
Var* (n;) = 1/2, then the wild blocks of blocks bootstrap variance estimator will remain consis-
tent for V4. Moreover, by using the wild blocks of blocks bootstrap, a stationarity condition on
€ is not required, since by construction it is robust to the heterogeneity of square pre-averaged
returns. These facts lead us to conjecture that the wild blocks of blocks bootstrap is valid when
applied to the new bias adjusted pre-averaged volatility estimator under autocorrelated noise.
Although we do not provide a detailed proof of this result, in this section we explore the finite
sample properties of the wild bootstrap under autocorrelation in ¢;.

In particular, we follow Kalnina (2011) and let the market microstructure noise be generated

as an MA(1) process (for a given frequency of the observations):

14 A2
so that Var (¢) = a.. Three different values of A are considered, A = —0.3, —0.5, and A = —0.9.
We chose a as in the i.i.d. case discussed above, i.e. we let a = 52\/f01 otds. Welet § =1

(conservative choice of k).

+ Ais uiwi.i.d.N(O, a ) (27)

Our aim here is to evaluate by Monte Carlo simulation the performance of the wild blocks of
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blocks bootstrap when applied to the statistic that relies on the new bias correction of Hautsh
and Podoskij (2013), which is robust to noise autocorrelation. We consider five types of intervals
(two types of intervals based on the asymptotic normal distribution under the label CLT1 and
CLT2 and three types of intervals based on the wild blocks of blocks bootstrap under the label
Bootl, Boot2 and Boot3), computed at the 95% level. More specifically, for the asymptotic

theory-based approach we consider the following intervals,

(PRW} - 1.96n—1/4\/x77gl, PRV® 4 1.96n~ /4 V;j) , and (28)
(PRV;I — 1.96n"1/4\/Vx, PRV + 1.96n’1/4\/vn*) . (29)
For the bootstrap, we consider
(PRV,f - ”_1/4173.95’PRV7? "‘”_1/4173.95)7 (30)
<PRV,$ — ;! \/;n PRV +q;_n '/ Vn) , and (31)
(PRV,? — g YAV PRV 4 gr_ VA Vn*) . (32)

Whereas corresponds to bootstrap percentile intervals, and correspond to boot-
strap percentile-t intervals. Note that for the bootstrap based-intervals, the bootstrap quantile
Py o5 and ¢ o5 are computed exactly as in the i.i.d. noise case (it is based on the absolute value
of n'/4 <I§§1//Z — E* <I§Z§‘//2>> and n'/* (FE‘//Z — E* (F]\%—X//:L)) /\/ V¥, respectively, whose
form is unaffected by the new bias adjustment used in PRV%).

Tables 3 and 4 contains the results. We only report results for the SV2F model, since it
is more empirically relevant and indeed it exhibits overall larger coverage distortions than the
SV1F model. Two sets of results are presented. First, we present results for intervals based on
PRV, the non-robust pre-averaged estimator discussed for the uncorrelated noise case (Table
3). Then, we present results for intervals based on PRV, the robust estimator based on the
new bias correction of Hautsch and Podolskij (2013) (Table 4). The results show that intervals
based on PRV, are more distorted when market microstructure effects are moderate or high
(€2 =0.001 and &% = 0.01) and there is autocorrelation in ¢; than otherwise. The main reason
for the distortions is the fact that PRV, is not correctly centered and standardized under
autocorrelation. For instance, when A = —0.3, n =195, and &2 = 0.01 the CLT1-based interval
has a coverage probability (from Table 3) equal to 72.98% under autocorrelated noise whereas
its coverage rate is equal to 83.32% under uncorrelated noise. Although the difference is not
very large for the smaller |\| (intensity of autocorrelation), it gets much bigger for larger values
of [Al. For A = —0.5 and —0.9, and (n =195, and £* = 0.01) these rates equal 67.75% and
63.04%, respectively. Thus, the distortions increase with |A|. Also for high effects of noise
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(€2 = 0.01), the degree of undercoverage becomes especially large for larger values of n, when
sampling is frequent. For instance when A = —0.5, and (n = 195 and n = 23400) they are equal
to 67.75% and 28.97%, respectively. This confirm the invalidity of intervals based on PRV,
under correlated noise. A similar pattern is observed for the CLT2-based intervals. We also see
that these are close to the (percentile) Boot1-based intervals.

However, if we rely on PRV as a point estimator of integrated volatility, the corresponding
intervals (both asymptotic and bootstrap) are better centered and standardized and the dis-
tortions are smaller and closer to their values under the uncorrelated noise case. For instance,
for n =195, and &2 = 0.01 the CLT1-based intervals now have coverage rates equal to 84.33%
and 84.56% when A = —0.3 and A = —0.5, respectively. A similar pattern is observed for larger
sample sizes, although the rates are overall larger. For instance, for n = 23400 they are equal
to 93.59% and 93.77%, respectively.

