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Abstract

We propose an original model of human capital investments after leaving school in which
individuals differ in their initial human capital obtained at school, their rate of return, their
costs of human capital investments and their terminal values of human capital at a fixed
date in the future. We derive a tractable reduced form Mincerian model of log earnings
profiles along the life cycle which is written as a linear factor model in which levels, growth
and curvature of earnings profiles are individual-specific. Using panel data from a single
cohort of French male wage earners observed over a long span of 30 years, a random effect
model is estimated first by pseudo maximum likelihood methods. This step is followed by a
simple second step fixed effect method by which individual-specific structural parameters
are estimated. This allows us to test restrictions, compute counterfactual profiles and
evaluate how earnings inequality over the life-cycle is affected by changes in structural
parameters. Under some conditions, even small changes in life expectancy seem to imply
large changes in earnings inequality.
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1 Introduction!

Since the seminal work by Lillard and Willis (1978) on the estimation of reduced form earnings
dynamics an extensive literature has emerged. Its main motivation comes from the assessment of
differences between short-run and long-run earnings inequalities (see for instance Bonke, Corneo
and Liithen, 2011 for a survey) and from the joint modeling of consumption and income variance
(for instance, Meghir and Pistaferri, 2010). While a very large set of empirical studies estimating
ARMA models on earnings residuals has been conducted over recent years, the literature has
not reached any consensus on a unique specification of the earnings process. Most authors
admit that a mixed process with individual-specific effects along with autoregressive and moving
average components seems necessary to fit the longitudinal change in earnings dispersion that is
commonly observed although they do not agree on the description of earnings growth. Several
papers have considered a beauty contest between a specification in which earnings growth is
random and a specification in which earnings growth is governed by a linear trend multiplied
by a fixed individual effect (see Baker, 1997, Guvenen, 2009, and Hryshko, 2012, for instance).
Yet, the theoretical structural background justifying the reduced forms used in these papers are
unclear although additional structure would help discriminating between them.

This is why the first contribution of this paper is to develop an empirically tractable theoret-
ical model of human capital investments accommodating substantial unobserved heterogeneity
and from which we derive a convenient reduced-form for the dynamics of earnings — in logar-
ithms as this is the most popular specification. We follow Mincer (1974) and more specifically
his research program on post schooling wage growth Accounting identity model as presented by
Heckman, Lochner and Todd (2006) and as formalized in the theoretical model of Ben Porath
(1967). We explain differences in individual earnings life-cycle profiles by heterogenous choices
of human capital investments driven by heterogeneous individual characteristics. In a sense, we
are extending to post-school investments what has been developed times ago by Heckman (see
Heckman, Lochner and Todd, 2006, for a survey) and Card (for instance in the Econometrica
lecture in 2001) for schooling investments in human capital.

The model delivers the well known predictions of a human capital setting (Rubinstein and

Weiss, 2006). Earnings profile are increasing and concave and this reflects the shortening of the
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investment horizon. Second, the variance of earnings has a U-shape along the life-cycle because
large-returns investors have a steeper earnings profile than low-returns individuals experiencing
a flatter profile and these profiles cross after a few years. Third, because investments in human
capital are more intensive at the beginning of the life cycle for the high return investors, the
cross-section correlation, at the beginning of the life cycle, between earnings growth and level is
negative although this correlation increases along the life-cycle and becomes positive.

Adopting a highly stylized human capital model comes at the price of symplifying other
elements that might drive earnings dynamics. We first take as given past investments in schooling
although this is an important heterogeneity dimension in our model. We treat search and job
mobility as frictions under the form of exogenous shocks (see e.g. Postel-Vinay and Turon, 2010).
Some reduced-form specifications such as Alvarez, Browning and Erjnaes (2010) who try to model
the whole distributions of earnings are richer in terms of heterogeneity but ours is enough to
model life-cycle profiles of mean and variances of earnings that condition the main diagnostics
about life-cycle earnings inequality. We neglect taxes because we cannot reconstruct their value
from our data and we find a simple way of modeling the interactions between investments and
uncertainty which partially neutralize the importance of risk (see e.g. Huggett, Ventura and
Yaron, 2011). Finally, we do not model general equilibrium effects as in Heckman, Lochner and
Taber (1998).

In a nutshell, the model developed in this paper summarizes life-cycle profiles of individual
earnings by a limited number of individual-specific components which are economically inter-
pretable. Individuals differ in four dimensions. Firstly, they have different initial human capital
levels when they enter the labor market. Secondly, they differ in their returns to skill invest-
ments, that is, some are more productive in transforming invested time in productive skills as
in Mincer’s original model. We also assume that the marginal cost of producing skills is het-
erogenous within the population. Finally, we allow the terminal value of human capital to vary
across individuals and infer from the curvature of the earnings profile, the implicit horizon of
investment that agents consider. This follows a suggestion by Lillard and Reville (1999) insisting
on this crucial aspect of earnings growth. As a result of this set-up, this model predicts a linear
factor model for the earnings equation in which factor loadings are functions of the individual
specific structural parameters. Some structural restrictions are testable and some structural
parameters can be identified while others are only partially identified. Ironically, our set-up is
able to generate the two most popular specifications — random growth and random walk — used

in the reduced form literature albeit in a sequential way along the life cycle.



Our second contribution is to estimate the model on a very long panel for a single cohort of
male French wage earners working in the private sector and observed from 1977 to 2007. DADS
data is an administrative dataset collecting earnings in the private sector and having advantages
and drawbacks for our purpose. The first key advantage is that it includes enough observations
so that we can study a large single cohort of individuals (more than 7,000). They enter the labor
market simultaneously and face the same economic environment over their life-cycle, in contrast
with most studies of earnings dynamics that must pool different cohorts to collect samples
large enough (Meghir and Pistaferri, 2010). Secondly, as the data come from social security
records, we expect fewer measurement errors than in usual surveys or other administrative
data although this is not entirely convincing in our application. Finally, the DADS data are
long and homogeneous enough to study the dynamics of earnings over a long period of time.
We will see that we find much longer dependence for transitory earnings than what is usually
found in the literature. These data have shortcomings as well since first, few other individual
characteristics than age and broad skill groupings are available. The panel is also affected by
attrition since some individuals leave the private sector, temporarily or definitely, because of
unemployment, self-employment, non-participation or because they start working in the public
sector. This explains why we choose to use male earnings data only in order to mitigate the
non-participation selection issue.

Our third contribution is an original empirical strategy that uses a sequence of random and
fixed effect methods in order to be able to compute interesting counterfactuals i.e. the non-
linear impacts of changes in the environment. We first estimate the model by random effect
pseudo maximum likelihood (Alvarez and Arellano, 2004) and then derive fixed effect estimates
of the individual factors in a second step. As fixed effect estimates are biased, we evaluate their
bias and show that it becomes second-order when the number of period observations is roughly
above 20. We also correct for bias and find that it tends to overcorrect. Using those fixed effect
estimates, we evaluate structural restrictions and compute estimates of the structural unobserved
heterogeneity terms. This enables us to construct counterfactuals measuring the impact of
changes in those structural estimates. The alternative strategy of estimating distributions of
individual-specific effects as in Cunha, Heckman and Schennach (2010) turns out to be difficult
because of structural constraints on individual effects while direct fixed effect estimation is
performed at a reasonable cost.

