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isting first order asymptotic theory. We use empirical work to illustrate its use in practice.
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1 Introduction

Estimation of integrated volatility is complicated by the existence of market microstructure

noise. This noise represents the discrepancy between the true efficient price of an asset and

its observed counterpart and is caused by a multitude of market microstructure effects (such

as bid-ask bounds, the discreteness of price changes and the existence of rounding errors, the

gradual response of prices to a block trade, the existence of data recording errors such as prices

entered as zero, misplaced decimal points, etc).

In frictionless markets, and when the log-price process follows a continuous semimartingale,

realized volatility computed as the sum of squared intraday returns converges to the integrated

volatility as the sampling frequency goes to infinity (see e.g. Andersen, Bollerslev, Diebold, and

Labys (2001), Barndorff-Nielsen and Shephard (2002)). See also related work discussed in Jacod

and Protter (1998) and Barndorff-Nielsen and Shephard (2001). However, realized volatility

is no longer consistent for integrated volatility under the presence of market microstructure

noise. This has motivated the development of alternative estimators. One popular method is

the pre-averaging approach first introduced by Podolskij and Vetter (2009) and further studied

by Jacod et al. (2009). The basic underlying idea consists of first averaging out the noise by

computing pre-averaged returns and then computing a realized volatility-like estimator using

the pre-averaged returns. Although the pre-averaged realized volatility estimator is consistent

for integrated volatility, its convergence rate is much slower than that of realized volatility

(when there is no noise) and this can result in finite sample distortions that persist even at very

large sample sizes. For this reason, the bootstrap is a useful alternative method of inference in

this context.

In this paper, we propose a bootstrap method that can be used to estimate the distribution

and the variance of the pre-averaged realized volatility estimator of Jacod et al. (2009). Our

proposal is to resample the pre-averaged returns instead of resampling the original noisy returns.

To be valid, the bootstrap needs to mimic the dependence and heterogeneity properties of the

(squared) pre-averaged returns. When pre-averaging occurs over overlapping blocks of returns,

as in Jacod et al. (2009), the leading martingale part in the squared pre-averaged returns are

kn-dependent, where kn denotes the block length of the interval over which the pre-averaging

is done and n denotes the sample size. Since kn is proportional to
√
n, kn → ∞ as n → ∞,

which implies that the pre-averaged returns are strongly dependent. This suggests that a block

bootstrap applied to the pre-averaged returns is appropriate and its application amounts to a

“blocks of blocks” bootstrap, as proposed by Politis and Romano (1992) and further studied by

Bühlmann and Künsch (1995) (see also Künsch (1989)). Nevertheless, as we show here, such

a bootstrap scheme is not valid when volatility is time-varying. The reason is that squared

pre-averaged returns are heterogenously distributed (in particular, their mean and variance are
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time-varying) and this creates a bias term in the blocks of blocks bootstrap variance estimator

when volatility is stochastic. Thus, to handle both the dependence and heterogeneity of the

squared pre-averaged returns, we propose a novel bootstrap approach that combines the wild

bootstrap with the blocks of blocks bootstrap. We name this novel approach the wild blocks

of blocks bootstrap. One of our main contributions is to show that this method consistently

estimates the variance and the entire distribution of the pre-averaged estimator of Jacod et al.

(2009). We provide a proof of the first order asymptotic validity of this method for constructing

bootstrap unstudentized (percentile) as well as bootstrap studentized (percentile-t) intervals.

The pre-averaging approach can also be implemented with non-overlapping intervals, as in

Podolskij and Vetter (2009). However, the overlapping methods is expected to provide more

precise estimates of the integrated variance. We provide intuition of this in Section 2.2.

Gonçalves, Hounyo and Meddahi (2014) study the consistency of the wild bootstrap for

the non-overlapping estimator of Podolskij and Vetter (2009). The wild bootstrap exploits

the asymptotic independence of the pre-averaged returns when these are computed over non-

overlapping intervals. This method is no longer valid when overlapping intervals are used

to compute pre-averaged returns since these are strongly dependent. For this reason, a new

bootstrap method is needed for the Jacod et al.’s (2009) approach. Although the wild blocks

of blocks bootstrap that we propose here requires the choice of an additional tuning parameter

(the block size), we suggest an empirical procedure to select the block size that performs well

in our simulations.

Other estimators of integrated volatility that are consistent under market microstructure

noise include the subsampling approach of Zhang et al. (2005) (see also the multiscale realized

volatility estimator of Zhang (2006)) and the realized kernel estimator of Barndorff-Nielsen et

al. (2008) (the maximum likelihood-based estimator of Xiu (2010) is also a recent addition

to this literature). The bootstrap could also be useful for inference in the context of these

estimators. Indeed, Zhang et al. (2011) showed that the asymptotic normal approximation is

often inaccurate for the subsampling realized volatility estimator,1 whose finite sample distri-

bution is skewed and heavy tailed. They proposed Edgeworth corrections for this estimator

as a way to improve upon the standard normal approximation. Unfortunately, Zhang et al.

(2011) provided the Edgeworth corrections of the normalized statistic (where the denominator

equals the variance of the estimator in population) rather than studentized statistic (where

the denominator is a consistent estimator of the estimator’s variance), while Gonçalves and

Meddahi (2008) proved that Edgeworth corrections based on normalized statistic is worse than

the asymptotic theory when there is no noise.

The main reason why we focus on the pre-averaging approach here is that it naturally lends

1Similarly, Bandi and Russell (2011) discussed the limitations of asymptotic approximations in the context
of realized kernels and proposed an alternative solution.
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itself to the bootstrap. In particular, we resample the pre-averaged returns instead of the

individual returns and exploit the dependence and heterogeneity properties of the pre-averaged

returns to prove the consistency of the bootstrap.

The rest of this paper is organized as follows. In the next section, we first introduce the

setup, our assumptions and review the existing asymptotic theory of Jacod et al. (2009). Section

3 contains the bootstrap results. In Section 3.1 we show that the blocks of blocks bootstrap

is consistent only when volatility is constant whereas Section 3.2 describes the wild blocks of

blocks bootstrap and shows its consistency under stochastic volatility and i.i.d. noise. Section

4 presents the simulation results whereas Section 5 contains an empirical application. Section

6 concludes. Two appendices are provided. Appendix A contains the tables with simulation

results whereas Appendix B is a mathematical appendix with the proofs.

A word on notation. In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and

V ar∗) denotes the probability measure (expected value and variance) induced by the bootstrap

resampling, conditional on a realization of the original time series. In addition, for a sequence

of bootstrap statistics Z∗n, we write Z∗n = oP ∗ (1) in probability, or Z∗n →P ∗
0, as n → ∞,

in probability, if for any ε > 0, δ > 0, limn→∞ P [P ∗ (|Z∗n| > δ) > ε] = 0. Similarly, we write

Z∗n = OP ∗ (1) as n → ∞, in probability if for all ε > 0 there exists a Mε < ∞ such that

limn→∞ P [P ∗ (|Z∗n| > Mε) > ε] = 0. Finally, we write Z∗n →d∗ Z as n → ∞, in probability, if

conditional on the sample, Z∗n weakly converges to Z under P ∗, for all samples contained in a

set with probability P converging to one.

2 Setup, assumptions and review of existing results

2.1 Setup and assumptions

Let X denote the latent efficient log-price process defined on a probability space (Ω0,F0, P 0)

equipped with a filtration (F0
t )t≥0 . We model X as a Brownian semimartingale process defined

by the equation

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, t ≥ 0, (1)

where a = (at)t≥0 is an adapted càdlàg drift process, σ = (σt)t≥0 is an adapted càdlàg volatility

process and W = (Wt)t≥0 a standard Brownian motion.

The object of interest is the quadratic variation of X, i.e. the process

Ct =

∫ t

0

σ2
sds,

also known as the integrated volatility. Without loss of generality, we let t = 1 and define

C1 =
∫ 1

0
σ2
sds as the integrated volatility of X over a given time interval [0, 1], which we think

of as a given day.
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The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads,

gradual response of prices to block trades, etc, prevent us from observing the true efficient price

process X. Instead, we observe a noisy price process Y , observed at time points t = i
n

for

i = 0, . . . , n, given by

Yt = Xt + εt, (2)

where εt represents the noise term that collects all the market microstructure effects.

In order to make both X and Y measurable with respect to the filtration, we define a new

probability space
(
Ω, (Ft)t≥0 , P

)
, which accommodates both processes. To this end, we follow

Jacod et al. (2009) and assume one has a second space
(
Ω1, (F1

t )t≥0 , P
1
)
, where Ω1 denotes R[0,1]

and F1 the product Borel-σ-field on Ω1. Next, for any t ∈ [0, 1], we define Qt

(
ω(0), dy

)
to be the

probability measure on R, which corresponds to the transition from Xt

(
ω(0)

)
to the observed

process Yt. In the case of i.i.d. noise, this transition kernel is rather simple (see e.g. equation

(2.7) of Vetter (2008)), but it becomes more pronounced in a general framework. P 1
(
ω(0), dω(1)

)
denotes the product measure⊗t∈[0,1]Qt

(
ω(0), ·

)
. The filtered probability space

(
Ω, (Ft)t∈[0,1] , P

)
on which the process Y lives is then defined with Ω = Ω0×Ω1, F = F0×F1, Ft =

⋂
s>tF0

s×F1
s ,

and P
(
dω(0), dω(1)

)
= P 0

(
ω(0)

)
P 1
(
ω(0), dω(1)

)
.

We assume that εt is centered and independent, conditionally on the efficient price process

X. In addition, we assume that the conditional variance of εt is càdlàg. Assumption 1 below

collects these assumptions.

Assumption 1.

(i) E (εt|X) = 0 and εt and εs are independent for all t 6= s, conditionally on X.

(ii) αt = E (ε2t |X) is càdlàg and E (ε8t ) <∞.

Assumption 1 amounts to Assumption (K) in Jacod et al. (2009). As they explain, this

assumption is rather general, allowing for time varying variances of the noise and dependence

between X and ε. See Jacod et al. (2009) for particular examples of market microstructure noise

that satisfy Assumption 1. However, empirically the conditional independence assumption on

ε may be unrealistic especially at the highest frequencies (see e.g. Hansen and Lunde (2006)).

We will investigate the impact of autocorrelated noise on the bootstrap performance in Section

4.

2.2 The pre-averaged estimator and its asymptotic theory

We observe Y at regular time points i
n
, for i = 0, . . . , n, from which we compute n intraday

returns at frequency 1
n
,

ri ≡ Y i
n
− Y i−1

n
, i = 1, . . . , n.
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Given that Y = X + ε, we can write

ri =
(
X i

n
−X i−1

n

)
+
(
ε i
n
− ε i−1

n

)
≡rei + ∆εi,

where rei = X i
n
− X i−1

n
denotes the 1

n
-frequency return on the efficient price process. Under

Assumption 1, the order of magnitude of ∆εi ≡ ε i
n
− ε i−1

n
is OP (1) . In contrast, the ex-post

variation of rei is given by
∫ i/n
(i−1)/n σ

2
sds. The order of magnitude of rei is then OP

(
n−1/2

)
.

This decomposition shows that the noise completely dominates the observed return process as

n → ∞, implying that the usual realized volatility estimator is biased and inconsistent. See

Zhang et al. (2005) and Bandi and Russell (2008).

To describe the Jacod et al. (2009) pre-averaging approach, let kn be a sequence of integers

which will denote the window length over which the pre-averaging of returns is done. Similarly,

let g be a weighting function on [0, 1] such that g (0) = g (1) = 0 and
1∫
0

g (s)2 ds > 0, and assume

g is continuous and piecewise continuously differentiable with a piecewise Lipschitz derivative

g′. An example of a function that satisfies these restrictions is g (x) = min (x, 1− x) .

We introduce the following additional notation. Let

φ1 (s) =

1∫
s

g′ (u) g′ (u− s) du and φ2 (s) =

1∫
s

g (u) g (u− s) du,

and for i = 1, 2, let ψi = φi (0) . For instance, for g (x) = min (x, 1− x), we have that ψ1 = 1

and ψ2 = 1/12.

For i = 0, . . . , n−kn+1, the pre-averaged returns Ȳi are obtained by computing the weighted

sum of all consecutive 1
n
-horizon returns over each block of size kn,

Ȳi =
kn∑
j=1

g

(
j

kn

)
ri+j.

The effect of pre-averaging is to reduce the impact of the noise in the pre-averaged return.

Specifically, as shown by Vetter (2008),

X̄i =
kn∑
j=1

g

(
j

kn

)(
X i+j

n
−X i+j−1

n

)
= OP

(√
kn
n

)
,

and

ε̄i =
kn∑
j=1

g

(
j

kn

)(
ε i+j
n
− ε i+j−1

n

)
= OP

(
1√
kn

)
.

