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Abstract

In production theory and efficiency analysis, we estimate the production frontier, the locus of
the maximal attainable level of an output (the production), given a set of inputs (the production
factors). In other setups, we estimate rather an input (or cost) frontier, the minimal level of the
input (cost) attainable for a given set of outputs (goods or services produced). In both cases
the problem can be viewed as estimating a surface under shape constraints (monotonicity, . . . ).
In this paper we derive the theory of an estimator of the frontier having an asymptotic normal
distribution. It is based on the order-m partial frontier where we let the order m to converge to
infinity when n→∞ but at a slow rate. The final estimator is then corrected for its inherent
bias. We thus can view our estimator as a regularized frontier. In addition, the estimator is
more robust to extreme values and outliers than the usual nonparametric frontier estimators,
like FDH and than the unregularized order-mn estimator of Cazals et al. (2002) converging to
the frontier with a Weibull distribution ifmn →∞ fast enough when n→∞. The performances
of our estimators are evaluated in finite samples and compared to other estimators through
some Monte-Carlo experiments, showing a better behavior (in terms of robustness, bias, MSE
and achieved coverage of the resulting confidence intervals). The practical implementation and
the robustness properties are illustrated through simulated data sets but also with a real data
set.
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1 Introduction

In production theory and efficiency analysis, we are interested in estimating the production

frontier which is the locus of the maximal attainable level of an output (the production),

given a set of inputs (the production factors). In other setups, we are rather willing to

estimate an input (or cost) frontier that is defined as the minimal attainable level of the

input (cost) for a given set of outputs (goods or services produced). In both cases the

problem can be viewed as estimating a surface under shape constraints (monotonicity,. . . ).

The efficiency score of a given unit is then determined by an appropriate distance (in the

output direction, or in the input direction) of this unit to the optimal frontier.

Formally (we will in this paper focus the presentation in the input orientation case, where

we want to estimate the minimal cost frontier1), let x ∈ R+ denote the input (or the cost

of production) and y ∈ Rq
+ be the vector of goods or services produced. The attainable set

(feasible combinations of input and outputs) is defined as

Ψ = {(x, y) ∈ R+ × Rq
+ | y can be produced by x}. (1.1)

A minimal assumption often accepted for Ψ is the free disposability of the inputs and of

the outputs, namely, if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ for any pairs (x′, y′) such that x′ ≥ x

and y′ ≤ y. This implies a monotonicity property of the frontier surface. Sometimes (not

in this paper), the hypothesis of the convexity of Ψ is also assumed (see Shephard, 1970

for a comprehensive overview of the underlying economic models used in prodution theory).

The efficient boundary of Ψ, in the input oriented case, is represented by the minimal input

frontier function

ϕ(y) = inf{x | (x, y) ∈ Ψ}, (1.2)

and the Farrell-Debreu efficiency score of a unit operating at the level (x0, y0) is given by

the ratio ϕ(y0)/x0, which gives a number between zero and one. An efficiency equal to

one corresponds to an input-efficient unit (being on the minimal input frontier) and more

generally ϕ(y0)/x0 ≤ 1 gives the reduction of input (cost) the firm should reach to be

considered as input-efficient.

A popular nonparametric estimator of the attainable set is the Free Disposal Hull (FDH)

estimator proposed by Deprins, Simar and Tulkens (1984). The FDH is the smallest mono-

tone set enveloping the data points, it relies only on the free disposability assumption and

its asymptotic properties have been established (Park, Simar and Weiner, 2000 and Daouia,

1The presentation for the output oriented case, where we want to estimate the maximal production
frontier, is a straightforward adaptation of what is done here. In the appendix, we give a summary of the
notations and main results for that case.
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Florens, Simar, 2010). More details will be given below. Another nonparametric estima-

tor, the Data Envelopment Analysis (DEA), initiated by Farrell (1957) and popularized by

Charnes, Cooper and Rhodes (1978), can be justified when the convexity of Ψ is moreover

assumed. Its asymptotic properties have been established in Kneip et al. (2008). A recent

survey of the available statistical tools for making inference in these nonparametric models

can be found in Simar and Wilson (2008).

In most of the empirical examples, a naive application of these nonparametric techniques

is impossible because real samples contain in general some anomalous data. In that case, the

estimated frontier is fully determined by these outliers and the measurement of inefficiencies

are totally unrealistic. Whereas most of the practitioners use a rule of thumb for outliers

elimination, we have rather proposed in previous different papers (Cazals et al., 2002 and

Daouia and Simar, 2007) to keep all the observations in the sample but to replace the frontier

of the empirical distribution by (conditional) quantiles or by the expectation of the minimum

(or maximum) of a subsample of the data. This latter method defines the order-m frontier.

The underlying idea of the two existing methods is thus to estimate a partial frontier well

inside the cloud of data points but near its lower (or upper) boundary, in such a way to

be sensitive to the magnitude of the extreme valuable observations but, simultaneously,

resistant to their influence in case they are suspicious (see Daouia and Gijbels, 2011a, for

additional justifications). This is an efficient estimation strategy in absence of information

on whether the (isolated) observations are measured accurately. The duality between order-

m and order-α frontiers has been also investigated by Daouia and Gijbels (2011a). They

show in particular, that even if the order-α quantile frontiers have global better robustness

properties (higher breakdown value), it appears that once they breakdown, they become less

resistant to outliers than the order-m frontiers.

It has been proved in Cazals et al. (2002) that if m is fixed the nonparametric estimator

of the order-m frontier is asymptotically normal with a parametric
√
n rate of convergence.

However, if m goes to infinity very fast as n tends to infinity, the asymptotic behavior of the

resulting estimator is identical to the asymptotics of the FDH estimator (Weibull limiting

distribution, with the “curse of the dimensionality”). On the other hand, even in absence of

outliers, the order-m frontier estimator is biased. The methodology we propose is to increase

slowly m when n increases in order to keep the asymptotic normality (as the case of fixed m)

and then to correct the bias. The advantage of this approach is to be unbiased in absence

of outliers (which is not the case of the FDH estimator) and to be less sensitive in case of

anomalous data in the sample.

The outliers may come from measurement errors, from reporting errors in the survey, or

from unobserved heterogeneity in the sample. One may imagine that the fraction of outlying
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observations comes from a totally different process of the main data generating process, and

the objective is then to estimate the frontier of the main production process.

Our method requires the estimation of the tail index of the distribution (defined and

denoted ρy below) and a coefficient `y (defined below) which describe the behavior of the

distribution close to its support frontier. We can view (ρy, `y) as regularity parameters. These

estimations and the estimation of the frontier itself need the selection of “regularization”

parameters (m depending on n and a particular sample fraction a). This selection (of the

order m in particular) naturally implies a tradeoff between the bias of the estimator (even

if it is corrected at the first order) and the sensitivity to the outliers. To the best of our

knowledge, this specification of regularity parameters balancing bias and robustness in a

decisional framework has not yet been proposed and it is in our research agenda from a

perspective of extreme-value theory.

Our approach is exactly in the spirit of nonparametric estimation: we estimate a function

under some regularity conditions on the underlying distribution. These conditions depend

on the parameters (ρy, `y). If these parameters are known, the nonparametric estimation is

easy, but in general such parameters should be preliminarily estimated. We propose here a

method that appears to be more efficient in the simulation experiments than previous ones

suggested in the literature.

The other concept of partial frontier mentionned above is the order-α (conditional) quan-

tile frontier (see Aragon et al. 2005 and Daouia and Simar, 2007), providing an alternative

robust estimator of the frontier function. Recent work of Daouia et al. (2010) makes the

links between frontier estimation and extreme-value theory. By doing so, they revisit and

extend former results on the asymptotic behavior of the FDH estimator and they provide an

alternative regularized version of the FDH estimator by using extreme quantile-type fron-

tiers (see also the footnote 3 below). Here too, an estimation of the regularity parameters

(ρy, `y) is proposed showing however a greater unstability with respect to the choice of the

regularization parameter α = αn. The quantile-based method could also require huge sample

sizes to get reasonable estimates of the tail index. We will show in the simulation exercises

that the new method developped in the paper at hand provides much better estimates.

The next section gives the basic notation for introducing the FDH and order-m frontier

estimators. Section 3 provides the main theoretical results of this paper: the estimation of

the order-m frontier when m tends to infinity (subsection 3.1) and how to implement an

estimator of the frontier function ϕ(y) in practice (subsection 3.2). Section 4 addresses the

problem of estimating the unknown parameters of the asymptotic distribution. Section 5

illustrates how our procedure works out in practice with simulated data and a real data set.

Section 6 concludes.
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2 Basic Concepts

2.1 The FDH estimator

The attainable set Ψ can be seen as the support of the random vector (X, Y ) defined on an

appropriate probability space. It will be useful to describe the joint distribution of (X, Y )

by its joint survivor function:

SXY (x, y) = Prob(X ≥ x, Y ≥ y) = S(x|y)SY (y), (2.1)

where S(x|y) = Prob(X ≥ x |Y ≥ y) and SY (y) = Prob(Y ≥ y). Notice that the conditional

survivor function S(x|y) is non-standard, since the condition is Y ≥ y.

Cazals, Florens and Simar (2002) have shown that under the free disposability assump-

tion, the minimal input function ϕ(y) can equivalently be defined as

ϕ(y) = inf{x |S(x|y) < 1}. (2.2)

Since the attainable set is unknown, it has to be estimated from a sample of i.i.d. units

Xn = {(Xi, Yi) | i = 1, . . . , n}. The free disposal hull of Xn is the FDH estimator

Ψ̂ = {(x, y) | y ≤ Yi, x ≥ Xi, i = 1, . . . , n}, (2.3)

providing the FDH estimator of the frontier ϕ(y)

ϕ̂(y) = inf{x | Ŝ(x|y) < 1} = min
{i:Yi≥y}

Xi, (2.4)

where Ŝ(x|y) = ŜXY (x, y)/ŜY (y) with ŜXY (x, y) = (1/n)
∑n

i=1 1I(Xi ≥ x, Yi ≥ y) and

ŜY (y) = (1/n)
∑n

i=1 1I(Yi ≥ y). Park et al. (2000) have obtained the limiting distribution

of FDH estimators in a full multivariate set-up under some regularity conditions. The most

general asymptotic result in our setup here is given by Daouia et al. (2010) and can be

summarized as follows.