Our main results can be summarized as follows. In the first-step random effect estimation,

we find that ARMA orders for individual-and-period specific shocks are much larger than in the



literature. Our preferred specification is an ARMA(3,1) in which period-heteroskedastic variance
decreases over time. This indicates much longer persistence than usually thought although the
presence of a unit root is strongly rejected as in for instance Alvarez et al (2010) or Alvarez and
Arellano (2004). Levels and growth of earnings are positively correlated in the long run and
long-run and initial levels are negatively correlated which corroborates one of the predictions of
the human capital setting as seen above. Finally, the larger the level and the slope of earnings
profiles, the more concave they are and this stems from the horizon effect.

The second step fixed effect estimates show that structural restrictions are satisfied in most
of the sample although there seems to exist a small fraction of earnings profiles which do not
agree with the set-up. It is our maintained assumption that human capital investments are
positive until the end of the observation period that seems mostly rejected.

Finally, a counterfactual analysis shows that an increase in the horizon of investment or life
expectancy by two years increases means and variances of earnings, above all at the end of the
observation period and those increases can be attributed to investment heterogeneity between
individuals. Cross-section inequality increases by around 20% at the end of the period although
this figure has quite a large standard error.

In the next Section we briefly review the literature on the estimation and the empirics of
earnings equations. Next in Section 3, we describe the model of human capital accumulation and
derive the structural equation for log earnings. In Section 4 we present our empirical strategy
and detail the econometric estimation methods that we use. Data are described in Section 5
and results are presented in Section 6. After a discussion of a possible extension, a final Section

concludes.

2 A Brief Review of the Literature

The literature connected to what we are doing is huge and this brief presentation cannot sum-
marize all these connections in a comprehensive way.

First, the empirical literature on earnings dynamics, as reviewed in Meghir and Pistaferri
(2010), began with the seminal works by Lillard and Willis (1978), Lillard and Weiss (1979) and
MaCurdy (1982). These papers are the starting points of the random growth and random walk
specifications that are designed to fit the evolution of variance of earnings over the life cycle —
or more exactly of their residuals after a first-stage regression on covariates like education and

age — as well as their autocorrelation.



The random growth or heterogeneous income profile model consists in having unobserved
heterogeneity in levels as well as in first differences or growth in earnings. This model was
estimated on various datasets, though mostly the PSID, and their results are reported in papers
by Lillard and coauthors cited above, and for instance by Hause (1980), Lillard and Reville
(1999) on US data, Dickens (2000) on U.K. data, Cappellari (2004) on Italian data, Sologon and
O’Donoghue (2009) on European data and many others. Importantly, this specification allows
to test Mincer’s (1974) theoretical prediction that the variance of earnings should decrease at
the beginning of the life cycle until those highly investing in human capital catch up weaker
investors. Empirically this would translate into a negative covariance between the individual
heterogeneity terms in level and growth and this result has been confirmed by these studies.

The random walk model of MaCurdy (1982), alternatively called restricted income profile
posits that earnings residuals are the sum of a random walk and a transitory earnings process
which is of an ARMA type. The same specification has also been estimated by Abowd and Card
(1989), Moffit and Gottschalk (1995, 2002, 2008), Kalwij and Alessie (2007) although there are
variations in the orders of ARMA processes which are used in those papers.

Baker (1997) was the first to compare the performance of random growth and random walk
models. He primarily concluded that tests of one against the other had low power even if the
randow walk seems to slightly dominate the other. Guvenen (2007) followed up and studied
the implications of the form of the income process on consumption inequality. He compares
predictions of random walk and random growth models using life cycle consumption and simu-
lated data. Guvenen concludes that a model with heterogenous earnings growth is better able
to replicate the observed change in consumption inequality than a model with a unit root. In
Guvenen (2009) the sources of identification between the two income processes are more deeply
investigated. A major difference between the model in which agents have heterogenous earnings
profiles and the model in which they are subject to persistent shocks is that in the former case,
the autocorrelation of first differences of earnings residuals remains significant because of the
presence of unobserved heterogeneity in earnings growth. Guvenen’s analysis favours the hetero-
genous growth specification. In contrast, Hryshko (2012) arrives at the opposite conclusion that
random walk specification offers the best fit when trying to test random walk against random
growth specifications using PSID data on earnings and a fixed number of ARMA lags.

Other contributions have generalized the model in the direction of non linear and non normal
models that would allow a less parametrically driven view of what happens in the tails of

the earnings distribution. Geweke and Keane (2000) implements Bayesian inference methods



and show that the share of variance explained by permanent individual heterogeneity terms is
larger than under a Gaussian model. Hirano (2002) uses a Bayesian framework to propose a
semi-parametric estimator for autoregressive panel data models. Bonhomme and Robin (2009)
focus on the same issue and model the change over time in earnings using copula. Marginal
distributions of earnings are fully non parametric and the joint distribution is flexibly modelled
over a three-year span of panel data.

Alvarez, Browning and Ejrnaes (2010) allows for a lot of heterogeneity and non-linearities
in earnings distributions in order to get a better fit of the tails of the earnings distribution and
estimate the model using indirect inference. In contrast with Hryshko (2012), they do not find
any evidence of a unit root in the dynamics. In a different vein, Meghir and Pistaferri (2004)
postulate a non-linear ARCH(1) data generating process for the permanent and for the transitory
shocks. Estimating the model by educational group, Meghir and Pistaferri (2004) conclude
that the variance of shocks is persistent in some education groups. In a similar framework,
Hospido (2010) models the heterogenous variance of earnings but instead of implementing a
GMM approach, she uses bias-corrected likelihood methods. Finally, an alternative strand of
research simultaneously consider earnings dynamics and mobility on the labor market (see for
example Altonji, Smith and Vidangos, 2009).

Methodological issues also arise in this context. The model of earnings residuals that we
specify in this paper can be viewed as resulting into a specific covariance structure over time
that can be fitted to the empirical covariance of earnings. Minimum distance as in Abowd and
Card (1989) is severely small-sample biased (see Arellano, 2004 for a review) and although the
emphasis in the dynamic panel data literature is slightly different, the lessons from this literature
are useful to remember here. As is well known in GMM estimation, the range of moments
involved when the time dimension becomes larger makes first order asymptotics a poor guide in
empirical research. This is why some researchers proposed to return to an OLS set up adding a
bias correction step (Hahn and Kuersteiner, 2002) or to maximum or quasi-maximum likelihood
estimators (Hsiao, Pesaran and Tahmiscioglu, 2002, Dhaene and Jochmans, 2009). Another
direction was recently proposed by Han, Philips and Sul (2010) in the case of AR(p) models
under mean stationarity whose properties are robust and simple to derive under both stationary
and non stationary cases.

As T is neither large nor small in our application and as we stick to a framework in which
the initial conditions are supposed to have been generated by another stochastic process so that

asymptotic stationarity properties are not satisfied, the GMM framework remains our reference.



Alvarez and Arellano (2003) analyses the asymptotic properties of GMM estimators using double
asymptotics in N and 7'. Okui (2009) derives the small sample biases not only in the mean but
also in the variance of GMM estimates because of the presence of too many moments even
in the case in which 7" is small. Okui suggests some moment selection mechanism in order
to limit the importance of these biases by, to put it briefly, selecting out moments between
variables which are too far apart in time. Those moments are far more likely to contribute
to larger bias and not to smaller variance. There is another route through quasi-maximum
likelihood methods that reduces the number of moments available for estimation as suggested
by Alvarez and Arellano (2004). In a comparison with other fixed 7" consistent estimators, this
estimator seems to dominate in most Monte Carlo exercises the maximum likelihood estimator
using differenced data (Hsiao et al., 2002) and the corrected within group estimator. In their
application to PSID, they do not find any evidence of a unit root.

