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Abstract

This article examines how �rms facing volatile input prices and holding some

degree of market power in their product market link their risk management

and production or pricing strategies. This issue is relevant in many industries

ranging from manufacturing to energy retailing, where risk averse �rms decide

on their hedging strategies before their product market strategies. We �nd

that hedging modi�es the pricing and production strategies of �rms. This

strategic e¤ect is channelled through the expected risk-adjusted cost, i.e., the

expected marginal cost under the measure induced by investors�risk aversion,

and has diametrically opposed impacts depending on the nature of product

market competition: hedging toughens quantity competition while it softens

price competition. Finally, committing to a hedging strategy is always a best

response to non committing, and is a dominant strategy if �rms compete à la

Hotelling.

JEL Classi�cation: L13, G32



1 Introduction

Most of the formal analyses of corporate risk management decisions (for exam-

ple Froot and Stein (1998), Rochet and Villeneuve (2011), and Bolton, Chen

and Wang (2011)) describe a single price-taking �rm that faces volatile cash

�ows and optimizes its mix of reserves (cash or debt capacity) and derivatives

instruments (forward and options).

In many instances, this analysis constitutes a valid representation of real-

ity. Firms producing commodities and raw materials (e.g., metals and min-

erals, oil and gas, electric power) face output price volatility that translates

directly into cash �ow volatility. In many industries, such as manufacturing,

food processing, transportation, and energy retailing, �rms face input prices,

not output prices, volatility. When �rms have no market power in their prod-

uct market, the single-�rm risk management logic applies. Individual hedging

demand from these price-taking �rms can then be aggregated to determine

the equilibrium price of risk (for example, Bessembinber and Lemmon (2002),

and Aid et al. (2011)).

If, however, �rms facing input price volatility have some degree of market

power in their product market, their strategies become more elaborate. For

example, a �rm can pass through to customers a portion of the input cost

increase and/or can retain a portion of the input cost decrease. However,

by modifying product price, the �rm alters the competitive dynamics in its

industry. It must therefore take into account the behavior of other �rms, and

the pass-through is determined in equilibrium.

The British electric power retailing sector provides a clear example of

hedging arising as an equilibrium. The British regulator (Ofgem (2008), page

10) indicates that: "there is evidence that the (6 largest suppliers) seek to

benchmark their hedging strategies against each other in order to minimize

the risk of their wholesale costs diverging materially from the competition".

Private conversations with key participants of the industry con�rm that each

expands considerable competitive intelligence e¤ort to estimate the others�

hedging position. Retailers then play a symmetric Nash equilibrium. What

matters to them is not the absolute value of their hedging position, but its

value relative to their competitors.

This article examines how hedging interacts with product market strategy

when �rms compete in quantity (Cournot) and in price (Bertrand di¤erenti-

ated).
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In the economics and �nance literature, various authors have developed

models where �rms jointly determine their hedging ratios as a Nash equilib-

rium. Closest to this work, Allaz and Villa (1993) examine the interplay of

forward and spot markets, and �nd that the availability of forward contracts

reduces �rms�market power in the spot market. However, their analysis dif-

fers from ours in a critical aspect: in their setting, �rms sell their output

on the forward or spot markets, where they exert market power, while in

ours, �rms exert no market power in the spot and forward markets for input.

Adam, Dasgupta, and Titman (2007) examine two-period games in the pres-

ence of �nancial constraints: �rms�hedging decision in the �rst-period a¤ect

their investment capacity, hence their pro�tability in the second period. They

show that asymmetric equilibria arise: in equilibrium, some �rms hedge, while

others do not. In their model, the presence of �nancial constraints and the

resulting potential underinvestment is the conduit for strategic interaction.

Similarly, Loss (2012) examines the interaction between hedging demand and

the strategic characteristics of investment opportunities in the presence of

�nancial constraints. He �nds that a �rm�s hedging demand is high when

investments are strategic substitutes, and low when they are strategic com-

plements. In this article�s setting, by contrast, pricing and hedging are part
of the same strategy. Bodnar, Dumas, and Marston (2002) consider a duopoly

with asymmetric exposure to an exchange rate, and determine the optimal

pass-through and related exposure. While the problem is related to the one

examined here, the analytical approach is very di¤erent: they treat exchange

rate as a �xed input price, not as a stochastic variable. This article�s contribu-

tion is therefore to analyze the strategic interactions between product market

and hedging decisions of large corporations.

We focus the analysis on risk-averse �rms that hedge before deciding their

product market strategies. As will be discussed, risk-aversion arises naturally

from �nancial constraints. Hedging is a publicly observable commitment:

hedging strategies must be reported to investors, and Board of Directors issue

strict hedging guidelines, which prevent risk managers from overturning a

position. Many industrial �rms commit to their hedging strategy a year in

advance, before setting their product market strategy. Formally, we model

two-stage games: �rms �rst determine their hedging strategy, then determine

their product market strategy, conditional on their �rst stage choice.

We �rst analyze quantity competition. The necessary �rst-order condi-

tions characterizing an equilibrium candidate of the production game are
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similar to the standard Cournot case, except that the expected risk-adjusted

cost replaces the marginal cost. Investors value a marginal cost increase using

the probability measure induced by their marginal utility of wealth in each

state of the world, and not the physical probability measure. This expected

risk-adjusted marginal cost is determined in equilibrium. It is decreasing in

own hedging, and increasing in own production at the equilibrium. Thus, if

a �rm increase its hedging, it becomes more aggressive (Lemma 1).

An equilibrium of the production game always exists. If the absolute

risk aversion of pro�ts is "weakly" correlated to input cost (this statement is

made precise in Section 5), this equilibrium is unique, and an increase in own

hedging reduces the other �rm�s equilibrium output (Proposition 1). If a sym-

metric equilibrium of the hedging game exists, and absolute risk aversion of

pro�ts is "weakly" correlated to input cost, hedging toughens quantity com-

petition: �rms hedge more than their (anticipated) equilibrium production,

thus commit themselves to produce more than if their costs were constant and

equal to the expected cost under the physical probability measure (Proposi-

tion 2).

We establish similar results for di¤erentiated price competition; although

with diametrically opposed implications. The expected risk-adjusted marginal

cost, determined in equilibrium, replaces the constant marginal cost in the

necessary �rst-order conditions characterizing an equilibrium candidate of the

pricing game. It is decreasing in own hedging and decreasing in own price at

the equilibrium. If a �rm increases its hedging, it becomes more aggressive

(Lemma 2).

An equilibrium of the pricing game always exists. If absolute risk aversion

is constant, the equilibrium is unique, and an increase in own hedging reduces

the other �rm�s equilibrium price. The crucial di¤erence compared to quantity

competition is that, if a symmetric equilibrium of the hedging game exists

and absolute risk aversion is constant, hedging softens quantity competition:

�rms hedge less than their (anticipated) equilibrium production, thus commit

themselves to a price higher than if their cost was constant equal to the

expected cost (Proposition 3).

For ease of exposition, the unicity and comparative statics results when

�rms compete in quantity are derived using the strong su¢ cient condition

that risk aversion is constant. The weaker su¢ cient condition that absolute

risk aversion of pro�ts is "weakly" correlated to input cost is derived in Propo-
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sition 4. Similarly, a weaker su¢ cient condition for hedging to soften price

competition is presented in Proposition 5.

Finally, we examine the strategic incentives to commit to a hedging posi-

tion (Proposition 6). Sofar, we have assumed that Boards of Directors impose

that �rms commit to their hedging position to limit speculation by traders.

Ignoring that objective, does commitment arise in equilibrium? We �rst prove

that committing is a �rm�s the best response to the other not committing.

This result is all the more striking that both �rms committing is Pareto dom-

inated if �rms compete in quantity. On the other hand, if �rms compete in

price, commitment to a hedging strategy softens price competition. If de-

mand is totally inelastic (Hotelling competition), and absolute risk aversion

constant, the expected gain in retail pro�ts more than compensate the volatil-

ity increase, and commitment is a dominant strategy. Thus, whether �rms

compete in quantity or in price, they have a strategic incentive to commit, as

well as a risk control objective.

This article is structured as follows: Section 2 presents the model. Sec-

tion 3 analyzes quantity competition. Section 4 analyzes price competition.

Section 5 discusses robustness of the results. Section 6 examines incentives to

commit to the hedging strategy. Finally, Section 7 discusses further research.

Technical proofs are presented in the Appendix.

2 The model

2.1 Demand and commercial pro�ts

Consider two symmetric �rms, indexed by i = 1; 2, competing à la Cournot.

Firm i produces output qi, total production is Q = qi+qj , and inverse demand

P (qi + qj). To produce one unit of good or service, both �rms use one unit

of the same input, at cost ~c. Firm i�s commercial pro�ts1 for input cost ~c is:

�Ri (qi; qj ; ~c) = qi (P (Q)� ~c) :

Assumption 1 For all Q � 0, the inverse demand function P (:) satis�es

QP 00 (Q)

(�P 0 (Q)) < 1 (1)

1Throughout the article, the following �slightly redundant �notation is used: for any
function f (x; y), fi (xi; xj) represents the value of f () for �rm i that plays xi (the �rst
argument) while �rm j plays xj . To simplify the notation, the arguments are sometimes
ommitted.
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and

lim
Q!1

A (Q) = 0 and lim
Q!0

A (Q) = lim
Q!0

P (Q) = +1

where

A (Q) = 2P (Q) +QP
0
(Q) :

2.2 Constant input cost

Before introducing uncertainty, it is useful to brie�y review the properties of

the equilibrium when input costs are constant and equal to ci for each �rm i.

Firm i�s pro�t is:

�Ri (qi; qj ; ci) = qi (P (Q)� ci) :

Then,

@�Ri
@qi

= (P (Q)� ci) + qiP
0
(Q) and

@2�Ri
(@qi)

2 = 2P
0
(Q) + qiP

00
(Q) :

Condition 1 guarantees that @2�Ri
(@qi)

2 < 0. Thus, if a Cournot equilibrium

exists, it is characterized by the necessary �rst-order conditions:

@�Ri
@qi

= (P (Q)� ci) + qiP
0
(Q) = 0: (2)

Assumption 1 guarantees that, for all c > 0,

A (Q) = 2P (Q) +QP 0 (Q) = c

admits a unique solution QE (c). We further assume that

jcj � cij < min
����� D (ci)D0 (ci)

���� ; ���� D (cj)D0 (cj)

����� ; (3)

where D (:) is the demand function induced by P (:). This eliminates possible

corner equilibria (e.g., q1 = 0; q2 > 0). Then, the equilibrium quantities are:

qEi (c1; c2) =
P
�
QE (c1 + c2)

�
� ci

(�P 0 (QE (c1 + c2)))

Finally, we verify in Appendix A that:

@qEi
@ci

=
2P

0 �
QE
�
+ qEj P

00 �
QE
�

P 0 (QE)
�
3P 0 (QE) +QEP

00
(QE)

� < 0
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and
@qEi
@cj

= �
P
0 �
QE
�
+ qEi P

00 �
QE
�

P 0 (QE)
�
3P 0 (QE) +QEP

00
(QE)

� > 0:
2.3 Uncertainty on input costs and risk management

We return to the random input cost case. Ex ante, the input cost ~c is a

random variable, distributed following cumulative distribution function G (:)

on bounded support 
 = [c; c]. 
 and G (:) are common knowledge to both

�rms.

Firms can purchase input in the wholesale forward market at (forward)

price F . To eliminate speculative motives for hedging, we assume that F =

E [~c] and does not change over time. There are no transaction costs associated
with hedging.

