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1 Introduction

The main purpose of this paper is to introduce a general model of a random electorate

of N voters described by their preferences over two alternatives. Our model will admit,

as special cases, the two most popular models in the literature on power measurement.

The �rst, one called Impartial Culture (IC) is the basis of the celebrated Banzhaf power

index (Banzhaf (1965, 1966, 1968)). It assumes that the preferences of the voters over the

two alternatives are independent and equiprobable: correlation among the preferences of the

voters is totally precluded. The second one, called Impartial Anonymous Culture (IAC) which

has been pioneered independently in voting theory by Chamberlain and Rothschild (1981),

Good and Mayer (1975)1, Fishburn and Gehrlein (1976) and Kuga and Nagatani (1974) is

the basis (as forcefully demonstrated by Stra�n (1977, 1988)) of another celebrated power

index due to Shapley and Shubik (Shapley and Shubik (1954), Stra�n (1977, 1988)). The

IAC model introduces correlation among voters and the speci�c distributional assumption

which is considered implies that the real random variable de�ned as the number of voters

supporting the �rst alternative is uniform over all feasible integers. From a computational

perspective, this distributional property of the IAC model makes it very handy as compared

to some other models and probably explains its success. Further, as noted convincingly by

Chamberlain and Rothschild, the IAC model is more attractive than the IC model in the

sense that the electoral predictions of the IAC models don't display a discontinuity in the

neighborhood of the outcome of a tied election.

Given a random electorate �, the power of a voter is de�ned as the probability of being

pivotal2 i.e. as the probability of the event \There is a majority in favor of the �rst alternative

i� that voter supports that alternative". Given that we will focus on a symmetric simple

game (the ordinary majority game), if the model of random electorate � is fully symmetric

(i.e. if the preferences are interchangeable), then all voters will have the same power denoted

Piv(�;N). Both the IC and the IAC models are symmetric. For the IC model, this de�nes

the Banzhaf power index Piv(IC;N) while for the IAC model this de�nes the Shapley-

Shubik power index Piv(IAC;N). It is well known that Piv(IC;N) and Piv(IAC;N) are

respectively of order 1p
N
and 1

N
.

The main purpose of this paper is to continue the exploration of the implications of cor-

relation on the asymptotic behavior of the power index. Precisely, we will consider a general

family of models of random electorate � and study the asymptotic behavior of Piv(�;N)

1We discover this important paper while reading Myatt (2012). Their result was rediscovered by Cham-
berlain and Rothschild.

2Good and Mayer (1975) refers to this as the e�cacy of a vote.
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with respect to N . Our motivation to do so is to depart from the IAC model which assumes

that the correlation is the same for all pairs of voters in the population. It is likely that the

intensity of the correlation between the votes of i and j will depend upon some character-

istics of i and j suggesting that the correlation may vary from one pair to another. Most

of the paper will however be based on a particular pattern of heterogeneity. Precisely, we

will assume that the voters are partitioned into groups and that: correlation is positive and

identical for any pair of voters belonging to the same group and null for any pair of voters

belonging to two di�erent groups. We will assume that within each group the correlation is

de�ned as in the IAC model. This gives the IC and the IAC models as special cases: the IC

model emerges when all the groups are singletons and the IAC model arises when there is a

unique group which is then the entire population.

While particular, this model is general enough to cover many situations. We will o�er a

separate treatment of two polar cases. The �rst case is the case where there is a bound on

the size of the groups; this bound does not depend upon the size of the population. This

assumption is well suited to capture local interactions (within the family or the workplace for

instance). The second case is the case where there is a �xed number of groups; this means

that the size of the groups grows with the size of the population. This assumption is well

suited to describe large scale interactions (special interest groups, geographical territories,

electoral districts, countries if the population under scrutiny is multinational,...). After

o�ering some general results, we proceed to the study of these two cases. The analysis

of the two cases uses di�erent techniques. When � describes the local case, the use of

some local versions of the Central Limit Theorem allows to estimate Piv(�;N). We show

that it is of order 1p
N
and we calculate explicitly Lim

N!1

p
NPiv(�;N). In contrast, when

� describes the global case, our estimation of Piv(�;N) is based on di�erent mathematical

techniques. We approach the problem quite di�erently using combinatorial tools which

amounts to derive some polynomials known as Ehrhart's polynomials and to compute the

volumes of some polytopes. We show that Piv(�;N) is of order 1
N
and we calculate explicitly

Lim
N!1

NPiv(�;N) in some speci�c cases.

Related Literature

The partition random model explored in this paper has been suggested by Stra�n (1977)

under the name partial homogeneity. He suggests this model as an alternative to the existing

IC and IAC models but does not derive any general result. Instead, he proceeds to some

numerical calculations of the probability of being pivotal in the Canadian constitutional

amendment process3. Stra�n writes: \In the Canadian consitution example, it might be that

3This game has 10 players (the Canadian provinces) and is not the ordinary majority game analysed in
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neither the independence assumption nor the homogenity asssumption describe the situation

very well. British Columbia and Qu�ebec, for example, might reasonably be expected to

behave independently, while the four Atlantic provinces may have common interests and

might reasonably be considered to judge proposed constitutional amendment by a common

set of values. The most reasonable thing to do might be to partition the provinces into

subsets whose members are homogenous among themselves, but behave independently of

the members of other subsets".

Chamberlain and Rothschild also consider the case of a partition into two groups and

study the asymptotics of the probability of being pivotal under some general conditions:

the random draws of the parameter p (denoting the probability that any individual votes

for the �rst alternative) in each of the two groups do not necessarily result from a uniform

distribution (a feature shared with Good and Mayer) and the draws are not necessarily

independent among the two groups.