Closely related to our model is an empirical factor model using panel data on earnings
whose use was pioneered by Jim Heckman through a series of papers with diverse coauthors.
The first objective of this research was to restrict the set of joint distributions of two or more
potential outcomes. If these outcomes are selectively observed such as in the case of a binary
treatment, their joint distribution albeit not identifiable in the generic case becomes identified in
the linear factor case. Aakvik, Heckman and Vytlacil (2005) makes this point in a general Roy
model using one factor and Carneiro, Hansen and Heckman (2003) extends it to the multiple
factor case. Furthermore, this setting allows to address the issue of discriminating between
heterogeneity from uncertainty in educational decisions (Cunha, Heckman and Navarro, 2007)
and to investigate the empirics of skill formation (Cunha and Heckman, 2008). Finally, Cunha,
Heckman and Schennach (2010) extends these results and results from Schennach (2004) to a
non linear factor set up and show how non parametric estimates of moments of latent variables
can be constructed from various measurements of these variables using empirical characteristic
functions and inverse Fourier transforms.

In our factor model, factors are known. Arellano and Bonhomme (2010) look in detail to the
identification of the distribution of individual effects or factor loadings when the time dimension
is fixed and show that its variance is identified under restrictions of the dynamics. They also
propose the construction of non parametric estimates for the distribution of the individual factor
loadings. That factors are known is in contrast with Bai (2009) who derives MLE estimates in
factor models in which the time factors are unknown and in the presence of covariates. In contrast

to the linear factor approach we adopt, deconvolution methods might also be an interesting



but more arduous route to follow. Horowitz and Markatou (1996) estimate semi-parametrically
the distributions of idiosyncratic terms and individual effects. However, in their approach the
dynamic dimension has to be restricted to be AR(1). Geweke and Keane (1998) and Hirano
(2002) generalized the model in the same direction by implementing a Bayesian approach to
estimate posterior distributions of the parameters. Bonhomme and Robin (2010) construct an
estimator of the distribution of factors using empirical characteristic functions and apply this
estimator to analyze the distributions of permanent and transitory components of earnings using
the PSID i.e. in a random growth setting.

Finally, general equilibrium effects with microeconomic foundations is another direction taken
in the literature. Heckman, Lochner and Taber (1998) were among the first to model human
capital investments at school and later in life in a dynamic and stochastic general equilibrium
set-up. This allows them to estimate the effects on inequality of counterfactual productivity
shocks. In the recent literature, Guvenen and Kuruscu (2012) analyze as well the effect of
skill biased technical change on inequality in an equilibrium set-up with heterogeneous agents
investing in human capital. This is also the object of Huggett, Ventura and Yaron (2011) who
use such a microeconomic model calibrated on the US PSID data to decompose inequality into
their long-run individual determinants and short-run shocks, the latter resulting to be the larger
component of variance. The previous literature on this theme is reviewed in these two last

papers.

3 The Model

We present a model of human capital investment in discrete time and in which agents face
individual specific costs, individual specific rates of return and individual specific terminal values
of human capital stocks. As in Ben Porath (1967) and Mincer (1974), we characterize the
optimal sequence of human capital investments over the life cycle. The key new point is that the
reduced form of the life cycle earnings equation is a log-linear factor model with three factors
whose factor loadings are in relation with the individual specific structural determinants. We
analyze the transformation between parameters of the reduced and structural forms and the

ensuing structural restrictions on factor loadings.



3.1 The set up

Individuals enter the labor market at a period which is normalized to ¢ = 1. The entry decision
in the labour market is endogenous and depends on previous human capital accumulation. We
take, however, these initial conditions as given and depending on unobserved variables, among
which the human capital stock at entry. These initial conditions are potentially correlated with
all shocks affecting the life-cycle dynamics of earnings.

From period 1 onwards, agents can acquire human capital through part-time training. Human
capital is supposed to be single-dimensional so that skills are general and costs are borne by
the workers. Labor supply is inelastic and potential individuals earnings, y(¢) are given by
an individual-specific stock of human capital, H;(¢), times an individual specific rental rate,
exp(d;(t)) that is y7(t) = exp(d;(t))H;(t). Individuals face uncertainty through the variability
of the rental rate of human capital §;(¢) which is mainly affected by aggregate shocks but also
by individual ones if there are some frictions in the labor market. Firms might temporarily
value individual specific human capital differently than the market in order to attract, retain or
discourage specific individuals. The rental rate is supposed to follow a stochastic process and
9;(t) is fully revealed at period t to the agent. We do not provide a market analysis of the wage
equilibrium process and take it as given (in terms of its distribution).

By substracting human capital investments, current individual earnings are assumed to be
given by:

yi(t) = exp(0:(t)) Hi(t) exp(—Ti(t))

where 1 — exp(—7;(t)) can be interpreted as the fraction of working time devoted to investing
in human capital as in the original Ben Porath formulation. It might also be interpreted as the
level of effort put in the acquisition of human capital at the cost of losing a fraction of potential
earnings. We call, 7;(t), somewhat abusively the level of investment in human capital at time ¢
and actual earnings are equal to potential earnings when 7;(t) = 0. There is no upper bound on
7;(t) although an infinite investment value would mean that the individual has not yet entered
the labor market.

Because of these investments, individuals accumulate human capital in a way that is described

by the following equation
Hi(t +1) = H;(t) exp[p;7i(t) — Ai(t)] (1)

where H,(t) is the stock of human capital, p, an individual specific rate of return of human capital

investments and \;(t) is the depreciation of human capital in period ¢. This latter component
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embeds individual-specific shocks or innovations at the economy level as these innovations de-
preciate previous vintages of human capital. Individual-specific shocks can be negative because
of unemployment periods or of layoffs followed by mobility across sectors. These shocks can
also be positive when certain components of human capital acquire more value or because of
voluntary moves across firms or sectors. As d;(t), the variable \;(¢) is supposed to be revealed
at period ¢ to the agent and is uncertain before. We also take the stochastic process \;(t) as a
given.?

The next step is to formulate a utility flow and the way individuals move assets across time.
In order to generate the popular log-linear specification for the earnings equation, we assume

that period ¢ utility is equal to current log earnings net of investment costs so that there is no

consumption smoothing over time.®> Period-t utility is written as :

Ti t 2
in which ¢; represent between-individual differences in the cost of human capital accumulation
in utility terms and the cost is quadratic. Note that the coefficient of 7;(¢) is set to 1 because it

corresponds to the standard formulation of Ben Porath (1967) in which the objective function

would be a function of current earnings or their logarithm only :*
0;(t) +log Hi(t) — 74(1). (2)

Quadratic costs adds richness to the setting and it fits well with the interpretation of 7;(t)
in terms of effort exerted for human capital investments and not only time as in the simple
specification. Quadratic costs makes the solution in 7;(¢) unique (see below).

Nonetheless, the costs of investments do not depend on the level of human capital H;(t) as

@ instead

in a Ben Porath setting in which equation (1) would include a non linear term H;(t)
of setting @ = 1 as we do. This is in fact another way of making the solution 7;(¢) uniquely
determined. Furthermore, our specification avoids the "regression to the mean" effect emphasized

by Huggett, Ventura and Yaron (2006) that makes individuals closer and closer at the end of

2We shall also assume additional technical assumptions such as E;_,(]6;(t)]) < oo and E;_,(|\i(t)]) < oo so
that the dynamic program is well defined. For the sake of readability these standard assumptions are not stated
here (see Stokey and Lucas, 1989).