Under the regularity condition (Corollary 2.2 in Daouia et al., 2010)

SY (y)(1− S(x|y)) = `y
(
x− ϕ(y)

)ρy
+ o
(
(x− ϕ(y))ρy

)
, as x ↓ ϕ(y), (2.5)

with `y > 0, ρy > q and ϕ(y) being differentiable in y with strictly positive first partial

derivatives, we have2 as n→∞

(n`y)
1/ρy
(
ϕ̂(y)− ϕ(y)

) L−→Weibull(1, ρy). (2.6)

2The Weibull distribution is related to the Exponential distribution: W ∼Weibull(1, c)⇔W c ∼ Exp(1).
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In addition, the joint density of (X, Y ) near the frontier function can be expressed as

f(x, y) = cy(x− ϕ(y))βy + o
(
(x− ϕ(y))βy

)
, as x ↓ ϕ(y), (2.7)

where cy > 0 and βy = ρy − (q + 1). Since βy > −1, the asymptotic result covers the cases

−1 < βy < 0, where the density tends to infinity at the frontier, at a speed of the power

ρy − (q + 1), the case βy = 0 where the density has a jump at the frontier (ρy = q + 1) and

the cases βy > 0 where the joint density decays to zero at a speed of the power ρy − (q+ 1).

Remark 2.1. The regularity condition (2.5) is a particular case of the more general extreme

value regularity condition (see Daouia et al., 2010 for details)

SY (y)(1− S(x|y)) = Ly

(
1

x− ϕ(y)

)
(x− ϕ(y))ρy , (2.8)

where Ly is a slowly varying function and ρy > 0 is the tail index, i.e. limt→∞
Ly(tz)

Ly(t)
= 1, for

all z > 0. This is the necessary and sufficient condition under which the conventional FDH

estimator converges to a non-degenerate distribution.

Given that the regularly varying function Ly in (2.8) satisfies Ly(tz) ≈ Ly(t) as t→∞,

for all z > 0, a more convenient condition is to consider the normalized class of slowly

varying functions Ly(z) that can be approximated by a constant `y > 0 for all z large enough,

or equivalently Ly

(
1

x−ϕ(y)

)
≈ `y as x ↓ ϕ(y). This will be sufficient to ensure the asymptotic

Normality of our regularized version of the FDH estimator. In this case, the necessary

and sufficient condition entails to equation (2.7) which is a very common assumption in

the statistical literature on frontier estimation (see Daouia et al., 2010 and the references

therein). In the econometric literature on frontier analysis, the shape parameter βy of the

joint density is simply set equal to zero in most of the nonparametric approaches, while

(βy, `y) are assumed to be known in all the parametric approaches.

For instance, if (X, Y ) is uniformly distributed over Ψ = {(x, y)|0 ≤ y ≤ x ≤ 1}, we

have Ly(·) = `y = ` = 1 and ρy = ρ = 2 and (2.5) is satisfied.

If X = Y 1/2 exp(U) where Y is uniform over [0, 1] and U , independent of Y , is Exponen-

tial with parameter λ = 3, we have ρy = ρ = 2 and Ly

(
1

x−ϕ(y)

)
= `y + o

(
(x − ϕ(y))

)
when

x ↓ ϕ(y), with `y = ` = 3 and (2.5) is satisfied.

2.2 Order-m frontier and robust estimation

By construction, since it envelops all the data points, the FDH estimator (and its convexified

version, the DEA estimator) is very sensitive to outliers and extreme data points. Cazals

et al. (2002) suggested to define a benchmark frontier that is less extreme than the full
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frontier function ϕ(y). Indeed, the latter can be defined as the minimal achievable input

level for firms producing at least the level y, see (2.2). A less extreme benchmark, based on

the concept of order-m frontier, is defined as the expected minimal input value among m

peers drawn at random in the population of units producing at least the level y, where m is

a natural number (m ≥ 1)3. Formally,

ϕm(y) = E [min(X1, . . . , Xm)|Y ≥ y] , (2.9)

provided the expectation exists. We have the following equivalences

ϕm(y) =

∫ ∞
0

Sm(u|y) du = ϕ(y) +

∫ ∞
ϕ(y)

Sm(u|y) du. (2.10)

It can be seen that ϕm(y) → ϕ(y) as m → ∞. Recently, Daouia and Gijbels (2011b,

Proposition 1) have shown that ϕm(y) exists, for all m ≥ 1, provided that E [X|Y ≥ y] <∞.

A nonparametric estimator of ϕm(y) is given by pluging the empirical version of S(u|y)

in (2.10) to obtain

ϕ̂m(y) =

∫ ∞
0

Ŝm(u|y) du. (2.11)

For fixed m, it has been shown that
√
n
(
ϕ̂m(·) − ϕm(·)

) L−→ G(0,Ω) where G is a gaussian

process with covariance function Ω described in Cazals et al. (2002). In particular, for any

given y and a fixed value of m, we have as n→∞,
√
n

σ(m, y)

(
ϕ̂m(y)− ϕm(y)

) L−→ N (0, 1), (2.12)

where

σ2(m, y) = E
[
m1I(Y ≥ y)

SY (y)

∫ ∞
0

(
Sm−1(u|y)1I(X ≥ u)− Sm(u|y)

)
du

]2

. (2.13)

It is clear that if m → ∞, ϕ̂m(y) will converge to the FDH estimator ϕ̂(y). Cazals et al.

show that if m = mn →∞ fast enough when n→∞, the resulting estimator has the same

asymptotic distribution as the FDH estimator, i.e.,

(n`y)
1/ρy
(
ϕ̂mn(y)− ϕ(y)

) L−→Weibull(1, ρy). (2.14)

Of course, for finite n, the resulting estimator ϕ̂mn(y) does not envelop all the data points

and so provides a robust version of the FDH estimator.

3 To help the reader to understand the difference with the quantile-type frontiers of Aragon et al. (2005),
and used in Daouia et al. (2010) as an alternative regularization of the FDH estimator, we briefly remind
that ϕα(y) = inf{x|SX|Y (x|y) < α}, where α ∈ (0, 1]. The nonparametric estimator ϕ̂α(y) is obtained by

pluging ŜX|Y at the place of SX|Y . When αn → 1 slowly enough as n → ∞, Daouia et al. (2010) derive,
after a bias correction, a regularized estimator of ϕ(y) having also a normal limiting distribution.
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3 The Main Results

3.1 Estimation of the order-m frontier when m→∞

We start with a preliminary lemma which controls, as m→∞, the variance of the order-m

estimator ϕ̂m(y) given in (2.13).

Lemma 3.1. Under the regularity condition (2.5), we have for any y such that SY (y) > 0,

as m→∞

k1,ym
1−2/ρy ≤ σ2(m, y) ≤ k2,ym

2−2/ρy , (3.1)

where k1,y and k2,y are some positive constants.

Proof: We first obtain after some elementary algebraic manipulations that the variance can

be expressed as

σ2(m, y) =
2m2

SY (y)

∫ ∞
ϕ(y)

∫ ∞
ϕ(y)

Sm(u|y)Sm−1(v|y)(1− S(v|y))1I(u ≥ v) du dv. (3.2)

(i) Searching a minorant of σ2(m, y) when m→∞. We first notice that

σ2(m, y) =
2m2

SY (y)

∫ ∞
ϕ(y)

Sm−1(v|y)F (v|y)

[∫ ∞
v

Sm(u|y) du

]
dv,

where F (v|y) = 1− S(v|y). So that for all δ > 0, we have

σ2(m, y) ≥ 2m2

SY (y)

∫ ϕ(y)+δ

ϕ(y)

Sm−1(v|y)F (v|y)

[∫ v+δ

v

Sm(u|y) du

]
dv,

≥ 2m2δ

SY (y)

∫ ϕ(y)+δ

ϕ(y)

Sm−1(v|y)F (v|y)Sm(v + δ) dv.

Since Sm−1(v|y) ≥ Sm−1(v + δ|y) ≥ Sm(v + δ|y), we have

σ2(m, y) ≥ 2m2δ

SY (y)

∫ ϕ(y)+δ

ϕ(y)

S2m(v + δ|y)F (v|y) dv,

≥ 2m2δ

SY (y)
S2m(ϕ(y) + 2δ|y)

∫ ϕ(y)+δ

ϕ(y)

F (v|y) dv.

Now, if δ ↓ 0, by the regularity condition (2.5) we have that∫ ϕ(y)+δ

ϕ(y)

F (v|y) dv ≥ cy
ρy + 1

δρy+1

2
, (3.3)
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where cy =
`y

SY (y)
. When δ ↓ 0, it is also easy to see from (2.5) that

S(ϕ(y) + 2δ|y) ≥ 1− 2cy(2δ)
ρy = exp

[
log
(
1− 2cy(2δ)

ρy
)]
.

Therefore S2m(ϕ(y)+2δ|y) ≥ exp
[
2m log

(
1−2cy(2δ)

ρy
)]

. Since lim
δ↓0

log
(
1− 2cy(2δ)

ρy
)

−2cy(2δ)ρy
= 1,

for sufficiently small δ > 0 we have
log
(
1− 2cy(2δ)

ρy
)

−2cy(2δ)ρy
≤ 2. So, when δ ↓ 0 we have

S2m(ϕ(y) + 2δ|y) ≥ e−8mcy(2δ)ρy . Pluging these results in the latter inequality for σ2(m, y)

we have as δ ↓ 0

σ2(m, y) ≥ 2m2δ

SY (y)
e−8mcy(2δ)ρy cy

ρy + 1

δρy+1

2
.