Our model of correlation among voters aims to contribute to di�erent branches of the

literature. On one hand, it extends the existing studies of the implications of correlation

on power measurement. Knowing the exact magnitude of the probability of being pivotal is

interesting for itself but this information is also essential for the design of the optimal weights

of representatives, as argued convincingly by Barbera and Jackson (2006). They discuss a

block model which is quite similar to the model of partitions which is considered here except

for the fact that instead of IAC, they assume perfect correlation within each block/group.

On the other hand, our model aims also to be a step towards the analysis of the implica-

tions of correlation in a general model of elections. The general (as the number of alternatives

is arbitrary) model of random electorate pioneered by Weber (1978, 1995) assumes indepen-

dence across individual preferences. Similarly, the model of Myerson and Weber (1993) and

the general Poisson model developed by Myerson in a series of papers (1998, 2000) postulates

independence. In the case where there are two alternatives and the possibility of absten-

tion, the probability of being pivotal betwen the two alternatives plays a critical role in the

decision of a rational voter to participate to the electoral process. To the best of our knowl-

edge, Evren (2012) and Myatt (2012) are the unique papers where correlation is the driving

force of models which explains fairly accurately the turnout rates in relative large electoral

districts. Myatt writes \Most established models of turnout include a problematic feature:

voter's type (and so their decisions) are independent draws from a known distribution. This

feature is also present in models of strategic voting..."4. Evren considers a slightly more

this paper. He performs numerical calculations for several di�erent partitions including the partition where
all the provinces, except Qu�ebec, are together.

4For a more detailed discussion of this important point, we refer the reader to the introduction of Myatt's
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complicated type space as he assumes that voters can either be sel�sh or altruistic. Both

Evren and Myatt's papers demontrate convincingly that aggregate uncertainty (a generalized

form of IAC) is essential to resolve the turnout paradox.

2 The Model of a Random Electorate

A random electorate is a triple (N ; X; �) where N is a �nite set of individuals (voters,...),

X is a �nite set of alternatives (candidates, parties,...) and � is a probability distribution

on PN where P is the set of linear orders over X. In the case where X consists of two

alternatives say 0 and 1, the set P contains two preferences which will be coded 0 and 1 and
PN = f0; 1gN where N denotes the cardinality of N i.e. the number of voters. The �rst

popular random electorate model, called Impartial Culture (IC), is de�ned by � (P ) = 1
2N

for all pro�les of preferences P = (P1; P2; :::; PN) in f0; 1gN . The IC model assumes that
the preferences of the voters are independent Bernoulli random variables with a parameter

p equal to 1
2
(i.e. the electorate is not biased towards a particular candidate). In contrast,

the second popular random electorate model, called Impartial Anonymous Culture (IAC) is

de�ned by � (P ) = 1

(N+1)(Nk)
for all pro�les of preferences P = (P1; P2; :::; PN) in f0; 1gN

such that #N0 (P ) = k where N0 (P ) � fi 2 N : Pi = 0g. In the IAC model, the events
Ek �

n
P 2 f0; 1gN : # fi 2 N : Pi = 0g = k

o
for k = 0; 1; :::; N are equally likely

A social choice mechanism is a mapping 	 from f0; 1gN into [0; 1] where 	(P ) denotes
the probability of choosing candidate 0 when the pro�le of preferences is P . In this binary

setting5, we will not make any distinction between preferences and behavior. There is no

room for strategic behavior here: if we interpret 	 as a direct revelation game, then voting

sincerely according to his/her preference is the unique dominant strategy. Further, we will

focus6 on the standard majority mechanism Maj de�ned as follows:

Maj(P ) =

8<:
0 if #N0 (P ) < N

2

1 if #N0 (P ) > N
2

1
2
if #N0 (P ) = N

2

If N is odd, the third eventuality never arises and the mechanism is deterministic. If

N is even, the third alternative arises when the electorate is split into two groups of equal

paper. His paper contains, as a �rst step, an extension of the generalized (as the distribution is not necessarily
uniform) IAC model to a multinomial setting.

5In this binary setting, a social choice mechanism is de�ned alternatively by a simple game (Taylor and
Zwicker (1999)). A simple game is a monotonic family of coalitions W. The mechanism is then de�ned as
follows: 	(P ) = 0 i� fi 2 N : Pi = 0g 2 W.

6In the last section, we will outline the di�culties in generalizing our formula to arbitrary simple games
like those considered in the power measurement literature.
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size and the tie is broken fairly. The whole paper is about evaluating the probability of an

event. We will say that voter i 2 N is pivotal if either #N0 (P�i) =
N�1
2
when N is odd

or #N0 (P�i) =
N
2
or #N0 (P�i) =

N�2
2
when N is even. We denote by Ei this event and

Piv(�; i) is the probability of Ei i.e. Piv(�; i) = � (Ei). There is a slight di�erence between

the even and odd cases. In the odd case, the preference of i will be the social choice when i

is pivotal. In contrast, in the even case, if i is pivotal and say on the 0 side, his preference

will be for sure the social preference if #N0 (P�i) =
N
2
and will be the social preference with

probability 1
2
if #N0 (P�i) =

N�2
2
. Up to this quali�cation, the two cases will be analyzed

with similar methods.

When the simple game is symmetric, if the probability measure is symmetric, then

Piv(�; i) does not depend on i and will be denoted shortly by Piv (�). Piv (�) has been

calculated for the two popular models of random electorate which have just been de�ned.

For the IC model, Piv (�) =
�
N�1
N�1
2

�
1

2N�1 when N is odd and Piv (�) =
�
N�1
N�2
2

�
1

2N�1 when

N is even. For the IAC model, Piv (�) = 1
N
for both cases. Using Strirling's formula,

N ! '
p
2�N

�
N
e

�N
, we deduce that when N gets large Piv (IC) behaves like

q
2
�N
' 0:797 88p

N
.