30ur conjecture is that there does not exist a dynamic model with financial and human capital accumulation
that would generate a log-earnings equation if the financial asset accumulation equation is written linearly in
income. In contrast, there does exist a dynamic model which generates a factor-like earnings equation in levels,
allows both financial and human capital and has a factor format. This case is developed in a companion paper.

4We investigated the case in which the linear cost parameter is left free and this parameter is difficult to
separately identify from p,; and ¢; (see also below).
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their working life. Moreover, Section 7 proposes a convenient generalization of our setting to the
case of increasing costs of investment with the level of human capital. It comes at the price of
having additional factors in the econometric model.

Returning to the main argument, the decision program of individuals maximizing their dis-
counted expected utility stream over the present and future is given by the following Bellman

equation:

Vi(H;(t), 7i(t)) = 04(t) + log Hy(t) — (Ti(t) + Cz#) + BEy Wi (H;(t +1))] (3)

in which ( is the discount factor and:

This dynamic program is completed by a terminal condition that at a future date 7'+ 1 the

value function or the discounted value of utility stream from 7"+ 1 onwards is given by:
Wri(Hi(T + 1)) =6 + ki log Hi(T + 1). (4)

In this expression, k; can be interpreted as the capitalized value of one euro over the remaining

period of life after 7'+ 1 and:
ki =14 Brio+ Brys+ .-

in which discount rates /3, vary with period ¢ and embody heterogenous survival probabilities
after T+ 1. If we assume that discount factors f,o,,, < B e.g. B,opy s = S Pr(Survival at t)
then :

<— )

Ry < ——.

1-p5
This suggests that a general interpretation of period 7'+ 1 is as a separating date between a
span of periods before T' in which the probability of survival is equal to 1 and a span of periods
after 7'+ 1 in which the survival probability is less than one.” As human capital investments

are embodied, a smaller discount rate is a source of decreasing returns to investment as in the

original argument used by Mincer and this explains the concavity of earnings profiles.

3.2 The life-cycle profile of investments

When human capital investments are always positive, the profile of investments is summarized

n:

5 As we will see in the empirical section, we fix the value of 5 at .95 because of weak identification issues. As
usual in empirical dynamic models, experiments show that the likelihood function is flat wrt to this parameter.
This also explains why we do not make this parameter individual specific and assume that it is homogenous.

12



Proposition 1 Suppose that :
6p'il<'i > 17 (6)
then:

Ti(t) = C% {Pi {% i BTHJ(,% — m)} — 1} >0, Vt<T+1 (7)

Proof. See Appendix A.1 =
Equation (7) expresses the well known result that human capital investments decrease with
time. The term in 8" indeed means that it is always better to invest earlier than later because

the horizon over which investments are valuable is becoming smaller and smaller. This is the

1
1-8

levels of investments increase with returns, p,, and decrease with costs, ¢;. Finally, condition (6)

negative value of k; — (condition 5) that commands the intensity of the decrease. In addition,
ensures that investments as given by equation (7) are positive until period 7.

It is now easy to analyze cases in which investments in human capital stop before period
T. Because investments are decreasing, the absence of investments in a period t, 7;(t) = 0,
means that no investments would take place later on, 7;(t') = 0, V¢’ > t. In consequence, we
can proceed backwards and analyze the conditions under which human capital investments stop

before the last period.

Proposition 2 There exists an optimal stopping period for human capital investments denoted

Si€{1,.,T+ 1} so that :
thSl,t<T+1,TZ(t):O, andTZ(Sz—l) >0

if and only if:

1
Ri.S; Ri,S;+1
where ki1 = k; and Ky = 1+ ki1 for allt < T+1 (and by convention H,;H = +o00, # =0).

Additionally, equation (7) describing human capital investments remains valid for all t < S;.

Proof. See Appendix A.2 =

Because, the sequence k;; of the previous proposition is given by:

Lemma 3 Forallt € (1,T +1):

13



Proof. Using definitions in Proposition 2 and by backward induction from 7". =

we can summarize the two propositions into the following:

Corollary 4 There exists S; € {1,.,T + 1} such that:

1
Ri,S;—1 R4, S;

and:

Tz(t) = l {pz [i + ﬁsiit('%i,si - ﬁ)] - 1} > O, Vit < SZ

Proof. From Proposition 2, human capital investments stop at period S;. We can then use
equations (7) and (9). m

This corollary proves that the profile of life-cycle investments is truncated at zero but there
are no dynamic effects of the truncation. The profile remains similar even if investments stop.
This corollary also shows that if we had information about the duration of the sequence of human
capital investments, we would be able to relate this information to parameters p, and x; only. In
particular, note that the cost parameter, ¢;, does not affect this duration and only the level of
investments. This is a strong prediction of our set-up and this is due to the separability between

investment costs and human capital stocks.

3.3 The Lifecycle Profile of Earnings

We start by deriving the earnings profile when human capital investments remain positive until
period T'. First, the stock of human capital in period ¢ depends on previous investment choices
and past depreciation that is

t—1

H;(t) = H;(1) exp ipiﬂ(l) — Z)‘i(l) for t > 2.

1=1
We can write the logarithm of observed earnings in period t as

t—1

log yi(t) = 0i(t) + log Hi(1) + ipm(l) =X M) (). (10)

1=1
It shows that returns to human capital §;(¢) cannot be distinguished from depreciation effects
Zf: Ai(l) and we will therefore write that transitory earnings are equal to:

t—1

0U() = 8(t) = Y Nll).

=1
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Furthermore, inserting into the first sum the structural expression for 7;(-) given by equation

(7) we get :
Et_l / 2 T+1-1 1 Pi
Ti(l) = — Ki — — —(t—1),
> o) QllL_ 5 - )] - e
2 2
= ﬁ—i%(t—l)—ki—i(m— TZﬁ” t—l)
_ (B p P Tl_(l/ﬂ)t_l
= (C_il—ﬁ_c_i)(t_l)+C_i(Ki_1—ﬁ)ﬁ =1/
A L BT E B p
= —C—i(ﬁi—r)l_ +<C—Zm—c—z> (t—1)
:012 1 BTH —t
C_z( z_m>1_ﬂﬁ )

which writes as the sum of three factors whereas one factor is in levels, the second one is a linear
trend and the last one is a geometric trend.

Finally, using equation (7):

) = = (g =) + 270 - 2

1 - B

and rearranging expression (10) we have the following reduced form expression for log earnings

log yi(t) = iy + Mot + 3B~ + 67 (1), (11)
in which:
na = log Hy(1) — %2 (m— 1i5) f?; - 'O";rl (pﬂ fﬁ - 1> : (12)

From these reduced form equations, it is clear that different permanent and transitory factors
contribute to individual earnings trajectories. On the one hand, three types of permanent het-
erogeneities drive earnings dynamics. Firstly, differences in initial capital investment at school,
H;(1), lead to permanent differences in log earnings. Secondly, between-individual differences in
marginal return to investment, p,, and in the cost parameter c¢; make earnings growth rates indi-
vidual specific. Thirdly, the interaction between the marginal return and the cost of investment,
p;/ci, makes earnings profiles differ in amplitude. We shall look below at the form of transitory

earnings.
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In the case in which human capital investments stop before period T', the previous results
can be adapted by replacing period T+ 1 by period .5; as developed in Corollary 4. This affects
the definitions of the factors (1,1, 7,2, 7;3) as derived in equations (12) to (14) although it does
not affect the form of the earnings equation (11) before and including period S; — 1. Nonetheless
after period S;, human capital investments are equal to zero and the earnings equation (11) is

derived by using potential earnings and the accumulation equation:
log yi(t) = 0i(t) + log Hy(t),log H(t + 1) = log H(t) — \i(t),Vt > S;

so that we have:
log yi(t + 1) = log ys(t) + 0s(t + 1) — ds(t) — Ni(t). (15)

Earnings growth becomes stochastic and is no longer determined by the terms 7,, and 7;;.