Thus, the impact of the noise is reduced the larger kn is. To get the efficient n−1/4 rate of

convergence, Jacod et al. (2009) propose to choose a sequence of integers kn such that the

following assumption holds.

6



Assumption 2. For θ ∈ (0,∞), we have that

kn√
n

= θ + o
(
n−1/4

)
. (3)

This choice implies that the orders of the two terms (X̄i and ε̄i) are balanced and equal to

OP

(
n−1/4

)
. An example that satisfies (3) is kn = [θ

√
n].

Based on the pre-averaged returns Ȳi, Jacod et al. (2009) propose the following estimator

of integrated volatility,

PRVn =
1

ψ2kn

n−kn+1∑
i=0

Ȳ 2
i −

ψ1

2nθ2ψ2

n∑
i=1

r2i , (4)

where ψ1 and ψ2 are as defined above.

The first term in (4) is an average of realized volatility-like estimators based on pre-averaged

returns of length kn whereas the second term is a bias correction term. As discussed in Jacod

et al. (2009), this bias term does not contribute to the asymptotic variance of PRVn.

In order to give the central limit theorem for PRVn, we introduce the following numbers

that are associated with g,

Φij =

1∫
0

φi (s)φj (s) ds, and Ψij = −
1∫

0

sφi (s)φj (s) ds.

For the simple function g (x) = min (x, 1− x), Φ11 = 1/6, Φ12 = 1/96 and Φ22 = 151/80640.

Under Assumption 1 and (kn, θ) satisfying (3), Jacod et al. (2009) show that as n→∞,

n1/4
(
PRVn −

∫ 1

0
σ2
sds
)

√
V

→st N(0, 1), (5)

where →st denotes stable convergence, and

V =
4

ψ2
2

∫ 1

0

(
Φ22θσ

4
s + 2Φ12

σ2
sαs
θ

+ Φ11
α2
s

θ3

)
ds (6)

is the conditional variance of PRVn. To estimate V consistently, Jacod et al. (2009) propose

V̂n =
4Φ22

3θψ4
2

n−kn+1∑
i=0

Y
4

i +
4

nθ3

(
Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) n−2kn+1∑
i=0

Y
2

i

i+2kn−1∑
j=i+kn

r2j

+
1

nθ3

(
Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) n−2kn+1∑
i=0

r2i r
2
i+2. (7)

Together with the CLT result (5), we have that

Tn ≡
n1/4

(
PRVn −

∫ 1

0
σ2
sds
)

√
V̂n

→st N(0, 1).
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We can use this feasible asymptotic distribution result to build confidence intervals for inte-

grated volatility. In particular, a two-sided feasible 100(1 − α)% level interval for
∫ 1

0
σ2
sds is

given by:

ICa
Feas,1−α =

(
PRVn − z1−α/2n−1/4

√
V̂n, PRVn + z1−α/2n

−1/4
√
V̂n

)
, (8)

where z1−α/2 is such that Φ
(
z1−α/2

)
= 1−α/2, and Φ (·) is the cumulative distribution function

of the standard normal distribution. For instance, z0.975 = 1.96 when α = 0.05.

Note that the pre-averaging approach can also be implemented with non-overlapping inter-

vals, as in Vetter (2008) and Podolskij and Vetter (2009). By Theorem 3.7 of Vetter (2008),

we can also build confidence intervals for integrated volatility based on the non-overlapping

pre-averaged realized volatility estimator. In particular, a two-sided feasible 100(1− α)% level

interval for
∫ 1

0
σ2
sds based on non-overlapping intervals, is given by:

ICPV
Feas,1−α =

(
PRV PV

n − z1−α/2n−1/4
√
V̂ PV
n , PRV PV

n + z1−α/2n
−1/4

√
V̂ PV
n

)
,

where PRV PV
n and V̂ PV

n are the non-overlapping pre-averaged realized volatility estimator and

a consistent estimator of the asymptotic variance, respectively. Following Corollary 3.3 and 3.6

of Vetter (2008), we have that

PRV PV
n =

1

ψ2

b nkn−1c∑
i=0

Ȳ 2
ikn −

ψ1

2nθ2ψ2

n∑
i=1

r2i , and V̂ PV
n =

2
√
n

3ψ2
2

b nkn−1c∑
i=0

Ȳ 4
ikn .

It is well known that the pre-averaged estimator based on overlapping blocks is more effi-

cient than the pre-averaged estimator based on non-overlapping returns. In particular, for the

parametric model of zero drift, constant volatility σ > 0 and constant conditional variance

of εt, αt = α > 0, if we choose for example the weight function g (x) = min (x, 1− x), some

simple derivations shows that the ”optimal” choice of θ which minimizes the asymptotic vari-

ance V given in (6) is approximately equal to 4.777
√
α/σ. Under this special setting, using

θ = 4.777
√
α/σ, the non-overlapping pre-averaged estimator of Podolskij and Vetter (2009) has

an asymptotic variance that is approximately equal to 20.11σ3
√
α, whereas the overlapping es-

timator of Jacod et al. (2009) has a variance equal to 8.545σ3
√
α (this is very close to the lower

bound 8σ3
√
α derived by Gloter and Jacod (2001)). Therefore, based on efficiency, we should

choose the overlapping approach of Jacod et al. (2009) rather than the non-overlapping one.

However, as shown by our simulation results (see Appendix A), we find that the pre-averaging

approach leads to important coverage probability distortions when returns are not sampled

too frequently. This motivates Gonçalves, Hounyo and Meddahi (2014) to propose the wild

bootstrap as alternative method of inference for the Podolskij and Vetter’s (2009) estimator.

Here, we focus on bootstrapping the more efficient pre-averaged realized volatility estimator of
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Jacod et al. (2009).

3 The bootstrap

The goal of this section is to propose a bootstrap method that can be used to consistently

estimate the distribution of n1/4
(
PRVn −

∫ 1

0
σ2
sds
)

as well as for the studentized statistic

n1/4
(
PRVn −

∫ 1

0
σ2
sds
)
/
√
V̂n. This justifies the construction of bootstrap percentile and percentile-

t confidence intervals for integrated volatility, respectively.

Gonçalves and Meddahi (2009) proposed bootstrap methods for realized volatility in the

absence of market microstructure noise. In their ideal setting, intraday returns ri (conditionally

on the path of the volatility σ and the drift a) are uncorrelated, but possibly heteroskedastic

due to stochastic volatility, thus motivating the use of a wild bootstrap method.

When intraday returns are contaminated by market microstructure noise, they are no longer

conditionally uncorrelated, as in Gonçalves and Meddahi (2009). This implies that the wild

bootstrap is no longer valid when applied to ri. Instead, a block bootstrap method applied to

the intraday returns would seem appropriate.

One complication arises in this context: the statistic of interest is not symmetric in the

observations and the block bootstrap generates blocks of observations that are conditionally

independent. In particular, since the first term in PRVn is an average of the squared pre-

averaged returns Ȳ 2
i , it depends on all the products of intraday returns inside blocks of size

kn. If we generate block bootstrap intraday returns, these will be independent between blocks,

implying that the bootstrap statistic may look at many pairs of intraday returns that are

independent in the bootstrap world. This not only renders the analysis very complicated

but can induce biases in the bootstrap estimator. To avoid this problem when dealing with

statistics that are not symmetric in the underlying observations, Künsch (1989), Politis and

Romano (1992) and Bühlmann and Künsch (1995) studied the “blocks of blocks” bootstrap,

where one applies the block bootstrap to appropriately pre-specified blocks of observations. In

our context, the blocks of blocks bootstrap consists of applying a traditional block bootstrap

to the squared pre-averaged returns Ȳ 2
i . As we will see next, this approach is not valid when

volatility is time-varying. The reason is that when volatility is stochastic, squared pre-averaged

returns are not only dependent but also heterogeneous. The block bootstrap does not capture

this heterogeneity unless volatility is constant2. In order to capture both the time dependence

and the heterogeneity in Ȳ 2
i , we propose a novel bootstrap procedure that combines the wild

bootstrap with the block bootstrap.

Although the consistent estimator of integrated volatility is PRVn, only the first term in

2See Gonçalves and White (2002) for a discussion of the impact of mean heterogeneity on the validity of the
block bootstrap for the sample mean.
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PRVn drives the variance of the limiting distribution of PRVn. In particular, as Jacod et al.

(2009) have shown, the second term is a bias correction term which does not contribute to

the asymptotic variance (it only ensures that the estimator is well centered at the integrated

volatility). For this reason, our proposal is to bootstrap only the first contribution to PRVn,

P̃RV n =
1

ψ2kn

n−kn+1∑
i=0

Ȳ 2
i .

This statistic depends only on the pre-averaged returns, to which we apply a particular boot-

strap scheme. More specifically, let
{
Ȳ ∗i : i = 0, 1, . . . , n− kn + 1

}
denote a bootstrap sample

from
{
Ȳi : i = 0, 1, . . . , n− kn + 1

}
. The bootstrap analogue of PRVn is

PRV ∗n = P̃RV
∗
n −

ψ1

2nθ2ψ2

n∑
i=1

r2i ,

where3

P̃RV
∗
n =

1

ψ2kn

n−kn+1∑
i=0

Ȳ ∗2i .

Since the (conditional) expected value of n1/4 (PRV ∗n − PRVn) induced by the bootstrap resam-

pling methods considered in this paper is not always zero, we center PRV ∗n around E∗ (PRV ∗n ) .

Thus, we use the bootstrap distribution of

n1/4 (PRV ∗n − E∗ (PRV ∗n )) = n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
as an estimator of the distribution4 of n1/4

(
PRVn −

∫ 1

0
σ2
sds
)

.

Next, we consider the blocks of blocks bootstrap approach applied to P̃RV n and show that

it is asymptotically invalid when volatility is time-varying. This motivates a new bootstrap

method that combines the wild bootstrap with the block bootstrap, which we study in the last

subsection.

3.1 The blocks of blocks bootstrap

To describe this approach, let Nn = n−kn + 2 denote the total number of pre-averaged returns

and let bn denote the block size. We suppose that Nn = Jn ·bn, so that Jn denotes the number of

blocks of size bn one needs to draw to get Nn = n−kn+2 bootstrap observations. The blocks of

3This implies that our bootstrap statistic actually contains the bias term. Nevertheless, since this term is
evaluated on the original sample rather than on the bootstrap data, our bootstrap method does not capture the
added uncertainty caused by estimation of this term. Our simulations show that despite this, the bootstrap is
very accurate, outperforming the asymptotic normal approximation.

4In particular, we can explicitly compute the bootstrap expectation of P̃RV
∗
n (and we do so in (9) and (14)),

for the blocks of blocks bootstrap and the wild blocks of blocks bootstrap, respectively. For instance, under
the wild blocks of blocks bootstrap scheme, using an external random variable η with mean 1, it follows that
E∗ (PRV ∗n ) = PRVn.
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blocks bootstrap generates a bootstrap resample
{
Ȳ ∗i−1 : i = 1, . . . , Nn

}
by applying the moving

blocks bootstrap of Künsch (1989) to the scaled pre-averaged returns
{
Ȳi−1 : i = 1, . . . , Nn

}
.

Letting I1, . . . , IJn be i.i.d. random variables distributed uniformly on {0, 1, . . . , Nn − bn},
we set

Ȳ ∗i−1+(j−1)bn = Ȳi−1+Ij for 1 ≤ j ≤ Jn and 1 ≤ i ≤ bn.

The bootstrap analogue of P̃RV n is

P̃RV
∗
n =

1

ψ2kn

Nn∑
i=1

Ȳ ∗2i−1 =
1

Jn

Jn∑
j=1

 1

bn

bn∑
i=1

Nn

kn

1

ψ2

Ȳ 2
Ij+i−1︸ ︷︷ ︸

≡ZIj+i

 ,

where we let Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1. Note that in our setup, Ȳi = X̄i + ε̄i = OP

(
n−1/4

)
given that

kn is such that kn/
√
n = θ + o

(
n−1/4

)
. This implies that Ȳ 2

i−1 = OP

(
n−1/2

)
and therefore

Zi = n−kn+2
kn

1
ψ2
Ȳ 2
i−1 is OP (1).