In this paper, we assume that the electorateN is partitioned intoK groupsN1;N2; :::;NK

i.e. [1�k�KNk = N and Nk \ Nk0 = ? for all k; k0 such that k 6= k0. We will denote by

Nk the size of group k:
PK

k=1Nk = N and without loss of generality we assume that

N1 � N2 � ::: � NK .We consider the following random electorate model.

We assume that the preferences of any voter i from group Nk is the realization of a

Bernoulli random variable with parameter pk and that conditional on pk, the preferences

of any two voters in that group are independent. We assume that the coordinates of the

vector (p1; p2; :::; pK) are the realizations of K independent random variables with a uniform

distribution on [0; 1]. Let i be an arbitrary voter in Nk. Consider �rst the case where N is

odd. We obtain:

Piv(�; k) =
X

�(N�12 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

where � ( M;R1; :::; Rk; :::; RK) denotes the set of decompositions of the integer M into

K ordered integers under the constraint that the kth integer does not exceed Rk. By using

the formula:
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Z 1

0

pt�1(1� p)n�tdp =
(t� 1)!(n� t)!

n!

we deduce:

Piv(�; k) =
X

�(N�12 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

1

Nk

 Y
l 6=k

1

Nl + 1

!
=

�

�
N � 1
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
1

Nk

 Y
l 6=k

1

Nl + 1

!
(1:a)

where � (M;R1; :::; Rk; :::; RK) denotes the cardinality of � ( M;R1; :::; Rk; :::; RK) i.e.

the number of decompositions of the integer M into K ordered integers under the constraint

that the kth integer does not exceed Rk.

When N is even, we obtain along the same lines:

2Piv(�; k) =
X

�(N�22 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

+
X

�(N2 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

and therefore:

Piv(�; k) =
1

2
[�

�
N � 2
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�

+�

�
N

2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
]
1

Nk

 Y
l 6=k

1

Nl + 1

!
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= �

�
N � 2
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
1

Nk

 Y
l 6=k

1

Nl + 1

!
(1:b)

as �
�
N�2
2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
= �

�
N
2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
.

The factor 1
2
corresponds to the fact that when i is pivotal, there is only a chance of 1

2
to

be e�ective i.e. a chance of 1
2
that the tie is broken in his favor. The interest of the two

formulas above lies in the fact that the calculation of the pivot probabilities is equivalent

to a well de�ned combinatorial problem which amounts to count the number of possible

decompositions of a given integer into K integers under some constraints. Note however

that there are at most K cells i.e. K non zero integers in the decomposition. This means

that the problem is di�erent from the problem of counting the number of partitions of a

given integer. Further, for each cell, there is an upper bound on the integer for that cell.

Let us check quickly that the IC and IAC models correspond to two extreme special cases

of this general framework. The IC value is attached to the case where K = N i.e. where the

partition structure consists of N singletons:

Piv(IC; k) = �

�
N � 1
2

; 1; :::; 1; Nk � 1; 1; :::; 1
�
1

2N
=

�
N � 1
N�1
2

�
1

2N�1

since �
�
N�1
2
; 1; :::; 1; 0; 1; :::; 1

�
=
�
N�1
N�1
2

�
. The IAC value is attached to the case where

K = 1 i.e. where the partition structure consists of a single set: the set N :

Piv(IAC; k) = �

�
N � 1
2

; N � 1
�
1

N
=
1

N

since �
�
N�1
2
; N � 1

�
= 1:

An alternative approach to the counting problem is based on probability. Let Xik denote

the Bernoulli random variable describing the preference of voter i in group k and let Sk andbS denote respectively the sums Pj2Nk Xjk and
PK

k=1

P
j2Nk Xjk =

PK
k=1 Sk. With these

notations, we can express the pivot probabilities as follows:

Piv(�; k) = �

�bS�i = N � 1
2

�
when N is odd and

Piv(�; k) =
1

2

�
�

�bS�i = N � 2
2

�
+ �

�bS�i = N

2

��
when N is even

This probabilistic approach will be very useful when we will focus on the asymptotic

behavior of Piv(�; k) when N tends to in�nity. Note that all the random variables Xik are
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symmetric in the sense that Pr(Xik = 0) = Pr(Xik = 1) =
1
2
since Pr(Xik = 0) =

R 1
0
pdp = 1

2
.

We have E [Xik] =
R 1
0
pdp = 1

2
and V ar [Xik] =

1
4
. But two random variables Xik and Xjl

are independent i� k 6= l. If not, we have:

Pr(Xik = 0; Xjk = 0) =

Z 1

0

p2dp =
1

3
>
1

4

The two variables are positively correlated: Cov(Xik; Xjk) =
1
3
� 1

4
= 1

12
; the coe�cient

of correlation � is then equal to 1
3
.

3 The case of Many Small Groups

In this section, we will focus on the case where there is an exogenous upper bound S on the

size of the groups in the partition (N1;N2; :::;NK). This implies that as N gets large, then

the number of groups increases.

To motivate the general result which will be presented hereafter, it is instructive to

consider the case where S = 2. In any such partition structure , the groups are either

singletons or pairs. We can think of this partition as describing a society where there are

singles and couples but no other family types. Consider the case where N is even and all

the groups are exactly of size 2. From (1.b), we deduce that:

Piv(�; k) = Piv(�) = �

�
N � 2
2

; 1; 2; :::; 2; 2

�
1

2

�
1

3

�N�2
2

:

We can check that:7

�

�
N � 2
2

; 1; 2; :::; 2; 2

�
=

bN�24 cX
k=0

�
N�2
2

�
!

(k!)2
��

N�2
2
� 2k

�
!
�  N

2
� k

k + 1

!
:

Indeed, counting how many decompositions of N�2
2
into N

2
integers chosen in f0; 1; 2g

amounts �rst to choose how many pairs k we choose among N�2
2
. The number of possibilities

is
(N�22 )!