Firms do not exert market power in the spot and forward wholesale mar-

kets for input, even though they do exert market power in their product mar-

ket. For example, airlines do not exert market power in the fuel market, yet

they are an oligopoly on speci�c routes (see for example Gerardi and Shapiro

(2009)); food processing �rms may not exert market power in the feedstock

market, while most empirical studies document market power in their product

markets (see for example Sheldon and Sperling�s (2001) survey).

2.4 Three empirically relevant timings

Three distinct timings are observed, that depend on the timing of the pro-

duction decision:

1. Production then hedging : the �rms �rst decide on their production at

t = 0, then on their hedging strategy at t = 1. Finally, input cost and

pro�ts are realized at t = 2.

2. Hedging then production: the �rms �rst decide on their hedging strategy

at t = 0, then on their production t = 1, before input cost and pro�ts

are realized at t = 2.

3. Flexible production after input cost known: the �rms decide on their

hedging strategy at t = 0, then on their production strategy at t = 2

after input cost is realized at t = 1. Finally, pro�ts are realized.

Since F is constant, hedging before or after production does not modify

the (expected) gains.
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Timings 1 and 2 are relevant for most manufacturing industries: producers

(e.g., car manufacturers) commit to a product price or volume for the relevant

period (typically one or two quarters). During that period, input prices (e.g.,

aluminum and steel prices) vary. These timings are also relevant for the retail

power industry in Britain, where retail rates typically change only 3 or 4 times

a year, while wholesale power prices vary continuously. This price in�exibility

could be due for example to the high cost of adjusting prices, or simply to

industry practices. We take this in�exibility as given in this article, leaving

its endogeneization to further work.

Timing 3 applies to industries where output price is �exible. For example

delivery services (e.g., Fedex and UPS) explicitly include in their published

rate a fuel surcharge schedule, that depends on the price of an oil index. Sim-

ilarly, electricity retailers in Norway o¤er retail contracts explicitly adjusted

to the wholesale power price.

Timings 2 and 3 represent two-stage games, where the hedging decision is

made �rst, followed by the production decision. For a strategic interaction to

arise (i) industrial �rms�hedging decisions must be public knowledge, and (ii)

industrial �rms must have the possibility to commit to their hedging strategy.

We now justify both assumptions.

First, �nancial regulations require �rms to publish in their quarterly state-

ments a description of their portfolio of forward purchases and sales. While

some discretion still exists in disclosure, an outside party can get a close pic-

ture of a �rm�s hedging portfolio. For example, Jin and Jorion (2007) were

able to compute the delta-equivalent of the forward portfolio for US oil and

gas companies, and, as previously mentioned, electricity retailers in Britain

infer each other�s hedging portfolio from �nancial statements and other public

information.

Second, industrial �rms can �and in practice do �commit to a hedging

strategy through their risk management policy. Forward sales and purchases,

that require the use of derivatives, are usually handled with extreme caution

by Board of Directors, concerned about potential speculative behavior by

traders. Boards then require management to de�ne and follow a clear hedging

strategy, often declining in time: for example "hedge fully our exposure for

the next quarter, hedge half of the exposure for the next two quarters, and

a fourth of our exposure for the quarter after". As mentioned earlier, this

strategy is communicated to investors and regulators. Management has then

limited discretion to deviate from this strategy.

7



Our �rst observation is that no strategic interaction arises under timings

1 and 3, i.e., there exists a dichotomy between hedging and production.

Consider �rst timing 1: �rms select output, then hedge. Reasoning back-

wards, consider �rst the hedging decision, once production is known. Since

(i) �rms are risk averse, and (ii) there are no transaction costs nor expected

gain from hedging (i.e., E [~c] � F = 0), full hedging is the optimal strategy.

Consider now the production decision. Knowing that input costs will be per-

fectly covered at the forward price, �rms play a symmetric Cournot game with

constant marginal costs equal to F , thus their equilibrium output is qE (F; F ).

Consider now timing 3: �rms set production after the input price is re-

alized. The pro�t from the hedge is known before the production decision

is made, thus has no impact on it. Firms cannot do any better than stan-

dard deterministic pro�t maximization. Knowing that, when �rms make the

hedging decision, they follow the "standard" one-�rm risk management logic.

Thus, this article if focussed on situations where risk-averse �rms hedge

before making their production decision.

2.5 Objective function

At t = 2 (i.e., once the input cost ~c is known), the pro�t function of �rm i

that has purchased forward quantity Hi at the forward price F is:

�i (qi; qj ;Hi; ~c) = qi (P (Q)� ~c) +Hi (~c� F )

= qi (P (Q)� F ) + (Hi � qi) (~c� F ) :

The �rst expression of �rm i�s pro�ts re�ects a purchase of input volume qi
at cost ~c, and pro�t (~c� F ) on the volume Hi purchased forward at t = 0.

Alternatively, the �rm can consider its production cost is F , and that its

exposition to input price �uctuations is (Hi � qi).

We assume that �rms maximize some expected utility of pro�ts U (�i)

where U (:) is increasing and (weakly) concave. To obtain a strategic impact

of risk management, a crucial ingredient is that �rms are risk-averse. There

are several possible reasons for this assumption. In the case of small �rm,

owned and managed by the same person, the objective of this owner-manager

is to maximize the expected utility of her wealth, the pro�t of the �rm being

a large component of this wealth.
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However, we are mostly interested in large �rms, typically owned by a

di¤use population of small shareholders, and whose managers own only a

small fraction of the shares. If managers act in the best interest of diversi�ed

shareholders and the stock market is frictionless, the objective should be to

maximize the expected present value of future pro�ts, where the expectation

is taken under the risk adjusted distribution, which incorporates risk premia.

Such a framework is consistent with the Modigliani and Miller theorems, and

implies in particular that corporate risk management does not create any

value for shareholders.

A more realistic description of reality incorporates �nancial frictions, typi-

cally in the form of a wedge between the costs of external and internal �nance

(Froot, Scharfstein, and Stein (1993)), transaction costs of primary security

markets (Décamps et al. (2011)), or agency costs (DeMarzo and Sannikov

(2006), Biais et al. (2007)). In each of cases, shareholder value (once �rms

optimize their �nancing and investment policies) can be represented as the

expectation of a concave function of future pro�ts. Even when shareholders

are risk neutral (or completely diversi�ed), �nancial frictions generate risk

aversion in the (indirect) preferences of shareholders.

It is thus legitimate for us to represent these shareholders�preferences by a

concave function of future pro�ts, denoted U (�). For simplicity, we consider

a symmetric model where U (:) is the same for all �rms. We do not attempt to

endogenize U (:) by modelling explicitly the �nancial frictions and the optimal

�nancing and investment policies that give rise to this function U (:).

Consistent with the literature reviewed above, we further assume that

absolute risk aversion � (�) =
�
�U

00

U 0

�
(�) is non-increasing.

At date t = 0, the shareholder value of �rm i is then:

vi (qi; qj ;Hi) =E [U (�i (qi; qj ;Hi; ~c))]

=E [U (qi (P (Q)� F ) + (Hi � qi) (~c� F ))]

We look for subgame perfect equilibria of the two-stage games played by

�rms. We solve by backward induction: we �rst determine the unique the

second-stage equilibrium
�
q�i (Hi;Hj) ; q

�
j (Hi;Hj)

�
, then insert its value into

vi to obtain the �rst-stage payo¤ functions, denoted Vi(Hi;Hj).
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3 Over-hedging to commit to higher output

3.1 Random input costs: an illustrative example

Before solving the general case, we illustrate the main insights using a simple

example: (i) absolute risk aversion is constant, which yields U (x) = 1 �
exp (�x), (ii) inverse demand is linear P (Q) = 1�Q, and (iii) input cost ~c

is normally distributed2, with mean F and standard deviation �.

vi (qi; qj ;Hi) =E [1� exp (�� (qi (P (Q)� F ) + (Hi � qi) (~c� F )))]

= 1� exp (��mi (qi; qj ;Hi))

where

mi (qi; qj ;Hi) = qi (P (Q)� F )�
� (Hi � qi)2 �2

2
:

@vi (qi; qj ;Hi)

@qi
= � exp (��mi (qi; qj ;Hi))

@mi

@qi

= � exp (��mi)
�
P (Q)� F + qiP

0
(Q) + ��2 (Hi � qi)

�
and

@2vi (qi; qj ;Hi)

(@qi)
2 = � exp (��mi (qi; qj ;Hi))

 
@2mi

(@qi)
2 � �

�
@mi

@qi

�2!
< 0

since
@2mi

(@qi)
2 = 2P

0
(Q) + qiP

00
(Q)� ��2 < 0:

Replacing P (Q) by its expression, the �rst-order necessary and su¢ cient

conditions characterizing the equilibrium are

qi
�
2 + ��2

�
+ qj = 1� F + ��2Hi (4)

for i = 1; 2, which yield the equilibrium

q�i (Hi;Hj) =
1

3 + ��2

�
1� F + ��2

1 + ��2
��
2 + ��2

�
Hi �Hj

��
2The support of the distribution of cost is not bounded. However, as we will prove below,

the main results still hold.
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for i = 1; 2.

Vi (Hi;Hj) = 1� exp
�
��mi

�
q�i (Hi;Hj) ; q

�
j (Hi;Hj) ;Hi

��
Thus,

@Vi
@Hi

= � exp
�
��mi

�
q�i ; q

�
j ;Hi

���@mi

@qi

@q�i
@Hi

+
@mi

@qj

@q�j
@Hi

+
@mi

@Hi

�
= � exp

�
��mi

�
q�i ; q

�
j ;Hi

���
q�i P

0
(Q)

@q�j
@Hi

� (Hi � q�i ) ��2
�

=��2�2 exp
�
��mi

�
q�i ; q

�
j ;Hi

���
Hi �

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i

�
:

The necessary �rst-order conditions are then:

H�
i =

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i :

We verify that @2Vi
@2Hi

�
H�
i ;H

�
j

�
< 0, hence (H�;H�) is indeed an equilibrium.

Replacing q�i by q
�
i (Hi;Hj) and solving for a symmetric equilibrium yields:

H� =
1 + 1

(3+��2)(1+��2)

1� ��2

3(3+��2)(1+��2)

qE (F; F ) :

where

qE (F; F ) =
1� F
3

is the unique symmetric equilibrium output if marginal cost is constant and

equal to F . Equilibrium output is then:

q� =
1

1� ��2

3(3+��2)(1+��2)

qE (F; F ) > qE (F; F ) :

A few features of the analysis are worth noting. First, vi (qi; qj ;Hi) is

concave in qi, due to the concavity of the pro�t function �Ri and the risk

aversion.

Second, the �rst order conditions (4) can be rewritten as

2qi + qj = 1� ci(qi;Hi)
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where

ci(qi;Hi) =
�
F + ��2 (qi �Hi)

�
is the "risk adjusted" marginal cost, increasing in qi, decreasing in Hi, and

lower than the expected cost F if and only if Hi > qi. Equilibrium of the

production game is the solution of the system:(
q1 = qE1 (c1 (q1;H1) ; c2 (q2;H2))

q2 = qE1 (c1 (q1;H1) ; c2 (q2;H2))
:

Finally, at the equilibrium, �rms hedge more than they will produce, i.e.,

H� > q�, which yields a risk-adjusted cost lower than F . Thus, �rms produce

more than if costs were F : q� > qE (F; F ). Random input costs lead to higher

input and lower equilibrium price.

As we will see in the remainder of this article, these features also hold

under more general conditions on utility, demand, and input cost distribution.

3.2 Equilibrium of the production game

Consider now a general speci�cation.