An interesting conclusion of these theoretical developments is therefore that the two most
popular specifications, the heterogeneous growth and random walk ones, are both predicted by
the theoretical model although not concurrently but as a sequence in the working life of each
worker. As long as human capital investments are positive the heterogeneous growth specification
applies. It is only when investments stop that the random walk hypothesis becomes the rule.
We shall assume in the empirical section, for want of better identification, that the econometric
model is given by the heterogeneous growth model and equation (11) so that investments in
human capital are positive until the last period of observation 7. Next section shows that this
condition is testable. If this condition were not true, the earnings equation would be a mixture
between a generalized random growth model (11) and a random walk (15) and identification

would rely on specific distributional assumptions (see below).

3.4 From the Reduced to the Structural Forms

The structural model not only imposes a three-factor structure on the reduced form but it also
imposes restrictions on reduced-form parameters, (1;;, 7., 7;3). In addition, the transformation
formulas between reduced and structural forms help recovering the distribution of unobserved
heterogeneity structural components. We answer in this section two questions. Do restrictions
on structural parameters and this system of equations imply any restrictions on the reduced
form parameters? Second, are structural parameters identified?

First, equation (12) which describes unobserved heterogeneity in levels in earnings equations
allows us to identify the level of initial human capital if the other individual specific terms are

fixed. It thus imposes no constraint.
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The other equations (13) and (14) are more interesting and can be rewritten as:

N2 = % (Pz% - 1) ’ (16)
_ Pigrer,,. 1 B B
iz = 6_1'6 Tk 1_ 5) (Pil By 1) : (17)

This is a non linear system of two equations with three unknowns: p;, ¢; and x; so that parameters
are underidentified. Some structural restrictions can nevertheless be binding.
Namely, structural restrictions consist in statements about the lower discount factor after

period 7'+ 1 and about costs and returns parameters i.e.:

ki € 0, ],ci >0,p;, > 0. (18)

1
1-p
As developed at the end of the previous section, we shall also impose that human capital invest-
ments remain positive so that:

7i(t) > 0 for all t <T. (19)

We can now summarize reduced-from restrictions and the identification of structural parameters

as:

Proposition 5 Structural restrictions (18) and (19) imply the following restrictions on reduced

form parameters :
T+1
Ni3 f
’I7i > 07 — G [_ 9
? Ni2 1-p

Parameter k; is identified and:

1 - i3
Ky = —— + 5 (TJFl)L.
1-5 M2

Furthermore, parameters (p;,c;) are partially identified in the sense that there exists values
(pF, ck) such that
Pi sz‘LvCi ZCZL

and there exits a one-to-one relationship:

Ci = C<10i7 Ni2s 77z‘3)-

Proof. See Appendix A.3 =

Its interpretation is intuitive. The random growth parameter 7,, is positive because human
capital investments are productive and the curvature term 7,5 is negative because the horizon is
finite and profiles are concave. It is also this curvature relative to the random growth term, and
therefore the implicit horizon over which investments are valued, which identifies the capitalized

value of future returns to human capital after period 7"+ 1.
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3.5 Transitory earnings

In equation (11), transitory earnings ¢¢(¢) are due to individual specific and aggregate shocks,
9;(t) net of human capital depreciations, \;(t). To this we add measurement errors (,(t) to

obtain that random shocks are described by:

§1() = 8,(1) — 3" (D) + (o).

Even if measurement errors are independent over time, the effects of the first two transitory
components may persist across periods and generates autocorrelation in the earnings residuals.
Indeed, the deviation of the rate of return d;(¢) from the market rental rate is due to individual
specific factors and the match each worker forms with a specific firm. This is likely to persist over
time. Depreciation factors included in 37/_j A\i(I) are highly persistent if \;(t) is independent
over time. It indeed generates a random walk if \;(¢) is iid over time. Nevertheless it needs
not be so if Z;;é Ai(l) is stationary, that is that depreciation shocks are partly compensated
in the future. Layoff shocks that force agents to change sectors might be an example of a long
persistence in these factors. In order to identify the individual specific parameters ns, we shall
impose in the econometric model, a period-heteroskedastic ARMA structure on these shocks
though alternatives such as factor structures might be an interesting route to explore.

Another interpretation stems from a model of search and mobility. Indeed what Postel-
Vinay and Turon (2010) nicely explicit in their presentation is that the dynamics of the earnings
process is partly controled by two other processes which are individual productivity in the current
match and outside offers that the agent receives while on the job. In this setting, three things can
happen: either earnings remain in the band within the two bounds defined by these processes;
or the earnings is equal to the productivity process because adverse shocks on that process
make employee and employer renegociate the wage contract; or alternatively, the wage is equal
to the outside offer in the case the employee can either renegociate with his employer or take
the outside offer if the productivity is lower that the outside option. We do not impose these
structural constraints in this paper and we treat them as an element of idiosyncratic shocks.

Next section describes how we deal with estimation and inference in this model of the earnings

formation process.
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4 Econometric Modelling of earnings Dynamics

In this section we state our empirical and estimation strategy and details our arguments for the
steps we use.

The first key high-level assumption is our choice of estimating the generalized random growth
model as given by earnings equation (11) only. It corresponds to estimating parameters of
earnings profiles under the null hypothesis that investments are positive until the end of the
period of observation. This assumption is one of our structural restrictions and is testable. One
reason to proceed this way is that it seems difficult to identify the model under the alternative
hypothesis unless one is ready to adopt more parametric assumptions for individual heterogeneity
terms. The alternative would indeed imply that the data generating process is a random mixture
between a random growth model and a random walk model where the random mixture depends
on the value of individual heterogeneity terms. We leave these developments for future research.

Our second key assumption consists in fixing the discount rate at a value equal to 0.95. This
solves the identification issue that we face in decomposing empirical variances and covariances
of log earnings over time into the effects of the individual specific factors and the effects of the
idiosyncratic error terms. Arellano and Bonhomme (2010) shows that along with a finite lag
specification assumption about the ARMA process, this assumption is sufficient to get identi-
fication. Experiments that we performed in simpler identically and independent settings indeed
seemed to indicate that the discount rate parameter is not well identified.

Furthermore, we adopt a strategy in two steps. We first specify a model that is estimable
by random effect methods and specifically, we use the pseudo-likelihood estimator suggested
by Alvarez and Arellano (2004). Under a normality assumption, the implicit moment selection
underlying this estimation method is optimal and though the method loses optimality in the
general case, it is still useful for moment selection and for small-sample bias reduction. Though
we recover consistent estimates of covariance matrices of individual effects and transitory idio-
syncratic terms, using those estimates to impose restrictions, derive structural estimates and
compute counterfactuals is computationally difficult. One route would be to use deconvolution
techniques although it would require the development of estimation under structural constraints
on distributions.