We can easily show that

E∗
(
P̃RV

∗
n

)
=

1

Jn

Jn∑
j=1

E∗

(
1

bn

bn∑
i=1

ZIj+i

)
=

1

Nn − bn + 1

Nn−bn∑
j=0

(
1

bn

bn∑
i=1

Zj+i

)
. (9)

Similarly,

V ∗n ≡ V ar∗
(
n1/4P̃RV

∗
n

)
=
√
nE∗

( 1

Jn

Jn∑
j=1

1

bn

bn∑
i=1

(
ZIj+i − E∗

(
P̃RV

∗
n

)))2


=
√
n

1

Jn
E∗

(
1

bn

bn∑
i=1

(
ZI1+i − E∗

(
P̃RV

∗
n

)))2

=
√
n
bn
Nn

1

Nn − bn + 1

Nn−bn∑
j=0

(
1

bn

bn∑
i=1

(
Zj+i − E∗

(
P̃RV

∗
n

)))2

. (10)

Our next result studies the convergence of V ∗n when bn = (p+ 1) kn, and p ≥ 1 is either fixed

as n→∞ or p→∞ after n→∞ (which we denote by writing (n, p)seq →∞). To emphasize

the dependence of V ∗n on p we write V ∗n,p.

Lemma 3.1 Suppose Assumption 1 holds and kn → ∞ as n → ∞ such that Assumption 2

holds. Let V ∗n,p ≡ V ar∗
(
n1/4P̃RV

∗
n

)
denote the moving blocks bootstrap variance of n1/4P̃RV

∗
n

based on a block length equal to bn = (p+ 1) kn, where p ≥ 1. Then,

a) For any fixed p ≥ 1, as n→∞,

V ∗n,p
P−→ Vp +Bp,

11



where

Vp =

∫ 1

0

γ2 (p)t dt

with

γ2 (p)t =
4

ψ2
2

[(
Φ22 +

1

p+ 1
Ψ22

)
θσ4

t + 2

(
Φ12 +

1

p+ 1
Ψ12

)
σ2
tαt
θ

+

(
Φ11 +

1

p+ 1
Ψ11

)
α2
t

θ3

]
,

and

Bp = θ (p+ 1)

[∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt−
(∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)
dt

)2
]
.

b) When σt = σ and αt = α are constants, Bp = 0 for any p ≥ 1 and Vp
P−→ V ≡

limn→∞ V ar
(
n1/4PRVn

)
as p→∞. In this case, V ∗n,p

P−→ V as (n, p)seq →∞.

c) More generally, when σt and/or αt are stochastic, V ∗n,p
P−→∞ as (n, p)seq →∞.

Part a) of Lemma 3.1 shows that when the bootstrap block size bn is a fixed proportion of

the pre-averaging block size kn, the blocks of blocks bootstrap variance converges in probability

to Vp +Bp, where Bp is a bias term due to the fact that volatility is time-varying. When both

the volatility σt and αt, the conditional variance of εt, are constants, Bp is equal to zero for any

value of p. If p→∞ (i.e. if bn/kn →∞ as n→∞), then Vp
P−→ V , the asymptotic variance of

n1/4PRVn. Therefore, under these conditions, V ∗n,p
P−→ V as (n, p)→∞ sequentially. Although

this result does not necessarily imply the consistency of V ∗n,p towards V as (n, p) → ∞ jointly

(because sequential convergence does not by itself imply joint convergence), it is a first step in

that direction (see in particular Lemma 6 of Phillips and Moon, 1999). We do not pursue the

derivation of the joint limit of V ∗n,p here because that would distract us from the main message

of Lemma 3.1, which is the invalidity of the blocks of blocks bootstrap variance estimator when

σt and/or αt are time varying. In this more general and practically relevant case, part c) of

Lemma 3.1 shows that V ∗n,p diverges to ∞ in probability as (n, p)seq →∞. The main reason for

this inconsistency result is that Bp
P−→∞ as p→∞. Notice that even though the limit derived

in part c) is sequential, we can conclude that the same result holds as (n, p)→∞ jointly. The

argument is as follows. Suppose it was the case that V ∗n,p
P−→ V ≡ limV ar

(
n1/4PRVn

)
, as

(n, p) → ∞ jointly. Then by Lemma 5 of Phillips and Moon (1999), we should have that

V ∗n (p)
P−→ V sequentially as (n, p)seq →∞, which is in contradiction with the result of part c).

Hence, V ∗n,p cannot converge in probability to V , as (n, p)→∞ jointly. More generally, we can

show that if the joint limit of V ∗n,p exists, then by the same argument, it must coincide with the

sequential limit. Since we actually proved that V ∗n,p
P−→ ∞ sequentially as (n, p)seq → ∞, this

implies V ∗n,p must diverge as (n, p)→∞ jointly.

Lemma 3.1 suggests that the blocks of blocks bootstrap is consistent for the variance of

PRVn only under constant volatility, constant conditional variance of noise and if we let the
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bootstrap block size bn grow at a faster rate than the pre-averaging block size kn. This result

is related to a consistency result of the blocks of blocks bootstrap established in Bühlmann

and Künsch (1995). As they showed, when the statistic of interest is an average of smooth

functions of blocks of consecutive stationary strong mixing observations of size kn, where kn

tends to infinity, the crucial condition for the block bootstrap to be valid is that the block size

bn grows at a faster rate than kn. This is because the blocks over kn observations (which in

our case correspond to the pre-averaged returns) are strongly dependent for |i− j| ≤ kn, where

kn → ∞, and bn must be large enough to capture this dependence. Bühlmann and Künsch

(1995) consider observations generated from a stationary strong mixing process and therefore

they do not find any bias problem related to heterogeneity. Nevertheless, this becomes a

problem in our context when volatility is stochastic. Therefore, a different bootstrap method

is required to handle both the time dependence and the heterogeneity of pre-averaged returns.

Note that the inconsistency of the blocks of blocks bootstrap variance estimator for the

asymptotic variance of PRVn when the volatility is time-varying is not in contrast to the i.i.d.

bootstrap results in Gonçalves and Meddahi (2009) for realized volatility (in the absence of

noise). In particular, the i.i.d. bootstrap variance estimator of Gonçalves and Meddahi (2009)

(cf. page 287) for the asymptotic variance of the realized volatility is given by

n
n∑
i=1

(rei )
4 −

(
n∑
i=1

(rei )
2

)2

→ P 3

∫ 1

0

σ4
t dt−

(∫ 1

0

σ2
t dt

)2

︸ ︷︷ ︸
≡VGM<∞

,

which is equal to 2
∫ 1

0
σ4
t dt (i.e. the asymptotic conditional variance of the realized volatility)

only when the volatility is constant.

This means that even in the absence of noise, when the volatility is time-varying we would

not use the i.i.d. bootstrap method of Gonçalves and Meddahi (2009)) to compute standard

errors of statistics based on functional of realized volatility. However, note that although the

i.i.d. bootstrap method in Gonçalves and Meddahi (2009) does not consistently estimate the

asymptotic variance of realized volatility, their bootstrap method is still asymptotically valid

for studentized (percentile-t) bootstrap intervals. This is not necessary the case for the blocks

of blocks bootstrap method applied to PRVn. The main reason is that when the volatility is

time-varying, and the bootstrap block size bn grow faster than kn (i.e., the more realistic case

of choice of bn), V ∗n,p
P−→∞ as (n, p)→∞ jointly.

4 The wild blocks of blocks bootstrap

In this section, we propose and study the consistency of a novel bootstrap method for pre-

averaged returns based on overlapping blocks of kn intraday returns. It combines the blocks

13



of blocks bootstrap with the wild bootstrap and in this manner gets rid of the bias term Bp

associated with the blocks of blocks bootstrap variance V ∗n in (10).

Here, let bn a sequence of integers such that

bn ∝ nδ, (11)

where δ ∈ (0, 1), and assume that Jn is such that Jn · bn = Nn. Let υ1, . . . , υJn be i.i.d. random

variables whose distribution is independent of the original sample. Denote by µ∗q = E∗
(
υqj
)

its

q-th order moments. For j = 1, . . . , Jn, let

B̄j =
1

bn

bn∑
i=1

Ȳ 2
i−1+(j−1)bn

denote the block average of the squared pre-averaged returns Ȳ 2
i−1+(j−1)bn for block j, we also

let ηj = v2j . We then generate the bootstrap pre-averaged squared returns as follows,

Ȳ ∗2i−1+(j−1)bn = B̄j+1 +
(
Ȳ 2
i−1+(j−1)bn − B̄j+1

)
ηj, for 1 ≤ j ≤ Jn − 1 and for 1 ≤ i ≤ bn. (12)

For the last block j = Jn, B̄j+1 is not available and therefore we let

Ȳ ∗2i−1+(j−1)bn = B̄j +
(
Ȳ 2
i−1+(j−1)bn − B̄j

)
ηj, for 1 ≤ i ≤ bn. (13)

Our method is related to the wild bootstrap approach of Wu (1986) and Liu (1988). More

specifically, in Wu (1986) and Liu (1988), the statistic of interest is X̄n, where Xi is indepen-

dently but heterogeneously distributed with mean µi and variance σ2
i . Their wild bootstrap

generates X∗i as

X∗i = X̄n +
(
Xi − X̄n

)
ηi, for 1 ≤ i ≤ n,

where ηi is i.i.d. (0, 1). Liu (1988) shows that the bootstrap distribution of
√
n
(
X̄∗n − X̄n

)
is

consistent for the distribution of
√
n
(
X̄n − µ̄n

)
, where µ̄n = n−1

∑n
i=1 µi, provided

1
n

∑n
i=1 (µi − µ̄n)2 → 0 (and some other regularity conditions).

Our bootstrap method can be seen as a generalization of the wild bootstrap of Wu (1986)

and Liu (1988) to the kn-dependent case. In particular, here the statistic of interest is an

average of blocks of observations of size kn,

P̃RV n =
1

Nn

Nn∑
i=1

Zi,

where Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1 has time-varying moments and is kn-dependent (conditionally on X), i.e.

Zi is independent of Zj for all |i− j| > kn.

To preserve the serial dependence, we divide the data into Jn non-overlapping blocks of

size bn and generate the bootstrap observations within a given block j using the same external

random variable ηj. This preserves the dependence within each block. When there is no
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dependence, we can take bn = 1, in which case our bootstrap method amounts to Liu’s wild

bootstrap with one difference: instead of centering each bootstrap observation Z∗i around the

overall mean P̃RV n, we center Z∗i around Zi+1. The reason for the new centering is that

µi in our context does not satisfy Liu’s condition 1
n

∑n
i=1 (µi − µ̄n)2 → 0 (unless volatility is

constant). Hence centering around P̃RV n does not work here. Instead, we show that centering

around Zi+1 yields an asymptotically valid bootstrap method for P̃RV n even when volatility

is stochastic.

The bootstrap data generating process (12) and (13) yields a bootstrap sample
{
Ȳ ∗20 , . . . , Ȳ ∗2Nn−1

}
which we use to compute

P̃RV
∗
n =

1

ψ2kn

Nn∑
i=1

Ȳ ∗2i−1,

the wild blocks of blocks bootstrap analogue of P̃RV n. Let

B̄∗j =
1

bn

bn∑
i=1

Ȳ ∗2i−1+(j−1)bn

be the bootstrap analogue of B̄j. Given (12), we have that for j = 1, . . . , Jn − 1,

B̄∗j = B̄j+1 +
(
B̄j − B̄j+1

)
ηj,

whereas from (13), B̄∗j = B̄j for j = Jn. This implies that we can write

P̃RV
∗
n =

bn
ψ2kn

Jn∑
j=1

1

bn

bn∑
i=1

Ȳ ∗2i−1+(j−1)bn =
bn
ψ2kn

Jn−1∑
j=1

B̄∗j +
bn
ψ2kn

B̄∗Jn

=
bn
ψ2kn

Jn−1∑
j=1

[
B̄j+1 +

(
B̄j − B̄j+1

)
ηj
]

+
bn
ψ2kn

B̄Jn .

We can now easily obtain the bootstrap mean and variance of PRV ∗n . In particular,

E∗
(
P̃RV

∗
n

)
=

bn
ψ2kn

(
Jn−1∑
j=1

B̄j+1 + B̄Jn

)
+

bn
ψ2kn

Jn−1∑
j=1

(
B̄j − B̄j+1

)
E∗ (ηj) , (14)

and

V ∗n ≡ V ar∗
(
n1/4P̃RV

∗
n

)
=
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

(
B̄j − B̄j+1

)2
V ar∗ (ηj) .

Our next result studies the convergence of V ∗n when bn satisfies (11) such that 1/2 < δ < 2/3.

To prove the consistency of V ∗n for V we impose the following additional condition.

Assumption 3. σt is locally bounded away from zero and is a continuous semimartingale.

This assumption rule out jumps in σt and is common in the realized volatility literature
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(e.g., equation (3) of Barndorff-Nielsen et al. (2008) or equation (3) of Gonçalves and Meddahi

(2009)). We can prove the following results.