@vi (qi; qj ;Hi)

@qi
=E

�
U 0 (�i)

@�i
@qi

�
=E

h
U 0 (�i)

�
P (Q)� F + qiP

0
(Q)� (~c� F )

�i
=E

�
U 0 (�i)

� �
P (Q) + qiP

0
(Q)
�
� E

�
U 0 (�i) ~c

�
=E

�
U 0 (�i)

� �
P (Q) + qiP

0
(Q)� ci (qi; qj ;Hi)

�
where

ci (qi; qj ;Hi) =
E [U 0 (�i (qi; qj ;Hi)) ~c]

E [U 0 (�i (qi; qj ;Hi))]
= F +

cov [U 0 (�i (qi; qj ;Hi)) ; ~c]

E [U 0 (�i (qi; qj ;Hi))]
(5)

is the expected risk-adjusted cost, and

@2vi (qi; qj ;Hi)

(@qi)
2 = E

"
U
00
(�i)

�
@�i
@qi

�2
+ U

0
(�i)

@2�i

(@qi)
2

#
< 0:

Since vi (qi; qj ;Hi) is concave in qi, if an interior Nash equilibrium exists,

it is determined by the �rst order conditions

P (Q) + qiP
0
(Q)� ci (qi; qj ;Hi) = 0 (6)
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for i = 1; 2.

Before proving existence of a Nash equilibrium and deriving su¢ cient

conditions for unicity, we examine equation (6). The interaction between

hedging and production is channelled through the expected risk-adjusted cost

ci (qi; qj ;Hi), determined in equilibrium. If the �rm produces one more unit,

it costs ~c in each state of the world. Investors value marginal cost using

the probability measure induced by their marginal utility of wealth U 0 (�i) in

each state of the world, and not according to the physical probability measure.

From an investors�perspective, the risk-adjusted expectation of any random

variable x (~c) is:

bE [x (~c)] = E [U 0 (�i (qi; qj ;Hi))x (~c)]

E [U 0 (�i (qi; qj ;Hi))]
:

The impact of qi, qj , and Hi on the expected risk-adjusted cost is sum-

marized in the following Lemma, proven in Appendix A:

Lemma 1 For (qi; qj ;Hi):

@ci
@Hi

(qi; qj ;Hi) < 0 and ci (qi; qj ;Hi) � F , Hi � qi:

@ci
@qj

(qi; qj ;Hi) = �qiP
0
(Q) ccov [� (�i) ; ~c]

Thus: 8<:
@ci
@qj

�
q�i ; q

�
j ;Hi

�
= 0 if � (�i) constant

@ci
@qj

�
q�i ; q

�
j ;Hi

�
< 0, Hi > q�i otherwise

For any (Hi;Hj):
@ci
@qi

�
q�i ; q

�
j ;Hi

�
> 0:

A marginal increase in hedging increases the marginal pro�t from higher

input cost. However, this favorable realization is weighted by a lower mar-

ginal utility, hence the risk-adjusted expected cost decreases. Thus, "ceteris

paribus" increasing Hi reduces �rm i expected risk-adjusted marginal cost.

Dependency of ci with respect to qi and qj is indirect, channelled through

the marginal utility of pro�ts. If absolute risk-aversion is constant, ci depends

only on qi and Hi, which yields a more familiar Cournot game. Otherwise,

the impact of qj on ci cannot be signed, that depend on the sign of (Hi � q�i ).
At the equilibrium output, expected risk-adjusted marginal cost is increasing.

13



We now turn to existence and unicity of the equilibrium. Since we ulti-

mately focus on symmetric equilibria, H�
i = H�

j = H, q�i = q�j = q�, ci = cj ,

we assume that Hi and Hj are "close enough" that ci and cj satisfy condition

(3), and the equilibrium of the production game is interior.�
q�i (Hi;Hj) ; q

�
j (Hi;Hj)

�
is thus a �xed point of the system:

(
q1 = qE (c1 (q1; q2;H1) ; c2 (q2; q1;H2))

q2 = qE (c1 (q1; q2;H1) ; c2 (q2; q1;H2))
:

Proposition 1 For any (Hi;Hj) "close enough", an equilibrium of the pro-

duction game exists. If absolute risk aversion is constant, the equilibrium is

unique, and a marginal increase in �rm i�s hedging reduces �rm j�s equilib-

rium output:
@q�j
@Hi

(Hi;Hj) < 0:

Proof.

ec � c) ci (qi; qj ;Hi) � c) qEi (ci (qi; qj ;Hi) ; cj (qi; qj ;Hj)) � qEi (0; c) = qE :

Thus, we can limit our search to (qi; qj) 2
�
0; qE

�2
. Since qE (x; y) and

c (x; y; z) are continuous in all their arguments, and de�ned on a compact and

convex set of R2, Brouwer theorem guarantees existence of an equilibrium.

If absolute risk aversion is constant, we prove in Appendix A that the real

part of the eigenvalues of the Jacobian matrix

J (q�1; q
�
2;H1;H2) =

"
@qE1
@q1

� 1 @qE1
@q2

@qE2
@c1

@qE2
@q2

� 1

#

are negative, thus the equilibrium is unique. Finally, constant risk aversion

implies @ci
@qj

�
q�i ; q

�
j ;Hi

�
= 0 by Lemma 1. Firms play a familiar Cournot game

with marginal costs ci(qi;Hi) increasing in qi at the equilibrium, and decreas-

ing in Hi. We prove in Appendix A that, since increasing hedging reduces a

�rm�s cost, it make her more aggressive, and reduces her competitor�s output.

A marginal increase in Hi commits �rm i to a higher output. This strate-

gic e¤ect can be understood using three equivalent logics. A �rst logic is

that a marginal increase in Hi reduces q�j , thus increases q
�
i since quantities

are strategic substitutes. A second logic is that a marginal increase in Hi

14



reduces the risk-adjusted cost, thus increases q�i . A �nal logic is that a mar-

ginal increase in Hi increases the volume exposed to input price �uctuations

(Hi � qi), thus �rm i must increase qi to reduce this exposure.

3.3 Equilibrium of the hedging game

Suppose a symmetric interior equilibrium of the hedging game (H�;H�) exists.

Proposition 2 1. The equilibrium is characterized by the necessary �rst-

order conditions:�
ci (q

�; q�;H�)� F + P 0
(Q�) q�i

@q�j
@Hi

�
(H�;H�) = 0 (7)

for i = 1; 2.

2. If absolute risk aversion is constant, hedging toughens quantity compe-

tition: �rms over-hedge thus commit to higher equilibrium output than

if marginal costs were constant equal to F

H� > q� , ci (q
�; q�;H�) < F , q� > qE (F; F ) :

Proof.

1. For i = 1; 2 ,the �rst-order conditions de�ning equilibrium hedging vol-

ume H�
i are:

E
�
U 0 (�i)

�
@�i
@qi

@q�i
@Hi

+
@�i
@qj

@q�j
@Hi

+
@�i
@Hi

�� �
q�i ; q

�
j ;H

�
i

�
= 0:

Since @�i
@qi

�
q�i ; q

�
j ;Hi

�
= 0 by construction, @�i

@qj
= qiP

0
(Q) and @�i

@Hi
=

~c� F , this yields:�
E
�
U 0 (�i)

��
P
0
(Q�) q�i

@q�j
@Hi

� F
�
+ E

�
U 0 (�i) ~c

�� �
q�i ; q

�
j ;H

�
i

�
= 0:

Dividing by E [U 0 (�i)] > 0 and selecting H�
i = H�

j = H� yields equation

(7).

2. Equations (7), (6), and (5) yield:

@q�j
@Hi

(H�;H�) < 0, c (q�; q�;H) < F , H� > q�
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Thus, at the symmetric equilibrium:

P (2q�)+q�P
0
(2q�) = c (q�; q�;H) < F = P

�
2qE (F; F )

�
+qE (F; F )P

0 �
2qE (F; F )

�
,

q� > qE (F; F )

since
�
P (2q) + qP

0
(2q)

�
is decreasing by Condition 1.

A marginal increase inHi has two e¤ects on �rm�s i expected utility. First,

a direct expected cost e¤ect: the �rm substitutes input at known cost F for

input at uncertain cost ~c. When taking the risk-ajusted expectation, this sub-

stitution is worth (ci (qi; qj ;Hi)� F ). Second, an indirect e¤ect, through the
change in the other �rm�s production:

�
P
0
(Q�) q�i

@q�j
@Hi

�
. At the equilibrium,

both e¤ects exactly cancel out for both �rms, which produces equilibrium

conditions (7).

Thus, since
@q�j
@Hi

(H�;H�) < 0 and P
0
(Q�) q�i < 0, �rms set ci

�
q�i ; q

�
j ;H

�
i

�
<

F : �rms over hedge, i.e., hedge more than their (anticipated) production, so

that their risk-adjusted expected marginal cost is lower than their "true"

expected marginal cost E [~c] = F . This then leads them to become more

aggressive, and produce more than if they were completed covered.

Finally, combining �rst-order conditions (6) and (7) yields:

�
P (Q�)� F + q�i P

0
(Q�)

� �
H�
i ;H

�
j

�
=

�
�P 0

(Q�) q�i
@q�j
@Hi

��
H�
i ;H

�
j

�
:

for i = 1; 2. Comparing with �rst-order condition (2) for ci = F , an additional

term
�
�P 0

(Q�) q�i
@q�j
@Hi

�
is added, that captures the strategic impact of �rm

i�s hedging on �rm j�s production decision, in the sense of Fudenberg and

Tirole (1984).

4 Under-hedging to commit to higher price

An argument similar to quantity competition shows that risk averse �rms

committing to their hedging position before making their pricing decision con-

stitutes the only timing where strategic interactions arise. Since the analysis

is similar to quantity competition, results are stated brie�y, and di¤erences

with quantity competition are emphasized.
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4.1 Demand and constant input costs

Consider two symmetric �rms that compete in price. Firm i faces demand

Di (pi; pj), decreasing in own price and increasing in the other �rm�s price,

and constant input cost ci. With a slight abuse, we use the same notation as

for quantity competition. Firm�s i pro�t is

�Ri (pi; pj ; ci) = Di (pi; pj) (pi � ci) :

Assumption 2 Di (pi; pj) is such that, for i = 1; 2: (i) �Ri is concave in pi:

@2�Ri
(@pi)

2 (pi; pj ; ci) < 0 for all (pi; pj ; ci) ;

(ii) for all (ci; cj) "close enough"3, the pricing game with constant costs ci
and cj has a unique interior equilibrium

�
pEi (ci; cj) ; p

E
j (cj ; ci)

�
solution of

�
(pi � ci)

@Di

@pi
+Di

��
pEi (ci; cj) ; p

E
j (cj ; ci)

�
= 0;

(iii) prices are strategic complements:

@2�Ri
@pi@pj

�
pEi (ci; cj) ; p

E
j (cj ; ci)

�
> 0 for all (ci; cj) ;

and (iv) own price e¤ect is stronger than other�s price e¤ect:

@Di

@pi
+
@Di

@pj
< 0 and

@2Di

(@pi)
2 +

@2Di

@pi@pj
� 0 for all (pi; pj) :

Assumptions 2 is met for example for a linear Hotelling demand:

Di (pi; pj) =
1

2
+
pj � pi
2t

;

in which case equilibrium prices are:

pEi (ci; cj) = t+
2ci + cj
2

:

Concavity of the objective function and strategic complementarity of prices

are met by many demand functions. Unicity of equilibrium with constant in-

3As in the Cournot case, jci � cj j must be small enough to avoid a corner equilibrium
Di

�
pEi (ci; cj) ; p

E
j (cj ; ci)

�
> 0 while Dj

�
pEj (cj ; ci) ; p

E
i (ci; cj)