As a simpler next step, we chose to turn to fixed effects estimation which is simple to
implement when covariance matrix estimates are known or estimated in the previous random

effect step. These fixed effect estimates are admittedly biased if the time span is not long enough
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since the order of the bias is 1/T. Nonetheless we show that for individuals observed over a
sufficiently long time period, the bias is empirically of a second order magnitude by comparing
variance estimates across fixed and random effect specifications. Using fixed effect estimates,
structural restrictions become easily testable and estimates of the reduced-form parameters under
structural constraints are easily computed. Yet, these constrained parameters are likely to be at
the frontier of these structural restrictions and because the frontier structural parameters are
implausible in economic terms, we adopt a simulated approach to draw more plausible estimates
of the structural parameters. We directly draw those estimates into the normal approximation
of the asymptotic distribution of the fixed effect estimates. The last leg of our empirical strategy
is to compute counterfactuals by changing the values of those structural parameters.

In Section 4.1, we specify the covariance structure implied by the reduced form earnings
equation (11) and the time-heteroskedastic ARMA assumption that we adopt for transitory
earnings. We estimate covariance parameters by random effect methods using the pseudo-
likelihood approach as explained in Section 4.2 and then turn to fixed effect estimation and the

imposition of structural constraints. We end this section with the computation of counterfactuals.

4.1 Model Specification

Equation (11) can be written as a three-factor model with factor loadings, 1, = (1,1, 79, Mi3)

1
log(yit) = My + Mt + Ly +0Y(t) for any t =1,.,T. (20)

We follow the literature and take deviations from the mean of log(y;;) using the finest groupings

that are observed in the data as a function of age of entry, skill level and time, say:
log(yit) = E(log(yi) | i € g) + wir.
Denote 7, = E(ny, | i € g) for k = 1,2 or 3 and the centered individual effects as:
Mk = M — Mg L7 € g,
so that equation (20) becomes:

1
Uzt = 77@61 + 77162t + T]f?,ﬁ + (%7 fOI' any t= ]-7 .y T7 (21)

which is the equation of interest in the random effect estimation below. It will also be useful to

remember the between group equation:

. _ _ _ 1 .
E(log(yit) | i € g) = Ty + Tt + Tgs i + E(0}(t) | i € g)
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which allows the identification of the group means of (7,;, 77,5, 7;3) under a restriction on group
and period specific effects E(d67(t) | i € g). Estimates of these quantities will be used in the fixed
effect estimation of the 7;s.

On the one hand, our main parameters of interest are factor loadings in equation (21). On
the other hand, we specify the stochastic process followed by the shock v;; as a "reduced-form"
process. Its variances and autocovariances are given by an ARMA structure whose order is
known in advance with the additional feature of period heteroskedasticity. Similar specifications
of the dependence structure are developed in Alvarez and Arellano (2004), Guvenen (2009) and
Arellano and Bonhomme (2010). We define v;; as

Vit = QV4(¢—1) + ...+ QpUj(t—p) + oWy,

where w;; is M A(q):
Wit = Cp — P1Cyq — oo — wqu’t—q-
Whereas alternatives could be the composition of permanent and transitory shocks (Bonhomme

and Robin, 2009) or general factor models (Bai, 2009), we chose ARMA models in order to easily

test for the presence of any non stationary elements in those stochastics.

4.2 Random Effect Estimation

Redefining the time index accordingly, we shall assume that initial conditions of the process
(ui(l_p), ., u;yp) are observed. The dynamic process is thus a function of the random variables
zi = (Vi(1—p)s -» Vios Ci(1—q)» » Cr) Which collect initial conditions of the autoregressive process
(Vi(1—p); -, Vio), initial conditions of the moving average process ((;1_g), -» Cj0) and the idiosyncratic
shocks affecting random shocks between 1 and 7. We write the quasi-likelihood of the sample

using a multivariate normal distribution
Zi ~ N(O, Qz)

The structure of €2, structure is detailed in Appendix B although it can be summarized eas-
ily. The correlations between initial conditions and individual effects are not constrained, while
innovations (,, are supposed orthogonal to any previous terms including initial conditions. How-
ever, the initial conditions (vi1-p), ., vio) can be correlated with previous shocks as (g, -, (;1_g)-

As for the individual effects (15, 1%, 15;) we assume that they are independent of the idio-

syncratic shocks (;1_g),., (;r while they can be correlated with the initial conditions of the
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autoregressive process (v;1—p), -, Vi) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables
Vu; = (Ui(kp), U0, Uity - Uir) = Sy

This covariance matrix, €2, is a function of the parameters of the model that are the autoregress-
ive parameters {ay}x—1.. ,, the moving average parameters {¢; }x—1,. 4, the covariance matrix
(conditional on groups) of 7¢, ¥, the heteroskedastic components {o;};—1,__r and the covariance
of fixed effects and initial conditions, Iy, (see Appendix B).

A pseudo likelihood interpretation can always be given to this specification. As in Alvarez

and Arellano (2004), the estimates remain consistent under the much weaker assumption that:

E(Cy | m,UE_l) =0,

although optimality properties of such an estimation method are derived under the normality
assumptions only.

The pseudo likelihood setting is particularly well adapted to the case in which there are
mssing data in earnings dynamics. In the case of GMM estimation procedures, we would have
to rewrite each moment condition in which there are missing data by replacing the missing
variables by their expressions as a function of observed variables. This is untractable in such a
dataset in which the number of different missing structures is very large while this is handled
with parsimony in a pseudo likelihood setting. For any missing data configuration, it consists
in deleting the rows and columns of the covariance matrix corresponding to missing data and
write the likelihood function accordingly. Random effect estimates remain consistent if data are

missing at random.

4.3 Fixed Effect Estimates

It is not possible to impose structural constraints on parameters at the estimation stage in the
random effect model. It is nonetheless useful to use random effect estimates in order to construct
fixed effect estimates of individual factor loadings in a second step. In a log likelihood framework,
we obtain fixed effect estimates as linear combinations of residuals, the linear combinations being
given by the covariance matrix estimated in the random effect model. Appendix C.1 develops

the corresponding analytic computations that lead to define the individual effects estimates as:
ii; = Buy ",
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in which matrix B is a function of random effect parameters and B its plug-in estimate.

The bias for the estimated variance of earnings can be computed as in Arellano and Bon-
homme (2010). To abstract first from sampling errors, an unfeasible estimate is naturally defined
as:

ng = Bu,El_p’T] =n; + sz[l_p’ﬂ,
[

. . 1—p,T . . .
in which random vector w; " ) has mean zero and covariance matrix, €2, whose expression is

computed in Appendix C.1. We have :

V(n:) = EV(@;| )+ VE@ |n)
= V(7)) = BQ,B + V(15).

The bias term is given by B2, B’ and it is easy to show that the dominating term is of order
1/T.5

Our estimate has an additional bias term which is given by the measurement equation:

;= Buy M =g + (B — Byw; ",

)

although this term is in 1/ VN and thus dominated in large N and moderate 1" samples by
the bias in 1/7. Note that these biases can be estimated and bias-corrected estimates of those

variance terms can be constructed. We shall evaluate them in the empirical section below.

4.4 Constraints and Structural Parameters

From those individual-specific estimates, we now show how to impose the structural constraints
derived in Proposition 5. If those constraints are satisfied, structural individual specific estimates
can be derived from fixed effect estimates.