When the wild blocks of blocks bootstrap method is used to compute critical values for the
t-test based on PRV}, and the error is MA(1), for high effects of noise (£2 = 0.01), coverage rates
are usually smaller than those obtained when the noise is uncorrelated (and therefore distortions
are larger). As for the CLT-based intervals, the larger differences occur for the larger values of
|A|. For the smaller values of |A|, the difference in coverage probability between the two types
of errors is almost negligible. As for the CLT-based intervals, using the wild blocks of blocks
bootstrap to compute critical values for the t-statistic based on PRV¢ essentially eliminates the
difference in coverage probabilities observed between the uncorrelated and the MA(1) errors.

In summary, the results in Tables 3 and 4 show that under autocorrelated noise the statistic
based on the bias correction of Hautsch and Podolskij (2013) works well and that the coverage
rates of 95% nominal level intervals based on either the asymptotic mixed Gaussian distribution
or the wild blocks of blocks bootstrap proposed in this paper are similar to those obtained
under uncorrelated noise. In particular, the bootstrap (percentile-t) outperforms the asymptotic
theory. Whereas, the results based on CLT2 and the (percentile) Boot1 intervals are close, but
slightly different.

6 Empirical results

In this section, we implement the wild blocks of blocks bootstrap on high frequency data and
compare it to the existing feasible asymptotic procedure of Jacod et al. (2009). The data
consists of transaction log prices of General Electric (GE) shares carried out on the New York
Stock Exchange (NYSE) in October 2011. We also consider transaction log prices of Microsoft
(MSFT) in December 2010, taken from Thomson Reuter’s Tick History. GE represents highly
liquid stocks with approximately 27 trade arrivals per minute. Conversely, MSFT is significantly

less liquid with approximately 6 trade arrivals per minute. Our procedure for cleaning the data
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is exactly identical to that used by Barndorff-Nielsen et al. (2008) (for further details see
Barndorff-Nielsen et al. (2009)). For each day, we consider data from the regular exchange
opening hours from time stamped between 9:30 a.m. until 4 p.m.

We implement the pre-averaged realized volatility estimator of Jacod et al. (2009) on returns
recorded every S transactions, where S is selected each day so that for GE and MSFT there are
approximately 1493 and 82 observations a day, respectively. This means that on average, for
GE and MSF'T, these returns are recorded roughly every 15 seconds and 5 minutes, respectively.
Table 5 in the Appendix provides the number of transactions per day, the sample size for the pre-
averaged returns, and the dependent-noise robust version of the pre-averaged realized volatility
estimator using (for ¢ = 0,1 and 2). We also report the optimal value of ¢ (the number of
non-vanishing covariances) using the decision rule proposed by Hautsch and Podolskij (2013).
To implement the pre-averaged realized volatility estimator, we select the tunning parameter
0 by following the conservative rule (§ = 1, implying that k, = y/n). To choose the block
size b,, we follow Politis, Romano and Wolf (1999) and use the minimum volatility method
(see Appendix A for details). As illustrated below, these stocks represent different empirical
features and thus allow to gain valuable insights into the empirical performance of the wild
blocks of blocks bootstrap method.

For GE, Figure 1 in Appendix A shows daily 95% confidence intervals (CIs) for integrated
volatility using both methods, the wild blocks of blocks bootstrap and the existing feasible
asymptotic procedure of Jacod et al. (2009). In the latter case Cls are computed using
whereas for the bootstrap we use .

The confidence intervals based on the bootstrap method are usually wider than the confi-
dence intervals using the feasible asymptotic theory[| This is especially true in periods with
large volatility. To gain further insight on the behavior of our intervals for these periods, we
implemented the test for jumps of Barndorff-Nielsen and Shephard (2006) using a moderate
sample size (2-minute sampling intervals). It turns out that these days often correspond to days
on which there is evidence for jumps (in particular for the 13, 17, 20 and 26 of October 2011).
Since neither of the two types of intervals are valid in the presence of jumps, further analysis
should be pursued for these particular days. In particular, we should rely on estimation meth-
ods that are robust to jumps such as the pre-averaged multipower variation method proposed
by Podolskij and Vetter (2009) or the quantile estimation method of Christensen, Oomen, and
Podolskij (2010).

Similarly for MSFT (the less liquid stock) Figure 2 in Appendix A shows daily 95% confi-

dence intervals for integrated volatility. The same patterns also emerges as for GE. The confi-

SNevertheless, as our Monte Carlo simulations showed, the latter typically have undercoverage problems
whereas the bootstrap intervals have coverage rates closer to the desired level. Therefore if the goal is to control
the coverage probability, shorter intervals are not necessarily better. The figures also show a lot of variability
in the daily estimate of integrated volatility.
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dence intervals based on the wild blocks of blocks bootstrap method are usually wider than the
confidence intervals using the feasible asymptotic theory. In contrast to GE, for MSF'T we have
found no evidence of jumps at 5% significance level for days with large volatility. Importantly,
the bootstrap based confidence sets of these days are larger than those based on the asymptotic
theory, as suggested by the simulation study, which highlights the importance of using the

bootstrap in these volatile days.