�
= 0. Since we ultimately

consider symmetric equilibria, we assume this condition holds.
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put costs is required to establish unicity with stochastic input costs. We

prove in Appendix A that own price e¤ect stronger than other�s price e¤ect

is su¢ cient to guarantee that an increase in one �rm�s cost increases both

prices:
@pEi
@ci

(ci; cj) > 0 and
@pEj
@ci

(cj ; ci) > 0:

4.2 Random input costs

Firm i�s pro�ts for input price ~c is:

�i (pi; pj ;Hi; ~c) =D (pi; pj) (pi � ~c) +Hi (~c� F )

=D (pi; pj) (pi � F ) + (Hi �D (pi; pj)) (~c� F ) :

The expected value for shareholders is

vi (pi; pj ;Hi) = E [U (�i (pi; pj ;Hi; ~c))] :

Substituting in
�
p�i (Hi;Hj) ; p

�
j (Hi;Hj)

�
, the equilibrium of the pricing game

for hedging volumes (Hi;Hj), the expected value of �rm i is

Vi (Hi;Hj) = vi
�
p�i (Hi;Hj) ; p

�
j (Hi;Hj) ;Hi

�
:

@vi
@pi

=E
�
U 0 (�i (pi; pj ;Hi; ~c))

@�i
@pi

�
=E

�
U 0 (�i) �

�
Di + (pi � ~c)

@Di

@pi

��
=E

�
U 0 (�i)

��
Di + pi

@Di

@pi
� ci (pi; pj ;Hi)

�
where

ci (pi; pj ;Hi) =
E [U 0 (�i (pi; pj ;Hi)) ~c]

E [U 0 (�i (pi; pj ;Hi))]
= F +

cov [U 0 (�i (pi; pj ;Hi)) ; ~c]

E [U 0 (�i (pi; pj ;Hi))]
: (8)

@2vi
@p2i

= E

"
U 00 (�i (pi; pj ;Hi; ~c))

�
@�i
@pi

�2
+ U 0 (�i (pi; pj ;Hi; ~c))

@2�i
@p2i

#
< 0:

Since vi (pi; pj ;Hi) is concave in pi, if an interior Nash equilibrium of
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the pricing game
�
p�i (Hi;Hj) ; p

�
j (Hi;Hj)

�
exists, it solves the system of the

necessary �rst-order conditions:

�
p�i � ci

�
p�i ; p

�
j ;Hi

�� @Di

@pi

�
p�i ; p

�
j

�
+Di

�
p�i ; p

�
j

�
= 0 (9)

for i = 1; 2.

As proven in Appendix B, the risk adjusted expected cost present similar

properties to the Cournot case:

Lemma 2 For any (Hi;Hj):

@ci
@pi

�
p�i ; p

�
j ;Hi

�
< 0 and Hi < Di

�
p�i ; p

�
j

�
, ci

�
p�i ; p

�
j ;Hi

�
> F:

For any (pi; pj ;Hi):
@ci
@Hi

(pi; pj ;Hi) > 0:

@ci
@pj

=
@Di

@pj

n
(pi � ci) bE [� (�i) (ci � ~c)] + bE h� (�i) (ci � ~c)2io :

The equilibrium of the two-stage game is then characterized as follows:

Proposition 3 1. For any (Hi;Hj) "close enough", there exists an inte-

rior equilibrium of the pricing game characterized by equations (9) for

i = 1; 2:

2. If absolute risk aversion is constant, this equilibrium is unique, and a

marginal hedging increase by �rm i reduces �rm j�s equilibrium price:

@p�j
@Hi

(Hi;Hj) < 0:

3. If an interior equilibrium
�
H�
i ;H

�
j

�
of the hedging game exists, it is

characterized by0@ci �p�i ; p�j ;Hi

�
� F �

0@ @Di
@pj

�
p�i ; p

�
j

�
@Di
@pi

�
p�i ; p

�
j

�Di

�
p�i ; p

�
j

� @p�j
@Hi

1A1A�H�
i ;H

�
j

�
= 0

(10)

for i = 1; 2.

4. If a symmetric interior equilibrium exists, and absolute risk aversion is

constant, hedging softens price competition: �rms under-hedge to com-

19



mit to higher prices than if marginal costs were constant and equal to

F :

ci (p
�; p�;H�) > F , H� < D (p�; p�), p� > pE (F; F ) :

Proof. The proof follows the steps of Propositions 1 and 2. Details are pre-
sented in Appendix B. The risk-adjusted costs are bounded, thus the sets in

which we look for a �xed point is compact and convex in R2. Since all func-
tions are continuous, Brouwer�s �xed point theorem guarantees the existence

of an equilibrium. If absolute risk aversion is constant, then Assumption 2

guarantees unicity of the equilibrium and the direction of the strategic e¤ect.

Equation (10) is derived similarly to equation (7). Comparison of equations

(10), (8), and (9), proves that hedging softens price competition.

Combining the �rst-order conditions yields:

(p� � F ) @Di

@pi
(p�; p�)+Di (p

�; p�) =

�
@Di

@pj
(p�; p�)Di (p

�; p�)
@p�j
@Hi

�
(H�;H�) :

Hedging creates a strategic e¤ect, captured by the term
@p�j
@Hi
. Publicly keeping

a portion of their input price exposure uncovered commits �rms to raise prices

to reduce demand, hence exposure. This commitment then yields a higher

equilibrium price : p� > pE (F; F ).

The direction of the strategic e¤ect is reversed compared to Cournot com-

petition: here, �rms under-hedge, hence increase the equilibrium price. This

stark di¤erence is best understood by comparing the �rst-order conditions:

ci � F +
@�i
@qj

@q�j
@Hi

= 0 and ci � F +
@�i
@pj

@p�j
@Hi

= 0:

In both cases, when �rm i increases hedging, �rm j reduces her strategic vari-

able (quantity or price). If �rms compete in quantity, when �rm j increases

output, he reduces �rm�s i pro�t
�
@�i
@qj

< 0
�
, therefore, at the equilibrium,

�rm i hedges to set her expected risk adjusted cost lower than F , i.e., be-

comes more aggressive. Conversely, if �rms compete in price, when �rm j

raises his price, he increases �rm i pro�t
�
@�i
@pj

> 0
�
, hence �rm i hedges to

set her risk adjusted cost higher than F , i.e., becomes less aggressive.

5 Robustness of the results

Constant absolute risk aversion is the single su¢ cient condition for (i) the

second-stage equilibrium to be unique, and (ii) hedging to toughen quantity

20



competition. This condition is extremely strong. We derive in Appendix C

the necessary and su¢ cient conditions for these properties. All can be cast

as an upper bound on���� @ci@qj

���� = qi

���P 0
(Q) bE [� (�i) (ci � ~c)]��� = qi

���P 0
(Q) cov [� (�i) ; ~c]

��� :
We observe that

���bE [� (�i) (ci � ~c)]��� is bounded above:���bE [� (�i) (ci � ~c)]��� � (�max � �min) bE [max (ci � ~c; 0)] � (�max � �min) (c� c) :
Thus, S de�ned as

S =
n
x : x � jcov [� (�i) ; ~c]j (qi; qj ;Hi) for all (qi; qj ;Hi) 2

�
0; qE

�2 � R+o
is not empty since (�max � �min) (c� c) 2 S. R = inf (S) exists, and���� @ci@qj

���� � qE
���P 0

(Q)
���R � qE

���P 0
(Q)
��� (�max � �min) (c� c) :

Proposition 4 If the covariance of input costs and the risk aversion of pro�ts
is lower than a threshold, that depends on the convexity of inverse demand

P (:), the equilibrium of the production game is unique and hedging toughens

quantity competition. Speci�cally, the su¢ cient condition for unicity of the

equilibrium and
@q�j
@Hi

(H�;H�) < 0 is8>><>>:
qER �

�p
3� 1

�
if P

00
(Q) > 0

qER �
�
2
p
3� 3

�
if P

00
(Q) < 0

qER � 1 if P
00
(Q) = 1

:

Proof. Details of the proof are presented in Appendix C. We derive su¢ cient
conditions for each property, then we determine the highest upper bound such

that all three su¢ cient conditions are satis�ed.

If absolute risk aversion is constant, �max = �min, these su¢ cient condi-

tions are met for any inverse demand function and any bounded distribution

of input costs. If absolute risk aversion is not constant, which is more realistic,

they provide an upper on the covariance between risk aversion of pro�t and

input cost.
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A similar analysis can be conducted for price competition, although the

algebra is more cumbersome. De�ne

m = minp2[0;pE(c;c)]

0BBBB@
�
 
2@Di@pi

+ @Di
@pj

+ Di�
� @Di
@pi

� � @2Di
(@pi)

2 +
@2Di
@pi@pj

�!
@Di
@pj

Di

1CCCCA (p; p) :

m exists, since the function is continuous on a compact, and m > 0 since

�
 
2@Di@pi

+ @Di
@pj

+ Di�
� @Di
@pi

� � @2Di
(@pi)

2 +
@2Di
@pi@pj

�!
< 0. We prove in Appendix C

that:

Proposition 5 If the covariance of risk aversion of pro�ts with input cost is
lower than m, hedging softens price competition:

R � m)
@p�j
@Hi

(H�;H�) < 0:

6 Strategic incentive to commit to a hedging position

Sofar, we have argued that �rms commit to their hedging strategy under

pressure from Boards of Directors not to speculate: risk managers are not

allowed to signi�cantly modify their derivatives position. This restriction has

clear advantages in terms of monitoring the activity of traders. What is the

strategic impact of this commitment?

First, if �rms hedge after setting prices (or quantity), they completely

eliminate their exposure to input cost. Conversely, when they hedge before

they set prices (or quantities), they keep a portion of their exposure open.

Their pro�ts� volatility is increased, hence, ceteris paribus, their expected

utility is decreased.

Second, if �rms compete in quantity, commitment yields higher output,

hence lower price. Thus we expect commitment yields a Pareto inferior out-

come. On the other hand, if �rms compete in price, commitment yields higher

price, thus, if total demand is very inelastic (e.g., Hotelling competition),

higher pro�ts, which may compensate for the reduction in volatility.

In this Section, we re�ne this intuition. Consider a new game. The timing

is now as follows: at t = 0, �rms either Commit (C) or Not Commit (NC) to

their initial hedging strategy. At t = 1, �rms determine and publicly announce

their initial hedging strategy. At t = 2, they determine and publicly announce
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their output (or price). Finally, at t = 3, if they have not committed at t = 0,

they can modify their initial hedging strategy. Then, input cost is realized,

and pro�ts are determined.

The expected utility to �rm i that plays strategy Xi 2 fC;NCg while
�rm j plays strategy Xj 2 fC;NCg is Vi (Xi; Xj)

To focus on the strategic impact of hedging, we continue to assume that

(i) there are no transaction costs associated with hedging, and (ii) the for-

ward price F as well as the expected spot price E [~c] are equal and constant.
Hedging before or after playing the product market game does not modify

the (expected) gains.

We assume that the equilibrium of the second stage is unique (for exam-

ple, constant risk aversion), and that a unique symmetric equilibrium of the

hedging game exists.

Proposition 6 1. Not Committing cannot be sustained in equilibrium.