Choosing δ = (1/m)1/ρy , we have as m→∞

σ2(m, y) ≥ k1,ym
1−2/ρy . (3.4)

(ii) Searching a majorant of σ2(m, y) when m→∞. From (2.10) and (3.2) we have

σ2(m, y) ≤ 2m2

SY (y)

∫ ∞
ϕ(y)

∫ ∞
ϕ(y)

Sm(u|y)Sm−1(v|y)(1− S(v|y)) du dv,

=
2m2

SY (y)

[
(ϕm(y)− ϕ(y))(ϕm−1(y)− ϕ(y))− (ϕm(y)− ϕ(y))2

]
=

2m2

SY (y)
(ϕm(y)− ϕ(y))2

[
ϕm−1(y)− ϕ(y)

ϕm(y)− ϕ(y)
− 1

]
Now, by the regularity condition (2.5), the equation (2.5) in Daouia et al. (2010) and from

the definition (2.9) of ϕm, we have as m→∞

ϕm(y)− ϕ(y) = Γ

(
1 +

1

ρy

)(
1

m`y

)1/ρy

+ o(m−1/ρy). (3.5)

Therefore, as m→∞,

σ2(m, y) ≤ 2m2

SY (y)

[
Γ2(1 + 1/ρy)(m`y)

−2/ρy + o(m−2/ρy)
]
≤ k2,ym

2−2/ρy ,

where k2,y is a positive constant. This completes the proof of the lemma. �

The following theorem gives the basic results of our paper, it specifies under which condi-

tion on the sequence mn, the asymptotic distribution of ϕ̂mn(y) is still a Normal distribution.
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Theorem 3.1. Under the regularity condition (2.5), and if mn = c n1/3−ε (log log n)−2/3 for

some constants c > 0 and ε ∈ (0, 1/3), we have for any y such that SY (y) > 0, as n→∞
√
n

σ(mn, y)

(
ϕ̂mn(y)− ϕmn(y)

) L−→ N (0, 1). (3.6)

Proof: In the proof, to simplify the notation, we will denote mn by m, keeping in mind that

m = mn →∞ when n→∞ at the rate given by mn. Let us define

Ry
m,n =

(
ϕ̂m(y)− ϕm(y)

)
−m

∫ ∞
ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du.

So the object of interest for the theorem can be written as
√
n

σ(m, y)

(
ϕ̂m(y)− ϕm(y)

)
=

m
√
n

σ(m, y)

∫ ∞
ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du

+

√
n

σ(m, y)
Ry
m,n. (3.7)

(i) We first prove that
√
n

σ(m,y)
Ry
m,n

a.s.−→ 0 as n → ∞. Since ϕ̂(y)
a.s.

≥ ϕ(y), and because

Ŝm(u) = Sm(u) = 1 for all u ∈ (0, ϕ(y)), we have

Ry
m,n

a.s.
=

∫ ∞
ϕ(y)

(
Ŝm(u|y)− Sm(u|y)

)
du−m

∫ ∞
ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du.

Now, consider the following Taylor expansion∫ ∞
ϕ(y)

(
Ŝm(u|y)− Sm(u|y)

)
du = m

∫ ∞
ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du

+
1

2
m(m− 1)

∫ ∞
ϕ(y)

[
Ŝ(u|y)− S(u|y)

]2
bm−2
y (u) du,

where, Ŝ(u|y) ∧ S(u|y) ≤ by(u) ≤ Ŝ(u|y) ∨ S(u|y). So, we obtain:

Ry
m,n

a.s.
=

1

2
m(m− 1)

∫ ∞
ϕ(y)

[
Ŝ(u|y)− S(u|y)

]2
bm−2
y (u) du.

By the Law of Iterated Logarithms, we know that sup
u

∣∣Ŝ(u|y)− S(u|y)
∣∣ a.s.≤ C

( log log n

n

)1/2

for some constant C, so we have
√
n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.≤ 1

2

m(m− 1)

σ(m, y)

C2 log log n√
n

∫ ∞
ϕ(y)

bm−2
y (u) du. (3.8)

Let us now analyze the behavior of
∫∞
ϕ(y)

bmy (u) du when m→∞. We can write∫ ∞
ϕ(y)

bmy (u) du =

∫ ∞
ϕ(y)

(
S(u|y) + ry(u)

)m
du,
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for some ry(u) such that Ŝ(u|y)∧S(u|y)−S(u|y) ≤ ry(u) ≤ Ŝ(u|y)∨S(u|y)−S(u|y). Note

that |ry(u)| ≤ C
( log log n

n

)1/2

. Since (S(u|y)+ry(u))m−Sm(u|y)

ry(u)
= m

(
S(u|y) + gy(u)

)m−1
, for

some gy(u) such that |gy(u)| ≤ |ry(u)|, we obtain∫ ∞
ϕ(y)

(
S(u|y) + ry(u)

)m
du ≤

∫ ∞
ϕ(y)

Sm(u|y) du

+ mC
( log log n

n

)1/2
∫ ∞
ϕ(y)

(
S(u|y) + gy(u)

)m−1
du.

Applying the same argument for the exponent m− 1, one can find∫ ∞
ϕ(y)

(
S(u|y) + gy(u)

)m−1
du ≤

∫ ∞
ϕ(y)

Sm−1(u|y) du

+ (m− 1)C
( log log n

n

)1/2
∫ ∞
ϕ(y)

(
S(u|y) + hy(u)

)m−2
du.

for some hy(u) such that |hy(u)| ≤ |gy(u)| ≤ |ry(u)|. It is clear that∫ ∞
ϕ(y)

(
S(u|y) + hy(u)

)m−2
du ≤

∫ ∞
ϕ(y)

(
Ŝ(u|y) ∨ S(u|y)

)m−2
du

≤
∫ ∞
ϕ(y)

(
Ŝm−2(u|y) ∨ Sm−2(u|y)

)
du ≤

∫ ∞
ϕ(y)

Ŝm−2(u|y) du+

∫ ∞
ϕ(y)

Sm−2(u|y) du.

So, when m→∞,
∫∞
ϕ(y)

(
S(u|y) + hy(u)

)m−2
du

a.s.
= o(1). So finally we obtain when m→∞,∫ ∞

ϕ(y)

bmy (u) du
a.s.

≤
(
ϕm(y)− ϕ(y)

)
+mC

( log log n

n

)1/2(
ϕm−1(y)− ϕ(y)

)
+m(m− 1)C2

( log log n

n

)
o(1). (3.9)

Plugging in (3.8) the results (3.9) and (3.5) and using Lemma 3.1, we obtain for m→∞,

√
n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.

≤ C2m2

2
√
k1,ym1/2−1/ρy

log log n√
n

{[
Γ(1 + 1/ρy)`

−1/ρy + o(1)
]

×
(
m−1/ρy +mC

( log log n

n

)1/2
m−1/ρy

)
+m2C2 log log n

n
o(1)

}
,

so that
√
n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.

≤ m3/2 log log n√
n

(K1 + o(1)) +m5/2 (log log n)3/2

n
(CK1 + o(1))

+ m7/2+1/ρy
(log log n)2

n3/2
o(1), (3.10)

10



where K1 is some positive constant. Since under the condition of the theorem m = mn =

c n1/3−ε (log log n)−2/3 all the terms in the r.h.s. of the last inequality converges to 0 when

n→∞, we obtain
√
n

σ(m, y)
Ry
m,n

a.s.−→ 0 as n→∞. (3.11)

(ii) We now will prove the leading term of (3.7) converges to a standard normal. We can

rewrite this leading term as
√
n m

σ(m, y)

∫ ∞
ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du =

SY (y)

ŜY (u)

n∑
i=1

Wn,i√
nσ(m, y)

,

where Wn,i =
(
m/SY (y)

) ∫∞
ϕ(y)

Sm−1(u|y)
[
1I(Xi ≥ u, Yi ≥ y)−S(u|y)1I(Yi ≥ y)

]
du. It is easy

to see that E(Wn,i) = 0 and V(Wn,i) = σ2(m, y). By the Lindberg-Feller theorem (Serfling,

1980, p. 29) we have

1√
n

n∑
i=1

Wn,i

σ(m, y)

L−→ N (0, 1), as n→∞, (3.12)

under the Liapounoff condition, i.e. if

nE
(
|Wn,i|3

)[
nV(Wn,i)

]3/2 −→ 0, as n→∞. (3.13)

The Liapounoff condition is easy to check under the assumptions of the theorem. Indeed,

E
(
|Wn,i|3

)
= E

(
W 2
n,i|Wn,i|

)
and since

∣∣1I(Xi ≥ u, Yi ≥ y)− S(u|y)1I(Yi ≥ y)
∣∣ ≤ 1, we have

|Wn,i| ≤
m

SY (y)

∫ ∞
ϕ(y)

Sm−1(u|y)du =
m

SY (y)

(
ϕm−1(y)− ϕ(y)

)
.

So, E
(
|Wn,i|3

)
≤
(
m/SY (y)

)(
ϕm−1(y)− ϕ(y)

)
σ2(m, y) and we obtain

nE
(
|Wn,i|3

)[
nV(Wn,i)

]3/2 ≤ m√
nSY (y)

ϕm−1(y)− ϕ(y)

σ(m, y)
.

Under the regularity condition (2.5), Lemma 3.1 and (3.5), we have, as m→∞, σ2(m, y) ≥
k1,ym

1−2/ρy and ϕm−1(y)− ϕ(y) ∼ Γ(1 + 1/ρy)
( 1

`y(m− 1)

)1/ρy
, so that

nE
(
|Wn,i|3

)[
nV(Wn,i)

]3/2 ≤ K2
m1/2

√
n
,

where K2 is some poistive constant. The r.h.s. of the latter inequality tends to zero if n→∞
and m → ∞ such that m/n → 0 which is the case for the sequence m = mn given in the

assumption of the theorem. Finally, since
(
SY (y)/ŜY (y)

) a.s.−→ 1, as n → ∞, we obtain the

desired result. �

11



Rate of convergence

It is interesting to analyze the resulting rate of convergence of the estimator as a function

of n. We have as n → ∞, τn
(
ϕ̂m(y) − ϕm(y)

) L−→ N (0, 1) with τn =
√
n/σ(m, y) and

m = mn = c n1/3−ε (log log n)−2/3. We know by Lemme 3.1 that as n→∞,

k1,yc
1−2/ρyn(1/3−ε)(1−2/ρy)−1(log log n)−(2/3)(1−2/ρy) ≤ τ−2

n

≤ k2,yc
2−2/ρyn(1/3−ε)(2−2/ρy)−1(log log n)−(2/3)(2−2/ρy).

We remember that ρy = βy + q + 1, where q ≥ 1 and βy > −1 (see the discussion after (2.7)

above). In the particular case where the extreme value index ρy ≥ 2 we get as n→∞

c1n
−(1/3)(1−1/ρy)+1/2(log log n)(1/3)(2−2/ρy) ≤ τn ≤ c2n

1/2(log log n)(1/3)(1−2/ρy).