Lemma 4.1 Suppose Assumptions 1, 2 and 3 hold and the block size bn satisfies (11) such that

1/2 < δ < 2/3. Let V ∗n ≡ V ar∗
(
n1/4P̃RV

∗
n

)
denote the wild blocks of blocks bootstrap variance

of n1/4P̃RV
∗
n based on a block length equal to bn and external random variables ηj ∼ i.i.d. with

mean E∗ (ηj) and variance V ar∗ (ηj) = 1/2. Then,

p lim
n→∞

V ∗n = V ≡ lim
n→∞

V ar
(
n1/4PRVn

)
,

This result shows that if we let δ > 1/2, i.e., bn grow faster than kn (i.e., bn/kn → ∞)

but such that bn/n → 0 and V ar∗ (ηj) = 1/2, the wild blocks bootstrap variance estimator

is consistent for the asymptotic variance of PRVn under Assumptions 1, 2 and 3. Given the

consistency of the bootstrap variance estimator, and the fact that it is possible to obtain an

exact and explicit formula of V ∗n , one may simply use V ∗n in place of V̂n given by (7) as

alternative consistent estimator of V . Together with the CLT result (5), we have that

n1/4
(
PRVn −

∫ 1

0
σ2
sds
)

√
V ∗n

→st N(0, 1).

As alternative method of inference (which does not require any resampling of one’s data), we

can use this feasible asymptotic distribution result to build confidence intervals for integrated

volatility. In particular, a two-sided feasible 100(1− α)% level interval for
∫ 1

0
σ2
sds is given by:

ICb
Feas,1−α =

(
PRVn − z1−α/2n−1/4

√
V ∗n , PRVn + z1−α/2n

−1/4
√
V ∗n

)
, (15)

where

V ∗n =
n1/2b2n
2ψ2

2k
2
n

Jn−1∑
j=1

(
B̄j − B̄j+1

)2
, (16)

z1−α/2 is such that Φ
(
z1−α/2

)
= 1 − α/2, and Φ (·) is the cumulative distribution function of

the standard normal distribution.

The structure of the wild blocks of blocks bootstrap method somehow seems to be related

to the ideas in the recent paper of Mykland and Zhang (2014). To see this, it may be helpful

to rewrite V ∗n given by (16) as follows

V ∗n = n1/2 ·

[
1

2

Jn−1∑
j=1

(
B̂j+1 − B̂j

)2]
, (17)

where

B̂j =
1

ψ2kn

bn∑
i=1

Ȳ 2
i−1+(j−1)bn
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denote the analogue of P̃RV n computed for the block j. Hence, one can show that the formula

for V ∗n (given by (17)) is related to the general nonparametric method proposed by Mykland

and Zhang (2014). In particular, given results in equations (7) and (11) in Mykland and Zhang

(2014), it is easy to see that under some regularity conditions the asymptotic variance (AVAR)

of many estimators, say Θ =
∫ 1

0
θ̃tdt, in the high-frequency literature can be estimated based

on

ÂVAR
(

Θ̂−Θ
)

=
1

2

Jn−1∑
j=1

(
Θ̂j+1 − Θ̂j

)2
, (18)

where Θ̂j is the estimator Θ calculated on the j-th block and such that Θj =
∫ jbn/n
(j−1)bn/n θ̃tdt.

More precisely, under some regularity conditions (including negligible edge effect and continuous

spot process θ̃t) equations (7) and (11) in Mykland and Zhang (2014) amount to,

Jn−1∑
j=1

(
Θ̂j+1 − Θ̂j

)2
=

(
2
Jn−1∑
j=1

AVAR
(

Θ̂j −Θj

)
+

2

3

(
bn
n

)2 [
θ̃, θ̃
]
1

)
(1 + op (1)) , (19)

and

AVAR
(

Θ̂−Θ
)

=

(
Jn−1∑
j=1

AVAR
(

Θ̂j −Θj

))
(1 + op (1)) , (20)

respectively, where
[
θ̃, θ̃
]
1

is the total quadratic variation of the spot process θ̃t over the whole

interval from 0 to 1. Given (19) and (20), it follows that

AVAR
(

Θ̂−Θ
)

=
1

2

Jn−1∑
j=1

(
Θ̂j+1 − Θ̂j

)2
− 4

3

(
bn
n

)2 [
θ̃, θ̃
]
1

(1 + op (1)) . (21)

Thus, if bn
n

can be taken to be small enough, then one can simply use (18), i.e., a one scale

estimator by ignoring the
[
θ̃, θ̃
]
1

term. Note that given the normalization of AVAR in Mykland

and Zhang (2014) (cf. footnote 1), we have AVAR=AVARn = n−2αV , where Θ̂ is such that

nα
(

Θ̂−Θ
)
→st N(0, V ), for some α > 0. Thus, in our context, the one scale estimator formula

applied to Θ̂ = P̃RV n with α = 1/4, gives

ÂVAR
(

Θ̂−Θ
)

=
1

2

Jn−1∑
j=1

(
B̂j+1 − B̂j

)2
= n−1/2V ∗n .

We emphasize that the paper by Mykland and Zhang (2014) goes much further in developing

the asymptotic variance estimator, including estimators with hard edge effect and allowing non

continuous spot process. In particular, Mykland and Zhang (2014) show that by subsampling

and averaging one can still use a result akin to (19) when θ̃t is a general semimartingale. In

addition, they argue that subsampling and averaging can at the same time help to deal with

hard edge effect (which can lead the additivity in (20) to fail. Thus, the final estimator is more
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complicated and is based on two- or multi-scale construction. Their approach aims to avoid using

the information on the asymptotic variance of Θ̂ (for instance, no need to know the closed form

of the AVAR). However, this is not without consequences for their method. For example they

have to introduce an additional layer of blocks to implement the bias-correction term. The

asymptotic variance estimator of Θ̂ can also go negative in finite samples, which is not the

case of the bootstrap. This relationship with Mykland and Zhang (2014), in particular the way

both method managed blocks of adjacent summands suggests that our wild blocks of blocks

bootstrap approach may be applied very generally in the field of nonparametric estimation with

infill asymptotic. The exploration of this is beyond the scope of this paper.

Our next result proves the consistency of the bootstrap distribution of n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
.

Theorem 4.1 Suppose Assumptions 1, 2 and 3 hold such that for any ε ≥ 2, E
(
ε
4(2+ε)
t

)
<∞,

and the block size bn satisfies (11) such that 1/2 < δ < 2/3. Let P̃RV
∗
n be the pre-averaged

realized volatility estimator based on a block length equal to bn and an external random variable

ηj ∼ i.i.d. (E∗ (ηj) , V ar
∗ (ηj)) such that V ar∗ (ηj) = 1

2
, and for some ε ≥ 2 E∗ |ηj|2+ε ≤ ∆ <

∞. Then

sup
x∈R

∣∣∣∣P ∗ (n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
≤ x

)
− P

(
n1/4

(
PRVn −

∫ 1

0

σ2
sds

)
≤ x

)∣∣∣∣→P 0 as n→∞.

Theorem 4.1 justifies using the wild blocks of blocks bootstrap to construct bootstrap per-

centile intervals for integrated volatility. Specifically, a 100 (1− α) % symmetric bootstrap

percentile interval for integrated volatility based on the bootstrap is given by

IC∗perc,1−α =
(
PRVn − n−1/4p∗1−α, PRVn + n−1/4p∗1−α

)
, (22)

where p∗1−α is the 1−α quantile of the bootstrap distribution of
∣∣∣n1/4

(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))∣∣∣ .
Next, we propose a consistent bootstrap variance estimator that allows us to form bootstrap

percentile-t intervals. More specifically, we can show that the following bootstrap variance

estimator consistently estimates V ∗n for any choice of the external random variable ηj:

V̂ ∗n =
n1/2b2n
ψ2
2k

2
n

V ar∗ (η)

E∗ (η2)

Jn−1∑
j=1

(
B̄∗j − B̄j+1

)2
.

Our proposal is to use this estimator to construct a bootstrap studentized statistic,

T ∗n ≡
n1/4

(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
√
V̂ ∗n

,

the bootstrap analogue of Tn.
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Theorem 4.2 Suppose Assumptions 1, 2 and 3 hold such that for any ε ≥ 2, E
(
ε
4(2+ε)
t

)
<∞,

and the block size bn satisfies (11) such that 1/2 < δ < 2/3. Let P̃RV
∗
n be the pre-averaged

realized volatility estimator based on a block length equal to bn and an external random variable

ηj ∼ i.i.d. (E∗ (ηj) , V ar
∗ (ηj)) such that for some ε ≥ 2 E∗ |ηj|2+ε ≤ ∆ <∞. Then

sup
x∈R
|P ∗ (T ∗n ≤ x)− P (Tn ≤ x)| →P as n→∞.

Theorem 4.2 justifies constructing bootstrap percentile-t intervals. In particular, a 100 (1− α) %

symmetric bootstrap percentile-t interval for integrated volatility is given by

IC∗aperc−t,1−α =

(
PRVn − q∗1−αn−1/4

√
V̂n, PRVn + q∗1−αn

−1/4
√
V̂n

)
, (23)

or alternatively we can use

IC∗bperc−t,1−α =
(
PRVn − q∗1−αn−1/4

√
V ∗n , PRVn + q∗1−αn

−1/4
√
V ∗n

)
, (24)

where q∗1−α is the (1− α)-quantile of the bootstrap distribution of |T ∗n |.

5 Monte Carlo results

In this section, we compare the finite sample performance of the bootstrap with the feasible

asymptotic theory for confidence intervals of integrated volatility in the case of i.i.d. and

autocorrelated market microstructure noise.

We consider two data generating processes in our simulations. First, following Zhang et

al. (2005), we use the one-factor stochastic volatility (SV1F) model of Heston (1993) as our

data-generating process, i.e.

dXt = (µ− νt/2) dt+ σtdBt,

and

dνt = κ (α̃− νt) dt+ γ (νt)
1/2 dWt,

where νt = σ2
t , and we assume Corr(B,W ) = ρ. The parameter values are all annualized.

In particular, we let µ = 0.05/252, κ = 5/252, α̃ = 0.04/252, γ = 0.05/252, ρ = −0.5. For

i = 1, . . . , n, we let the market microstructure noise be defined as ε i
n
∼ i.i.d.N (0, α). The size

of the noise is an important parameter. We follow Barndorff-Nielsen et al. (2008) and model

the noise magnitude as ξ2 = α/
√∫ 1

0
σ4
sds. We fix ξ2 equal to 0.0001, 0.001 and 0.01 and let

α = ξ2
√∫ 1

0
σ4
sds. These values are motivated by the empirical study of Hansen and Lunde

(2006), who investigate 30 stocks of the Dow Jones Industrial Average.

We also consider a more realistic two-factor stochastic volatility (SV2F) model analyzed by
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Barndorff-Nielsen et al. (2008), where5

dXt = adt+ σtdWt,

σt = s-exp (β0 + β1τ1t + β2τ2t) ,

dτ1t = α̃1τ1tdt+ dB1t,

dτ2t = α̃2τ2tdt+ (1 + φτ2t) dB2t,

corr (dWt, dB1t) = ϕ1, corr (dWt, dB2t) = ϕ2.

We follow Huang and Tauchen (2005) and set a = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5,

α̃1 = −0.00137, α̃2 = −1.386, φ = 0.25, ϕ1 = ϕ2 = −0.3. We initialize the two factors at the

start of each interval by drawing the persistent factor from its unconditional distribution, τ10 ∼
N
(

0, −1
2α̃1

)
, and by starting the strongly mean-reverting factor at zero.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23400, so that

[0, 1] is thought to span 6.5 hours. The observed Y process is generated using an Euler scheme.

We then construct the 1
n
-horizon returns ri ≡ Yi/n − Y(i−1)/n based on samples of size n.

We use two different values of θ: θ = 1/3, as in Jacod et al. (2009), and θ = 1, as in

Christensen, Kinnebrock and Podolskij (2010). The latter value corresponds to a conservative

choice of kn. We also follow the literature and use the weight function g (x) = min (x, 1− x) to

compute the pre-averaged returns.

In order to reduce finite sample biases associated with Riemann integrals, we follow Jacod

et al. (2009) and Hautsch and Podolskij (2013) and use the finite sample adjustments version

of the pre-averaged realized volatility estimator,

PRV a
n =

(
1− ψkn1

2nθ2ψkn2

)−1(
n

n− kn + 2

1

ψkn2 kn

n−kn+1∑
i=0

Ȳ 2
i −

ψkn1
2nθ2ψkn2

n∑
i=1

r2i

)
,

where ψkn1 = kn
kn∑
i=1

(
g
(

i
kn

)
− g

(
i−1
kn

))2
and ψkn2 = 1

kn

kn∑
i=1

g2
(

i
kn

)
. Similarly, V̂n as defined in

(7) replaces Φ11, Φ12 and Φ22 by their Riemann approximations,

Φkn
11 = kn

(
kn∑
i=1

(
φkn1 (j)

)2 − 1

2

(
φkn1 (0)

)2)
, Φkn

12 =
1

kn

(
kn∑
i=1

φkn1 (j)φkn2 (j)− 1

2
φkn1 (0)φkn2 (0)

)
, and

Φkn
22 =

1

k3n

(
kn∑
i=1

(
φkn2 (j)

)2 − 1

2

(
φkn2 (0)

)2)
,

5The function s-exp is the usual exponential function with a linear growth function splined in at high values

of its argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√
x0−x2

0+x2
if x > xo, with x0 = log(1.5).