Whether �rms compete in quantity or in price,

V (C;NC) > V (NC;NC) :

2. If �rms compete in quantity, Not Committing is Pareto superior

V (NC;NC) > V (C;C) :

3. If �rms competing à la Hotelling have a constant absolute risk aver-

sion and input costs are normally distributed, Committing is a Pareto

superior to Non Committing

V (C;C) > V (NC;NC)

and is a dominant strategy

V (C;C) > V (NC;C) :

Proof. We �rst prove point 1 if �rms compete in quantity. Suppose �rm 2

plays NC. If �rm 1 plays NC, its expected utility is V1 (NC;NC). Suppose

now �rm 1 plays C. At t = 3, �rm 2 optimally selects H2 = q2. At t = 2, both

�rms select output. Assuming a unique interior equilibrium (q1 (H1) ; q2 (H1))
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exists, it is characterized by:(
q2P

0
(q1 + q2) + P (q1 + q2)� F = 0

q1P
0
(q1 + q2) + P (q1 + q2)� c (q1; q2;H1) = 0

At t = 1, �rm 1 selects H1 to maximize V1 (q1 (H1) ; q2 (H1) ;H1). If �rm 1

selects H1 = qE (F; F ), q1 = q2 = qE (F; F ) is a solution of the system, hence

is the unique equilibrium for H1 = qE (F; F ). Thus, since there is no guarantee

that H1 = qE (F; F ) is optimal, we must have: V1 (C;NC) � V1 (NC;NC).

Then,

dV1
dH1

�
qE (F; F )

�
=E

�
U
0
(�1)

�
q1P

0 �
Q
� dq2
dH1

+ (! � F )
��

= q1P
0 �
Q
� dq2
dH1

E
h
U
0
(�1)

i
since c1

�
qE (F; F )

�
= F . Then, since H1 = q1,

@c1
@q2

= 0, hence dq2
dH1

< 0.

Thus, dV1dH1

�
qE (F; F )

�
> 0, hence for " > 0 arbitrarily small, V1

�
qE (F; F + ")

�
>

V1
�
qE (F; F )

�
� V (NC;NC). Thus:

V (C;NC) > V (NC;NC) :

The proof of point 1 proceeds along the same lines if �rms compete in price,

and is presented in Appendix D, along with formal proof of the other points.

As expected, when �rms compete in quantity, (C;C) yields lower price and

higher volatility, hence is Pareto inferior to (NC;NC). On the other hand,

if �rms compete à la Hotelling, the expected retail pro�t increase compensates

for the loss from increased volatility, hence (i) Committing is Pareto superior:

V (C;C) > V (NC;NC), and (ii) is the best response to the other �rm�s

Committing: V (C;C) > V (NC;C).

The �rst point is striking: even though both �rms Non Committing is

Pareto superior for �rms competing in quantity, an individual �rm prefers to

Commit when the other one does not, since she can always do strictly better

than replicating the Non Committing outcome.

Thus, whether �rms compete in quantity or in price, they have a strategic

incentive to commit, as well as a risk control objective.
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7 Concluding remarks

This article examines how �rms facing volatile input prices and holding some

degree of market power in their product market link their risk management

and production or pricing strategies. This issue is relevant in many industries

ranging from manufacturing to energy retailing, where risk averse �rms decide

on their hedging strategies before their product market strategies. We �nd

that hedging modi�es the pricing and production strategies of �rms. This

strategic e¤ect is channelled through the expected risk-adjusted cost, i.e., the

expected marginal cost under the measure induced by investors�risk aversion,

and has diametrically opposed impacts depending on the nature of product

market competition: hedging toughens quantity competition while it softens

price competition. Finally, committing to a hedging strategy is always a best

response to non committing, and is a dominant strategy if �rms compete à la

Hotelling.

This work can be expanded in many directions. First, it would be interest-

ing to endogenize pricing �exibility. We have assumed that industry practices

dictate whether prices are �exible or not. This is true in practice. However,

we would like to know under what conditions price �exibility is indeed an

equilibrium.

Second, it would be interesting to examine asymmetric situations, such as

when one �rm is market leader and announces its hedging strategy before the

other, or when di¤erent �rms have di¤erent costs.

Finally, it would be interesting to test empirically these models�predic-

tions, in particular whether �rms incorporate their and their competitors�

hedging in their pricing strategies. The airlines industry appears to o¤er fer-

tile ground for analysis: airlines face volatile fuel cost, and appear to have

retained some pricing power, at least on some routes. Furthermore, as ev-

idenced by the rich academic literature (e.g., Carter, Rogers, and Simkins

(2006) and (Gerardi and Shapiro (2009)) data on prices and hedging strate-

gies are publicly available.
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A Quantity competition

�i (qi; qj ;Hi; ~c) = qi (P (Q)� ~c) +Hi (~c� F )

= qi (P (Q)� F ) + (Hi � qi) (~c� F ) :

Hence,
@�i
@qi

= P (Q)� ~c+ qiP
0
(Q) and

@�i
@qj

= qiP
0
(Q) :

De�ne

 (qi; qj ;Hi) = P (Q)� ci (qi; qj ;Hi) + qiP
0
(Q) :

The necessary conditions characterizing the equilibrium
�
q�i (Hi;Hj) ; q

�
j (Hi;Hj)

�
of the production game are

 
�
q�i ; q

�
j ;Hi

�
=  

�
q�j ; q

�
i ;Hj

�
= 0:

Assuming an equilibrium exists and is given by the �rst-order conditions, total

di¤erentiation of the system of two equations with respect to Hi yields:8<:
�
 1

@q�i
@Hi

+  2
@q�j
@Hi

+  3

��
q�i ; q

�
j ;Hi

�
= 0�

 1
@q�j
@Hi

+  2
@q�i
@Hi

��
q�j ; q

�
i ;Hj

�
= 0

;

where 8>><>>:
 1 (qi; qj ;Hi) = 2P

0
(qi + qj) + qiP

00
(qi + qj)�@ci

@qi

 2 (qi; qj ;Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)� @ci

@qj

 3 (qi; qj ;Hi) = � @ci
@Hi

:

Thus, assuming� =  1

�
q�i ; q

�
j ;Hi

�
 1

�
q�j ; q

�
i ;Hj

�
� 2

�
q�i ; q

�
j ;Hi

�
 2

�
q�j ; q

�
i ;Hj

�
6=

0, 8<:
@q�i
@Hi

(HiHj) = �
 1(q�j ;q�i ;Hj)

�  3

�
q�i ; q

�
j ;Hi

�
@q�j
@Hi

(Hj ;Hi) =
 2(q�j ;q�i ;Hj)

�  3

�
q�i ; q

�
j ;Hi

� :

A.1 Impact of ci on qEi and q
E
j (constant input costs)

Suppose �rst the marginal costs are constant, i.e., ci (qi; qj ;Hi) = ci.8><>:
 E1 (qi; qj ; ci) = 2P

0
(qi + qj) + qiP

00
(qi + qj)<0

 E2 (qi; qj ; ci) = P
0
(qi + qj) + qiP

00
(qi + qj)<0

 E3 (qi; qj ; ci) = �1 < 0
:
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Then:

� = P
0 �
QE
� �
3P

0 �
QE
�
+QEP

00 �
QE
��

> 0;

and 8><>:
@qEi
@ci

(ci; cj) =
2P

0
(QE)+qEj P

00
(QE)

P 0 (QE)(3P 0 (QE)+QEP 00 (QE))
< 0

@qEj
@ci

(cj ; ci) = �
P
0
(QE)+qEj P

00
(QE)

P 0 (QE)(3P 0 (QE)+QEP 00 (QE))
> 0

:

A.2 Properties of the expected risk-adjusted cost (Lemma 1)

For any (qi; qj ;Hi),

@ci
@qi

=
E [U 0 (�i)]E

h
U 00 (�i)

@�i
@qi
~c
i
� E [U 0 (�i) ~c]E

h
U 00 (�i)

@�i
@qi

i
(E [U 0 (�i)])2

= cibE �� (�i) @�i
@qi

�
� bE �� (�i) @�i

@qi
~c

�
= bE �� (�i) @�i

@qi
(ci � ~c)

�
:

For any (Hi;Hj) ;

@�i
@qi

�
q�i ; q

�
j ;Hi

�
= P

�
q�i + q

�
j

�
+ q�i P

0 �
q�i + q

�
j

�
� ~c = ci

�
q�i ; q

�
j ;Hi

�
� ~c:

Thus:
@ci
@qi

�
q�i ; q

�
j ;Hi

�
= bE h� (�i) (ci � ~c)2i �q�i ; q�j ;Hi

�
> 0:

For any (qi; qj ;Hi),

@ci
@Hi

= bE �� (�i) @�i
@Hi

(ci � ~c)
�
= bE [� (�i) (~c� F ) (ci � ~c)]

=�bE h� (�i) (~c� ci)2i+ (ci � F ) bE [� (�i) (ci � ~c)]
=�

�bE h� (�i) (~c� ci)2i+ cov [U 0 (�i) ; ~c] � ccov [� (�i) ; ~c]
(E [U 0 (�i)])

�
since

bE [� (�i) (ci � ~c)] = bE h� (�i)�bE [~c]� ~c�i = �ccov [� (�i) ; ~c] :
Since � (:) and U 0 (:) are both non-increasing, cov [U 0 (�i) ; ~c]�ccov [� (�i) ; ~c] > 0,
hence @ci

@Hi
< 0.
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Finally, for any (qi; qj ;Hi),

@ci
@qj

= bE �� (�i) @�i
@qj

(ci � ~c)
�

= qiP
0
(Q) bE [� (�i) (ci � ~c)]

=�qiP
0
(Q) ccov [� (�i) ; ~c] :

A.3 Existence and unicity of equilibrium (Proposition 1)

For existence, we apply Brouwer�s �xed point theorem to the function �,

de�ned from R2 into R2 by(
�1 (q1; q2) = qE (c1 (q1; q2;H1) ; c2 (q2; q1;H2))

�2 (q1; q2) = qE (c1 (q1; q2;H1) ; c2 (q2; q1;H2))
:

Since qE (x; y) and c (x; y; z) are continuous in all their arguments, we need

only to establish that (qi; qj) lies in a compact and convex set of R2. Sinceec � c,

ci (qi; qj ;Hi) =
E [U 0 (�i (qi; qj ;Hi)) ~c]

E [U 0 (�i (qi; qj ;Hi))]
� c

for all (qi; qj ;Hi). Thus, since qEi is increasing in cj and decreasing in ci:

qEi (ci (qi; qj ;Hi) ; cj (qi; qj ;Hj)) � qEi (0; c) = qE

Since qi � 0 by de�nition,we can limit our search for a �xed point to the

compact and convex set
�
0; qE

�2
. Brouwer�s theorem then applies, and there

exists a �xed point, i.e., an equilibrium. This equilibrium (q�1; q
�
2) is unique if

the real parts of the eigenvalues of the Jacobian J (q�1; q
�
2;H1;H2) are negative,

where

J (q�1; q
�
2;H1;H2) =

"
@qE1
@q1

� 1 @qE1
@q2

@qE2
@c1

@qE2
@q2

� 1

#
:

The eigenvalues are the roots of:

�2 � �Tr +Det = 0

where Tr is the trace of J (q�1; q
�
2;H1;H2) and Det its determinant. The roots

are:

�� =
Tr �

p
Tr2 � 4Det
2

:

30



If Tr2 � 4Det < 0, the two roots are complex and conjugate. Their real part
is negative if and only if Tr < 0. If Tr2 � 4Det � 0, the two roots are real.
Tr +

p
Tr2 � 4Det < 0 requires Tr < 0. Then, it also requires Det > 0.

Thus, we require Tr < 0 and Det > 0.

Tr (q�1; q
�
2;H1;H2) =

 
@qEi
@qi

+
@qEj
@qj

� 2
!
(q�1; q

�
2;H1;H2)

=

0B@@qEi
@ci
�

@ci
@qi
+

+
@qEj
@cj
�

@cj
@qj
+

+
@qEi
@cj
+

@cj
@qi

+
@qEj
@ci
+

@ci
@qj

1CA (q�1; q�2;H1;H2)� 2:
From Lemma 1,

� constant) @cj
@qi

=
@ci
@qj

= 0) Tr (q�1; q
�
2;H1;H2) < �2 < 0:

We now examine Det (q�1; q
�
2;H1;H2).