This case is of particular interest when the joint density of (X, Y ) has a jump at the frontier

(i.e. βy = 0, an often used assumption in the econometric literature). We have clearly in

this case as q ↓ 1,

c1

(
n log log n

)1/3 ≤ τn ≤ c2n
1/2,

and as q ↑ ∞,

c1n
1/6(log log n)2/3 ≤ τn ≤ c2n

1/2(log log n)1/3.

So, even if the data dimension explodes, the convergence rate does not deteriorate too much

avoiding thus, in a sense and partly, the “curse of dimensionality” that is typical of many

nonparametric estimators. This comes from Cazals et al. (2002) where it is shown that

the order-m frontier is a linear functional of a survival function. Since the survival function

S(y|X ≤ x) is estimated by its empirical version at the
√
n rate for any dimension of x, the

order-m frontier estimator keeps this rate, for fixed m. We loose something of this, but not

all, when m = mn is increasing slowly enough to infinity, as n→∞.

3.2 Estimation of the frontier ϕ(y)

Since ϕm(y) → ϕ(y) as m → ∞, the result of the preceding section can be used to define

an estimator of the “full” frontier itself. From Theorem 3.1, if mn < n1/3(log log n)−2/3, we

have
√
n

σ(mn, y)

(
ϕ̂mn(y)− ϕ(y)−Bmn(y)

) L−→ N (0, 1), (3.14)

where from (3.5),

Bmn(y) = ϕmn(y)− ϕ(y) = Γ

(
1 +

1

ρy

)(
1

mn `y

)1/ρy

+ o(m−1/ρy
n ). (3.15)

12



We see that the value of the bias introduced by using the partial order-mn frontier to estimate

the full frontier is bounded below
(√

n/σ(mn, y)
)
Bmn(y) > K3n

1/3(log log n)1/3 for some

constant K3, and this does not vanish when n→∞.

So, in practice for large values of n (and so of m), we will rather use the following

asymptotic approximation:

ϕ̂m(y)− ϕ(y) ≈ N (Bm(y),
σ2(m, y)

n
), (3.16)

where for doing practical inference Bm(y) and σ(m, y) have to be consistently estimated. A

consitent estimator of σ(m, y) is provided by a plugging version of (3.2), whereas, a consistent

estimator of Bm(y) can be obtained through the leading part of (3.15) once ρy and `y are

known or consistently estimated. The next section suggests a way for estimating these two

parameters, using the properties of order-m frontiers.4

4 Consistent estimators of the Bias

4.1 Consistent estimators of ρy and `y

We will use here an approach inspired by the classical Pickands tail index estimator, analyzed

and developed in our frontier setup in Daouia et al. (2010). The Pickands estimator is based

on comparing different quantile-type estimators of the frontier. As well known from the

literature, and illustrated in Daouia et al., the estimator is rather unstable and provide

disappointing results unless the sample size is larger than, say 1000. Daouia et al. (2010)

also analyze a moment type of estimator providing slightly better behavior in moderated

sample sizes (say larger than 500).

In this paper, we adapt the approach by using the order-m estimator of the frontier

instead of the order-α quantile estimator of the frontier. Indeed, when considering the

asymptotic expression for ϕm(y)−ϕ(y) given by (3.5) for the values m, am and a2m, where

a is some fixed integer with a ≥ 2, we see that

lim
m→∞

ϕm(y)− ϕam(y)

ϕam(y)− ϕa2m(y)
= a1/ρy .

This suggests the following estimator

ρ̂y = log(a)

{
log
( ϕ̂mn(y)− ϕ̂amn(y)

ϕ̂amn(y)− ϕ̂a2mn(y)

)}−1

. (4.1)

4It is well known that the order-m (and order-α) frontier estimates could be non-monotone. Monotonic
versions can be easily obtained by isotonizing the unconstrained estimates. Daouia and Simar (2005) inves-
tigate this approach and show that all the nice properties of the original estimators are maintained after
isotonization.

13



It is also easy to see that

lim
m→∞

1

m

[
Γ(1 + 1/ρy)

(
1− a−1/ρy

)
ϕm(y)− ϕam(y)

]ρy
= `y,

that can lead to the estimator of `y

ˆ̀
y =

1

mn

[
Γ(1 + 1/ρ̂y)

(
1− a−1/ρ̂y

)
ϕ̂mn(y)− ϕ̂amn(y)

]ρ̂y
. (4.2)

The consistency of these estimators is provided by the following theorems.

Theorem 4.1. Under the regularity conditions of Theorem 3.1,

ρ̂y
P−→ ρy and ˆ̀

y
P−→ `y as n→∞, (4.3)

for any y such that SY (y) > 0,

Proof: By Theorem 3.1, we have ϕ̂m(y) − ϕm(y) = Op

(
σ(m, y)/

√
n
)
. Now, by (3.5), and

by Lemma 3.1, we obtain

ϕ̂m(y)− ϕ(y) = Cy

(
1

m

)1/ρy

+ o
(
m−1/ρy

)
+Op

(m1−1/ρy

√
n

)
where Cy = Γ

(
1 + 1

ρy

)(
1
`y

)1/ρy
. Similarly we have for all a ≥ 2

ϕ̂am(y)− ϕ(y) = Cy

(
1

am

)1/ρy

+ o
(
m−1/ρy

)
+Op

(m1−1/ρy

√
n

)
ϕ̂a2m(y)− ϕ(y) = Cy

(
1

a2m

)1/ρy

+ o
(
m−1/ρy

)
+Op

(m1−1/ρy

√
n

)
.

Now by doing the differences we have

m1/ρy
(
ϕ̂m(y)− ϕ̂am(y)

)
= Cy

(
1− 1/a1/ρy

)
+ o(1) +Op

( m√
n

)
(am)1/ρy

(
ϕ̂am(y)− ϕ̂a2m(y)

)
= Cy

(
1− 1/a1/ρy

)
+ o(1) +Op

( m√
n

)
,

leading to

ϕ̂m(y)− ϕ̂am(y)

ϕ̂am(y)− ϕ̂a2m(y)
= a1/ρy

Cy
(
1− 1/a1/ρy

)
+ o(1) +Op

(
m√
n

)
Cy
(
1− 1/a1/ρy

)
+ o(1) +Op

(
m√
n

) .
14



As m/
√
n→ 0 as n→∞, the ratio on the right hand side converges in probability to 1, so

that

ϕ̂m(y)− ϕ̂am(y)

ϕ̂am(y)− ϕ̂a2m(y)

P−→ a1/ρy ,

which gives ρ̂y
P−→ ρy. On the other hand, since

m1/ρy
(
ϕ̂m(y)− ϕ̂am(y)

)
= Γ(1 + 1/ρy)(1− 1/a1/ρy)(`y)

−1/ρy + o(1) +Op

( m√
n

)
,

we have by using m/
√
n→ 0 and ρ̂y

P−→ ρy as n→∞,

1

m

[
Γ(1 + 1/ρ̂y)

(
1− a−1/ρ̂y

)
ϕ̂m(y)− ϕ̂am(y)

]ρ̂y
P−→ `y,

which gives ˆ̀
y

P−→ `y. �

4.2 Practical choice of a and m

The choice of optimal values of a and m is an open theoretical issue. Nothing guarantees that

an optimal choice of m for estimating the frontier function ϕ(y) is the same as the selected

optimal m for estimating the regularity parameters ρy and `y. Moreover, the selection

optimal values for m and a depend heavily on the tail index ρy. Daouia et al. (2010)

faced similar issues for choosing the extreme order α = αn for providing the quantile-based

regularized version of the FDH estimator. This topic is in our research agenda, but we know

from the literature on extreme-value theory that the determination of an optimal sample

fraction for the estimation of the tail index ρy is not an easy task.

However, in practice, we will see from the simulations below that the performances of

our estimators are much less sensitive to the choice of a and m than in the quantile-based

approach of Daouia et al. (2010). This is probably due to the construction of the order-

mn frontier estimator as a linear combination of large order statistics, while the order-αn

frontier estimator is given by a single extreme order statistic (see, e.g., Daouia and Gijbels

(2011a) for explicit formulations of both empirical partial frontiers in terms of conditional

order statistics). In most of our illustrations, we have chosen mn = N
1/3
y , where Ny =∑n

i=1 1I(Yi ≥ y) is the number of observations with Yi ≥ y. This choice guarantees by

Theorem 3.1 the regular behavior of the estimator ϕ̂mn(y) as n → ∞ and as seen above, it

guarantees also the consistency of the estimators ρ̂y and ˆ̀
y.

The selection of a ≥ 2 is much less important: the results are rather stable relative to

this choice. Higher values of a will give more weights to extreme data points and this choice
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typically depends on the value of the tail index itself. However, in all the Monte-Carlo

experiments below, it turns out that the choice a = 10 provides quite reasonable estimates

with a nice behavior of the estimators in terms of Bias and Mean Squared Errors (MSE) for

both the regularity parameters as well as for the frontier itself. In some cases, where the

tail index is higher, smaller values may be preferable. We will give in Subsections 5.1 and

5.2 the Monte-Carlo results for the Bias and MSE with the quite different values a = 2 and

a = 10. We will see that the resulting Bias and MSE are much less sensitive to the choice of

a than to the choice of the order α in the extreme quantile-based approach, and globally, as

commented below, our results are much better by a significative order of magnitude.

When working with particular samples of real data, and for the estimation of ρy, we have

to tune the choice of a and m more carefully to obtain sensible results and to avoid numerical

problems in solving (4.1) (see the real data example in Paragraph 5.2.3).

For the final evaluation of the confidence intervals for ϕ(y), we use the normal approxi-

mation centered at ϕ̃m(y), the bias-corrected order-m estimate defined as

ϕ̃m(y) = ϕ̂m(y)− B̂m(y), (4.4)

where B̂m(y) is the plug-in version ofBm(y), replacing ρy and `y by their consistent estimators

derived above. We know from (3.16) that an asymptotic (1− α)× 100% confidence interval

for ϕ(y) is given by

ϕ(y) ∈
[
ϕ̂m −Bm(y)± z1−α/2

σ(m, y)√
n

]
, (4.5)

where z1−α/2 stands for the (1− α/2)th quantile of the standard normal distribution. Then

we estimate this interval by plugging the consistent estimator of Bm(y). Since by doing so,

we will increase the variance of the estimator ϕ̂m(y), we adjust the variance σ(m, y)/
√
n by

a bootstrap estimator of the standard deviation of the bias-corrected estimator ϕ̃m(y). We

will see below, via a Monte-Carlo experiment, that the achieved coverages of these estimates

of confidence intervals are quite reasonable.