20



where

φkn1 (j) = kn

kn−1∑
i=j+1

(
g

(
i− 1

kn

)
− g

(
i

kn

))(
g

(
i− j − 1

kn

)
− g

(
i− j
kn

))
, and

φkn2 (j) =
kn−1∑
i=j+1

g

(
i

kn

)
g

(
i− j
kn

)
.

Tables 1, 2, 3 and 4 give the actual rates of 95% confidence intervals of integrated volatility

as well as the average lengths of the confidence intervals for the SV1F and the SV2F models,

respectively, computed over 10,000 replications. Results are presented for eight different sam-

ples sizes: n = 23400, 11700, 7800, 4680, 1560, 780, 390 and 195, corresponding to “1-second”,

“2-second”, “3-second”, “5-second”, “15-second”, “30-second”, “1-minute” and “2-minute” fre-

quencies. In our simulations, bootstrap intervals use 999 bootstrap replications for each of the

10,000 Monte Carlo replications. We consider the bootstrap percentile method computed at

the 95% level. To generate the bootstrap data we use a two point distribution ηj = v2j with

vj ∼ i.i.d. such that:

vj =

{ (
1
2

)1/4 −1+√5
2

, with prob p =
√
5−1
2
√
5(

1
2

)1/4 −1−√5
2

, with prob 1− p =
√
5+1
2
√
5

,

for which µ∗2 =
√

2 and µ∗4 = 5/2, implying that V ar∗ (ηj) = 1/2. This choice of ηj is asymptot-

ically valid when used to construct bootstrap percentile as well as percentile-t intervals. The

choice of the bootstrap block size is critical. We follow Politis, Romano and Wolf (1999) and

use the minimum volatility method to choose the bootstrap block. Details of the algorithm are

given in Appendix A.

5.1 i.i.d. noise

In this subsection, we simulate results for the case of i.i.d. market microstructure noise. For

the CLT-based intervals and the wild blocks of blocks bootstrap-based intervals, Tables 1 and

2 show that for the two models, all intervals tend to undercover. The degree of undercoverage

is especially large for smaller values of n, when sampling is not too frequent. The SV2F

model exhibits overall larger coverage distortions than the SV1F model, for all sample sizes.

Results are sensitive to the value of the tuning parameter θ. When θ = 1/3, larger market

microstructure effects induce larger coverage distortions. In particular, the coverage distortions

are very important when ξ2 = 0.01 in comparison to the case where market microstructure

effects are moderate or negligible (ξ2 = 0.001 and ξ2 = 0.0001). This reflects the fact that

for this value of θ, kn is not sufficiently large to allow pre-averaging to remove the market

microstructure bias. The pre-averaged estimator is biased in finite samples and this explains

the finite sample distortions. In contrast, for the conservative choice of kn, results are not very
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sensitive to the noise magnitude. The reason is that the larger is the block size over which the

pre-averaging is done, the smaller is the impact of the noise.

In all cases, the wild blocks of blocks bootstrap outperforms the existing first order asymp-

totic theory. As expected, the average chosen block size is larger for larger sample sizes, but our

results show that it is not sensitive to the noise magnitude. This is because the noise magnitude

is almost irrelevant for the intensity of the autocorrelation of the square pre-averaged returns

(as confirmed by simulations not reported here).

5.2 Autocorrelated noise

In a second set of experiments, we look at the case where the market microstructure noise

is autocorrelated. Empirically the conditional independence noise assumption is somewhat

unrealistic for ultra-high frequency data (see, among others, Hansen and Lunde (2006)). This

is in fact one of the motivations behind the approach of Hautsch and Podolskij (2013). Their

results relax the conditional independence assumption on ε to allow for q-dependent noise,

at the cost of not allowing for time varying variances of the noise process and dependence

between X and ε. Indeed, the main consistency result for Jacod et al. (2009) pre-averaged

estimators (cf. their Theorem 3.1) still holds. The key difference is that the limit (of the

required bias-correction term) now depends on the higher order autocorrelations of the noise

process instead of depending on αt = E (ε2t |X) (in particular, αt is replaced by the long run

variance ρ2 = ρ (0)+2
∑q

k=1 ρ (k), where ρ (k) = Cov (ε1, ε1+k) , and q is the order of dependence

of the noise process (εi)i≥0). The main implication is that the bias correction for pre-averaged

realized volatility must depend on an estimator of ρ2. Hautsch and Podolskij (2013) discuss an

estimator of ρ2 given by

ρ2n = ρn (0) + 2

q∑
k=1

ρn (k) ,

where ρn (0) , . . . , ρn (q) are obtained by a simple recursion,

ρn (q) = −γn (q + 1) ,

ρn (q − 1) = −γn (q) + 2ρn (q) ,

ρn (q − 2) = −γn (q − 1) + 2ρn (q − 1)− ρn (q) ,

where γn (k) =
1

n

n∑
i=1

riri+k, k = 0, . . . , q + 1.
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This implies the following consistent estimator of integrated volatility under a q-dependent

autocorrelated noise process:

PRV d
n =

1

ψ2kn

n−kn+1∑
i=1

Ȳ 2
i︸ ︷︷ ︸

RV -like estimator

− ψ1

θ2ψ2

ρ2n︸ ︷︷ ︸
new bias correction term

. (25)

To obtain a feasible asymptotic procedure, Hautsch and Podolskij (2013) also propose the

following consistent estimator of V d ≡ limn→∞ V ar
(
n1/4PRV d

n

)
:

V̂ d
n =

4Φ22

3θψ4
2

n−kn+1∑
i=0

Y
4

i +
8ρ2n
θ2
√
n

(
Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) n−2kn+1∑
i=0

Y
2

i

+
4ρ4n
θ3

(
Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

)
. (26)

We conjecture that the wild blocks of blocks bootstrap remains valid when we relax the con-

ditional independence assumption on εi provided we use it to approximate the distribution of

PRV d
n . Indeed, the conditional independence noise assumption used in our proof in Appendix

B is not essential to guarantee the consistency of the wild blocks of blocks bootstrap variance

since we do not use any prior knowledge on εi apart from the kn-dependence of ε̄i. If εi is a

q-dependent sequence, then ε̄i becomes (kn + q)-dependent, and the result of Lemma 4.1 still

holds, although higher order autocorrelations of ε appear in the limit. So long as E (εt|X) = 0,

ε̄i admits asymptotic normality at the usual rate k
−1/2
n , (see e.g. the proof of Lemma 1 of

Hautsch and Podolskij (2013)), and if we let the block size bn grow faster than kn + q and set

V ar∗ (ηj) = 1/2, then the wild blocks of blocks bootstrap variance estimator will remain consis-

tent for V d. Moreover, by using the wild blocks of blocks bootstrap, a stationarity condition on

ε is not required, since by construction it is robust to the heterogeneity of square pre-averaged

returns. These facts lead us to conjecture that the wild blocks of blocks bootstrap is valid when

applied to the new bias adjusted pre-averaged volatility estimator under autocorrelated noise.

Although we do not provide a detailed proof of this result, in this section we explore the finite

sample properties of the wild bootstrap under autocorrelation in εi.

In particular, we follow Kalnina (2011) and let the market microstructure noise be generated

as an MA(1) process (for a given frequency of the observations):

ε i
n

= u i
n

+ λu i−1
n
, u i

n
∼ i.i.d.N

(
0,

α

1 + λ2

)
, (27)

so that V ar (ε) = α. Three different values of λ are considered, λ = −0.3, −0.5, and λ = −0.9.

We chose α as in the i.i.d. case discussed above, i.e. we let α = ξ2
√∫ 1

0
σ4
sds. We let θ = 1

(conservative choice of kn).

Our aim here is to evaluate by Monte Carlo simulation the performance of the wild blocks of
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blocks bootstrap when applied to the statistic that relies on the new bias correction of Hautsh

and Podoskij (2013), which is robust to noise autocorrelation. We consider five types of intervals

(two types of intervals based on the asymptotic normal distribution under the label CLT1 and

CLT2 and three types of intervals based on the wild blocks of blocks bootstrap under the label

Boot1, Boot2 and Boot3), computed at the 95% level. More specifically, for the asymptotic

theory-based approach we consider the following intervals,(
PRV d

n − 1.96n−1/4
√
V̂ d
n , PRV

d
n + 1.96n−1/4

√
V̂ d
n

)
, and (28)

(
PRV d

n − 1.96n−1/4
√
V ∗n , PRV

d
n + 1.96n−1/4

√
V ∗n

)
. (29)

For the bootstrap, we consider(
PRV d

n − n−1/4p∗0.95, PRV d
n + n−1/4p∗0.95

)
, (30)(

PRV d
n − q∗1−αn−1/4

√
V̂n, PRV

d
n + q∗1−αn

−1/4
√
V̂n

)
, and (31)

(
PRV d

n − q∗1−αn−1/4
√
V ∗n , PRV

d
n + q∗1−αn

−1/4
√
V ∗n

)
. (32)

Whereas (30) corresponds to bootstrap percentile intervals,(31) and (32) correspond to boot-

strap percentile-t intervals. Note that for the bootstrap based-intervals, the bootstrap quantile

p∗0.95 and q∗0.95 are computed exactly as in the i.i.d. noise case (it is based on the absolute value

of n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
and n1/4

(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
/

√
V̂ ∗n , respectively, whose

form is unaffected by the new bias adjustment used in PRV d
n ).

Tables 3 and 4 contains the results. We only report results for the SV2F model, since it

is more empirically relevant and indeed it exhibits overall larger coverage distortions than the

SV1F model. Two sets of results are presented. First, we present results for intervals based on

PRVn, the non-robust pre-averaged estimator discussed for the uncorrelated noise case (Table

3). Then, we present results for intervals based on PRV d
n , the robust estimator based on the

new bias correction of Hautsch and Podolskij (2013) (Table 4). The results show that intervals

based on PRVn are more distorted when market microstructure effects are moderate or high

(ξ2 = 0.001 and ξ2 = 0.01) and there is autocorrelation in εi than otherwise. The main reason

for the distortions is the fact that PRVn is not correctly centered and standardized under

autocorrelation. For instance, when λ = −0.3, n =195, and ξ2 = 0.01 the CLT1-based interval

has a coverage probability (from Table 3) equal to 72.98% under autocorrelated noise whereas

its coverage rate is equal to 83.32% under uncorrelated noise. Although the difference is not

very large for the smaller |λ| (intensity of autocorrelation), it gets much bigger for larger values

of |λ|. For λ = −0.5 and −0.9, and (n =195, and ξ2 = 0.01) these rates equal 67.75% and

63.04%, respectively. Thus, the distortions increase with |λ|. Also for high effects of noise
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(ξ2 = 0.01), the degree of undercoverage becomes especially large for larger values of n, when

sampling is frequent. For instance when λ = −0.5, and (n = 195 and n = 23400) they are equal

to 67.75% and 28.97%, respectively. This confirm the invalidity of intervals based on PRVn

under correlated noise. A similar pattern is observed for the CLT2-based intervals. We also see

that these are close to the (percentile) Boot1-based intervals.

However, if we rely on PRV d
n as a point estimator of integrated volatility, the corresponding

intervals (both asymptotic and bootstrap) are better centered and standardized and the dis-

tortions are smaller and closer to their values under the uncorrelated noise case. For instance,

for n =195, and ξ2 = 0.01 the CLT1-based intervals now have coverage rates equal to 84.33%

and 84.56% when λ = −0.3 and λ = −0.5, respectively. A similar pattern is observed for larger

sample sizes, although the rates are overall larger. For instance, for n = 23400 they are equal

to 93.59% and 93.77%, respectively.

When the wild blocks of blocks bootstrap method is used to compute critical values for the

t-test based on PRVn and the error is MA(1), for high effects of noise (ξ2 = 0.01), coverage rates

are usually smaller than those obtained when the noise is uncorrelated (and therefore distortions

are larger). As for the CLT-based intervals, the larger differences occur for the larger values of

|λ|. For the smaller values of |λ|, the difference in coverage probability between the two types

of errors is almost negligible. As for the CLT-based intervals, using the wild blocks of blocks

bootstrap to compute critical values for the t-statistic based on PRV d
n essentially eliminates the

difference in coverage probabilities observed between the uncorrelated and the MA(1) errors.