(k!)((N�22 �k)!)
. This value of k cannot exceed

�
N�2
4

�
. To reach the integer N�2

2
, we need

N�2
2
� 2k singletons which can be chosen among N

2
� k. The number of possibilities is

(N2 �k)!
(N�22 �2k)!(k+1)!

=
(N2 �1�k)!
(N�22 �2k)!(k)!

N
2
�k

k+1
. After collecting the terms, we obtain the expression

reported above.

Calculating the above sum is not an immediate combinatorial exercise8 and we will mostly

focus on the asymptotic behavior of Piv(�).

7bxc denotes the integer part of x.
8We were not able to derive a closed form value of this sum through the use of combinatorial identities.
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We conjecture that:

Lim
N!1

�(N) �
p
N

0B@b
N�2
4 cX
k=0

�
N�2
2

�
!

(k!)2
��

N�2
2
� 2k

�
!
� � N � 2k

2k + 2

1CA� 1
2
�
�
1

3

�N�2
2

exists.

The following table contains some numerical values of �(N) which supports this conjec-

ture:

N 102 202 1002 5002 100002
�(N) 0.69015 0.69056 0.6909 0.69097 0.69098

Table 1: Values of �(N)

Interestingly, the function � seems to behave asymptotically as the function � de�ned

as follows:

�(N) �
p
N

0B@b
N�2
4 cX
k=0

�
N�2
2

�
!

(k!)2
��

N�2
2
� 2k

�
!
�
1CA� �1

3

�N�2
2

The following table contains some numerical values of �(N) which supports this guess:

N 102 202 1002 10002 100002
�(N) 0.69525 0.69314 0.69143 0.69103 0.69099

Table 1 bis: Values of �(N)

We now prove a generalized version of the conjecture. To proceed, we use a probabilistic

approach. We assume that all the groups have a size smaller than S and we will be interested

in societies where the set of voters is partitioned into groups of size s where s runs from 1

to S. We will consider societies where N gets inde�nitely large but such that the proportion

of the population in each type of group (described by its size) remains invariant in the

population growth process. We will denote by s the proportion of voters in a group of size

s. We assume that s = sKs

K
where Ks is an integer for all s = 1; :::; S and K =

PS
s=1 sK

s.

The initial society contains Ks groups of size s. For any integer R, its Rth replica has N

voters where N is de�ned as follows:

N = N(R) = R
SX
s=1

Kss

10



For all R and all i = 1; 2; :::; N(R), we arrange the random variables XR
i describing the

individual votes in the Rth replica in a triangular array9 de�ned as follows: the �rst RK1

variables describe the vote of voters in groups of size 1, the next 2RK2 variables describe

the votes of voters in groups of size 2 and so on.

We obtain

�2 (R) � V ar(

NX
i=1

XR
i ) =

NX
i=1

V ar(XR
i ) +

SX
s=1

RKss(s� 1)Cov(XR
i ; X

R
j )

where Cov(XR
i ; X

R
j ) denotes the covariance between when i and j belong to the same

group. We have shown before that:

V ar(XR
i ) =

1

4
for all i = 1; 2; :::; N

Cov(XR
i ; X

R
j ) =

1

12
for all i; j = 1; :::; N if i and j belong to the same group

We obtain:

� (R) =
p
N

0@
vuut1

6
+
1

12
+
1

12

SX
s=2

ss

1A
A random variable XR

i is of type s if R
Ps�1

l=1 lK
l < i � R

Ps
l=1 lK

l. We pack the sRKs

random variables of type s into RKs random variables
�
ZRks
�
1�k�RKs where Z

R
ks is de�ned as

follows :

ZRks = r i�
ksX

i=(k�1)s+1

XR
is = r

This de�nes a new triangular array
�
ZRks
�
1�s�S;1�k�RKs (indexed by R) where the random

variables ZRks are independent. Hereafter, we will refer to Z
R
ks as a random variable of type

s. We note that all random variables are integer valued: the support of a random variable

of type s is f0; 1; :::; sg Let 1 � i � N(R) be a member of a group of type s and for each

value of the row index R, consider the random variable SRi de�ned as follows:

SRi =

N(R)X
j=1;j 6=i

XR
j =

SX
l=1;l 6=s

KlX
k=1

ZRkl +
Ks�1X
k=1

ZRks +WR
i

9A triangular array is a collection of
�
yk1 ; y

k
2 ; :::; y

k
n(k)

�
k�1

of random variables on a probability space.

11



where WR
i �

Ps
j=2 1XR

js
. The probability that i of type s is pivotal, Piv(�R; s) is equal

to the probability of the event
�
SRi =

N�1
2

	
if N is odd and to half the probability of the

event
�
SRi =

N�2
2

	
[
�
SRi =

N
2

	
if N is even.

We note that the span of the random variables ZRkl for 1 � l � S and 1 � k � K l and

WR
i is equal to 1. Further, the distribution functions of these random variables belong to

a �nite set of cardinality at most S, are not degenerate and occur in�nitely often (except

possibly WR
i ) in the sequence

��
ZRkl
�
1�l�S;1�k�Kl [

�
WR
i

	�
R�1
. Let � > 0:

If N is odd, since E
�
SRi
�
= N�1

2
, we deduce from Petrov's theorem in Appendix 1 that

if R is large enough: ����� (R)Piv(�R; s)� 1p
2�

���� � �

Similarly, if N is even, since E
�
SRi
�
= N�1

2
, we deduce from Petrov's theorem that if R

is large enough: ������ �SRi �Pr
�
SRi =

N � 2
2

�
� e�

1
8�(R)

p
2�

����� � �

������ �SRi �Pr
�
SRi =

N

2

�
� e�

1
8�(R)

p
2�

����� � �

Since e
� 1
8�(R)p
2�

tends to 1p
2�
and

�(SRi )
�(R)

=
�(R)� 1

12
� s
6

�(R)
tends to 1 when R tends to +1, we

deduce that if R is large enough:����� (R)Piv(�R; s)� 1p
2�

���� � �:

Proposition 1: Let �R be the random electorate de�ned above. For all s = 1; 2; :::; S

Lim
R!1

p
NPiv(�R; s) =

1�q
1
6
+ 1

12
+ 1

12

PS
l=2 

ll

�p
2�

:

The random variable SRi = SR�XR
i introduced in the proof of Proposition 1 counts the

number of votes in favor of 1 in the population without individual i. Proposition 1 provides

information on the asymptotic behavior of the probability of the event
�
SRi =

N�1
2

	
. To

illustrate Proposition 1, consider the case of an electorate, denoted �sR, where all the groups

have the same size s. In such case, we deduce from our result that:

12



Piv(�sR) '
1p
N
� 2
s

3

2� (2 + s)

The following table lists a sample of values of the probability of being pivotal for a sample

of values of s.

s 1 2 3 4 5 ... 10p
NPiv(�sR) 0.798 0.691 0.618 0.564 0.522 ... 0.399

Table 2:
p
N � Probability of being pivotal as a function of s

We can also handle mixed situations i.e. random electorates � where the sizes of the

groups di�er across voters. For instance ,when the random electorate � is such and 1 = 0:2,

2 = 0:3; 3 = 0:4 and 4 = 0:1, we obtain : Piv(�R) ' 0:658 85. We could interpret these
groups as family groups : singles, couples without children voting, couples with one children

voting, and so on.

The proof strategy of Proposition 1 based on Petrov's local Central Limit Theorem has

exploited the fact that the individuals could be packed in a regular way. We could imagine

a more general situation where the individuals could be arranged from left to right in such a

way that two individuals distant from each other by more that some given number m (which

may vary with the size of the population) vote independently. We could proceed as in the

proof of Proposition 1 i.e. pack together m consecutive individual random variables. Even

when m is �xed, we have no guarantee that the number of distributions in the sequence of

random variables which is constructed through this packing process is �nite and we cannot

therefore apply Petrov's theorem. To handle such more general situations, we need to appeal

to a more general local Central Limit Theorem10.

A di�erent way to look at the probability of being pivotal of a small group consists in

considering a small group of size �
p
N where � > 0 is �xed instead of a group of size 1 as

done until now. Such a group, acting as a block, is pivotal i� :

N

2
� �
p
N

2
� SRN �

N

2
+
�
p
N

2

where:

SRN =

N(R)X
i=1

XR
i

10Like the version proved by Mc Donald (1979).
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and
�
XR
i

�
1�i�N(R) is an arbitrary triangular array of Bernouilli random variables of pa-

rameter 1
2
. Let us assume that this triangular array is m(R)-dependent and such that for

some � > 0 and some constant K:

V ar
�
XR
i+1 + :::+XR

j

�
� (j � i)K for all i; j; and R

Lim
R!1

V ar
�
XR
1 + :::+XR

n

�
N(R)

exists and is nonzero

Lim
R!1

m(R)2+�

N(R)
= 0

Since the Bernouilli variables have moments of any order, we deduce from Berk's theorem

in Appendix 2 that
XR
1 +:::+X

R
N(R)

�N(R)
2p

N(R)
is asymptotically normal with mean 0 and variance v

where v � Lim
R!1

V ar(XR
1 +:::+X

R
n )

N(R)
. We deduce that the probability of a group of relative size

�
p
N to be pivotal denoted Piv(�;N) is approximatively equal to

Prob

(
N

2
� �
p
N

2
� SRN �

N

2
+
�
p
N

2

)
' Prob

�
� �

2
p
v
� N(0; 1) � �

2
p
v

�
' �

r
1

2�v

This weak version of the pivotality result holds in a much larger class of electorates. The

notion of m-dependency matches our intuitive notion of local interaction. The groups can

even have their size increasing slowly with N : for instance, M(R) = N(R)
1
4 is �ne. What

is essential, as reected by the other two conditions of Berck's theorem, is to bound in an

appropriate way the variance of any pack of random variables and to have the variance of

the electorate to behave asymptotically as the size of the electorate. Let us insist that this

de�nition of a small group is relative i.e. the size of the group is small when divided by the

population of voters. Besides Proposition 1, we dont know if the above result holds more

generally when � decreases with N , in particular when � = 1p
N
.

4 The Case of Few Large Groups

In this section we consider the polar case of a society divided into a �nite (possibly large)

number of groups. This means that as N gets larger and larger, the number of voters in

14



each group gets larger and larger. We could apply the probabilistic approach which has been

used in the preceding section. It was using extensively the observation that the sequence

of Bernoulli random variables describing the votes of the citizens was exhibiting a property

of m-dependence where m was independent of the size of the electorate. This approach

cannot be used here as assumption (iv) on the growth of m in Berk's theorem is not satis�ed

when there is a �nite number of groups. To circumvent this di�culty, we will approach the

problem from a combinatorial angle and use quasi-polynomials, Ehrart's theory and some of

its developments11.

4.1 Ehrhart theory and Barvinok's algorithm

For �xed values of K, the general problem of computing the number � (M;R1; :::; Rk; :::; RK)

can be phrased as counting the exact number of integer solutions of a system of linear inequal-

ities with integer coe�cients, where the variables are xk (k = 1; :::; K) and the parameters

are M and Rk (k = 1; :::; K). This system is :8>>>>>>>>>><>>>>>>>>>>:

xk � 0 for all k = 1; :::; K

xk � Rk for all k = 1; :::; K

KX
k=1

xk �M

KX
k=1

�xk � �M

There is a well established mathematical theory for performing such a calculation, based

on the use of (parametric) polytopes and Ehrhart polynomials. Lepelley et al. (2008) and

Wilson and Pritchard (2007) were the �rst to introduce these tools in probability calculations

under IAC hypothesis in voting theory. We refer to their papers for more details and we

limit ourself, in this paragraph, to a short presentation of Ehrhart theorem and its exten-

sions. Also, we only sketch the key idea of the algorithm we have used to compute Ehrhart

polynomials.