4.3 The unregularized order-m estimator

An alternative to our regularized robust estimator of the frontier is the unregularized order-

m estimator proposed in Cazals et al. (2002), i.e. the order-m with m = mn → ∞ fast

enough when n→∞. By making use of (2.14) we could employ the quantiles of the Weibull

distribution to build alterantive estimates of confidence intervals for ϕ(y). Note that here

too, we have to estimate ρy and `y for getting these intervals.

From Theorem 3.2 in Cazals et al. (2002) we know that mn should be of the or-

der O(CnSY (y) log(n)), where C > 1/(q + 1) to obtain the Weibull approximation for
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(
ϕ̂mn(y) − ϕ(y)

)
, but this is not very helpful to choose mn in practice. We know also

that if mn is too large it will coincide with the FDH estimator, loosing all its robustness

properties. To the best of our knowledge, only Daouia and Gijbels (2011b) have proposed

a ‘semi-automatic’ procedure for selecting appropriate values for mn, but there is no com-

plete automatic data driven technique that would be useful in a Monte-Carlo setup. When

choosing in our simulations mn = Ny log(Ny)/(q + 1), the order-m frontier estimator was

confounded with the FDH estimator in most of the cases, with very poor robustness prop-

erties. So we selected mn = Ny in the examples below (to be contrasted with the choice

mn = N
1/3
y for our regularized estimator).

4.4 Asymptotic normality of τn
(
ϕ̃m(y)− ϕ(y)

)
We have proved under some regularity conditions and with a suitable choice of the sequence

m = mn, that τn
(
ϕ̂m(y) − ϕ(y)

) L−→ N (0, 1), with τn =
√
n/σ(m, y). The question is now

to analyze the asymptotic behavior of the bias-corrected order-m estimator defined in (4.4),

i.e., the behavior of τn
(
ϕ̃m(y)− ϕ(y)

)
and to characterize the extra conditions under which

this expression also converges to a standard normal distribution. We have imposed that

the survivor function S satisfies the first order regularity condition (2.5) which determines

the property (3.5). We shall need a second order refinement of this relation which reads as

follows: there exists αy > 0 such that

ϕm(y)− ϕ(y) = Γ

(
1 +

1

ρy

)(
1

m`y

)1/ρy

+ o(m−(1+αy)/ρy). (4.6)

Here we impose the reminder term to be o(m−(1+αy)/ρy) which is supposed to be o(m−1/ρy) in

the first order regularity condition (i.e. αy = 0). So, (3.5) motivates the stringent condition

(4.6), which is used in the next theorem to get the asymptotic normality, assuming that ρy

is given with `y being estimated by using the value m = m̃ described in the theorem.

Theorem 4.2. Under the conditions (2.5) and (4.6) with αy > ρy, if m = cn1/3−ε with

0 < ε < 1
3
, and m̃ = c̃n1/3−ε̃ for some ε̃ > 1

2
ε + 1

6
such that αy

ρy

(
1
3
− ε̃
)

+ 1
2

(
1
3
− ε
)
− 1

2
> 0,

we have for any y such that SY (y) > 0,

τn
(
ϕ̃m(y)− ϕ(y)

) L−→ N (0, 1) as n→∞, (4.7)

where ϕ̃m(y) = ϕ̂m(y)− B̂m(y) and B̂m(y) = Γ

(
1 +

1

ρy

)(
1

m ˆ̀
m̃,y

)1/ρy

.

Proof: The result is true if
√
n

σ(m, y)

(
B̂m(y)− (ϕm(y)− ϕ(y))

) P−→ 0,
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or equivalently if

√
n

σ(m, y)

(
B̂m(y)− Γ

(
1 +

1

ρy

)(
1

m`y

)1/ρy

+ o
(
m−(1+αy)/ρy

)) P−→ 0. (4.8)

(i) Let us consider the last term of (4.8) where m ∼ n−1/3 (it is not hard to verify that we

can neglect the log log term and the ε appearing in the definition of m = mn in Theorem 3.1,

without loss of generality). Using the bounds given in Lemma 3.1, it is clear that this term

is o(1) if αy > ρy.

(ii) For the first term of (4.8), we have

√
n

σ(m, y)

(
B̂m(y)− Γ

(
1 +

1

ρy

)(
1

m`y

)1/ρy
)

=

√
n

σ(m, y)
Γ
(

1 +
1

ρy

) 1

m1/ρy

[( 1

ˆ̀
m̃,y

)1/ρy
−
( 1

`y

)1/ρy

]
,

where ˆ̀
m̃,y = 1

m̃

[
Γ
(

1+1/ρy

)(
1−a−1/ρy

)
ϕ̂m̃(y)−ϕ̂am̃(y)

]ρy
. Let us define similarly `m̃,y = 1

m̃

[
Γ
(

1+1/ρy

)(
1−a−1/ρy

)
ϕm̃(y)−ϕam̃(y)

]ρy
.

Then we can write the first term of (4.8) as

√
n

σ(m, y)
Γ
(

1 +
1

ρy

) 1

m1/ρy

[( 1

ˆ̀
m̃,y

)1/ρy
−
( 1

`m̃y

)1/ρy

]

+

√
n

σ(m, y)
Γ
(

1 +
1

ρy

) 1

m1/ρy

[( 1

`m̃,y

)1/ρy
−
( 1

`y

)1/ρy
]

= I + II. (4.9)

Now the first term I can be written as

I =

√
n

σ(m, y)

1

m1/ρy

m̃1/ρy

(1− a−1/ρy)

[(
ϕ̂m̃(y)− ϕm̃(y)

)
−
(
ϕ̂am̃(y)− ϕam̃(y)

)]
=

√
n

σ(m, y)

m̃1/ρy

m1/ρy

σ(m̃, y)√
n

OP (1) = OP

(
σ(m̃, y)

σ(m, y)

m̃1/ρy

m1/ρy

)
.

By Lemma 3.1 we have

σ(m̃, y)

σ(m, y)

m̃1/ρy

m1/ρy
≤
(
k2,y

k1,y

)1/2
m̃

m1/2
,

where the last ratio tends to zero as soon as 2ε̃ > ε+ 1/3. Therefore we have I = oP (1).

Let us now turn to the second term II of (4.9). We see that

II =

√
n

σ(m, y)
Γ
(

1 +
1

ρy

) 1

m1/ρy

[
m̃1/ρy(ϕm̃(y)− ϕam̃(y))

Γ
(
1 + 1/ρy

)(
1− a−1/ρy

) − ( 1

`y

)1/ρy

]
,
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which by using our regularity condition (4.6) can be written as

II =

√
n

σ(m, y)
Γ
(

1 +
1

ρy

) 1

m1/ρy

[
m̃1/ρyo

(
m̃−(1+αy)/ρy

)]
=

√
n

σ(m, y)
o
(m̃−αy/ρy
m1/ρy

)
.

By using again Lemma 3.1, we have

|II| <
√
n

m1/2−1/ρy

m̃−αy/ρy

m1/ρy
o(1).

So, II will be o(1) if

√
n

m1/2

1

m̃αy/ρy
is O(1). It is easily seen that this happens with the selected

sequences m and m̃ as soon as

αy
ρy

(1

3
− ε̃
)

+
1

2

(1

3
− ε
)
− 1

2
> 0.

This completes the proof of the theorem. �

Remark 4.1. For the conditions on the regularization parameters appearing in the theorem

to be satisfied, it is enough to have:

0 < ε <
1

3
, αy > 2ρy,

1

6
+

1

2
ε < ε̃ <

1

3
− 1

2(1 + αy/ρy)
.

The proof also shows that the difficulty does not come from the estimation of `y (driven

by part I of (4.9) where it is required to select m̃ = o(m1/2)), but only from the bias

approximation in (3.5), which has an error of o
(
m−(1+αy)/ρy

)
(driven by the last term of

(4.8) and part II of (4.9)).

The last point to consider is the relevance of the regularity condition (4.6). This property

is a condition on S(x|y) we may detail. First let us rewrite S(x|y) as e−Λy(x), with Λy(·)
being the conditional integrated hazard function associated with S(·|y). Then starting from

(2.10) and using elementary algebra, we obtain

ϕm(y)− ϕ(y) =

∫ ∞
ϕ(y)

Sm(x|y) dx =

∫ ∞
ϕ(y)

e−mΛy(x) dx

=

∫ ∞
0

e−uΛ−1′

y

( u
m

) 1

m
du =

∫ ∞
0

e−uΛ−1
y

( u
m

)
du. (4.10)

The last equality is obtained under the condition lim
u→∞

e−uΛ−1
y (

u

m
) = 0, where Λ−1

y stands

for the inverse function of Λy.
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If for instance, S(x|y) is a Weibull distribution, Λ−1
y (t) =

(
1
`y

)1/ρy
t1/ρy . This shows that

in the Weibull case, αy is infinite: our approximation of bias is exact. A more general

assumption will be

Λ−1
y (t) =

( 1

`y

)1/ρy
t1/ρy + cyt

(1+αy)/ρy + o
(
t(1+αy)/ρy

)
as t ↓ 0, (4.11)

for some constant cy ∈ R. Under the property (4.11), it can be easily seen by using (2.10)

that the second order condition (4.6) holds with cy = 0. The first order condition (2.5) says

that this property is satisfied for αy = 0. The asymptotic normality of τn
(
ϕ̃m(y) − ϕ(y)

)
obtained in Theorem 4.2 requires a stronger condition relating αy, ρy, m and m̃.