In summary, the results in Tables 3 and 4 show that under autocorrelated noise the statistic

based on the bias correction of Hautsch and Podolskij (2013) works well and that the coverage

rates of 95% nominal level intervals based on either the asymptotic mixed Gaussian distribution

or the wild blocks of blocks bootstrap proposed in this paper are similar to those obtained

under uncorrelated noise. In particular, the bootstrap (percentile-t) outperforms the asymptotic

theory. Whereas, the results based on CLT2 and the (percentile) Boot1 intervals are close, but

slightly different.

6 Empirical results

In this section, we implement the wild blocks of blocks bootstrap on high frequency data and

compare it to the existing feasible asymptotic procedure of Jacod et al. (2009). The data

consists of transaction log prices of General Electric (GE) shares carried out on the New York

Stock Exchange (NYSE) in October 2011. We also consider transaction log prices of Microsoft

(MSFT) in December 2010, taken from Thomson Reuter’s Tick History. GE represents highly

liquid stocks with approximately 27 trade arrivals per minute. Conversely, MSFT is significantly

less liquid with approximately 6 trade arrivals per minute. Our procedure for cleaning the data
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is exactly identical to that used by Barndorff-Nielsen et al. (2008) (for further details see

Barndorff-Nielsen et al. (2009)). For each day, we consider data from the regular exchange

opening hours from time stamped between 9:30 a.m. until 4 p.m.

We implement the pre-averaged realized volatility estimator of Jacod et al. (2009) on returns

recorded every S transactions, where S is selected each day so that for GE and MSFT there are

approximately 1493 and 82 observations a day, respectively. This means that on average, for

GE and MSFT, these returns are recorded roughly every 15 seconds and 5 minutes, respectively.

Table 5 in the Appendix provides the number of transactions per day, the sample size for the pre-

averaged returns, and the dependent-noise robust version of the pre-averaged realized volatility

estimator using (25) (for q = 0, 1 and 2). We also report the optimal value of q (the number of

non-vanishing covariances) using the decision rule proposed by Hautsch and Podolskij (2013).

To implement the pre-averaged realized volatility estimator, we select the tunning parameter

θ by following the conservative rule (θ = 1, implying that kn =
√
n). To choose the block

size bn, we follow Politis, Romano and Wolf (1999) and use the minimum volatility method

(see Appendix A for details). As illustrated below, these stocks represent different empirical

features and thus allow to gain valuable insights into the empirical performance of the wild

blocks of blocks bootstrap method.

For GE, Figure 1 in Appendix A shows daily 95% confidence intervals (CIs) for integrated

volatility using both methods, the wild blocks of blocks bootstrap and the existing feasible

asymptotic procedure of Jacod et al. (2009). In the latter case CIs are computed using (28)

whereas for the bootstrap we use (32).

The confidence intervals based on the bootstrap method are usually wider than the confi-

dence intervals using the feasible asymptotic theory.6 This is especially true in periods with

large volatility. To gain further insight on the behavior of our intervals for these periods, we

implemented the test for jumps of Barndorff-Nielsen and Shephard (2006) using a moderate

sample size (2-minute sampling intervals). It turns out that these days often correspond to days

on which there is evidence for jumps (in particular for the 13, 17, 20 and 26 of October 2011).

Since neither of the two types of intervals are valid in the presence of jumps, further analysis

should be pursued for these particular days. In particular, we should rely on estimation meth-

ods that are robust to jumps such as the pre-averaged multipower variation method proposed

by Podolskij and Vetter (2009) or the quantile estimation method of Christensen, Oomen, and

Podolskij (2010).

Similarly for MSFT (the less liquid stock) Figure 2 in Appendix A shows daily 95% confi-

dence intervals for integrated volatility. The same patterns also emerges as for GE. The confi-

6Nevertheless, as our Monte Carlo simulations showed, the latter typically have undercoverage problems
whereas the bootstrap intervals have coverage rates closer to the desired level. Therefore if the goal is to control
the coverage probability, shorter intervals are not necessarily better. The figures also show a lot of variability
in the daily estimate of integrated volatility.
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dence intervals based on the wild blocks of blocks bootstrap method are usually wider than the

confidence intervals using the feasible asymptotic theory. In contrast to GE, for MSFT we have

found no evidence of jumps at 5% significance level for days with large volatility. Importantly,

the bootstrap based confidence sets of these days are larger than those based on the asymptotic

theory, as suggested by the simulation study, which highlights the importance of using the

bootstrap in these volatile days.

7 Conclusion

In this paper, we propose the bootstrap as a method of inference for integrated volatility in the

context of the pre-averaged realized volatility estimator proposed by Jacod et al. (2009). We

show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992)

is not valid when volatility is time-varying. This is due to the heterogeneity of the squared

pre-averaged returns when volatility is stochastic.

To simultaneously handle the dependence and heterogeneity of the squared pre-averaged

returns, we propose a novel bootstrap procedure that combines the wild and the blocks of

blocks bootstrap. We provide a set of conditions under which this method is asymptotically

valid to first order. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap

improves the finite sample properties of the existing first order asymptotic theory. In future

work, we plan to generalize the wild blocks of blocks bootstrap for inference on multivariate

integrated volatility as considered by Christensen, Kinnebrock and Podolskij (2010). Bootstrap

variance-covariances matrices are naturally positive semi-definite, which is very important for

empirical applications. Finally, taking into account the possible presence of jumps is an impor-

tant extension that should be studied.

Appendix A: Simulation and empirical results

Here we describe the Minimum Volatility Method algorithm of Politis, Romano and Wolf (1999,

Chapter 9) for choosing the block size bn for a two-sided confidence interval.

Algorithm: Choice of the bootstrap block size by minimizing confidence interval volatility

(i) For b = bsmall to b = bbig compute a bootstrap interval for IV at the desired confidence

level, this resulting in endpoints ICb,low and ICb,up.

(ii) For each b compute the volatility index V Ib as the standard deviation of the interval

endpoints in a neighborhood of b. More specifically, for a smaller integer d, let V Ib equal
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to the standard deviation of the endpoints {ICb−d,low, . . . , ICb+d,low} plus the standard

deviation of the endpoints {ICb−d,up, . . . , ICb+d,up}, i.e.

V Ib ≡

√√√√ 1

2d+ 1

d∑
i=−d

(
ICb+i,low − ¯IC low

)2
+

√√√√ 1

2d+ 1

d∑
i=−d

(
ICb+i,up − ¯ICup

)2
,

where ¯IC low = 1
2d+1

∑d
i=−d ICb+i,low and ¯ICup = 1

2d+1

∑d
i=−d ICb+i,up.

(iii) Pick the value b∗ corresponding to the smallest volatility index and report {ICb∗,low, ICb∗,up}
as the final confidence interval.

To make the algorithm more computationally efficient, we have skipped a number of b values

in regular fashion between bsmall and bbig. We have considered only the values of b such that

b = pkn where p is a fixed integer. We employ bsmall = 2kn, bbig = min(θNn
4
, 12kn) and d = 2.

Tables 1, 2, 3 and 4 report the actual coverage rates for the feasible asymptotic theory

approach and for our bootstrap methods using the optimal block size by minimizing confidence

interval volatility. In Table 5 we provide some statistics of GE and MSFT shares in October

2011 and December 2010, respectively.
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Table 5. Summary statistics

Days Trans n S PRV dn · 103 q∗ PRV dn · 103
q = 0 q = 1 q = 2 q = q∗

GE
3 Oct 12613 1402 9 0.903 1.113 1.121 1 1.113
4 Oct 13782 1532 9 1.705 1.734 1.735 1 1.734
5 Oct 10628 1519 7 0.721 0.722 0.723 0 0.721
6 Oct 9991 1428 7 0.688 0.742 0.858 2 0.858
7 Oct 9785 1398 7 0.686 0.687 0.688 0 0.686
10 Oct 10660 1523 7 0.720 0.830 0.951 2 0.951
11 Oct 8588 1432 6 1.498 1.499 1.499 0 1.498
12 Oct 11160 1595 7 0.727 0.727 0.729 0 0.727
13 Oct 8649 1442 6 1.499 1.499 1.499 0 1.499
14 Oct 9261 1544 6 1.556 1.556 1.556 0 1.556
17 Oct 8530 1422 6 1.498 1.499 1.499 0 1.498
18 Oct 8751 1459 6 1.507 1.582 1.584 1 1.582
19 Oct 9023 1504 6 1.545 1.644 1.645 1 1.644
20 Oct 9251 1542 6 1.556 1.557 1.557 0 1.556
21 Oct 12513 1565 8 0.833 0.941 0.942 1 0.941
24 Oct 11642 1456 8 0.791 0.839 0.840 1 0.839
25 Oct 10919 1365 8 0.775 0.776 0.776 0 0.775
26 Oct 9249 1542 6 1.556 1.557 1.557 0 1.556
27 Oct 14598 1622 9 1.776 1.778 1.779 0 1.776
28 Oct 9405 1568 6 1.557 1.633 1.699 4 1.746
31 Oct 8871 1500 6 1.559 1.667 1.669 1 1.667

MSFT
1 Dec 2177 78 28 0.112 0.124 0.133 0 0.112
2 Dec 1520 77 20 0.079 0.087 0.088 0 0.079
3 Dec 2530 80 32 0.077 0.088 0.088 0 0.077
6 Dec 1717 79 22 0.072 0.097 0.098 1 0.097
7 Dec 1847 81 23 0.063 0.087 0.089 1 0.087
8 Dec 1473 78 19 0.061 0.083 0.084 1 0.083
9 Dec 1851 78 24 0.071 0.083 0.083 0 0.071
10 Dec 1375 77 18 0.084 0.101 0.112 1 0.101
13 Dec 1469 78 19 0.083 0.100 0.106 0 0.083
14 Dec 2558 82 32 0.074 0.090 0.091 0 0.074
15 Dec 2304 80 29 0.101 0.120 0.121 0 0.101
16 Dec 1872 79 24 0.069 0.084 0.088 0 0.069
17 Dec 3385 89 39 0.096 0.114 0.115 0 0.096
20 Dec 3827 93 42 0.174 0.351 0.366 1 0.351
21 Dec 4105 95 44 0.483 0.554 0.556 0 0.483
22 Dec 3742 92 41 0.355 0.400 0.401 0 0.355
23 Dec 3716 93 40 0.318 0.357 0.361 0 0.318
27 Dec 2010 80 26 0.071 0.098 0.113 1 0.098
28 Dec 1676 79 22 0.096 0.120 0.124 0 0.096
29 Dec 1555 78 20 0.079 0.087 0.088 0 0.079
30 Dec 1572 79 20 0.053 0.079 0.085 1 0.079
31 Dec 1887 79 24 0.069 0.080 0.081 0 0.069

“Trans” denotes the number of transactions, n is the sample size used to calculate the pre-averaged
realized volatility, we have sampled every Sth transaction price, so the period over which returns
are calculated for GE and MSFT are roughly 15 seconds and 5 minutes, respectively. PRV d

n is the
dependent-noise robust version of the pre-averaged realized volatility estimator, q is the order of
autocorrelation, q∗ is the optimal value of q selected using the decision rule proposed by Hautsch and
Podolskij (2013).
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Figure 1: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days for

GE in October 2011, calculated using the asymptotic theory of Jacod et al. (2009) based

on (28) (CI’s with bars), and the wild blocks of blocks bootstrap method based on (32)

(CI’s with lines). The pre-averaging realized volatility estimator is the middle of all CI’s

by construction. Days on the x-axis.

Figure 2: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days

for MSFT in December 2010, calculated using the asymptotic theory of Jacod et al. (2009)

based on (28) (CI’s with bars), and the wild blocks of blocks bootstrap method based on

(32) (CI’s with lines). The pre-averaging realized volatility estimator is the middle of all

CI’s by construction. Days on the x-axis.

Appendix B: Proofs

As in Jacod et al. (2009), we assume throughout this Appendix that the processes a, σ and
X are bounded processes satisfying (1) with a and σ adapted càdlàg processes. As Jacod et
al. (2009) explain, this assumption simplifies the mathematical derivations without loss of
generality (by a standard localization procedure detailed in Jacod (2008)). Formally, we derive
our results under the following assumption.
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Assumption 4. X satisfies equation (1) with a and σ adapted càdlàg processes such that a, σ,
and X are bounded processes (implying that α is also bounded).