7 Conclusion

In this paper, we propose the bootstrap as a method of inference for integrated volatility in the
context of the pre-averaged realized volatility estimator proposed by Jacod et al. (2009). We
show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992)
is not valid when volatility is time-varying. This is due to the heterogeneity of the squared
pre-averaged returns when volatility is stochastic.

To simultaneously handle the dependence and heterogeneity of the squared pre-averaged
returns, we propose a novel bootstrap procedure that combines the wild and the blocks of
blocks bootstrap. We provide a set of conditions under which this method is asymptotically
valid to first order. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap
improves the finite sample properties of the existing first order asymptotic theory. In future
work, we plan to generalize the wild blocks of blocks bootstrap for inference on multivariate
integrated volatility as considered by Christensen, Kinnebrock and Podolskij (2010). Bootstrap
variance-covariances matrices are naturally positive semi-definite, which is very important for
empirical applications. Finally, taking into account the possible presence of jumps is an impor-

tant extension that should be studied.

Appendix A: Simulation and empirical results

Here we describe the Minimum Volatility Method algorithm of Politis, Romano and Wolf (1999,

Chapter 9) for choosing the block size b, for a two-sided confidence interval.

Algorithm: Choice of the bootstrap block size by minimizing confidence interval volatility

(i) For b = bynau to b = by, compute a bootstrap interval for IV at the desired confidence

level, this resulting in endpoints 1Cj 5, and [Cj .

(ii) For each b compute the volatility index VI, as the standard deviation of the interval

endpoints in a neighborhood of b. More specifically, for a smaller integer d, let VI, equal
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to the standard deviation of the endpoints {/Cy_giow; - - -, {Cotdiow} Plus the standard
deviation of the endpoints {ICy—gup; - - - s I Coragup}, 1-€.

1 d d

_ 1 -
VI, = 1 Z (1Chiton — Iclow)2 + 21 Z (1Chriup — ]Cup)27

i=— j=—
7 1 d 7z 1 d
where ]Clow = 2d+1 Zi:—d ]Cb—l—i,low and ]Cup = 2d+1 Zi:—d -[Cb—l—i,up-

(iii) Pick the value b* corresponding to the smallest volatility index and report {ICp« jou, L Cp up }

as the final confidence interval.

To make the algorithm more computationally efficient, we have skipped a number of b values
in regular fashion between bgyq and byig. We have considered only the values of b such that
b = pk,, where p is a fixed integer. We employ bsman = 2k, brig = min(Q%, 12k,) and d = 2.

Tables 1, 2, 3 and 4 report the actual coverage rates for the feasible asymptotic theory
approach and for our bootstrap methods using the optimal block size by minimizing confidence
interval volatility. In Table 5 we provide some statistics of GE and MSFT shares in October
2011 and December 2010, respectively.
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Table 5. Summary statistics

Days Trans n S PRV,?.103 ¢ PRVZ.10°
q=0 g=1 g=2 9=q"
GE
30ct 12613 1402 9  0.903 1.113 1.121 1  1.113
40ct 13782 1532 9  1.705 1.734 1735 1  1.734
50ct 10628 1519 7  0.721 0.722 0.723 0  0.721
6 Oct 9991 1428 7  0.688 0.742 0.858 2  0.858
7Oct 9785 1398 7  0.686 0.687 0.688 0  0.686
10 Oct 10660 1523 7  0.720 0.830 0.951 2  0.951
11 Oct 8588 1432 6  1.498 1.499 1.499 0  1.498
12 Oct 11160 1595 7  0.727 0.727 0.729 0  0.727
13 Oct 8649 1442 6  1.499 1.499 1.499 0  1.499
14 Oct 9261 1544 6  1.556 1.556 1.556 0  1.556
17 Oct 8530 1422 6  1.498 1.499 1.499 0  1.498
18 Oct 8751 1459 6  1.507 1.582 1.584 1  1.582
19 Oct 9023 1504 6  1.545 1.644 1645 1  1.644
20 Oct 9251 1542 6  1.556 1.557 1.557 0  1.556
21 Oct 12513 1565 &  0.833 0.941 0942 1  0.941
24 Oct 11642 1456 &  0.791 0.839 0.840 1  0.839
25 Oct 10919 1365 &  0.775 0.776 0776 0  0.775
26 Oct 9249 1542 6  1.556 1.557 1.557 0  1.556
27 Oct 14598 1622 9  1.776 1.778 1.779 0  1.776
28 Oct 9405 1568 6  1.557 1.633 1.699 4  1.746
31 Oct 8871 1500 6  1.559 1.667 1.669 1  1.667
MSFT
1 Dec 2177 78 28 0.112 0.124 0.133 0  0.112
2 Dec 1520 77 20 0.079 0.087 0.088 0  0.079
3Dec 2530 80 32 0.077 0.088 0.088 0  0.077
6 Dec 1717 79 22 0.072 0.097 0.098 1  0.097
7Dec 1847 81 23 0.063 0.087 0.089 1  0.087
8 Dec 1473 78 19 0.061 0.083 0.084 1  0.083
9Dec 1851 78 24 0.071 0.083 0.083 0  0.071
10 Dec 1375 77 18 0.084 0.101 0.112 1  0.101
13 Dec 1469 78 19 0.083 0.100 0.106 0  0.083
14 Dec 2558 82 32 0.074 0.090 0.091 0 0.074
15 Dec 2304 80 29 0.101 0.120 0.121 0  0.101
16 Dec 1872 79 24 0.069 0.084 0.088 0  0.069
17 Dec 3385 89 39 0.096 0.114 0.115 0  0.096
20 Dec 3827 93 42 0.174 0351 0366 1  0.351
21 Dec 4105 95 44 0.483 0.554 0.556 0  0.483
22 Dec 3742 92 41 0.355 0.400 0.401 0  0.355
23 Dec 3716 93 40 0.318 0.357 0.361 0  0.318
27 Dec 2010 80 26 0.071 0.098 0.113 1  0.098
28 Dec 1676 79 22 0.096 0.120 0.124 0  0.096
29 Dec 1555 78 20 0.079 0.087 0.088 0  0.079
30 Dec 1572 79 20 0.053 0.079 0.08 1  0.079
31 Dec 1887 79 24 0.069 0.080 0.081 0  0.069