Consider a �nite system of linear inequalities with integer coe�cients: Ax � b, where x

is in Rd, A is an m � d integer matrix, b an integer vector with m components and m the

number of independent linear inequalities. Let P be the set of all solutions of this system, P

11There is a voluminous literature on this topic Brion (1995, 1998). For more details on Ehrhart theory we
refer to Beck and Robins (2007) and for a general background on algorithms computing Ehrhart polynomials,
we recommend the technical report produced by Verdoolage et al. (2005).
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is called a rational polyhedron. If P is bounded, it is called a rational polytope. An extremal

point of P is called a vertex, and P can be de�ned equivalently as the convex hull of its

vertices. A simple case of parametric polytope is is the dilatation of a rational polytope P

by a positive integer parameter n: nP = fnxjx 2 Pg. Let LP be the function de�ned by
LP(n) = jnP \ Zdj, giving the number of integer points inside the dilated polytope nP. To
describe the general form of this function, we need the two following notions. A rational

periodic number, of period q, on the integer variable n is a function U : Z ! Q such that

U(n) = U(n0) whenever n � n0 mod q. A quasi-polynomial (or Ehrhart polynomial) on n is

a polynomial expression f(n) on the variable n, f(n) =
Pn

i=0 ci(n)n
i, where the coe�cients

ci(n) are rational periodic numbers on n. The period of a quasi-polynomial is the last com-

mon multiple (lcm) of the periods of its coe�cients.

Theorem (Ehrhart (1962)): Let P be a rational polytope in Rd. If P is d-dimensional,

then12:

1. The function L(P; n) is given by a degree-d quasi-polynomial.

2. The coe�cient of the leading term is independent of n and is equal to the volume of

P.

3. The period of the quasi-polynomial is a divisor of the lcm of the denominators of the

vertices of nP. When all the vertices of P have integral coordinates, LP(n) is simply

a polynomial.

The above result can be extended to more general situations with more than one para-

meter. De�ne a (linearly) parameterized polyhedron as the solution set of a system of linear

inequalities where the constant terms in each constraint is an a�ne combination of a set of

integer parameters: Pp = fx 2 RdjAx � Cp + bg, where A and C are integer matrices, b

is an integer vector and p a vector of r integer parameters. When Pp is bounded for each

value of p, it will be called a parametric polytope. The coordinates of the vertices of a

parametric polytope are a�ne functions of the parameters. Each vertex only exists for a

subset of the possible parameter values. Separate regions of the vector parameter space Nr

where the vertices have stable expressions are called validity domains. Clauss and Loechner

(1998) consider the enumerator function E(Pp) that describes the number of integer points

12Note that P can be not full-dimensional; this is the case when the linear system describing P contains
equalities. However there is no loss of generality with assuming P full-dimensional: If this is not the case, P
can be transformed into another polytope which has the same number of integer points and is full-dimensional
in a lower dimensional space (see Verdoolage et al. (2004), (2005)).
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in a d-dimensional parametric polytope Pp. They extended Ehrhart's result by showing

that E(Pp) can be described by a �nite set of multivariate quasi-polynomials
13 of degree d

in p, each being valid on a di�erent validity domain. They also proposed an algorithm for

computing Ehrhart polynomials, based on the classical technique of interpolation. However,

this method is seriously limited because the computation time is generally exponential and,

in some cases, the algorithm can fail to produce a solution (Beyls (2004)).

To avoid these problems, an alternative approach for computing E(Pp) was proposed by

Verdoolaege et al. (2004). This method, known under the name of Parameterized Barvinok's

algorithm, is essentially an adaptation of Barvinok' algorithm (Barvinok (1994), Barvinok

and Pommersheim (1999)) to parametric polytopes. Barvinok's algorithm is a powerful tool

that guarantees the polynomial-time counting of integer points inside rational polytopes

(for �xed dimension)14. The key idea is to encode all the integer points inside a rational

polyhedron P (not necessarily a polytope) into a multivariate generating function de�ned

by:

f(P; x) =
X

z2P\Zd
xz

where x = (x1; : : : ; xd), z = (z1; : : : ; zd) and x
z = xz11 : : : x

zd
d . It is clear that, when P is

a polytope, this sum is a (Laurent) polynomial and the number of integer points in P is

equal to the number of monomials in the generating function. Thus, the number of integer

points in P can be obtained by rewriting f(P; x) as a reasonably short function and then

evaluating it at x = (1; : : : ; 1). Barvinok's method uses a crucial identity of Brion (1995) to

distribute the computation of f(P; x) on the vertices of P by considering the supporting cone

at each vertex15. Indeed, Brion's theorem states that the generating function of a polytope

is equal to the sum of the generating functions of the supporting cones at each vertex.

The remainder of Barvinok's procedure uses an inclusion-exclusion method to replace the

generating function of each supporting cone with a signed sum of polynomial number (in the

size of the data) of unimodular cones16. The generating functions of these cones are simple

and short rational functions that can be calculated explicitly. The function f(P; x) is then

13A multivariate quasi-polynomial is a multivariate polynomial expression where the coe�cients depend
periodically on each variable.
14It was latter re�ned and implemented in the software LattE by De Loera et al. (2004)
15The supporting cone at a vertex is the polyhedron de�ned by the constraints that are saturated by the

vertex, i.e., those for which equality holds for the vertex.
16Let v ,u1, . . . , ut in Rd. The (shifted) cone with apex v and generators u1, . . . , ut is the set C

de�ned by C = fv +
Pt

i=1 �iuij�i � 0g. The cone C is called unimodular if its generators form a basis of
the lattice Zd.
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the sum of short rational functions. Note that the point (1; : : : ; 1) is a pole of all these

functions, the evaluation of f(P; x) at this point is obtained by computing the residues17.