It is also interesting to remark that (4.6) or the more general condition (4.11) parallels in

fact the well-known extreme-value condition required to prove the asymptotic normality of

the bias-corrected frontier estimator in the quantile-based framework. Indeed, as pointed out

in footnote 3, under the sufficient first order condition (2.5) and when the order α = αn → 1

slowly enough as n → ∞, Daouia et al. (2010) established the asymptotic normality of

the unregularized estimator ϕ̂α(y) := inf{x|ŜX|Y (x|y) < α} of the partial quantile-type

frontier function ϕα(y) := inf{x|SX|Y (x|y) < α} (this parallels our Theorem 3.1 for order-m

partial frontiers). Then for estimating the full frontier function itself ϕ(y), the underlying

idea was to shift the anchor order-α partial frontier to the right place. To derive a normal

limiting distribution for the resulting regularized estimator of ϕ(y), the following second

order condition is required on the quantile-type funcion

ϕ1− t
SY (y)

(y) = c0 + c1ρy(t
1/ρy − 1) + c2t

(1+αy)/ρy + o
(
t(1+αy)/ρy

)
as t ↓ 0, (4.12)

for some constants c0 ∈ R, c1 > 0, c2 6= 0 and αy > 0. We refer to e.g. Ferreira, de Haan

and Peng (2003) for a detailed motivation of the traditional extreme-value condition (4.12)

in the non-conditional case.

Thus, as may be seen from (4.11) and (4.12), we shall have to require a similar extra

condition on the tail-quantile function ϕαt(y), with αt = e−t for the order-m frontier modeling

(since Λ−1
y (t) is identical to ϕe−t(y)) and αt = 1− t

SY (y)
for the order-α frontier modeling.

Finally, we note that we restrict ourselves in Theorem 4.2 to the particular case where

ρy is known. This corresponds at least to the usual assumption in the econometric literature

on nonparametric frontier analysis that the density of data has jumps at the frontier, or

equivalently ρy = q + 1 (see the discussion below (2.7)). We do not enter here into the case

where ρy is unknown. The question of whether the asymptotic normality in Theorem 4.2

also holds when replacing ρy by its estimator ρ̂y is a topic of interest for future research.
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5 Illustrative Examples

5.1 Some Monte-Carlo experiments

To facilitate the comparison with the results obtained in Daouia et al. (2010), we have chosen

in the illustrations the output orientation5. Here, the bias-corrected regularized estimator is

given by ϕ̃m(x) = ϕ̂m(x)+B̂m(x). In the illustrations below, we limit the presentation to the

case of one-input and one output. Multivariate extensions are immediate (multi-inputs for a

production function with one output and multi-outputs for a cost or a one-dimensional input

function). Since our estimator does not suffer too much from the curse of dimensionality

(see the discussion above), we limit the presentation to the bivariate case where nice figures

perfectly illustrate the performance of our estimator.

5.1.1 Uniform distribution

We first simulate, as in Daouia et al., random samples (Xi, Yi), i = 1, . . . , n uniformly

distributed on the triangle limited by the frontier ϕ(x) = x with 0 ≤ x ≤ 1. Table 1 displays

the results. The estimation is performed for x = 1, so that the sample size n coincides with

the “effective” sample size Nx, the number of observations at the left of x = 1. We computed

also the estimators with the known true value of ρ, which is ρ0 = 2 in this example.

We observe a nice behavior of our estimators, with an increasing accuracy, as expected,

when the effective sample size Nx increases. The estimation of ρ and ` is not an easy task,

but still we have a reasonable behavior, with the simple rule we have chosen for m and a:

m = N
1/3
x and a = 10. The estimator ϕ̃m has a very nice behavior for all values of Nx and

we note that it has much better properties than the usual FDH estimator ϕ̂ (in terms of

both bias and mean squared error) and than the unregularized estimator of the frontier from

Cazals et al. (2002) (called the CFS estimator hereafter and noted ϕ̃CFS in the Table). We

see that with the smallest possible value for a, (a = 2), the performances are less good but

still comparable or even better than the CFS.

The cost of estimating ρ (which in most econometric applications is supposed to be equal

to p + 1, i.e. there is a jump of the joint density of (X, Y ) at the frontier) appears clearly

when comparing the results ϕ̃m(ρ0) for the estimation of the frontier when the true value of

ρ = 2 is known: they are much better and much less sensitive to the choice of a.

5We can find in the appendix the change of the notations.
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Table 1: Bias and Mean Squared Error (MSE) of the estimates over 1000 Monte-Carlo
simulations: Uniform case, true values are ϕ0 = 1, ρ0 = 2 and `0 = 1

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
a = 2 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ 0.628002 1.555049 0.353080 0.274196 0.278767 0.154348 0.147660 0.043355
ˆ̀ 0.399147 0.380958 0.321304 0.135647 0.286953 0.104483 0.202129 0.052757

ˆ̀(ρ0) 0.504116 0.362388 0.251523 0.083483 0.188782 0.046584 0.104923 0.014347
ϕ̃ 0.041742 0.024328 0.022050 0.002758 0.016362 0.001210 0.006670 0.000218

ϕ̃(ρ0) -0.046530 0.004700 -0.020102 0.000910 -0.013962 0.000432 -0.006043 0.000088

a = 10 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.423441 0.405546 -0.086590 0.167862 -0.030069 0.103272 0.006700 0.032857
ˆ̀ 0.129996 0.143781 0.134017 0.140254 0.123555 0.109258 0.090057 0.052087

ˆ̀(ρ0) 0.436484 0.357537 0.183585 0.063740 0.129845 0.031946 0.071624 0.009915
ϕ̃ -0.070644 0.008321 -0.017592 0.001231 -0.008925 0.000501 -0.002371 0.000087

ϕ̃(ρ0) -0.035497 0.003719 -0.011318 0.000603 -0.006952 0.000255 -0.002778 0.000053

ϕ̃CFS -0.113433 0.014708 -0.050186 0.002902 -0.035234 0.001408 -0.016076 0.000294
ϕ̂ -0.090498 0.010401 -0.040257 0.002071 -0.028140 0.000993 -0.012811 0.000206

Finally, by looking to Tables 1 and 3 in Daouia et al. (2010) (and the reference [3] given

there) using also Pickands estimator of ρ, but with extreme quantile-type frontiers, we see

that we obtain here much more accurate estimators of both ρ and ϕ. To summarize this

comparison, we present some limited results from Daouia et al., in Table 2: we have the

same scenario, with comparable sample sizes. In this table we provide the MSE with the

optimal choice of the quantile order α∗n in each case. In the original full tables in Daouia

et al. we can observe a great variability when changing this quantile order.

Table 2: Mean Squared Error of extreme quantile-based regularized estimators over 2000
Monte-Carlo simulations for the Uniform case, true values are ϕ0 = 1, ρ0 = 2 and `0 = 1.
From Daouia et al. (2010) and the reference [3] therein.

Sample size ρ̂ α∗n ϕ̃α∗
n

α∗n ϕ̃α∗
n

(ρ0) α∗n
Nx = 62 836.96814 0.858 3.45696 0.889 0.00135 0.868
Nx = 250 118.17269 0.767 3.84698 0.767 0.00139 0.812
Nx = 562 1.28492 0.767 0.08546 0.782 0.00138 0.767
Nx = 1000 0.65257 0.782 0.07620 0.798 0.00140 0.830
Nx = 5000 0.04085 0.750 0.00552 0.812 0.00028 0.837

We observe a gain of the MSE when estimating ρ by a factor of the order 1000, 8, 6 and

1.3 for the samples sizes 100, 500, 1000 and 5000, respectively. Remember that we selected

in Table 2 the best order of the quantile-type estimator, whereas we selected here the order

m = N
1/3
x and a = 10 given by our simple rule. Of course, better results could be obtained,

case by case, for other choices of m and a.

For the estimation of the frontier point, the gain of the MSE has a factor of the order 450,

70, 150 and 60 (respectively). We also observe some qualitative gain for the estimation of
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the frontier when ρ is known, but here the gain is of a factor ranging from 2.5 to 5 when Nx

goes from 500 to 5000. Again in this comparison, we selected the best value of the quantile

order in the results from the Tables in Daouia et al.

To conclude this general comparison between the two approaches (using the order-m

functions here and using the order-α quantiles as in Daouia et al., 2010), we can say that we

have much better results in these particular simulations and that with the approach here,

we gain a lot in terms of the stability of the estimators with respect to the choice of the

regularization parameters. Tables 1 and 3 in Daouia et al. indicate indeed a huge sensitivity

to the choice of the quantile order when defining the base estimator (the MSE can change

by a factor of several thousands if the wrong order αn is picked out) and this is not the case

here where we observe a great stability in the estimation of the frontier.

5.1.2 Beta densities for the efficiency term

Now, we analyze the results with different behaviors of the density of the efficiencies at the

frontier points (density tending to infinity, having a jump or converging to zero at the frontier

points). We select the following model Y = X V where X ∼ Unif(0, 1) and V ∼ Beta(β, β)

with values of β = 0.5, 1 and 3. Note that in all the cases, E(V ) = 0.5. Again we focus

the results for the value x = 1, so that Nx = n. The results are shown in Tables 3 to

5. In the first case the density tends to infinity at the frontier, and the FDH estimator ϕ̂

should be performant. It is indeed the case, but our regularized estimator ϕ̃ performs even

slightly better for Nx = 100 and much better for larger Nx reaching less Bias and MSE (when

choosing a = 10). Again, the estimation of ρ and ` is more difficult but our simple rule of

thumb (m = N
1/3
x and a = 10) shows nice behavior of the estimators. When β increases

(jump at the frontier for β = 1 and going smoothly to zero when β = 3), the results for the

estimators of the frontier deteriorate a little. However, as expected, our regularized estimator

ϕ̃ remains still better (with a = 10) than the FDH estimator ϕ̂ and the CFS unregularized

order-mn frontier estimator ϕ̃CFS, in terms of both bias and MSE.