Det (q�1; q
�
2;H1;H2) =

 �
@qEi
@qi

� 1
� 

@qEj
@qj

� 1
!
� @qEi
@qj

@qEj
@qi

!
(q�1; q

�
2;H1;H2)

=

0B@
�
@qEi
@ci

@qEj
@cj

� @qEi
@cj

@qEj
@ci

��
@ci
@qi

@cj
@qj
� @ci

@qj

@cj
@qi

�
�@qEi

@qi
� @qEj

@qj
+ 1

1CA (q�1; q�2;H1;H2)
=

0@ 1

P 0 (Q�)
�
3P 0 (Q�) +Q�P

00
(Q�)

� �@ci
@qi

@cj
@qj

� @ci
@qj

@cj
@qi

�1A (q�1; q�2;H1;H2)
�Tr (q�1; q�2;H1;H2)� 1

Thus,

� constant) @cj
@qi

=
@ci
@qj

= 0) Det (q�1; q
�
2;H1;H2) > 0:

A.4 Impact of Hi on q�j with constant absolute risk aversion
(Proposition 1)

If � is constant,

 2 (qi; qj ;Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)<0
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and

 3 (qi; qj ;Hi) = �
@ci
@Hi

(qi; qj ;Hi) > 0:

Then:

�=

�
2P

0
(Q�) + q�i P

00
(Q�)�@ci

@qi

��
2P

0
(Q�) + q�jP

00
(Q�)�@cj

@qj

�
�
�
P
0
(Q�) + qiP

00
(Q�)

��
P
0
(Q�) + qjP

00
(Q�)

�
=

�
P
0
(Q�)�@ci

@qi

��
P
0
(Q�)�@cj

@qj

�
+

�
P
0
(Q�)�@ci

@qi

��
P
0
(Q�) + q�jP

00
(Q�)

�
+

�
P
0
(Q�)�@cj

@qj

��
P
0
(Q�) + q�i P

00
(Q�)

�
> 0:

Thus:

@q�j
@Hi

�
q�i ; q

�
j ;Hi

�
=
 2

�
q�j ; q

�
i ;Hi

�
�

 3
�
q�i ; q

�
j ;Hi

�
< 0:

B Price competition

Firm�s i pro�t is:

�i (pi; pj ;Hi; ~c) =Di (pi; pj) (pi � ~c) +Hi (~c� F )

=Di (pi; pj) (pi � F ) + (Hi �Di (pi; pj)) (~c� F ) ;

hence:

@�i
@pi

(pi; pj) =
@Di

@pi
(pi; pj) (pi � ~c)+Di (pi; pj) and

@�i
@pj

(pi; pj) =
@Di

@pj
(pi; pj) (pi � ~c) :

De�ne

 (pi; pj ;Hi) =
@Di

@pi
(pi; pj) (pi � ci (pi; pj ;Hi)) +Di (pi; pj) :

The necessary �rst-order conditions characterizing an interior equilibrium�
p�i (Hi;Hj) ; p

�
j (Hj ;Hi)

�
of the pricing game are

 
�
p�i ; p

�
j ;Hi

�
=  

�
p�j ; p

�
i ;Hj

�
= 0:
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Assuming an interior equilibrium exists and� =  1

�
p�i ; p

�
j ;Hi

�
 1

�
p�j ; p

�
i ;Hj

�
�

 2

�
p�i ; p

�
j ;Hi

�
 2

�
p�j ; p

�
i ;Hj

�
6= 0,

8<:
@p�i
@Hi

�
p�i ; p

�
j ;Hi

�
= � 1(p�j ;p�i ;Hj)

�  3

�
p�i ; p

�
j ;Hi

�
@p�j
@Hi

�
p�i ; p

�
j ;Hi

�
=

 2(p�j ;p�i ;Hj)
�  3

�
p�i ; p

�
j ;Hi

� :

where 8>><>>:
 1 (pi; pj ;Hi) = 2

@Di
@pi

+ (pi � ci) @2Di
(@pi)

2 � @Di
@pi

@ci
@pi

 2 (pi; pj ;Hi) =
@Di
@pj

+ (pi � ci) @2Di
@pi@pj

� @Di
@pi

@ci
@pj

 3 (pi; pj ;Hi) = �@Di
@pi

@ci
@Hi

:

:

B.1 Impact of ci on pEi and p
E
j (constant input costs)

Suppose �rst the marginal costs are constant:

 E (pi; pj ; ci) =
@Di (pi; pj)

@pi
(pi � ci) +Di (pi; pj)

and 8>><>>:
 E1 (pi; pj ; ci) = 2

@Di
@pi

+ (pi � ci) @2Di
(@pi)

2

 E2 (pi; pj ; ci) =
@Di
@pj

+ (pi � ci) @2Di
@pi@pj

 E3 (pi; pj ; ci) = �
@Di(pi;pj)

@pi

:

Assumption 2 guarantees (i) existence and unicity of an equilibrium
�
pEi (ci; cj) ; p

E
j (ci; cj)

�
,

(ii)  E1 (pi; pj ; ci) < 0, since �
R
i (pi; pj ; ci) is concave in pi, (iii)  

E
2

�
pEi (ci; cj) ; p

E
j (ci; cj) ; ci

�
>

0 since prices are strategic complements, and (iv)
�
 E1 +  

E
2

� �
pEi (ci; cj) ; p

E
j (ci; cj) ; ci

�
<

0 since the own price e¤ect dominates. Thus:

�E =  E1
�
pEi ; p

E
j ; ci

�
 E1
�
pEj ; p

E
i ; cj

�
�  E2

�
pEi ; p

E
j ; ci

�
 E2
�
pEj ; p

E
i ; cj

�
> 0

and 8>>><>>>:
@pEi
@ci

(ci; cj) =
@Di
@pi

 E1 (pEj ;pEi ;cj)
�E

= @Di
@pi

2
@Dj
@pj

+(pj�cj)
@2Dj

(@pj)
2

�E
> 0

@pEj
@ci

(cj ; ci) = �@Di
@pi

 E2 (pEj ;pEi ;cj)
�E

= �@Di
@pi

@Dj
@pi

+(pj�cj)
@2Dj
@pi@pj

�E
> 0

:
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Finally

 
@pEi
@ci

@pEj
@cj

�
@pEj
@ci

@pEi
@cj

!
(ci; cj) =

26666664

0@ E1 �pEj ; pEi ;Hj

�
 E3

�
pEi ; p

E
j ;Hi

�
 E1

�
pEi ; p

E
j ;Hi

�
 E3

�
pEj ; p

E
i ;Hj

�1A
�

0@ E2 �pEj ; pEi ;Hj

�
 E3

�
pEi ; p

E
j ;Hi

�
 E2

�
pEi ; p

E
j ;Hi

�
 E3

�
pEj ; p

E
i ;Hj

�1A

37777775
(�E)2

=
 E3

�
pEi ; p

E
j ;Hi

�
 E3

�
pEj ; p

E
i ;Hj

�
�E

=

@Di
@pi

@Dj
@pj

�E
> 0:

B.2 Properties of the risk-adjusted expected cost (Lemma 2)

The same derivation as for Cournot competition yields:

@ci
@pi

= bE �� (�i) @�i
@pi

(ci � ~c)
�
:

Then:

@ci
@pi

�
p�i ; p

�
j ;Hi

�
=

�
@Di

@pi
bE h� (�i) (ci � ~c)2i� �p�i ; p�j ;Hi

�
< 0

since
@�i
@pi

�
p�i ; p

�
j ;Hi

�
=

�
(ci � ~c)

@Di

@pi

��
p�i ; p

�
j ;Hi

�
:

Then:

@ci
@pj

= bE �� (�i) @�i
@pj

(ci � ~c)
�

=
@Di

@pj
bE [� (�i) (pi � ~c) (ci � ~c)]

=
@Di

@pj

n
(pi � ci) bE [� (�i) (ci � ~c)] + bE h� (�i) (ci � ~c)2io :

Thus:

@ci
@pj

�
p�i ; p

�
j ;Hi

�
=

 
@Di

@pj

(
Di

@Di
@pi

ccov [� (�i) ; ~c] + bE �� (�i)�bE [~c]� ~c�2�)!�p�i ; p�j ;Hi

�
Then:

Hi > Di

�
p�i ; p

�
j

�
, ccov [� (�i) ; ~c] < 0) @ci

@pj
> 0:
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Finally:

@ci
@Hi

= bE [� (�i) (~c� F ) (ci � ~c)]
=�bE h� (�i) (ci � ~c)2i+ (ci � F ) bE [� (�i) (ci � ~c)] :
=�

0@bE h� (�i) (ci � ~c)2i+ cov
h
U
0
(�i) ; ~c

i
� ccov [� (�i) ; ~c]

E [U 0 (�i)]

1A :

Since � (:) and U
0
(:) are both non-increasing, cov

h
U
0
(�i) ; ~c

i
� ccov [� (�i) ; ~c] >

0, thus @ci
@Hi

(pi; pj ;Hi) < 0.

B.3 Characterization of the equilibrium (Proposition 3)

B.3.1 Existence and unicity of equilibrium of the pricing game

Since we ultimately focus on symmetric equilibria, we assume that Hi and

Hj are close enough that c (pi; pj ;Hi) and c (pj ; pi;Hj) are close enough that

the equilibrium �if it exists �is interior. The equilibrium prices are therefore

solution of the system:(
p1 = pE (c (p1; p2;H1) ; c (p2; p1;H2))

p2 = pE (c (p2; p1;H2) ; c (p2; p1;H2))
:

To apply Brouwer�s �xed point theorem, we need only to establish that

(pi; pj) lies in a compact and convex set of R2. Since ~c � c,

c (pi; pj ;Hi) =
E [U 0 (�i (pi; pj ;Hi)) ~c]

E [U 0 (�i (pi; pj ;Hi))]
� c

for all (pi; pj ;Hi). Thus, since pEi is increasing in ci and in cj :

pE (c (pi; pj ;Hi) ; c (pj ; pi;Hj)) � pE (c; c)

Since pi � 0 by de�nition, we can limit our search for a �xed point to the

compact and convex set
�
0; pE (c; c)

�2
. Brouwer�s theorem then applies, and

there exists a �xed point, i.e., an equilibrium.
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This equilibrium (p�1; p
�
2) is unique if Tr < 0 and Det > 0. Then:

Tr (p�1; p
�
2;H1;H2) =

 
@pEi
@pi

+
@pEj
@pj

� 2
!
(p�1; p

�
2;H1;H2)

=

0B@@pEi
@ci
+

@ci
@pi
�

+
@pEj
@cj
+

@cj
@pj
�

+
@pEi
@cj
+

@cj
@pi
+

+
@pEj
@cj
+

@cj
@pj
+

1CA (p�1; p�2;H1;H2)� 2
=A (p�1; p

�
2;H1;H2)� 2:

If � is constant,

A (p1; p2;H1;H2) =
@Di

@pi

bE h� (�i) (ci � ~c)2i
�E

�
@Di

@pi
 E1 (pj ; pi; cj)�

@Di

@pj
 E2 (pj ; pi; cj)

�

+
@Dj

@pj

bE h� (�j) (cj � ~c)2i
�E

�
@Dj

@pj
 E1 (pi; pj ; ci)�

@Dj

@pi
 E2 (pi; pj ; ci)

�
:

By Assumption 2,
�
 E1 +  

E
2

�
(p�1; p

�
2;H1;H2) < 0 and

�
@Di
@pi

+ @Di
@pj

�
(pi; pj) <

0, thus �
@Di

@pi
 E1 �

@Di

@pj
 E2

�
(p�1; p

�
2;H1;H2) > 0;

hence A (p�1; p
�
2;H1;H2) < 0; hence Tr (p

�
1; p

�
2;H1;H2) < �2 < 0.