Parameterized Barvinok's algorithm, which allows to compute Ehrhart polynomials ana-

lytically, keeps the overall structure of Barvinok's algorithm, but takes into account validity

domains and handles periodic numbers. This technique always produces a solution in polyno-

mial time, when the number of variables in the inequalities is �xed18. The results presented

in subsections 4:4 and 4:5 (forK = 5; 7; 9; 11) have been obtained by applying this algorithm.

4.2 A Preliminary Result

It can be noticed that, when the number N1 of voters in the largest group represents more

than 50% of the total number of voters, then the probability of casting a decisive vote only

depends, in each group, on the value of N1. More precisely, we have the following general

result (Recall that bxc denotes the integer part of x).

Proposition 2: If N1 �
�
N
2

�
+ 1, then Piv(�; 1) = 1

N1
and Piv(�; k) = 1

N1+1
for k =

2; 3; :::; K.

Proof. Let xk be the value of the k
th term in the decomposition of

�
N�1
2

�
: x1+ :::+xk+ :::+

xK =
�
N�1
2

�
. If N1 �

�
N
2

�
+1, then N2+N3+ :::+Nk+ :::+NK �

�
N�1
2

�
. Consequently, for

k = 2; 3; :::; K, xk can take any integer value between 0 andNk (including 0 andNk) and when

x2; x3; :::; xK are set, the value of x1 is given in a unique way by x1 =
�
N�1
2

�
�x2�x3�:::�xK .

The number of possible decompositions is then given by

�(

�
N � 1
2

�
; N1; N2; :::; Nk; :::; NK) = (N2 + 1)(N3 + 1):::(NK + 1)

and the result follows from relations (1.a) and (1.b). �

4.3 The Case of Two Groups

Let us consider the case where K = 2 i.e. the situation where the voters are partitioned into

two groups. This setting has been examined by various authors in the literature including

Beck (1975), Kleiner (1980), Chamberlain and Rothschild (1981) and Le Breton et Lepelley

(2010).

17For detailed explanation, see De Loera (2004) and Verdoolage et al. (2005).
18For a rigorous description of this algorithm and for implementation details, see Verdoolage et al. (2005).
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In such a case, if N is odd, then N1 > N2 as the two integers don't have the same parity.

It is easily seen that:

�

�
N � 1
2

; N1 � 1; N2
�
= N2 + 1 and �

�
N � 1
2

; N1; N2 � 1
�
= N2

and therefore:

Piv(�; 1) =
1

N1
and Piv(�; 2) =

1

N1 + 1

in accordance with Proposition 2.

4.4 Three groups of voters

In this section, we consider the case where the population is divided into three groups of

voters i.e. K = 3: N1 � N2 � N3 and N1 +N2 +N3 = bN + 1, with bN even.

The value of �(
bN
2
; N1 � 1; N2; N3) is given by the number of integer solutions of the

following set of (in)equalities, where xk can be interpreted as the number of voters voting

Left in group k, k = 1; 2; 3:

0 � x1 � N1 � 1
0 � x2 � N2
0 � x3 � N3

x1 + x2 + x3 =
bN
2

Given the last equality, N3 = N �N1 �N2 and the above set of inequalities reduces to:

0 � x1 � N1 � 1
0 � x2 � N2

0 � x3 � N �N1 �N2

x1 + x2 + x3 =
bN
2

where the parameters satisfy:

N1 � N2
2N2 +N1 �N � 1 � 0 and

N1 +N2 � N + 1

A representation for the number of integer solutions of this set of inequalities with three

variables and three parameters (N1, N2 and N) can be derived by using the multiparameter

version of the Barvinok's algorithm (see Lepelley et al. (2008)). We obtain:

�(
bN
2
; N1 � 1; N2; N3) = ( bN �N1 �N2 + 2)(N2 + 1) = (N3 + 1)(N2 + 1)

19



if N1 �
bN
2
+ 1 and

�(
bN
2
; N1 � 1; N2; N3) = (� bN2 + 2 bN(2N1 + 2N2 � 1)� 4(N2

1 +N1(N2 � 2) +N2(N2 � 1))=4

if N1 �
bN
2
.

Representations for �(
bN
2
; N1; N2 � 1; N3) and �(

bN
2
; N1; N2; N3 � 1) can be derived in a

similar way to obtain:

�(
bN
2
; N1; N2 � 1; N3) = ( bN �N1 �N2 + 2)N2 = (N3 + 1)N2

if N1 �
bN
2
+ 1 and

�(
bN
2
; N1; N2 � 1; N3) = (� bN2 + 2 bN(2N1 + 2N2 � 1)� 4(N2

1 +N1(N2 � 1) +N2(N2 � 1))=4

if N1 �
bN
2
;

�(
bN
2
; N1; N2; N3 � 1) = ( bN �N1 �N2 + 1)(N2 + 1) = N3(N2 + 1)

if N1 �
bN
2
+ 1 and

�(
bN
2
; N1; N2; N3 � 1) = (� bN2 + 2 bN(2N1 + 2N2 + 1)� 4(N2

1 +N1N2 +N2
2 � 1))=4

if N1 �
bN
2
.

Observe that we recover the results we have mentioned for two groups by taking N3 = 0.