“Trans” denotes the number of transactions, n is the sample size used to calculate the pre-averaged
realized volatility, we have sampled every Sth transaction price, so the period over which returns
are calculated for GE and MSFT are roughly 15 seconds and 5 minutes, respectively. PRV.? is the
dependent-noise robust version of the pre-averaged realized volatility estimator, ¢ is the order of
autocorrelation, ¢* is the optimal value of ¢ selected using the decision rule proposed by Hautsch and
Podolskij (2013).
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Figure 1: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days for
GE in October 2011, calculated using the asymptotic theory of Jacod et al. (2009) based
on (CI's with bars), and the wild blocks of blocks bootstrap method based on
(CI's with lines). The pre-averaging realized volatility estimator is the middle of all CI’s
by construction. Days on the x-axis.
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Figure 2: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days
for MSFT in December 2010, calculated using the asymptotic theory of Jacod et al. (2009)
based on (CT’s with bars), and the wild blocks of blocks bootstrap method based on
(32) (CT's with lines). The pre-averaging realized volatility estimator is the middle of all
CI’s by construction. Days on the z-axis.

Appendix B: Proofs

As in Jacod et al. (2009), we assume throughout this Appendix that the processes a,c and
X are bounded processes satisfying with a and o adapted cadlag processes. As Jacod et
al. (2009) explain, this assumption simplifies the mathematical derivations without loss of
generality (by a standard localization procedure detailed in Jacod (2008)). Formally, we derive
our results under the following assumption.
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Assumption 4. X satisfies equation with a and o adapted cadlag processes such that a, o,
and X are bounded processes (implying that « is also bounded).

Notation

In the following, K denotes a constant which changes from line to line. Moreover, we follow
Jacod et al. (2009) and use the following additional notation. We let

kn, . o -
_ ; ) ]
:;g<k_n) <X%_X¥>’ ei:;g(k_n) G%_E%»

and note that Y; = X, + &. In addition, we let

ity

kn . 2
R J " o2dt
“ = Zg(kn) ey 10
7j=1 n
kn—1 . . 2
_ J+1 J
A = E(Q?’X):Z <g< 2 >_g<k_)> Q(i4)/m; and

J=0

Y; = YQ'—44i—'Q.

)

Following Jacod et al. (2009), we also introduce the following random variables. For j =
1,...,J,, we let

1 A

n (P)j = Wg(phjfl)(}wrl)kn’ with C(p)j = ; Y,
where p > 1 is a fixed integer; 7 (p) ; is the normalized sum of squared pre-averaged returns Y;
over a block of size b, = (p+ 1) k,. Note that 7 (p); is measurable with respect to F, )

the sigma algebra generated by all f (p+1)km /n—measurable random variables plus all Varlables
Ys, with s < j (p+ 1) k,,. Finally, we let

Bp)i = b, yers et (las — arl + los —onf +Jas — ), (33)
and
4 1 1 ola 1 a?
2 4 t t
d Wy ) 0 2@ v ) —Uyy = ].
v (p)e = ¢2 (( 22+p+1 22> oy + ( 12+p+1 12) 0 +( 11+p+1 11) 93)
(34)
Our bootstrap estimators depend crucially on
1 bn, Jjbn—1
ij_ZyH(Jl Z Y2 for j=1,...,J,,

where J,, = N, /b, is the number of non—overlapping blocks of size b,, out of N,, = n — k,, + 2
observations on pre-averaged returns.
Our first result is instrumental in proving our bootstrap results.
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Lemma B.1 Suppose Assumptions 2 and 4 hold. Then, for all integer p > 1, and each q > 0,
we have that

al) E <Zjilﬁ(p)?j—1>(p+1)kn> — 0.

a2) 5= 320" B (01 e, " O

a3) o8 (S50 B (B0 ypm Foonpine,)) = 0
a4) \/La Z}]L E (5 (p>((]j—1)(p+l)kn |]:(nj—1)(p+1)kn> —"0.