Det (p�1; p
�
2;H1;H2) =

�
@pEi
@pi

� 1
� 

@pEj
@pj

� 1
!
�
@pEj
@pi

@pEi
@pj

=

 
@pEi
@ci

@pEj
@cj

� @pEi
@cj

@pEj
@ci

!�
@ci
@pi

@cj
@pj

� @cj
@pi

@ci
@pj

�
� Tr (p�1; p�2;H1;H2)� 1

Hence, if � is constant,

@pEi
@ci

@pEj
@cj

�@p
E
i

@cj

@pEj
@ci

= bE h� (�i) (ci � ~c)2i bE h� (�j) (cj � ~c)2i�@Di

@pi

@Dj

@pj
� @Di

@pj

@Dj

@pi

�
> 0

and Det (p�1; p
�
2;H1;H2) > 0.

B.3.2 Equilibrium of the hedging game

The �rst order condition is

E
�
U 0 (�i)

�
@�i
@pi

@p�i
@Hi

+
@�i
@pj

@p�j
@Hi

+
@�i
@Hi

�� �
p�i ; p

�
j ;H

�
i

�
= 0:
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Since @�i
@pi

�
p�i ; p

�
j ;Hi

�
= 0 by construction, @�i

@qj
= (pi � ~c) @Di@pj

, and @�i
@Hi

=

~c� F , this yields:

E
�
U 0 (�i)

�
(pi � ~c)

@Di

@pj

@p�j
@Hi

+ ~c� F
�� �

p�i ; p
�
j ;H

�
i

�
= 0:

Dividing by E [U 0 (�i)] > 0 yields�
(pi � ci)

@Di

@pj

@p�j
@Hi

+ ci � F
��

p�i ; p
�
j ;H

�
i

�
= 0:

Observing that  
pi � ci +

Di

@Di
@pi

!�
p�i ; p

�
j ;H

�
i

�
= 0

yields equation (10).

B.3.3 Sign of
@p�j
@Hi

with constant absolute risk aversion

 1 (pi; pj ;Hi) =  E1 (pi; pj ; ci (pi; pj ;Hi))�
@Di

@pi

@ci
@pi

< 0;

 2 (pi; pj ;Hi) =  E2 (pi; pj ; ci (pi; pj ;Hi))�
@Di

@pi

@ci
@pj

> 0;

and

 3 (pi; pj ;Hi) =

�
�@Di

@pi

@ci
@Hi

�
(pi; pj ;Hi) < 0:

Then:

�=�E � @Di

@pi
bE h� (�i) (ci � ~c)2i�@Di

@pi
 E1
�
p�j ; p

�
i ; cj

�
� @Di

@pj
 E2
�
p�j ; p

�
i ; cj

��
�@Dj

@pj
bE h� (�j) (cj � ~c)2i�@Dj

@pj
 E1
�
p�i ; p

�
j ; ci

�
� @Dj

@pi
 E2
�
p�i ; p

�
j ; ci

��
+
@Di

@pi

@Dj

@pj
bE h� (�i) (ci � ~c)2i bE h� (�j) (cj � ~c)2i�@Di

@pi

@Dj

@pj
� @Dj

@pi

@Di

@pj

�
> 0

Thus, at the symmetric equilibrium,

@p�j
@Hi

(H�;H�) =
 2 (p

�; p�;H�)

�
 3 (p

�; p�;H�) < 0:

B.3.4 Equilibrium price
@p�j
@Hi

(H�;H�) < 0, c (p�; p�;H�) > F:
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Consider p (c) de�ned implicitly by

(p (c)� c) @D (p (c) ; p (c))
@p1

+D (p (c) ; p (c)) = 0

where @D
@p1

is the derivative of D (:; :) with respect to its �rst argument.

dp

dc
=

@D1
@p1

2 @D@p1 +
@D
@p2

+ (p (c)� c)
�

@2D
(@p1)

2 +
@2D
@p2@p1

� > 0
since @D1

@p1
+ @D1

@p2
< 0 and @2D1

(@p1)
2 +

@2D1
@p2@p1

� 0 by Assumption 2. Thus,

c (p�; p�;H�) > F , p� = p (c (p�; p�;H�)) > p (F ) = pE (F; F ) :

C Robustness analysis: proof of Propositions 4 and 5

C.1 Su¢ cient condition for the unicity of the equilibrium of
the production game

We �rst derive a su¢ cient condition for Tr (q�1; q
�
2;H1;H2) � �k, for k 2

(1; 2). From the analysis above,

Tr (q�1; q
�
2;H1;H2) =

 
@qEi
@ci

@ci
@qi

+
@qEj
@cj

@cj
@qj

+
@qEi
@cj

@cj
@qi

+
@qEj
@ci

@ci
@qj

!
(q�1; q

�
2;H1;H2)�2:

@qEi
@cj

@cj
@qi
+
@qEj
@ci

@ci
@qj

= �

�
P
0
(Q�) + q�i P

00
(Q�)

�
@cj
@qi
+
�
P
0
(Q�) + q�jP

00
(Q�)

�
@ci
@qj

P 0 (Q�)
�
3P 0 (Q�) +Q�P

00
(Q�)

�
Thus:

�

�
P
0
(Q�) + q�i P

00
(Q�)

�
@cj
@qi
+
�
P
0
(Q�) + q�jP

00
(Q�)

�
@ci
@qj

P 0 (Q�)
�
3P 0 (Q�) +Q�P

00
(Q�)

� � 2�k ) Tr (q�1; q
�
2;H1;H2) � �k

The inequality is equivalent to:

�
�
P
0
(Q�) + q�i P

00
(Q�)

� @cj
@qi

�
�
P
0
(Q�) + q�jP

00
(Q�)

� @ci
@qj

� (2� k)P 0
(Q�)

�
3P

0
(Q�) +Q�P

00
(Q�)

�

38



Suppose �rst P
00
(Q) > 0, �

�
P
0
(Q�) + q�i P

00
(Q�)

�
< �P 0

(Q�). Since��� @ci@qj

��� � ���P 0
(Q�)

��� qER, the left hand side is bounded above by
�
�P 0

(Q�)
������ @ci@qj

����+ ����@cj@qi

����� � 2�P 0
(Q�)

�2
qER:

Since Q�P
00
(Q�)

(�P 0 (Q�))
� 1 by Assumption 1, the right hand side is bounded below

by

2 (2� k)
�
P
0
(Q�)

�2
� (2� k)

�
P
0
(Q�)

�2 
3 +

Q�P
00
(Q�)

P 0 (Q�)

!
:

Thus,

qER � (2� k)) Tr (q�1; q
�
2;H1;H2) � �k:

We now derive a su¢ cient condition for Det (q�1; q
�
2;H1;H2) > 0. From

the analysis above,

Det = �Tr�1+

0B@ 1

P 0 (Q�)
�
3P 0 (Q�) +Q�P

00
(Q�)

�
0B@@ci
@qi
+

@cj
@qj

�
+

@cj
@qi

@ci
@qj

1CA
1CA :

Thus,

@cj
@qi

@ci
@qj

< � (Tr + 1)P 0
(Q�)

�
3P

0
(Q�) +Q�P

00
(Q�)

�
) Det > 0:

The left hand side is bounded above by
�
P
0
(Q�)

�2 �
qER

�2
. The right hand

side is bounded below by 2 (k � 1)
�
P
0
(Q�)

�2
> 0. Thus,

qER �
p
2 (k � 1)) Det (q�1; q

�
2;H1;H2) > 0:

Thus, for any k 2 (1; 2) ;

qER � min
�p

2 (k � 1); (2� k)
�
) Det (q�1; q

�
2;H1;H2) > 0 and Tr (q

�
1; q

�
2;H1;H2) � �k:

We choose k� =
�
3�

p
3
�
= maxk2(1;2)

�
min

�p
2 (k � 1); (2� k)

��
, thus, if

P
00
(Q) � 0,

qER �
�p
3� 1

�
) Det (q�1; q

�
2;H1;H2) > 0 and Tr (q

�
1; q

�
2;H1;H2) � �k:
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The same derivations for P
00
(Q) < 0 yield

qER �
�
2
p
3� 3

�
) Det (q�1; q

�
2;H1;H2) > 0 and Tr (q

�
1; q

�
2;H1;H2) � �k;

and for P
00
(Q) = 0

qER � 1) Det (q�1; q
�
2;H1;H2) > 0 and Tr (q

�
1; q

�
2;H1;H2) � �k;

C.2 Su¢ cient condition for
@q�j
@Hi

(H�; H�) < 0

Lemma 3 Consider a symmetric equilibrium, Hi = Hj = H�, and qi = qj =

q� (H�;H�).�
P
0
(Q)�@ci

@qi
+
@ci
@qj

�
(q�; q�;H�) < 0,

@q�j
@Hi

(H�;H�) < 0:

Proof. We �rst prove that�
P
0
(Q)�@ci

@qi
+
@ci
@qj

�
(q�; q�;H�) < 0)

@q�j
@Hi

(H�;H�) < 0:

�= 1
�
q�i ; q

�
j ;Hi

�
 1
�
q�j ; q

�
i ;Hj

�
�  2

�
q�i ; q

�
j ;Hi

�
 2
�
q�j ; q

�
i ;Hj

�
=

�
2P

0
(Q�) + q�i P

00
(Q�)�@ci

@qi

��
2P

0
(Q�) + q�jP

00
(Q�)�@cj

@qj

�
�
�
P
0
(Q�) + q�i P

00
(Q�)� @ci

@qj

��
P
0
(Q�) + q�jP

00
(Q�)�@cj

@qi

�
=�P 0

(Q�)

�
@ci
@qi

+
@cj
@qj

� P 0
(Q�)

�
+

�
P
0
(Q�)�@ci

@qi
+
@ci
@qj

��
P
0
(Q�) + q�jP

00
(Q�)

�
+

�
P
0
(Q�)�@cj

@qj
+
@ci
@qj

��
P
0
(Q�) + q�i P

00
(Q�)

�
Thus, �

P
0
(Q)�@ci

@qi
+
@ci
@qj

��
q�i ; q

�
j ;Hi;Hj

�
< 0 for i = 1; 2) � > 0:

Thus, since  3 (qi; qj ;Hi) > 0,

 2 (q
�; q�;H�) =

�
P
0
(Q) + qiP

00
(Q)� @ci

@qj

�
(q�; q�;H�) < 0,

@q�j
@Hi

(H�;H�) :

To complete the proof, we show that  2 (q
�; q�;H�) < 0. Suppose  2 (q

�; q�;H�) >
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0, then

@q�j
@Hi

(H�;H�) > 0, H� < q� , @ci
@qj

> 0)  2 (q
�; q�;H�) < 0

which is a contradiction.

Reciprocally,

@q�j
@Hi

(H�;H�) < 0, H� > q� , @ci
@qj

< 0)
�
P
0
(Q)�@ci

@qi
+
@ci
@qj

�
(q�; q�;H�) < 0

Thus: ���� @ci@qj

���� � ���P 0
(Q)
���) @q�j

@Hi
(H�;H�) < 0

)
qER � 1)

@q�j
@Hi

(H�;H�) < 0:

C.3 Global su¢ cient condition for quantity competition

Since
�p
3� 1

�
< 1 and

�
2
p
3� 3

�
< 1, the su¢ cient condition for unicity

of the equilibrium and
@q�j
@Hi

(H�;H�) < 0 is qER �
�p
3� 1

�
if P

00
(Q) > 0,

qER �
�
2
p
3� 3

�
if P

00
(Q) < 0, and qER � 1 if P

00
(Q) = 1.