Notation

In the following, K denotes a constant which changes from line to line. Moreover, we follow
Jacod et al. (2009) and use the following additional notation. We let

X̄i =
kn∑
j=1

g

(
j

kn

)(
X i+j

n
−X i+j−1

n

)
, ε̄i =

kn∑
j=1

g

(
j

kn

)(
ε i+j
n
− ε i+j−1

n

)
,

and note that Ȳi = X̄i + ε̄i. In addition, we let

ci =
kn∑
j=1

g

(
j

kn

)2 ∫ i+j
n

i+j−1
n

σ2
t dt;

Ai = E
(
ε̄2i |X

)
=

kn−1∑
j=0

(
g

(
j + 1

kn

)
− g

(
j

kn

))2

α(i+j)/n; and

Ỹi = Ȳ 2
i − Ai − ci.

Following Jacod et al. (2009), we also introduce the following random variables. For j =
1, . . . , Jn, we let

η (p)j =
1

θψ2

√
n
ζ(p)(j−1)(p+1)kn

, with ζ (p)j =

j+(p+1)kn−1∑
i=j

Ỹi,

where p ≥ 1 is a fixed integer; η (p)j is the normalized sum of squared pre-averaged returns Ỹi
over a block of size bn = (p+ 1) kn. Note that η (p)j is measurable with respect to Fnj(p+1)kn

,

the sigma algebra generated by all F0
j(p+1)kn/n

-measurable random variables plus all variables

Ys, with s < j (p+ 1) kn. Finally, we let

β(p)i = sup
s,t∈[ in ,

i+(p+1)kn
n ] (|as − at|+ |σs − σt|+ |αs − αt|) , (33)

and

γ2(p)t =
4

ψ2
2

((
Φ22 +

1

p+ 1
Ψ22

)
θσ4

t + 2

(
Φ12 +

1

p+ 1
Ψ12

)
σ2
tαt
θ

+

(
Φ11 +

1

p+ 1
Ψ11

)
α2
t

θ3

)
.

(34)
Our bootstrap estimators depend crucially on

B̄j ≡
1

bn

bn∑
i=1

Ȳ 2
i−1+(j−1)bn =

1

bn

jbn−1∑
i=(j−1)bn

Ȳ 2
i , for j = 1, . . . , Jn,

where Jn = Nn/bn is the number of non-overlapping blocks of size bn out of Nn = n − kn + 2
observations on pre-averaged returns.

Our first result is instrumental in proving our bootstrap results.
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Lemma B.1 Suppose Assumptions 2 and 4 hold. Then, for all integer p ≥ 1, and each q > 0,
we have that

a1) 1√
n
E
(∑Jn

j=1 β (p)q(j−1)(p+1)kn

)
→ 0.

a2) 1√
n

∑Jn
j=1 β (p)q(j−1)(p+1)kn

→P 0.

a3) 1√
n
E
(∑Jn

j=1E
(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0.

a4) 1√
n

∑Jn
j=1E

(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a5) 1√
n

∑Jn
j=1E

(
β (2p+ 1)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a6) 1√
n

∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a7) 1√
n

∑Jn
j=1

√
E
(
β (2p+ 1)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

Proof of Lemma B.1. Part a1). Given the definition of β (p)(j−1)(p+1)kn
we can write

β (p)(j−1)(p+1)kn
≤ sup

s,t∈[ (j−1)(p+1)kn
n

,
(j−1)(p+1)kn+(p+1)kn

n ] (|as − at|)

+ sup
s,t∈[ (j−1)(p+1)kn

n
,
(j−1)(p+1)kn+(p+1)kn

n ] (|σs − σt|)

+ sup
s,t∈[ (j−1)(p+1)kn

n
,
(j−1)(p+1)kn+(p+1)kn

n ] (|αs − αt|)

≡ Γ (a, p)(j−1)(p+1)kn
+ Γ (σ, p)(j−1)(p+1)kn

+ Γ (α, p)(j−1)(p+1)kn
.

Given that Γ (a, p)(j−1)(p+1)kn
,Γ (σ, p)(j−1)(p+1)kn

and Γ (α, p)(j−1)(p+1)kn
are strictly positive, for

any q > 0, using the c-r inequality, we can write

β (p)q(j−1)(p+1)kn
≤ K

(
Γ (σ, p)q(j−1)(p+1)kn

+ Γ (a, p)q(j−1)(p+1)kn
+ Γ (α, p)q(j−1)(p+1)kn

)
.

It follows that

n−1/2E

(
Jn∑
j=1

β (p)q(j−1)(p+1)kn

)
≤ Kn−1/2E

(
Jn∑
j=1

Γ (σ, p)q(j−1)(p+1)kn

)

+Kn−1/2E

(
Jn∑
j=1

Γ (a, p)q(j−1)(p+1)kn

)

+Kn−1/2E

(
Jn∑
j=1

Γ (α, p)q(j−1)(p+1)kn

)
= o (1) ,

where we use Lemma 5.3 of Jacod, Podolskij and Vetter (2010) to show that each of the terms
above are o (1) (given that a, σ and α are càdlàg bounded processes).
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Proof of Lemma B.1. Part a2). Note that given the result of part a1) of Lemma B.1,

it is sufficient to show that 1
n
E
(∑Jn

j=1 β (p)q(j−1)(p+1)kn

)2
→ 0. By the c-r inequality,

1

n
E

(
Jn∑
j=1

β (p)q(j−1)(p+1)kn

)2

≤ Jn
n
E

(
Jn∑
j=1

β (p)2q(j−1)(p+1)kn

)
≤ K

1√
n
E

(
Jn∑
j=1

β (p)2q(j−1)(p+1)kn

)
,

which is o (1) by part a1) of Lemma B.1 and given that Jn = O (
√
n) .

Proof of Lemma B.1. Part a3). Given the law of iterated expectations, the result
follows directly from part a1) of Lemma B.1.

Proof of Lemma B.1. Part a4). The proof follows similarly as in part a2) of

Lemma B.1, where we now consider the variable E
(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
in place

of β (p)q(j−1)(p+1)kn
.

Proof of Lemma B.1. Part a5). Given the definition of β(p)i, for any p ≥ 1, such that
bn = (p+ 1) kn we can write

1√
n

Jn∑
j=1

E
(
β (2p+ 1)q(j−1)bn |F

n
(j−1)bn

)
=

1√
n

[Jn2 ]∑
j=1

E
(
β (2p+ 1)q2(j−1)bn |F

n
2(j−1)bn

)

+
1√
n

[Jn2 ]∑
j=1

E
(
β (2p+ 1)q(2(j−1)+1)bn

|Fn(2(j−1)+1)bn

)
,

which is oP (1) given part a4) of Lemma B.1.
Proof of Lemma B.1. Part a6). Here, the proof contains two steps. Step 1. We show

show that 1√
n
E

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0. Step 2. We show show that

1
n
V ar

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0. Note that using the first expression in

equation (5.47) of Jacod et al. (2009), the result of step 1 follows directly. Given this result, to

show step 2, it is sufficient to show that 1
n
E

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))2

→ 0.

We have that

1

n

(
Jn∑
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))2

≤ Jn
n

Jn∑
j=1

E
(
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
=
Jn
n

Jn∑
j=1

E
(
β (p)2(j−1)(p+1)kn

)
≤ K

1√
n
E

(
Jn∑
j=1

β (p)2(j−1)(p+1)kn

)
,

which is o (1) given equation (5.47) of Jacod et al. (2009) and the fact that Jn = O (
√
n) under

our assumptions.
Proof of Lemma B.1. Part a7). The proof follows similarly as part a5) and therefore

we omit the details.
Our next result is crucial to the proofs of Lemmas 3.1 and 4.1.
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Lemma B.2 Under Assumptions 1, 2, and 4, if bn = (p+ 1) kn where p ≥ 1 is fixed, then

√
nb2n

k2nψ
2
2

Jn∑
j=1

B̄2
j →P Vp + θ (p+ 1)

∫ 1

0

(
σ2
s +

ψ1

θ2ψ2

αs

)2

ds.

Proof of Lemma B.2. Given the definition of B̄j, we have that

B̄j =
1

bn

jbn−1∑
i=(j−1)bn

Ȳ 2
i =

1

bn

jbn−1∑
i=(j−1)bn

(
Ȳ 2
i − Ai − ci

)︸ ︷︷ ︸
≡Ỹi

+
1

bn

jbn−1∑
i=(j−1)bn

(Ai + ci)

where Ai ≡ E (ε̄2i |X) and ci =
kn∑
j=1

g
(

j
kn

)2 ∫ i+j
n

i+j−1
n

σ2
t dt. It follows that

√
nb2n

k2nψ
2
2

Jn∑
j=1

B̄2
j = B1n + B2n + B3n,

where

B1n ≡
√
n

Jn∑
j=1

 1

θψ2

√
n

jbn−1∑
i=(j−1)bn

Ỹi

2

=
√
n

Jn∑
j=1

η (p)2j ,

B2n ≡
2

θψ2

Jn∑
j=1

η (p)j

jbn−1∑
i=(j−1)bn

(Ai + ci) ; and

B3n ≡
1

θ2ψ2
2

√
n

Jn∑
j=1

 jbn−1∑
i=(j−1)bn

(Ai + ci)

2

.

We show that (1) B1n →P
∫ 1

0
γ2t (p) dt; (2) B2n →P 0, and that (3) B3n →P (p+ 1) θ

∫ 1

0

(
σ2
t + ψ1

θ2ψ2
αt

)2
dt.

Starting with (1), write

√
n

Jn∑
j=1

η (p)2j −
∫ 1

0

γ2t (p) dt = B1.1n + B1.2n + B1.3n, with

B1.1n =
√
n

Jn∑
j=1

(
η (p)2j − E

(
η (p)2j |F

n
(j−1)(p+1)kn

))
,

B1.2n =
√
n

Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
− Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

,

B1.3n =
Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

−
∫ 1

0

γ2t (p) dt.

We show that each of B1.`n →P 0 for ` = 1, 2, 3. For ` = 1, by Lenglart’s inequality (see e.g.

Lemma 4.4 of Vetter (2008)), it is sufficient to show that n
Jn∑
j=1

E
(
η (p)4j |Fn(j−1)(p+1)kn

)
→P 0,
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which follows immediately by using equation (5.57) of Jacod et al. (2009). Next, to show that
B1.2n →P 0, note that

B1.2n ≤
Jn∑
j=1

∣∣∣∣√nE (η (p)2j |F
n
(j−1)(p+1)kn

)
− Nn

n

1

Jn
γ(p)2j−1

Jn

∣∣∣∣
=

Jn∑
j=1

∣∣∣∣√nE ( 1

θ2ψ2
2n
ζ2(p)(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
− 1

n
(p+ 1) θ

√
nγ(p)2j−1

Jn

∣∣∣∣
=

√
n

θ2ψ2
2n

Jn∑
j=1

∣∣∣E (ζ2(p)(j−1)(p+1)kn
|Fn(j−1)(p+1)kn

)
− θ3ψ2

2 (p+ 1) γ(p)2j−1
Jn

∣∣∣
≤ K

θ2ψ2
2

√
n

Jn∑
j=1

χ(p)(j−1)(p+1)kn

where we use the fact that Nn/Jn = (p+ 1) kn with kn = θ
√
n and rely on equation (5.41) of

Jacod et al. (2009) to bound the term in absolute value, where

χ(p)(j−1)(p+1)kn = n−1/4 +

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
and β (p)i is as defined in (33). It follows that

1√
n

Jn∑
j=1

χ(p)(j−1)(p+1)kn ≤
1√
n

Jn∑
j=1

n−1/4 +
1√
n

Jn∑
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0,

where the first term is of order O
(
n−1/4

)
and the second term is oP (1) given part a6) of Lemma

B.1. Finally, B1.3n →P 0 follows immediately by Riemann’s integrability of σ, the fact that
Nn
n
→ 1 and Jn →∞ as n→∞.

To show (2), let ϕj ≡
jbn−1∑

i=(j−1)bn
(Ai + ci) and ζ (X, p)j =

jbn−1∑
i=(j−1)bn

(
X̄2
i − ci

)
. We can write

B2n =
2

θψ2

Jn∑
j=1

ϕj · η (p)j = B2.1n + B2.2n, with

B2.1n =
2

θψ2

Jn∑
j=1

(
ϕjη (p)j − E

(
ϕjη (p)j |F

n
(j−1)(p+1)kn

))
, and

B2.2n =
2

θψ2

Jn∑
j=1

E
(
ϕjη (p)j |F

n
(j−1)(p+1)kn

)
.