I ~
ab) =3 E (5 (20 + 1) 1)1k, |}—(J'—1)(p+1)kn> =00

In 2 H
a6) \/LHEJ:I E <5 (p)(jfl)(l’+1)kn ’F(j—l)(p+1)kn) =00

Jn 2 ;
a7) 7z i/ P (ﬁ (2P + 1)Gonypenn, 17 <j—1><p+1>’fn) o

Proof of Lemma Part al). Given the definition of 8 (p)(;_)(11),, We can write

B (p>(j—1)(p+1)kn < Sup&te[(j—l)(‘”"rl)kn7(]'—1)(P+1)kn+(17+1)kn] (Jas — as])

+SUP, e 1GoNk GoD D 1)k (Jos —o4])

+SUD, e [GoNkn GoDntp1)kn (Jas = aul)

= T(@n)jnpevm T T @P)Gyprne, T T (@) 1)k, -

Given that I' (a,p)(j_l)(p+1)kn , T (o, p)(j_l)(p+1)kn and I’ (a,p)(j_l)(p+1)kn are strictly positive, for
any q > 0, using the c-r inequality, we can write

BO)G-verk, < K (F (@ 2)-1) 1k T T (@ 2) G0y pripp, T T <O‘vp)(<]j—1>(p+1)kn> :
It follows that

JIn In
n~\2E (ZB (p)?jn(m)’“") < Kn™B (ZF - p)gjl)(p+l)kn>
j=1

j=1
Jn
+Kn~?E (ZF <a7p>?j—1)<p+1>kn>
Jn -
+Kn"Y?E (Z r (a,p)?j_l)(pﬂ)kn) =o0(1),
j=1

where we use Lemma 5.3 of Jacod, Podolskij and Vetter (2010) to show that each of the terms
above are o (1) (given that a, o and « are cadlag bounded processes).
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Proof of Lemma Part a2). Note that given the result of part al) of Lemma [B.1]
it is sufficient to show that %E (Z B (p ) D(p 1)k > — 0. By the c-r inequality,

2
1
_E (Zﬁ (J 1) p+1)kn> (Zﬁ Y(p+1)kn > < K\/—E (Zﬁ (J 1) p+1)kn> ’

which is o (1) by part al) of Lemma[B.1] and given that J, = O (y/n).

Proof of Lemma [B.1} Part a3). Given the law of iterated expectations, the result
follows directly from part al) of Lemma [B.1}

Proof of Lemma [B.1, Part ad4). The proof follows similarly as in part a2) of

Lemma [B.1] where we now consider the variable E (ﬁ( )?
Ofﬁ( )] 1) (p+1)kn *

Proof of Lemma [B.1 Part a5). Given the definition of 3(p);, for any p > 1, such that
b, = (p+ 1) k, we can write

(-1 (p+1) k:n| (] D (p+1D)kn in place

<

. [%]

1 < 1

%;E@(ijq) o G130 ) - Vi & E<5(2p+1)g<j—1)bn |f§<j—1>bn>
]

L

ol -

IIM

T (5 (2p+ 1)?2(j—1)+1)bn !J’-‘(’;(j,l)ﬂ)bn) ’
which is op (1) given part ad) of Lemma [B.1]
Proof of Lemma [B.1] Part a6). Here, the proof contains two steps. Step 1. We show

In 2 n
show that —=F (ijl \/E (ﬁ (P) -1y (p s 1)k ’]:(j—1)(p+1)kn>) — 0. Step 2. We show show that

%Var (Z‘j]il E <B (p)?jfl)(pﬂ)kn "F(njl)(erl)kn)) — 0. Note that using the first expression in
equation (5.47) of Jacod et al. (2009), the result of step 1 follows directly. Given this result, to

2
1 2 n

show step 2, it is sufficient to show that - F (ZJ 1 \/E (5 (p)(jfl)(erl)kn |]:(j_1)(p+1)kn>) — 0.

We have that

( \/ J D(p+1)kn ‘]:glj—l)(erl)kn)) = _ZE< ( (=1 (p+1)kn |'7:(J 1)(p+1)kn)>
S (100 ) < E(zﬂ i )

which is 0 (1) given equation (5.47) of Jacod et al. (2009) and the fact that .J,, = O (v/n) under
our assumptions.