As for the uniform case above, when a = 2 we have less remarkable results for the two

first cases (β = 0.5, 1), but when the density is going smoothly to zero at the frontier (β = 3),

the value a = 2 provides better results as far as Nx is larger than 500. This indicates again

how difficult is the problem of selecting an optimal a. In this latter case, we illustrate the

estimation of the frontier in the full range of X in the next section, and we analyze the

robustness properties of our estimator and investigate the achieved coverage of the normal

confidence intervals suggested above.
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Table 3: Bias and Mean Squared Error (MSE) of the estimates over 1000 Monte-Carlo
simulations: case of the Beta(0.5, 0.5), true values are ϕ0 = 1, ρ0 = 1.5 and `0 = 0.4244.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
a = 2 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ 1.198985 3.023330 0.650579 0.548628 0.489587 0.288141 0.291050 0.094974
ˆ̀ 0.330865 0.192974 0.315225 0.108012 0.295414 0.090897 0.225762 0.052464

ˆ̀(ρ0) 0.482618 0.252249 0.278188 0.080796 0.222635 0.051233 0.133310 0.018186
ϕ̃ 0.121722 0.058908 0.050483 0.005139 0.032115 0.001843 0.014537 0.000314

ϕ̃(ρ0) -0.090905 0.011651 -0.048410 0.002867 -0.035330 0.001506 -0.016387 0.000310

a = 10 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.063176 0.168646 0.146422 0.111090 0.123820 0.061474 0.096074 0.021250
ˆ̀ 0.310572 0.124454 0.237085 0.075298 0.201660 0.052083 0.141359 0.024371

ˆ̀(ρ0) 0.341740 0.138351 0.188876 0.039628 0.153513 0.025683 0.092683 0.009117
ϕ̃ -0.053538 0.005929 -0.007142 0.000553 -0.004477 0.000217 -0.000053 0.000022

ϕ̃(ρ0) -0.048796 0.005060 -0.020620 0.000787 -0.014593 0.000391 -0.005882 0.000062

ϕ̃CFS -0.096222 0.011416 -0.033583 0.001368 -0.022219 0.000602 -0.007281 0.000065
ϕ̂ -0.072121 0.007519 -0.024156 0.000848 -0.016576 0.000391 -0.005347 0.000042

Table 4: Bias and Mean Squared Error (MSE) of the estimates over 1000 Monte-Carlo
simulations: case of the Beta(1, 1), true values are ϕ0 = 1, ρ0 = 2 and `0 = 0.5.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
a = 2 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ 1.735601 9.218976 0.886403 1.155148 0.682494 0.628021 0.417289 0.208678
ˆ̀ 0.345564 0.363425 0.335707 0.146882 0.336649 0.125037 0.291430 0.087952

ˆ̀(ρ0) 0.665852 0.517782 0.390621 0.163892 0.315638 0.105073 0.200225 0.041405
ϕ̃ 0.183781 0.188113 0.072240 0.013123 0.049637 0.005367 0.024118 0.000999

ϕ̃(ρ0) -0.091720 0.012735 -0.052870 0.003677 -0.039797 0.001992 -0.020937 0.000525

a = 10 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.331901 0.444470 0.086348 0.248021 0.109707 0.135392 0.138556 0.065002
ˆ̀ 0.359753 0.193566 0.280033 0.109485 0.253591 0.087861 0.201901 0.053630

ˆ̀(ρ0) 0.506769 0.342331 0.273330 0.088737 0.222238 0.055914 0.141044 0.021551
ϕ̃ -0.091613 0.015110 -0.018562 0.002537 -0.009895 0.001006 0.000817 0.000188

ϕ̃(ρ0) -0.059530 0.007942 -0.027354 0.001641 -0.019782 0.000782 -0.009198 0.000161

ϕ̃CFS -0.150452 0.025881 -0.069210 0.005540 -0.049630 0.002802 -0.021428 0.000531
ϕ̂ -0.120797 0.018561 -0.055114 0.003931 -0.039773 0.001989 -0.017015 0.000375
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Table 5: Bias and Mean Squared Error (MSE) of the estimates over 1000 Monte-Carlo
simulations: case of the Beta(3, 3), true values are ϕ0 = 1, ρ0 = 4 and `0 = 2.5.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
a = 2 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ 0.671507 13.664936 -0.021354 1.636235 -0.130470 0.875667 -0.243409 0.295094
ˆ̀ -0.761246 1.889056 -0.920891 1.177173 -0.912659 1.022306 -0.910911 0.863933

ˆ̀(ρ0) -0.389781 1.442638 -0.787752 0.832138 -0.829105 0.817469 -0.858793 0.775039
ϕ̃ 0.090425 0.221473 0.014391 0.022011 0.004275 0.011064 -0.004175 0.002342

ϕ̃(ρ0) -0.000367 0.006222 0.015008 0.001761 0.016361 0.001176 0.017433 0.000518

a = 10 Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -2.053562 4.921744 -0.825120 4.708721 -0.630922 2.096024 -0.419817 0.647445
ˆ̀ -1.068665 1.595360 -1.057668 1.413049 -1.042189 1.310455 -0.967238 1.047182

ˆ̀(ρ0) 0.348089 5.674396 -0.585639 0.849339 -0.670422 0.725935 -0.742065 0.634133
ϕ̃ -0.199484 0.051431 -0.063119 0.030965 -0.041521 0.013676 -0.018208 0.003018

ϕ̃(ρ0) -0.019372 0.008809 0.005711 0.002002 0.008604 0.001276 0.011473 0.000432

ϕ̃CFS -0.267260 0.074765 -0.175616 0.032211 -0.147603 0.022763 -0.097637 0.009952
ϕ̂ -0.237955 0.061255 -0.155909 0.026241 -0.131248 0.018605 -0.086933 0.008159

5.2 Estimation of the frontier function

5.2.1 One simulated sample

We first illustrate the behavior of the frontier estimate in the case of a beta density for

the efficiencies, with the model described in the preceding subsection. We show the case

where the density is converging smoothly to zero at the frontier (β = 3). For estimating the

frontier function over the full range of X, it is common to assume that the tail index ρx = ρ is

constant6 in x over the range of X (which is true in the simulated scenario). We estimate this

value by a weighted mean (the weights are Nx) of the local values ρ̂x computed over a fixed

grid of 10 values of x from 0.25 till 1. In this step of estimating ρx from a simulated sample

of size n = 1000, we keep m = N
1/3
x but we choose a = 2 (due to the good results in the

Monte-Carlo experiments above when β = 3). We obtained the value 4.1553 where the true

value is 4. Then we compute the values ˆ̀
x and ϕ̃m(x) on a grid of 76 values for x from 0.25

till 1. The 95% confidence intervals for each value of x were obtained by using the normal

approximation, centered on ϕ̃m(x) and the variance is estimated by a bootstrap algorithm

(200 replications: in each bootstrap sample, the tail index is re-estimated over the same grid

of 10 values of x and averaged to mimic the original estimation procedure). We compute

also the CFS unregularized order-m estimator ϕ̂mn(x) (where we set as above mn = Nx)

with the Weibull pointwise confidence intervals for the frontier ϕ(x) = x. The results are

quite sensible and are displayed on the top panel of Figure 1. We see that our estimate is

6The shape parameter βx = ρx − (p + 1) of the joint density of (X,Y ) (see Corollary 2.2 in Daouia
et al. (2010)) is often assumed to be either known and independent of x in parametric approaches or
null in nonparametric approaches. It is more reasonable and less restrictive to keep only the condition of
independance from x and then to estimate βx = β or equivalently ρx = ρ.
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better than the FDH estimate and the CFS estimate (closer to the true frontier). We see

clearly that the pointwise confidence intervals cover the true frontier for both our regularized

“normal” confidence intervals and for the unregularized “Weibull” case. The latter however

seem to be narrrower (achieved coverages will be estimated below). It appears in this sample

that the FDH estimator is even outside the 95% confidence intervals for all x.

In the two next panels of Figure 1, in order to investigate resistance to outliers, we

introduce in the middle panel one important outlier at (x, y) = (0.5, 0.8) (represented by

a black circle) and in the bottom panel, 3 outliers at input values x = (0.25, 0.50, 0.75)

having output 20% above the frontier levels, so y = (0.30, 0.60, 0.90). These outliers where

introduced only for estimating the frontier levels (keeping our original estimate of ρ).

We can appreciate the robustness of our frontier estimates and their corresponding con-

fidence intervals (relative to the FDH estimator and even to the CFS estimator with its

Weibull confidence intervals). Of course, in practice, we could easily detect this outlier (even

for dimension p > 1, because it is far outside the confidence interval obtained from our robust

regularized estimator at this point). Once this is observed, and as always when detecting

potential outliers, this point could be removed from the sample only after a careful analysis.

But it is remarkable how the regularized estimator is resistant to the different added out-

liers. The behavior of the Weibull confidence intervals is, however, disappointing in terms

of robustness since both confidence bands miss the target for many values of x. This will

be confirmed in the Monte-Carlo experiment below that will estimate the coverages of the

resulting confidence intervals.
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Figure 1: Linear frontier: Y = X V with V ∼ Beta(3, 3) and n = 1000. Middel panel, with
one outlier and bottom panel with 3 outliers. The base (biased) estimator ‘phi-m’ is ϕ̂mn(x),
’phi-CFS’ is the unregularized estimator ϕ̃CFS and our regularized estimator ‘phi-tilde’ is
ϕ̃(x).
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5.2.2 Coverage of Confidence Intervals

Here we investigate whether the procedure for estimating the confidence intervals for ϕ(x)

based on the bias-corrected regularized estimator (using normal tables) provides estimates

with reasonable coverages. In the same time, we will compare the performance of this

procedure with the confidence intervals obtained from the unregularized order-m frontier

estimator which follows the Weibull distribution. We will present the same scenarios of the

preceding example where V ∼ Beta(3, 3), without and with outliers. We focus the analyis

at 4 equidistant values of x = (0.25, 0.50, 0.75, 1.00), and provide also in Table 6 the Bias

and MSE of the two estimators. Here, as above, m = N
1/3
x and a = 2.

Consider first the case where there are no outliers. We see that the Bias and MSE for

both ϕ̃m(x) and ϕ̃CFS(x) increase with x: this is due to our Monte-Carlo setup with the

multiplicative model Y = XV , there is much less variation in Y when X is small. But we

see that our regularized estimator (using the first step estimate of ρ) has better behavior in

terms of bias and MSE. For the coverages, we see that the estimator of the normal confidence

intervals derived from our regularized estimator has a good coverage for all x and much better

than the estimated confidence intervals obtained from the Weibull (remember that here too,

we need to estimate ρ and `x, we used the same values as the ones used for our regularized

estimate).