Indeed, estimates 7); do not necessarily satisfy the constraints:

6T+1

,0].
M2 1-p ]

We let 77 = % and write these contraints as:

Mg > 0, 1,5 <0 and ;3 + m7rn;5 > 0.

As we know the asymptotic distribution of each factor loadings, we can test each single restriction

at the individual level.

6Because our factors are a constant, a linear trend and a geometric one, there are also bias terms in 1/72 and
exp(—pT) that are dominated by the leading one, 1/T.
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Furthermore, we can construct constrained estimates by projecting unconstrained estimates
on the set of restrictions using the distance defined by the (log)-likelihood function criteria
as explained in Appendix C.3. We have to reintroduce first the estimates of individual effect
averages i.e.:

f,=n,+0;ifi€g
We can then construct the distribution of the distance in the data between the unconstrained
and the constrained estimates, 7}
A ;) = (0 = 1) Q@0 = 1,),

which is the basis for a Quasi-Likelihood Ratio test of all structural restrictions (e.g. Silvapulle
and Sen, 2005). The distribution of this statistic under the null hypothesis is a mixture of
chi-square distributions and we evaluate this distribution by simulation in the empirical section
below.

Nevertheless, constrained estimates are on the frontier of structural restrictions by construc-
tion when the unconstrained estimates are outside the set of structural constraints. This happens
quite often even when the null hypothesis is true and when the number of observed periods T; is
small. For instance, it could be that constrained estimates verify the constraint, 1,5 + 77n,, = 0,
which would mean that the estimate of parameter r; is equal to 0. Because p; > 1/fk;, this
would generate an implausible large estimate for p,.

This is why we use simulation to sample into the asymptotic distribution of constrained

estimates. We use that the likelihood function of an individual earnings profile is given by:

_ _ 1 _ _
¢ [1-pT 1—p,T c 1—p,TIN =1 c 1—p,T c
0 ™) = Bl . ex (500 = Bl Y0 0 - BT ) Lol
in which structural restrictions are implicitly stated in the prior distribution Ly(75). We draw
into this posterior distribution to construct simulated constrained estimates, 7;, of 1, using the

developments in Appendix C.4. Some additional trimming to avoid frontier points is used.

4.5 Counterfactuals

We want to analyze the impact of a change in the levels of the terminal capitalization rate x; or
in the rate of return p; for instance. Other parameters will remain fixed since it would require a
proper modelling or specific assumptions. This applies in particular to the initial level of human
capital as well as to the rental price of human capital over time which will assumed constant
across these experiments. It is fair to note that counterfactuals we construct are independent of

these variables only under restrictions that we state below.
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4.5.1 Survival probabilities

We assume that there is a "technological" improvement in survival probabilities in such a way
that there are additional K years after period T during which the survival probability remains

equal to 1 (instead of starting declining). This amounts to the transformation of «; into }:

1 1
Ki — 1-3 = 6% (ki — m)
as if we were prolonging, all of a sudden, life expectancy by K years. Other parameters p;, and
¢; are held fixed.

We evaluate the consequences on the earnings profiles of these changes as if these news had
been revealed at time ¢ = 1 so that the initial level of human capital would remain the same. We
assume that there is infinite demand for human capital at the rental prices that were effectively
observed and we assume that decumulation shocks remain the same so that the transitory
earnings process also remains the same.

Evaluating equations (12) to (14) at the new values (kZ, p;, ¢;, H;(1)) demonstrate that the
new values (1%;,75;,7%;) are such that %, = 0y, 0 = 51,3 and that:

2 T+2
=== (= 125 ) 1507 - D, (22)
In order to abstract from the idiosyncratic noise of transitory earnings which is supposed to
remain fixed, we shall then compare the earnings variance profile V(M (5)n}) with the original
profile of V(M (5)n;).

Nonetheless, parameters p, and ¢; in equation (22) are not identified and only a lower bound

(pF, cF) on their values can be computed. We shall then proceed by making different assumptions

like p;, = pX, p¥ = 1.20p, etc to assess the robustness of this construction.

4.5.2 Human capital technology

The construction of counterfactuals for the human capital technology is more speculative. Since
only a lower bound for rates of returns can be identified, experiments for constructing counter-
factuals led to very large bounds. It is thus fair to say that those specific counterfactuals are
not identified. As mentioned earlier, one possible route would be to use parametric assumptions
for structural parameters in order to identify rates of return and consequently counterfactuals

involving these rates.
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5 Descriptive Analysis of the Data
5.1 Sample Selection

Our panel dataset on earnings is extracted from a French administrative source named Déclar-
ations Annuelles de Données Sociales (DADS). DADS data is collected through a mandatory
data requirement (by French law) for social security and tax verification purposes. All employers
must send to the social security and tax administrations the list of all persons who have been
employed in their establishments during the year. Firms report the full earnings they have paid
to each person but this does not include other wage costs borne by the firm. Each person is
identified by a unique individual social security number which facilitates the follow-up of indi-
viduals through time although it is impossible to reconstruct taxes they pay. The tax system is
household-based in France and the linking of this dataset with fiscal records is not authorized
yet.

The French National Statistical Institute (INSEE) has been drawing a sample from this
dataset at a sampling rate of 4% since 1976. Regarding the sampling device, all individuals who
were born in October of even years should be included in this sample. Nevertheless, there are two
main reasons why observations can be missing. First, data were not collected in three years (1981,
1983 and 1990) for reasons specific to INSEE. Second, this dataset is restricted to individuals
employed in the private sector or in publicly-owned companies only. As a consequence, this
analysis is restricted to individuals who have been employed at least one year between 1976 and
2007 in the private sector or in a publicly-owned company.

In addition, we aim at keeping only employees with a permanent full-time attachment to the
private sector. Firstly, we considered persons employed full time only and censor information
about part-time jobs. We also restricted the sample to men entering the labor market in 1977
and working in the private sector in 1978, 1982 and 1984 to avoid non-participation and also
because the bulk of entries as a public servant occurs at the beginning of the working life. The
definition of entry here is the same as in Le Minez and Roux (2002). We consider that an
individual has entered the labor market as soon as this individual has occupied the same job for
more than 6 months and is still employed the following year, possibly in a different firm. The
date of entry defines the cohort to which the individual belongs and we focus on a single cohort
of entrants in 1977, the first year of our panel which lasts until 2007.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the labor market to which private firms have access.
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Admittedly, it does not represent the full working population. Because of the lack of a cred-
ible identification strategy to correct for selection, we shall assume that selection is at random
or can be conditioned on individual-specific effects only. The distribution functions of unob-
served factor loadings or idiosyncratic components that we estimate in the following refer to this
subpopulation.

The empirical analysis uses "annualized" earnings. It is defined as full earnings divided by
the number of days worked and remultiplied by the average annual workload. In order to weaken
the possible impact of measurement error, we coded as missing the first and last percentiles of
the earnings distribution in every period. A shortcoming of using administrative data is that few
observable characteristics are available apart from a rough measure of age at labor market entry
and a rough measure of education grouping the first job into three categories. As a measure of
skill, we can also use a grouping given by the age of entry. The first group includes individuals
entering the labor market when they are less than 20 years old, the second group of individuals
enters between age 20 and 23 and the last group after age 24.