Proof of Lemma Part a7). The proof follows similarly as part a5) and therefore
we omit the details.

Our next result is crucial to the proofs of Lemmas [3.1] and [4.1]
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Lemma B.2 Under Assumptions 1, 2, and 4, if b, = (p + 1) k, where p > 1 is fized, then

b2 Jn 1 w 2
\/2_% JZIBQ—> V+9(p+1)/0 (a +02¢a> ds.

Proof of Lemma Given the definition of B;, we have that

Gbn—1 Gbn—1 Gbn—1

2 W= X (Al DA

=(j—1)bn On i=(j—1)bn " i=(j—1)bn

=Y

kn . it+J
where A; = F (2|X) and ¢; = > g (kj—n) flﬂ , o2dt. Tt follows that
j=1

2 JIn
E W ZBQ Bin + By + Bsn,
where
2
Jn Jjbn—1 Jn
i=(j—1)b j=1
2 Jn Jjbn—1
By, = Wzn(p)j Z (A; +¢;); and
2 j=1 i=(j—1)
. 2
By, = 5~ (Ai +¢)

2
We show that (1) By, = [} 77 (p) dt; (2) Bay —* 0, and that (3) Bs, —F (p+1)0 [ <o—§ + 9%%) dt.
Starting with (1), write

Jn 1
\/ﬁz n (P)? - / 'YtZ (p)dt = Biin+ Bion + Bisn, with
j=1 0

Biin = \/ﬁi (n®); = E (00 1Fo-vipeen) )

N, 1 &
Bian = \/_ZE< Fl-1)pt1)kn ) - Tn(]— 7(P)3as,

. n 1 2 ! 2
Bz, = TZ;V@)@J_/O v; (p) dt.

We show that each of By, —* 0 for £ = 1,2,3. For £ = 1, by Lenglart’s inequality (see e.g.
JIn
Lemma 4.4 of Vetter (2008)), it is sufficient to show that n )  E ( (p ) Nas

j=1

P
(G—1)(p+1)kn ) = 0,
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which follows immediately by using equation (5.57) of Jacod et al. (2009). Next, to show that
Bi2n —F 0, note that

JIn

§ N, 1
Bion < Z VnE (77 (p); |~7:(j—1)(p+1)kn> - 777(29)%;1
i=1 " !
J”L 1 1
— Z VnE <02¢2né2(p)(j_1)(p+1)kn|~7:@1)(p+1)kn> - (p+1) 9\/57(29)3"];1
j=1 2 n

Jn
= 92\1/; Z E(Cz(]?)(] 1)(p+1) kn|f] 1) (p+1)k > 93% (p—i—l)’y(p)] 1

n

< .
= QZw%ﬁ;X(p)(J 1) (p+1)kn

where we use the fact that N, /J, = (p+ 1) k,, with k, = 6/n and rely on equation (5.41) of
Jacod et al. (2009) to bound the term in absolute value, where

X(P)G-1)p+1)k, = ot \/E <B (p)? )(p+1)kn |]: 1 (p+1)kn >

and 3 (p), is as defined in (33). It follows that

3

J,
1 ~1/4 n P
ﬁ X(P)G-n@ k. < \/_Zn Y \/_Z\/ J D(p+1)kn |]:(j*1)(p+1)kn) -0
7=1

where the first term is of order O (n=*/) and the second term is op (1) given part a6) of Lemma
B.1l Finally, B3, —© 0 follows immediately by Riemann’s integrability of o, the fact that

%—>1ande]n—>ooasn—>oo.
jbn—l jbn_l

To show (2),let p; = >  (Ai+¢)and ((X,p); = > (X? — ¢;) . We can write
i=(j—1)bn i=(j—1)bn
By, = 00y Z Pj - = Bain + Baay,  with

Byin = %Z(%‘U(F (%77() | )(p+1)k >>7 and

J
2 "
By = 9—% ZE <<Pj77 (p)j |]:(j—1)(p+1)kn> .
j=1

We show that each of By, —¥ 0 for £ = 1,2. Note that given the definitions of A;, ¢;, and
the fact that k, = 6y/n, Assumption 4 implies that A; + ¢; < K/+/n uniformly in i. Given
that b, = (p+ 1) ky,, it follows that ¢; < K uniformly in j. Starting with ¢ = 1, by Lenglart’s
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inequality, it is sufficient to show that Z E (gp ‘1 (p |]-"( 1) +1)kn> —P 0. We can write

iE( 1) 1P pene,) < KiE(nu 10+
- K(%(ﬂiﬁ( ()2 17 ))—%}Z

= K LnBl on T %Bl 3n 1 % ; 7 (p) dt)
1 1 1
= \/_Op (1) +\/—0P (1) +0p (7) =op (1),

where in particular we use the fact that Bjs,=op (1) and Bis, = op (1), and fo V2 (p)dt =
Op (1) . Tt follows that By, —F 0. Next, to show that By, —¥ 0, note that we can erte