C.4 Su¢ cient condition for
@p�j
@Hi

(H�; H�) < 0 (Proof of Propo-
sition 5)

Lemma 4

( 1 +  2) (p
�; p�;H�) < 0)

@p�j
@Hi

(H�;H�) < 0

Proof. Suppose ( 1 +  2) (p�; p�;H�) < 0. Suppose �rst  2 (p
�; p�;H�) > 0.

Then, ( 1 �  2) (p�; p�;H�) < 0 since  1 (p
�; p�;H�) < 0, hence

@p�j
@Hi

(H�;H�) =

0BBB@
+z}|{
 2

�z}|{
 3

( 1 +  2)| {z }
�

( 1 �  2)| {z }
�

1CCCA (p�; p�;H�) < 0:
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Suppose  2 (p
�; p�;H�) < 0. Suppose �rst ( 1 �  2) (p�; p�;H�) > 0. Then,

@p�j
@Hi

(H�;H�) =

0BBB@
�z}|{
 2

�z}|{
 3

( 1 +  2)| {z }
�

( 1 �  2)| {z }
+

1CCCA (p�; p�;H�) < 0:

Suppose now ( 1 �  2) (p�; p�;H�) < 0. Then,

@p�j
@Hi

(H�;H�) =

0BBB@
�z}|{
 2

�z}|{
 3

( 1 +  2)| {z }
�

( 1 �  2)| {z }
�

1CCCA (p�; p�;H�) > 0

hence
@p�j
@Hi

(Hi;Hj) > 0. Then:

Hi > Di

�
p�i ; p

�
j

�
) @ci

@pj
(p�; p�;H�) > 0)  2 (p

�; p�;H�) > 0

which is a contradiction. Hence,  1 (p
�; p�;H�) <  2 (p

�; p�;H�) < 0 is not

possible. Hence,

( 1 +  2) (p
�; p�;H�) < 0)

@p�j
@Hi

(p�; p�;H�) < 0

which completes the proof.

Then,

�
@ci
@pi

+
@ci
@pj

�
(pi; pj ;Hi) = bE �� (�i) (ci � ~c)�@�i

@pi
+
@�i
@pj

��
= bE �� (�i) (ci � ~c)�Di + (pi � ~c)

�
@Di

@pi
+
@Di

@pj

���
=Di

bE [� (�i) (ci � ~c)]
+

�
@Di

@pi
+
@Di

@pj

�n
(pi � ci) bE [� (�i) (ci � ~c)] + bE h� (�i) (ci � ~c)2io ;

and

�
@ci
@pi

+
@ci
@pj

��
p�i ; p

�
j ;Hi

�
=

0@ @Di
@pj

(pi � ci) bE [� (�i) (ci � ~c)]
+
�
@Di
@pi

+ @Di
@pj

� bE h� (�i) (ci � ~c)2i
1A�p�i ; p�j ;Hi

�
:
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Then,

( 1 +  2)
�
p�i ; p

�
j ;Hi

�
=

0BBBB@
2@Di@pi

+ @Di
@pj

+ Di�
� @Di
@pi

� � @2Di
(@pi)

2 +
@2Di
@pi@pj

�
�@Di
@pi

0@ @Di
@pj

Di�
� @Di
@pi

�bE [� (�i) (ci � ~c)]
+
�
@Di
@pi

+ @Di
@pj

� bE h� (�i) (ci � ~c)2i
1A
1CCCCA�p�i ; p�j ;Hi

�
:

Thus,

bE [� (�i) (ci � ~c)] <
0@�

�
@2�Ri
(@pi)

2 +
@2�Ri
@pi@pj

�
@Di
@pj

Di

1A (p�; p�;H�))
@p�j
@Hi

(H�;H�) < 0:

Thus,

R � m)
@p�j
@Hi

(H�;H�) < 0:

D Strategic incentives to commit (Proposition 6)

D.1 Comparing V (C;NC) and V (NC;NC) if �rms compete in
price

Suppose �rm 2 plays NC, while �rm 1 plays C. At t = 2, �rm 2 chooses H2 =

D2 (p2; p1). At t = 1, �rms simultaneously select prices (p1 (H1) ; p2 (H1)) that

solve: (
D1 (p1; p2) + (p1 � c1 (p1; p2;H1)) @D1@p1

(p1; p2) = 0

D2 (p2; p1) + (p2 � F ) @D2@p2
(p2; p1) = 0

At t = 0, �rm 1 selectsH1 that maximizes E [U (�1 (p1 (H1) ; p2 (H1) ;H1))].
As in the Cournot case, if �rm 1 chooses H1 = D

�
pE (F; F ) ; pE (F; F )

�
,

p1 = p2 = pE (F; F ) is a solution of the system, hence the unique equilibrium.

Both �rms receive V (NC;NC). Thus, V (C;NC) � V (NC;NC).

Then

dV1
dH1

�
D
�
pE (F; F ) ; pE (F; F )

��
=
@D1
@p2

�
pE (F; F )� F

� @p2
@H1

E
h
U
0
(�1)

i
< 0:

Thus, if the �rm hedges
�
1
2 � "

�
where " > 0 is arbitrarily small, by

continuity, V1
�
1
2 � "

�
> V1

�
1
2

�
. Thus, V (C;NC) > V (NC;NC).

D.2 Comparing V (C;C) and V (NC;NC) if �rms compete in
quantity

V (C;C) = E
�
U

�
(P (Q�)� F ) Q

�

2
+ (H� �Q�) (! � F )

��
< U

�
(P (Q�)� F ) Q

�

2

�
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since U (:) is concave, and

V (NC;NC) = U
��
P
�
2qE (F; F )

�
� F

�
qE (F; F )

�
:

For x � 0, denote
f (x) = (P (2x)� F )x:

Condition 1 implies that f (:) is globally concave and admits a unique maxi-

mum x� de�ned by:

f
0
(x�) = P (2x�)� F + 2x�P 0

(2x�) = 0:

Then,

f
0 �
qE (F; F )

�
=
�
�qE (F; F )P 0 �

2qE (F; F )
�
+ 2qE (F; F )P

0 �
2qE (F; F )

��
= qE (F; F )P

0 �
2qE (F; F )

�
< 0;

hence qE (F; F ) > x�. Then,f
�
qE (F; F )

�
> f (q�) since q� > qE (F; F ) and

f (:) is decreasing for x � x�. Thus:

V (C;C) < U (f (q�)) < U
�
f
�
qE (F; F )

��
= V (NC;NC) :

D.3 Hotelling competition

D.3.1 Comparing V (C;C) and V (NC;NC)

Under the conditions of Proposition 6

ci (pi; pj ;Hi) =F + ��
2 (Di (pi; pj)�Hi)

=F + ��2
�
pj � pi
2t

+
1

2
�Hi

�
Thus, for i = 1; 2, the �rst-order conditions (9) are

Di (pi; pj) +
@Di

@pi
(pi; pj) (pi �

�
F + ��2 (Di (pi; pj)�Hi)

�
= 0

,
1

2
+
pj � pi
2t

� 1

2t

�
pi �

�
F + ��2

�
pj � pi
2t

+
1

2
�Hi

���
= 0
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, �
2 +

��2

2t

�
pi �

�
1 +

��2

2t

�
pj = t+ F + ��2

�
1

2
�Hi

�
which yield equilibrium prices for i = 1; 2

p�i (Hi;Hj) = t+ F +
��2

2

 
1�

�
4t+ ��2

�
Hi +

�
2t+ ��2

�
Hj

3t+ ��2

!

=F +

�
1 +

1

2a

�
1� (1 + 4a)Hi + (1 + 2a)Hj

1 + 3a

��
t

where a = t
��2
. Thus:

@p�j
@Hi

= � 1 + 2a

2a (1 + 3a)
t < 0:

The �rst-order conditions (10) become�
��2

�
Di

�
p�i ; p

�
j

�
�Hi

�
+Di

�
p�i ; p

�
j

� @p�j
@Hi

��
H�
i ;H

�
j

�
= 0

since ci = F + ��2 (Di (pi; pj)�Hi) and @Di
@pj

(pi; pj) = �@Di
@pi

(pi; pj) =
1
2t :

Consider now a symmetric equilibrium: H�
i = H�

j = H�, hence p�i = p�j =

p�. Since the equilibrium is symmetric, Di

�
p�i ; p

�
j

�
= 1

2 . Thus, the �rst-order

conditions (10) further simplify to:

1

2
�H� =

1 + 2a

4 (1 + 3a)
> 0:

At the symmetric equilibrium, Hotelling equilibrium price is:

p� = t+ c (p�; p�;H�) = t+ F + ��2
�
1

2
�H�

�
,

p� � F =
�
1 +

1 + 2a

4a (1 + 3a)

�
t

Thus,

V (C;C) =
1

2

�
1 +

1 + 2a

4a (1 + 3a)

�
t� ��2

2

�
1 + 2a

4a (1 + 3a)

�2
=

�
1 +

(1 + 2a) (3 + 10a)

16a (1 + 3a)2

�
t

2
:

If both �rms play Not Commit, they fully cover their exposure at t = 3.
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Knowing this, they play at t = 2 symmetric Hotelling game with constant

marginal cost equal to the forward price. Thus,

V (C;C) =
t

2

and

V (C;C)� V (NC;NC) = (1 + 2a) (3 + 10a)

16a (1 + 3a)2
t

2
> 0:

D.3.2 Comparing V (C;C) and V (NC;C)

Suppose again �rm 2 playsNC, while �rm 1 plays C. We prove that V (NC;C) <

V (C;C). The equilibrium prices (p1 (H1) ; p2 (H1)) are given by the Hotelling

formula:8><>:p1 = t+
2
�
F+��2

�
p2�p1
2t

+ 1
2
�H1

��
+F

3 = t+ F + 2t
3a

�
p2�p1
2t + 1

2 �H1
�

p2 = t+
2F+

�
F+��2

�
p2�p1
2t

+ 1
2
�H1

��
3 = t+ F + t

3a

�
p2�p1
2t + 1

2 �H1
� :

Then,

p2 � p1 = �
t

3a

�
p2 � p1
2t

+
1

2
�H1

�
= �2t 1

1 + 6a

�
1

2
�H1

�
and

D1 �H1 =
p2 � p1
2t

+
1

2
�H1 =

6a

1 + 6a

�
1

2
�H1

�
:

Thus, 8<:p1 � F =
�
1 + 4

1+6a

�
1
2 �H1

��
t

p2 � F =
�
1 + 2

1+6a

�
1
2 �H1

��
t
;

and
@p2
@H1

= � 2t

1 + 6a
< 0:

Maximization over H1 yields:

1

2t

�
p1 � F + ��2 (H1 �D1)

� @p2
@H1

� ��2 (H1 �D1) = 0

,

�
��
1 +

4

1 + 6a

�
1

2
�H1

��
t� ��2 6a

1 + 6a

�
1

2
�H1

��
2t

1 + 6a
+2t��2

6a

1 + 6a

�
1

2
�H1

�
= 0
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,
1

2
�H1 =

1 + 6a

4 (2 + 9a)
:

Thus,

p2 � F =
�
1 +

1

2 (2 + 9a)

�
t;

and

D2 (p2; p1) =
1

2

�
1 +

1

2 (2 + 9a)

�
;

and

V (NC;C) =

�
1 +

1

2 (2 + 9a)

�2 t
2
:

Thus

V (C;C) > V2 (NC;C)() 1+
(1 + 2a) (3 + 10a)

16a (1 + 3a)2
> 1+

1

2 + 9a
+

1

4 (2 + 9a)2

()
(1 + 2a) (3 + 10a) (2 + 9a)2

36a (1 + 4a) (1 + 3a)2
> 1

which is veri�ed numerically for all a � 0.
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