A better resistance to outliers of our regularized estimator appears clearly in the two

bottom blocks of Table 6 when comparing the achieved coverages. Even if the robustness of

the unregularized estimator is somewhat preserved (the bias and MSE are not so bad and

much better than the FDH estimator whose MSE, not reproduced here to save place, are

multiplied by a factor 10 near the outlying points), the obtained confidence intervals miss

completely the target near the values of x where the outliers are introduced. This already

appeared in Figure 1 for one particular sample of size n = 1000.
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Table 6: Comparison of regularized Normal estimator (using ϕ̃m(x)) and unregularized
Weibull estimator (using ϕ̃CFS(x)). Coverages (cov), Average Lengths (avl) of 95% Es-
timated Confidence Intervals, Bias and Mean Squared Error (MSE) of frontier estimates
at 4 values of x. Results obtained over 1000 Monte-Carlo simulations with n = 1000. Case
where V ∼ Beta(3, 3) (ρ0 = 4) with ϕ0(x) = x.

x covϕ̃m
avlϕ̃m

covϕ̃CFS
avlϕ̃CFS

Biasϕ̃m
MSEϕ̃m

Biasϕ̃CFS
MSEϕ̃CFS

No outliers
0.25 0.9590 0.0741 0.5180 0.0379 0.0015 0.0003 -0.0529 0.0029
0.50 0.9690 0.1265 0.7110 0.0765 0.0056 0.0009 -0.0883 0.0082
0.75 0.9810 0.1659 0.8570 0.1154 0.0107 0.0013 -0.1181 0.0146
1.00 0.9690 0.2488 0.8640 0.1542 0.0151 0.0031 -0.1475 0.0227

One outliers at x = 0.50, y = 0.80
0.25 0.9590 0.0741 0.5180 0.0379 0.0015 0.0003 -0.0529 0.0029
0.50 0.7200 0.1399 0 0.0909 0.0585 0.0044 0.1573 0.0248
0.75 0.9720 0.1718 0.0080 0.1222 0.0356 0.0025 -0.0118 0.0002
1.00 0.9730 0.2496 0.8780 0.1562 0.0232 0.0034 -0.1462 0.0223

Three outliers at x = 0.25, 0.50, 0.75, y = 0.30, 0.60, 0.90
0.25 0.8590 0.0782 0 0.0438 0.0251 0.0009 0.0122 0.0002
0.50 0.9350 0.1322 0 0.0842 0.0356 0.0021 0.0308 0.0010
0.75 0.9170 0.1754 0 0.1262 0.0513 0.0039 0.0522 0.0028
1.00 0.9790 0.2512 0.9460 0.1577 0.0296 0.0038 -0.1158 0.0136

5.2.3 A real data example

We use the same real data set as in Cazals et al. (2002) and Daouia et al. (2010) on the

frontier analysis of 9521 French post offices observed in 1994, with X as the quantity of labor

and Y as the volume of delivered mail. In this illustration, we only consider the n = 4000

observed post offices with the smallest levels xi.

We first start by assuming, as in most nonparametric econometric frontier studies, that

the joint density of (X, Y ) has a jump on the frontier, so ρx = p + 1 = 2. The cloud of

points and the resulting estimates are provided in Figure 2. The FDH estimator is clearly

determined by only a few very extreme points. If we delete the 4 anomalous observations

(represented by circles in the figure) from the sample, we obtain the picture of the right panel:

the FDH estimator changes drastically, whereas the regularized estimator, with mn = N
1/3
x

and a = 2, is very robust to the presence of these 4 extreme points. Although its nice

behavior, the unregularized estimator is less resistant to the extreme points, (here we set,

as in the simulations, mn = Nx). Again the confidence intervals obtained by using the

regularized estimator ϕ̃m(x) were obtained by a bootstrap algorithm. We observe very

narrow confidence intervals for ϕ(x), this is due to the fact that ρ is fixed. Also, looking to

these two pictures, it seems that ρ = 2 is a too strong assumption: the regularized estimator

is very far from the border of the cloud of points. This will be corrected below by estimating

ρ, but more noise will be caused.
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Figure 2: Resulting estimator ϕ̃m(x) for the French post offices with ρ = 2. In the left panel,
the 4 anomalous points (circles) are used in the estimation of the two frontier functions.

For estimating ρx, we proceed as above by assuming that ρx = ρ is an unknown constant

and we average the values of ρ̂x obtained over a grid of 20 values of x (again with a weighted

mean). Here, larger values ofm were needed for computing ρ̂x, to avoid numerical instabilities

in (4.1): we choose m = 10N
1/3
x and we set a = 8. In this first step estimation of ρ, we

only used the sample without the 4 outliers detected above. This provided the estimator

ρ̂ = 3.5573, indicating that the density of the efficiencies is tending to zero at the frontier,

but not its first derivative; a reasonable result when looking to the cloud of data points in

Figure 2.

Then, for estimating the frontier, we proceed as usual with the full sample, keeping the

basic rule of thumb m = N
1/3
x and a = 2, as in the Monte-Carlo exercices above. The

results are displayed on the left panel of Figure 3, where we see that the higher value of ρ̂

(compared to ρ = 2 in Figure 2) pushes our estimator to the North, as expected, because

the correction for the bias is larger. We also observe that the 4 outliers are left outside our

95% upper confidence band and that the confidence intervals obtained via the unregularized

CFS estimator (Weibull case) are again really outside the observed cloud of points except

for these 4 extreme points.

The right panel of the figure, where the 4 extremes are excluded from the sample, indicates

how the frontier estimate is robust to the outliers (as compared to FDH and CFS). We observe

that most of the FDH frontier and of the CFS unregularized frontier is now inside the 95%

confidence intervals, when the 4 outliers have been dropped out of the sample.
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Figure 3: Resulting estimator ϕ̃m(x) for the postal data with ρ̂ = 3.5573. In the left panel,
the 4 anomalous points (circles) are used in the estimation of the two frontier functions.

6 Conclusions

We have derived in this paper the theory of an estimator of a frontier function having an

asymptotic normal distribution. The basic tool is the order-m partial frontier where we let

the order m to converge to infinity when n→∞ but at a slow rate. Indeed, if the rate is too

fast, the order-m frontier will converge too quickly to the full frontier and the corresponding

estimator will converge to the FDH estimator, having a Weibull limiting distribution. The

final estimator is then corrected for its inherent bias. We thus can view our estimator as

a regularized frontier estimator which, in addition, is more robust to extreme values and

outliers than the usual nonparametric frontier estimators, including the unregularized order-

m estimator of Cazals et al. (2002) converging toward a Weibull distribution.

In addition, if the tail index ρy and the behavior of the conditional distribution of X

given that Y ≥ y near the frontier points is not known (`y), we provide an easy way to

estimate them consistently.

The performances of our estimators are evaluated in finite samples through some Monte-

Carlo experiments, showing very nice regular behavior of the estimators, in particular for

the estimator of the frontier. We also illustrate how to provide, in an easy way, confidence

intervals for the frontier function in a simulated data set where the FDH estimator gives very

poor results. Some Monte-Carlo experiments indicate reasonable coverages of the resulting

confidence intervals. We also illustrate our procedure with a real data set from the French

Post Offices.

Important research issues are still open and deserve for future work. This includes a way
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for selecting optimal regularization parameters m and a, which is particularly important

for deriving the estimator of the tail index ρy. But this is known as a hard mathematical

problem in extreme-value theory. Once ρy is well estimated (or assumed to be known), the

estimate of the frontier itself is much more robust to the choice of the order m. Another

trail of research would be to define estimators of ρy, `y and ϕ(y) when they are considered

as smoothed functions of y.

Appendix: The Output Oriented Case

In this section we only give the useful notations and formulas for the output oriented case.

Here the attainable production set is defined as Ψ = {(x, y) ∈ Rp
+ × R+ | x can produce y}

and the production frontier is represented by the graph of the production function ϕ(x) =

sup{y | (x, y) ∈ Ψ}. The distribution function of (X, Y ) can be denoted F (x, y) and F (·|x) =

F (x, ·)/FX(x) will be used to denote the conditional distribution function of Y given X ≤ x,

with FX(x) = F (x,∞) > 0. It has been proven in Cazals et al. (2002) that under the free

disposability assumption, the production function can equivalently be defined by

ϕ(x) = sup{y ≥ 0|F (y|x) < 1} (A.1)

The order-m partial frontier is now defined as

ϕm(x) = E
[

max(Y1, . . . , Ym)|X ≤ x
]
, (A.2)

where (Y1, . . . , Ym) are m i.i.d. random variables generated by the conditional distribution

of Y given X ≤ x. It is shown in Cazals et al. that ϕm(x) =
∫∞

0

(
1 − [F (u|x)]m

)
du =

ϕ(x)−
∫ ϕ(x)

0
[F (u|x)]m du, so that ϕm(x)→ ϕ(x) as m→∞.

Nonparametric estimators of these frontiers are obtained by plugging the empirical ver-

sion of the unknown distribution F (·|x) in the definition above. So we obtain

ϕ̂(x) = sup{y ≥ 0|F̂ (y|x) < 1} = max
{i:Xi≤x}

Yi (A.3)

ϕ̂m(x) = ϕ̂(x)−
∫ ϕ̂(x)

0

[F̂ (u|x)]m du, (A.4)

where F̂ (y|x) = F̂ (x, y)/F̂X(x) with F̂ (x, y) = 1/n
∑n

i=1 1I(Xi ≤ x, Yi ≤ y) and F̂X(x) =

1/n
∑n

i=1 1I(Xi ≤ x). For any given x and a fixed value of m, we have as n→∞,

√
n

σ(m,x)

(
ϕ̂m(x)− ϕm(x)

) L−→ N (0, 1), (A.5)
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where the variance can be written, as in (3.2), as

σ2(m,x) =
2m2

FX(x)

∫ ϕ(y)

0

∫ ϕ(y)

0

Fm(y|x)Fm−1(u|y)(1− F (u|x))1I(y ≤ u) dy du. (A.6)

The regularity condition can be written here as

FX(x)(1− F (y|x)) = `x(ϕ(x)− y)ρx + o(ϕ(x)− y)ρx , as y ↑ ϕ(x), (A.7)

where `x > 0, ρx > p and ϕ(x) is differentiable in x with strictly positive first partial

derivatives. Then, from the equation (2.5) in Daouia et al. (2010), we obtain the useful

relation, as m→∞,

ϕ(x)− ϕm(x) = Γ

(
1 +

1

ρx

)(
1

m`x

)1/ρx

+ o(m−1/ρx). (A.8)

Then, the asymptotic theory given in Sections 3 and 4 can be easily adapted.
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