2K 1 B
Baan < 0¢2 — ( 1/4ZE ( 1) (p1)k )> =Op (n 1/4) op (1) =o0p (1),

given that ¢; < K, and given equation (5.49) of Jacod et al. (2009).
Finally, to show (3), note that given the definitions of A; and ¢;, and by using equations
(5.23) and (5.36) of Jacod et al. (2009), we can write

jbn—1 Jbn—

Uy 02
i(jz—;)bn s Ci) - ;)b,L <¢9\/_a(] Doa/n + T Gt/ | ‘ T T ohlp )(j Hoe ) -
(35)
It follows that
1 jbn—1 2
where the leading term is
U 2
Ln = ( )0__ (92¢ Q(j—1)by /n +U(] 1)bn /n> p_'_ 0/ ( 92¢ ) dt.
(36)

The remainder is such that

1 P
R, KOP(\/_ \/_ZB “)%o

by using Lemma (5.4) of Jacod et al. (2009).

40



Proof of Lemma 3.1. Part a) Given the definition of V*, we can write

N,b,
Vn v

VE= V- ,
n in (Nn—bn+1)2 2n
where
1= 5] /bt 2
Vi = St it = z (z ) -
" =0 i=t+1
Nn t
1 bn—1 b bn+t
‘/22 = b Z /UQn N2 with v;mt = F Z Z Zz+] 1)b
" =1 i=t+1

S)2ds

2
Oés> ds) , also uniformly in

We now proceed in two steps. In Step 1, we show that v}, , =7 V,+6 (p + 1) fol (af + 922

uniformly in ¢. In Step 2, we show that Uznt —P ( fol (Ug + 9%

t. This together with the fact that (N\f_b% — (p+1)8 asn — oo when b, = (p+ 1)k,
and k, satisfies Assumption 2 imply the result. Proof of Step 1. For ¢t = 0,...,b, — 1 and

jzl,...,[Ng—j},let

1 n¢2
t= b_ Z Y2 L+t+(j—1)bn — “N. b Zitt4(~1)bn
n Yn 7]
where Z; = M%YQ , and note that the B;, are averages of non-overlapping blocks for given .
With this notation, we have that
N2 \/_b2 [Ngln t]
UTn,t:(N _bn+1)N k2w Z Jt’
n n n hvp¥o j=1
where we can show that (Nn_;vﬁ — 1 under the condition that b, = (p+ 1) k,. Using

arguments similar to those used to prove Lemma [B.2] we can show that

nb? 8] ! o 2
;/2_@&2 Z —>PVp+Q(p+1)/O (0 +92¢a> ds
n j=1

uniformly in ¢. The proof of Step 2 relies on the consistency result in Theorem 1 of Christensen,
Kinnebrock and Podolskij (2010). Indeed v3,, is the main term in Jacod et al. (2009) pre-
averaged realized volatility estimator without the bias corrected term, with starting point ¢.
Part b). Follows directly from part a) of Lemma when replacing o; by a constant for all
t. Part c). Follows directly from part a) of Lemma |3.1]

Proof of Lemma [4.1} Given the definition of V,*, we can write

Jn—1
nl/22 %
21.2

vV =Var® (nlﬂlﬁfﬁ/:l) = (Bj - Bj+1)2 Var® (77]2) :
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Let,

b _
= =B
’ 77Z}2kn 7

by adding and substracting appropriately and given Var* (n) = 1/2, it follows that

Jn—1 Jn—1 n1/2
Ve =nY g = — g ;51 N (23, — =) (37)
i=1 i=1

J/

-~

=L,
Note that given the definition of B; and =; we can write

1/2 1/2p2 _
5 G- = g (BB

B
= op(1),

where the second equality follows since B; = Op (1/4/n) uniformly in j, and the last equality
holds so long as 6 < 3/4, which is verify under our assumptions. Thus, given the rest of
the proof can be reduced to En —P V. The proof of this claim follows closey that for Theorem
4.1 of Christensen et al. (2013), however for completeness, we present here the relevant details.

Following Christensen et al. (2013), we introduce two approximating version of Z; first,
namely

b
_ 1 &,
Z; = Tk ;Yi_u(j—l)bn,

b
~ 1 &,
%= Poky, ;Y;Hjbny

~ — — kn
where we have set Y; =€, + 0,0, Wi, with W; = > g <ki) (Wm - Wi+t71> , for jb, < i <
Nn, =1 n n n
(j + 1) b, — 1. Indeed we will show that the error due to replacing Y; by Y, is small and will not
affect our theoretical results, since o is assumed to be an [to semimartingale itself. We have

that, for jb, <i<(j+1)b, —1

kn . itj kn, . g
_ - B J B J " — .
Bl = B[S0 (f) [ e o (F) L (o os )
j=1 n J=1 "
k Fon ‘ it 2\ 2
n J "
< K| — (L) E (S— ]n>d s
(s (B e
<