We show that each of B2.`n →P 0 for ` = 1, 2. Note that given the definitions of Ai, ci, and
the fact that kn = θ

√
n, Assumption 4 implies that Ai + ci ≤ K/

√
n uniformly in i. Given

that bn = (p+ 1) kn, it follows that ϕj ≤ K uniformly in j. Starting with ` = 1, by Lenglart’s

39



inequality, it is sufficient to show that
Jn∑
j=1

E
(
ϕ2
jη (p)2j |Fn(j−1)(p+1)kn

)
→P 0. We can write

Jn∑
j=1

E
(
ϕ2
jη (p)2j |F

n
(j−1)(p+1)kn

)
≤ K

Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
= K

(
1√
n

(
√
n
Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
− Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

))

+K

(
1√
n

(
Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

−
∫ 1

0

γ2t (p) dt

)
+

1√
n

∫ 1

0

γ2t (p) dt

)

≡ K

(
1√
n
B1.2n +

1√
n
B1.3n +

1√
n

∫ 1

0

γ2t (p) dt

)
=

1√
n
oP (1) +

1√
n
oP (1) +OP

(
1√
n

)
= oP (1) ,

where in particular we use the fact that B1.2n=oP (1) and B1.3n = oP (1) , and
∫ 1

0
γ2t (p) dt =

OP (1) . It follows that B2.1n →P 0. Next, to show that B2.2n →P 0, note that we can write

B2.2n ≤
2K

θψ2

1

n1/4

(
n1/4

Jn∑
j=1

E
(
η (p)j |F

n
(j−1)(p+1)kn

))
= OP

(
n−1/4

)
oP (1) = oP (1) ,

given that ϕj ≤ K, and given equation (5.49) of Jacod et al. (2009).
Finally, to show (3), note that given the definitions of Ai and ci, and by using equations

(5.23) and (5.36) of Jacod et al. (2009), we can write

jbn−1∑
i=(j−1)bn

(Ai + ci) =

jbn−1∑
i=(j−1)bn

(
ψ1

θ
√
n
α(j−1)bn/n +

θψ2√
n
σ2
(j−1)bn/n

)
+O

(
p√
n

+ pβ(p)(j−1)bn

)
.

(35)
It follows that

B3n ≡
1

θ2ψ2
2

√
n

Jn∑
j=1

 jbn−1∑
i=(j−1)bn

(Ai + ci)

2

= Ln +Rn,

where the leading term is

Ln = (p+ 1) θ
Nn

n

1

Jn

Jn∑
j=1

(
ψ1

θ2ψ2

α(j−1)bn/n + σ2
(j−1)bn/n

)2

→P (p+ 1)θ

∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt.

(36)
The remainder is such that

Rn = K ·OP

(
1√
n

+
1√
n

Jn∑
j=1

β(p)2(j−1)bn

)
→P 0

by using Lemma (5.4) of Jacod et al. (2009).
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Proof of Lemma 3.1. Part a) Given the definition of V ∗n , we can write

V ∗n = V ∗1n −
√
nNnbn

(Nn − bn + 1)2
V ∗2n,

where

V ∗1n =
1

bn

bn−1∑
t=0

v∗1n,t, with v∗1n,t ≡
√
n

(Nn − bn + 1)Nn

[Nn−t
bn

]∑
j=1

(
bn+t∑
i=t+1

Zi+(j−1)bn

)2

, and

V ∗2n =
1

bn

bn−1∑
t=0

v∗22n,t, with v∗2n,t ≡
1

Nn

[Nn−t
bn

]∑
j=1

bn+t∑
i=t+1

Zi+(j−1)bn .

We now proceed in two steps. In Step 1, we show that v∗1n,t →P Vp+θ (p+ 1)
∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)2
ds

uniformly in t. In Step 2, we show that v∗22n,t →P
(∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)
ds
)2

, also uniformly in

t. This together with the fact that
√
nNnbn

(Nn−bn+1)2
→ (p+ 1) θ as n → ∞ when bn = (p+ 1) kn

and kn satisfies Assumption 2 imply the result. Proof of Step 1. For t = 0, . . . , bn − 1 and

j = 1, . . . ,
[
Nn−t
bn

]
, let

B̄j,t ≡
1

bn

bn∑
i=1

Ȳ 2
i−1+t+(j−1)bn =

knψ2

Nn

1

bn

bn∑
i=1

Zi+t+(j−1)bn ,

where Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1 and note that the B̄j,t are averages of non-overlapping blocks for given t.

With this notation, we have that

v∗1n,t =
N2
n

(Nn − bn + 1)Nn

√
nb2n

k2nψ
2
2

[Nn−t
bn

]∑
j=1

B̄2
j,t,

where we can show that N2
n

(Nn−bn+1)Nn
→ 1 under the condition that bn = (p+ 1) kn. Using

arguments similar to those used to prove Lemma B.2, we can show that

√
nb2n

k2nψ
2
2

[Nn−t
bn

]∑
j=1

B̄2
j,t →P Vp + θ (p+ 1)

∫ 1

0

(
σ2
s +

ψ1

θ2ψ2

αs

)2

ds

uniformly in t. The proof of Step 2 relies on the consistency result in Theorem 1 of Christensen,
Kinnebrock and Podolskij (2010). Indeed v∗2n,t is the main term in Jacod et al. (2009) pre-
averaged realized volatility estimator without the bias corrected term, with starting point t.
Part b). Follows directly from part a) of Lemma 3.1 when replacing σt by a constant for all
t. Part c). Follows directly from part a) of Lemma 3.1.
Proof of Lemma 4.1. Given the definition of V ∗n , we can write

V ∗n = V ar∗
(
n1/4P̃RV

∗
n

)
=
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

(
B̄j − B̄j+1

)2
V ar∗

(
η2j
)
.
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Let,

Ξj =
bn
ψ2kn

B̄j,

by adding and substracting appropriately and given V ar∗ (η) = 1/2, it follows that

V ∗n = n1/2

(
Jn−1∑
j=1

Ξ2
j −

Jn−1∑
j=1

ΞjΞj+1

)
︸ ︷︷ ︸

≡L̃n

+
n1/2

2

(
Ξ2
Jn − Ξ2

1

)
. (37)

Note that given the definition of B̄j and Ξj we can write

n1/2

2

(
Ξ2
Jn − Ξ2

1

)
=

n1/2b2n
ψ2
2k

2
n

(
B̄2

1 + B̄2
Jn

)
= OP

((
bn
n3/4

)2
)

= oP (1) ,

where the second equality follows since B̄j = OP (1/
√
n) uniformly in j, and the last equality

holds so long as δ < 3/4, which is verify under our assumptions. Thus, given (37) the rest of

the proof can be reduced to L̃n →P V. The proof of this claim follows closey that for Theorem
4.1 of Christensen et al. (2013), however for completeness, we present here the relevant details.

Following Christensen et al. (2013), we introduce two approximating version of Ξj first,
namely

Z̃j =
1

ψ2kn

bn∑
i=1

Ỹ 2
i−1+(j−1)bn ,

Ẑj =
1

ψ2kn

bn∑
i=1

Ỹ 2
i−1+jbn ,

where we have set Ỹ i =ε̄i + σ jbn
Nn

W̄i, with W̄i =
kn∑
t=1

g
(

t
kn

)(
W i+t

n
−W i+t−1

n

)
, for jbn ≤ i ≤

(j + 1) bn−1. Indeed we will show that the error due to replacing Ȳi by Ỹ i is small and will not
affect our theoretical results, since σ is assumed to be an Ito semimartingale itself. We have
that, for jbn ≤ i ≤ (j + 1) bn − 1

E
(∣∣∣Ȳi−Ỹ i

∣∣∣) = E

∣∣∣∣∣
kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

asds+
kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

(
σs − σ jbn

Nn

)
dWs

∣∣∣∣∣
≤ K

kn
n

+

 kn∑
j=1

g2
(
j

kn

)
E

∣∣∣∣∣
∫ i+j

n

i+j−1
n

(
σs − σ jbn

Nn

)
dWs

∣∣∣∣∣
2
1/2


≤ K

(
kn
n

+

(
kn
n

bn
n

)1/2
)
≤ K

(knbn)1/2

n
.
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Note also that E (|Zj|) ≤ K bn
n

, thus it follows that

E
(∣∣∣Zj − Z̃j∣∣∣) ≤ Kbn

(
(knbn)1/2

n

(
1√
kn

)− 1
2

)

≤ K

(
bn
n

)3/2

,

similarly for Ẑj, we have E
(∣∣∣Zj − Ẑj∣∣∣) ≤ K

(
bn
n

)3/2
. So by using the fact that δ < 2/3 we

obtain L̃n − L̂n = oP (1) , where

L̂n =
√
n

Jn−1∑
j=1

(
Ẑ2
j − ẐjZ̃j+1

)
.

Then it is simple to deduce that

√
n

∣∣∣∣∣
Jn−1∑
α=1

E
(
Ẑ2
j − E

(
Ẑ2
j |Fn(j−1)bn

n

))∣∣∣∣∣ ≤ K
b
3/2
n

n
,

√
n

∣∣∣∣∣
Jn−1∑
j=1

E
(
ẐjZ̃j+1 − E

(
ẐjZ̃j+1|Fn(j−1)bn

n

))∣∣∣∣∣ ≤ K
b
3/2
n

n
,

by conditional independence, and now we are left with

L̂n =
√
n
Jn−1∑
j=1

E
(
Ẑ2
j − ẐjZ̃j+1|Fn(j−1)bn

n

)
+ oP (1) .

From the same arguments as in Lemma 7.3 and Lemma 7.5 of Christensen et al. (2013) plus
using δ > 1/2, we obtain

√
nE
(
Ẑ2
j − ẐjZ̃j+1|Fn(j−1)bn

n

)
=

∫ αbn
n

(α−1)bn
n

ς (s) ds+ o

(
bn
n

)
,

uniformly in j, where we use

V =

∫ 1

0

ς (s) ds, with ς (s) =
4

ψ2
2

(
Φ22θσ

4
s + 2Φ12

σ2
sαs
θ

+ Φ11
α2
s

θ3

)
,

thus we have

L̃n =

∫ 1

0

ς (s) ds+ oP (1)

and the proof is complete.

Proof of Theorem 4.1 Let S∗n = n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
= bn

ψ2kn

Jn∑
j=1

z∗j , where z∗j =
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n1/4 bn
ψ2kn

(
B̄j
∗ − E∗

(
B̄j
∗)) . It follows that E∗

(
Jn∑
j=1

z∗j

)
= 0, and

V ∗n ≡ V ar∗

(
Jn∑
j=1

z∗j

)
P→ V.

Since z∗1 , · · · , z∗Jn are conditionally independent, by the Berry-Esseen bound, for some small
ε > 0 and for some constant C > 0 which changes from line to line,

sup
x∈<

∣∣∣P ∗ (S∗n ≤ x)−Φ
(
x/
√
V
)∣∣∣ ≤ C

Jn∑
j=1

E∗
∣∣z∗j ∣∣2+ε ,

which converges to zero in probability as n→∞. We have

Jn∑
j=1

E∗
∣∣z∗j ∣∣ 2+ε =
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E∗
∣∣∣∣n1/4 bn
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B̄∗j
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≤ 2n
(2+ε)

4

(
bn
ψ2kn

)2+ε Jn∑
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≤ CE∗ |η1|2+εn
(2+ε)

4

(
n

(2+ε)
4 k−(2+ε)n b(2+ε)n

) Jn∑
j=1

∣∣B̄j

∣∣ 2+ε
≤ CE∗ |η1|2+ε
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)

= op (1) ,

since for any ε ≥ 2, so long as δ < 2/3, we have 2+ε
4

+ (δ − 1) (1 + ε) < 0, and given that by
Theorem 3.3 of Jacod, Podolskij and Vetter (2010)

n
ε
2

Nn∑
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2(2+ε)
i →P µ2(2+ε)

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1αs
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ds,

which is bounded given Assumption 3, and E∗ |ηj|2+ε ≤ ∆ <∞. It follows that n1/4
(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
→d∗

N(0, V ) in probability.

Proof of Theorem 4.2 Given that Tn
d→ N(0, 1), it suffices to show that T ∗n

d∗→ N(0, 1) in
probability. Let

H∗n =
n1/4

(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
√
V ∗n

,
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and note that

T ∗n = H∗n

√
V ∗n

V̂ ∗n
,

where V̂ ∗n is defined in the main text. Theorem 4.1 proved that H∗n
d∗→ N(0, 1) in probability.

Thus, it suffices to show that V̂ ∗n − V ∗n
P ∗
→ 0 in probability. In particular, we show that (1)

Bias∗
(
V̂ ∗n

)
= 0, and (2) V ar∗

(
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)
P→ 0. It is easy to verify that (1) holds by the definition

of V̂ ∗n and V ∗n . To prove (2), note that
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where we have used the fact that ηj is i.i.d. to justify the third equality and Theorem 3.3 of

Jacod, Podolskij and Vetter (2010) to justify the fact that n
∑Nn

i=1 Ȳ
8
i = OP (1).
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