We analyze deviations of log earnings with respect to the mean log earnings of workers within
the same age of entry and education group at each point in time. That is, we compute earnings

residuals, u; as in equation (21):

wir = log(yit) — log(yit)ge, fori € g =1,.,G

in which ¢ is the index of groups formed by age of entry and education.

5.2 Earnings Inequality in France Over the Period

As regard earnings inequalities in France, a few recent studies investigate their evolution over
roughly the same period as our data. First and foremost, wage dispersion in France has not
increased over the last thirty years in contrast with the US or the UK (Moffit and Gottschalk,
2008, Dickens, 2000). It represents an important distinction from previous studies mostly using
US data that one should keep in mind.

Charnoz, Coudin and Gaini (2011) use quantile regressions using the same DADS data on
full time private sector earnings. They show that earnings inequality in France has been rather
stable from 1976 to 1992 and has been slightly decreasing from 1995 to 2004. They point out the
important role of the natural replacement of older cohorts by younger ones and the large part
played by several increases in the minimum wage over the period. Cornilleau (2012) uses the

same data set and looks at changes in means and dispersion of earnings from the nineteen sixties
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to 2004. This author concludes to a slight decrease in inequality that balances two counteracting
effects. A reduction in inequality at the bottom of the distribution (the ratio of the minimum
wage over the median increasing from 51 to 66%) was slightly mitigated by a small increase in
dispersion in the upper part of the distribution (the ratio of median wage to the limit of the last
decile decreasing from 52 to 50%). In a different vein, Verdugo (2012) relates changes in the
wage structure with changes in educational attainment using various datasets. He concludes to
a reduction in wage inequality in the lower part of the distribution and a stable dispersion in
the upper part.

A final note of caution is in order. While these studies consider changes in the cross-sectional
wage distributions, we adopt in this paper a different perspective by following a single cohort of
individuals entering the labor market in 1977. Changes in the structure of the population that

has been given a large role by the previous studies are neutralized in this paper.

5.3 Data description

Table 1 reports descriptive statistics of the sample. The sample size is 7446 observations in
1977 and 4670 in 2007. Age of entry groups defined above are of unequal size, the low skill
group being the largest. Attrition follows a somewhat irregular pattern which is partly due in
the first years to our sampling design since we required that wage earners be present in 1977,
1978, 1982 and 1984. Some years are also completely missing (1981, 1983 and 1990). There are
also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which
many observations are missing. This is due to the way INSEE reconstructed the data from the
information in the original files and missing data patterns in 1994 are very similar across age of
entry groups.

To complete this information, Table 2 gives a dynamic view of attrition. This Table reports
the frequencies of reported values by pairs of years. For instance, the column 1977, describes the
global features of attrition. Attrition is quite severe in the first "normal" (after selection) year,
1985 since 15% of individuals exit between 1984 and 1985. This is true in every adjacent years
at the beginning of the sample period (other columns for instance in cell 1987, 1988) but it is
decreasing over time to reach 7 or 8% at the end of the panel. Year 1994 confirms its exceptional
status as attrition between 1994 and 1995 is very low. More generally though, most individuals
reenter the panel quickly since the attrition at two year intervals is only marginally larger than
the one observed at one year intervals (for instance the two cells in 1977, 1985 and 1986, indicate

attrition of 15% and 16.5%) although this varies somewhat over time. Finally, there is a core
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of observations which are almost always present in the panel. Looking at row 2007, we can see
that out of the 62.7% of the complete sample of individuals present in this year, it is hardly less
than 80% of this sample which is not present between 1985 and 2006 — with the exception of
1994 again.

We report in Figure 1, the increase of average log-earnings over the period for the three
groups defined by age of entry. These are log-earnings at current prices although the shape
of real log-earnings is hardly different. Inflation, as measured by consumer prices, leads to a
substracting factor for current log-earnings over the whole period which is equal to 1.17. This
can be roughly subdivided into two sub-periods between 1977 and 1986 in which this factor is
equal to .77 and between 1986 and 2007 during which inflation levelled off and this factor is equal
to .40. We do not report the evolution of average log-earnings by groups defined by education
and age of entry, the only individual characteristics that are available in the dataset although
these evolutions are parallel to the ones graphed in Figure 1. Nonetheless, as already said, the
variance of log-earnings that we consider from now on are computed by taking deviations of
log-earnings with respect to their means in groups defined by covariates and periods.

The left panel of Figure 2 represents the change in the cross-sectional variance of (log)
earnings for the full sample, while the right panel represents the variance by groups defined by
age of entry.” The first few years witness a strong variability of earnings. Until the sixth year
of observation, 1982 (respectively the fourth, 1980), the variance of log earnings drops for the
low skill groups (resp. for the other groups) whereas it increases gradually over the rest of the
sample period till around 1995. The variance profile is flat afterwards in contrast to the US
(PSID) where it continues to grow (Rubinstein and Weiss, 2006). From the right panel one
can notice that late entrants in the labor market experience higher earnings variance levels and
a larger rate of variance growth over their life-cycle. The full covariance matrix is reported in
Table 3 and gives information about correlations although this is easier to use graphs to describe
the main features of this matrix. Figure 3 displays for the full sample the autocorrelation of
residuals of log earnings with residuals in an early (resp. late) year, 1986 (resp. 2007). This
Figure reveals an asymetric pattern over time which is quite robust to the choice of these specific
years (1986 and 2007). The correlation between earnings at years t — k and posterior ¢ is quickly

disappearing between t and t — k in early years of the panel while it is roughly linear in lags in

"Choosing the variance as a description of the process is adapted to the random effect specification that we
estimate. Using other inequality indices (Gini , Theil or Atkinson) does not change the qualitative features of
our descriptions.
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late years. Figure 4 takes a different view that confirm the previous diagnostic by plotting the
autocorrelations of order 1 and 6. Note that their shape are very similar and increase uniformly
over time although at different levels. The closer we move to the end of the period, the larger
the autocorrelation coefficients are.

Finally, Table 4 reports the autocorrelation patterns of the first differences in the earnings
residuals. Contrary to what is found in some papers in the literature using PSID data (for
instance, Meghir and Pistaferri, 2010) we do not find strong evidence that the correlation dis-
appears after taking a two period difference. A few very long difference autocorrelations seem

significant and no regular pattern seems to emerge.

6 Results

We first present the estimated parameters of the reduced form earnings equation by random
effect ML estimation and we discuss the selection of the ARMA specification. In section 6.2 we
detail the procedure we implement to estimate unconstrained individual factor loadings or fixed
effects. Next, we test and impose structural constraints on estimates. This leads us in Subsection
6.4 to the estimation of structural parameters which are identified (the terminal value coefficient)
or partially identified (rates of return). Then we assess the counterfactual impact of changes in

life expectancy on the variance of earnings.

6.1 Random effect estimation and reduced form parameters

Firstly, we estimate covariance matrices of the permanent and transitory components of the
errors as well as their correlation with the initial conditions. The former is composed by three
individual unobserved factors (n¢, 75, 1%), while the latter is represented by an ARMA process
as explained in the previous section. Table 5 provides the values of the Akaike criterion based
on the log-likelihood values for specifications in which orders of the autoregressive and moving
average components vary from (1,1) to (3,3). Unsurprisingly, enlarging the number of AR or
MA components strongly increases the value of the sample likelihood function. Nonetheless,
increasing it beyond 3 lags is difficult to implement since it involves a year, 1981, in which
observations are missing altogether. This is why we did not pursue further the exploration of
higher orders for th