1/2 1/2
KGM(@@)>SK@ﬁL<
n n n n



Note also that E (| Z;]) < K%, thus it follows that

) < Kbn<<knb7:)1/2 (\/;_)2)
()"

similarly for gj, we have F < Z; — é\j ) <K (%")3/2. So by using the fact that § < 2/3 we
obtain Zn — Zn = op (1), where
Jn—1
LoviS (2 22)
j=1
Then it is simple to deduce that
Jn—1 - . b/
Vi 3 B (2 -8 (21w ) )| < Ko
Jn—1 o . 5/
NG ]Zl E(ZZn-E (ijj+1|fﬂw)> < KX

by conditional independence, and now we are left with

Jn—1

Lo=vn)Y E (ff —gjgjﬂpmm) +op(1).
i=1 !

From the same arguments as in Lemma 7.3 and Lemma 7.5 of Christensen et al. (2013) plus
using d > 1/2, we obtain

VnE (2? — l’%\jgj+1|m—1)bn>

abp

= / ' q(s)ds—i—o(b—") :
(a=1)bn n

1 A 201, 2
V= / §(s)ds, with ¢ (s) = — @22903 + 2P 5 Ts& + CIDH% ,
0 (05 0 0

uniformly in j, where we use

thus we have

Ln:/olg(s)ds—l—olo(l)

and the proof is complete.

Jn

Proof of Theorem [4.1| Let S = n!'/4 (@T/; — E* (@Tﬂt)) = g3 2, where 27 =
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_ _ In
nt/t s (By* — E* (By*)) . It follows that E* (zl z;%) =0, and
J:

Jn
Vi=Var* (Z zj) Ly

J=1

Since z7,---, 25 are conditionally independent, by the Berry-Esseen bound, for some small
¢ > 0 and for some constant C' > 0 which changes from line to line,

2+6

sup |P*(S; <z)— <m/\/_>‘<C'ZE*

zeR

which converges to zero in probability as n — oo. We have

ZE* - ZE* w e (B - B (B)
(24¢) b 24¢ Jn B

an o | — E* |By|**
" (1/}2]{371) ]21 !

Jn
CE" i[5 (n 5k, G+ 3 | By 2+

2+e

IN

IN

JIn
sl (2+e (B (24e); (24e 1 p(2+e)—1 (2+¢)
< CF|ml (n Tk, )) b(sz( " ZY 14+(j—1)b >
n j=1
< CE* ’n1|2+€ (n(z%)‘%k;@“ 1+e)> <n2 ZY2(2+5)>
\_v_/\
=0(1) o - .
e E +(61-1)(14e) —o(1)

— Op <n@+(6171)(1+5)) =0, (1)7

since for any £ > 2, so long as § < 2/3, we have 2 + (§ — 1) (14 ¢) < 0, and given that by
Theorem 3.3 of Jacod, Podolskij and Vetter (2010)

AL 1 1 2+
n2 Z }/;2(2-1-5) —F [2(2+¢) / (9@0203 + 5%_%) ds,
i=1 0
which is bounded given Assumption 3, and E* |n;|*™* < A < oo. It follows that n'/* (ﬁ/:; — E* <I5E‘//:;))
N(0,V) in probability.
Proof of Theorem 4.2| Given that T, -5 N(0,1), it suffices to show that T} 4 N(0,1) in
probability. Let

W (PRV, - & (PRV,))
H: =
V*

n

bl
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and note that

Vi
7

n

T =H

)

where \7; is defined in the main text. Theorem proved that H} 4N (0,1) in probability.

Thus, it suffices to show that V;

-V 50 in probability.

In particular, we show that (1)

Bias* (V;) =0, and (2) Var* (V;) 0. Tt is easy to verify that (1) holds by the definition
of V* and V;*. To prove (2), note that

N 2
B (Vi -vi) =

Var* <V:)

n'/2b2 Var* (n)
3k, E* (1)

(

n'/2p> Var*(n))2 5 9 2N o o
_ n E* (P —E" B, — B
(wgkﬁ E*(n?) (n () o (B; = Bisa)
n1/2bi Var* 77 2 . i} Jn—1 B Jn—1 B
- 23( 2k2 B~ (77(2))> B (n'=E" ("))" Bi+ ) Bja
2'n j=1 j=1
n'/2b2 Var* (n) ? . . L 5
= 2 (T ) B e ) (230 B - (84 )
j=1
1/2b2 VCLT’ ) ’ * 2 * 212 1 Jn 8 n4 4
< 2 (BB Y o ) (2 (1 () ) - (B4 L)
n i
1/2b2 1% 2 12 &
" i=1
g o =OP(%2)

b3
n? n

g
EG

“):@ux

3

where we have used the fact that 7, is i.i.d. to justify the third equality and Theorem 3.3 of

Jacod, Podolskij and Vetter (2010) to justify the fact that n ZlN:"l 1%
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