From the above results, we can now derive the probability of casting a decisive vote for a

voter belonging to each of the three groups. We obtain :

Piv(�; 1) =
(N3 + 1)(N2 + 1)

N1(N2 + 1)(N3 + 1)
=
1

N1

Piv(�; 2) =
(N3 + 1)N2

(N1 + 1)N2(N3 + 1)
=

1

N1 + 1

Piv(�; 3) =
N3(N2 + 1)

(N1 + 1)(N2 + 1)N3
=

1

N1 + 1

if N1 �
bN
2
+ 1 (in accordance with our preliminary result), and

Piv(�; 1) =
4N2

1 + 4N1(N2 � bN � 2) + 4N2
2 � 4N2( bN + 1) + bN( bN + 2)

4N1(N2 + 1)(N1 +N2 � bN � 2)
(2)
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Piv(�; 2) =
4N2

1 + 4N1(N2 � bN � 1) + 4N2
2 � 4N2( bN + 2) + bN( bN + 2)

4(N1 + 1)N2(N1 +N2 � bN � 2)
(3)

Piv(�; 3) =
4N2

1 + 4N1(N2 � bN) + 4N2
2 � 4N2 bN + bN2 � 2 bN � 4)

4(N1 + 1)(N2 + 1)(N1 +N2 � bN � 1)
(4)

if N1 �
bN
2
.

In order to simplify the above three representations, let �1 = N1= bN and �2 = N2= bN
denote the proportion of voters in the �rst and the second group. Replacing N1 by �1 bN and

N2 by �2 bN and assuming that bN is large give, for k = 1; 2; 3 and �1 � 0:50:

Piv(�; k) ' 4�21 + 4�1�2 � 4�1 + 4�22 � 4�2 + 1
4�1�2(�1 + �2 � 1)

� 1

N
:

Let c3(�1; �2) =
4�21+4�1�2�4�1+4�22�4�2+1

4�1�2(�1+�2�1) if �1 � 0:50 and c3(�1; �2) = 1=�1 if �1 > 0:50.
We �nally obtain that, for N large, the probability of casting a decisive vote for a voter

belonging to an electorate divided in three groups is approximately equal to the Shapley-

Shubik index multiplied by c3(�1; �2). We give in Table 3 some computed values of c3(�1; �2)

for various values of �1 and �2.

�1/�2 1/3 0.35 0.40 0.45 0.50
1/3 2.250 - - - -
0.35 2.248 2.245 - - -
0.40 2.219 2.214 2.188 - -
0.45 2.145 2.143 2.130 2.099 -
0.50 2 2 2 2 2
> 0.50 1=�1 1=�1 1=�1 1=�1 1=�1

Table 3 : Values of c3(�1; �2)

These values show that the probability of casting a decisive vote is maximum when

�1 = �2 = 1=3, i.e. when each of the three groups has the same size.

4.5 The Symmetric Case

We consider here the case with N1 = N2 = ::: = NK =
bN+1
K

and we assume that N = bN + 1

is a multiple of K, which implies that K is odd. In this symmetric case, the value of

�(
bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
) is given as the number of integer solutions of the following set

of (in)equalities:
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0 � x1 �
bN+1
K
� 1

0 � x2 �
bN+1
K

:::

0 � xK �
bN+1
K

x1 + x2 + :::+ xK =
bN
2

For speci�c small values of K, it is fairly easy to obtain close forms of and of the proba-

bility of being pivotal as a function of the parameter N . Let us consider the �rst values of

K.

� K = 3: To compute �
� bN
2
;
bN+1
3
� 1; bN+1

3
;
bN+1
3

�
, we proceed as follows. Let bK � bN+1

3

and m be the number of voters taken from the smallest group. Of course: 0 � m � bK � 1.
Given m, how many voters x2 can we take in the second group ?

The smallest number x is solution of m+x+ bK = 3 bK�1
2

i.e. x =
bK�1
2
�m. This bound is

derived when we chose the largest possible number (i.e. bK) in the third group. This integer
is larger than or equal to 0 when m � �1

2
. On the other hand, the largest number x is

solution of m + x + 0 = 3 bK�1
2

i.e. x = 3 bK�1
2
�m. This integer is smaller than or equal tobK when m � bK�1

2
.

Case 1: m � bK�1
2
. In such case: x2 = bK �

�
3 bK�1
2
�m

�
+ 1 =

bK+1
2
+m+ 1

Case 2: m � bK�1
2
. In such case: x2 =

�
3 bK�1
2
�m

�
� 0 + 1 = 3 bK�1

2
�m+ 1

From that, we deduce:

�
� bK � 1; bK; bK� =

bK�1
2X

m=0

 bK + 1

2
+m+ 1

!
+

bK�1X
m=

bK+1
2

 
3 bK � 1
2

�m+ 1

!

=

 bK + 1

2

!2
+
( bK � 1)( bK + 1)

8
+

�
3 bK � 1

�� bK � 1
�

4

�
bK( bK � 1)

2
+
( bK � 1)( bK + 1)

8
+ bK

which simpli�es to:

�
� bK � 1; bK; bK� = 3 bK2 + 4 bK + 1

4

From that, we derive:
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Piv(�) =
3 bK2 ++4 bK + 1

4 bK � bK + 1
�2

Changing to the variable N = 3 bK, we obtain:
Piv(�) =

3
�
N
3

�2
+ 4N

3
+ 1

4
�
N
3

� �
N
3
+ 1
�2 =

9N2 + 36N + 27

4N3 + 24N2 + 36N
=

9(N + 1)

4N(N + 3)

or equivalently

Piv(�) =
9( bN + 2)

4( bN + 1)( bN + 4)
(5)

for bN = 2 modulo 6 (recall that bN + 1 must be an odd multiple of 3). Notice that these
results are consistent with the representations given in Section 2: Replacing N1 and N2 by

(N + 1)=3 in (2), (3) or (4) leads to (5).

Hence, we get for N large:

Piv(�) ' c3
1

N

with c3 =
9
4
= 2:25, in accordance with the result obtained in the preceding subsection

for �1 = �2 = 1=3.

� K = 5: We obtain:

�(
bN
2
;
bN + 1

5
� 1;

bN + 1

5
;
bN + 1

5
;
bN + 1

5
;
bN + 1

5
) =

( bN + 2)( bN + 6)(23 bN2 + 276 bN + 928)

24000

and

Piv(�) =
25( bN + 2)(23 bN2 + 276 bN + 928)

192( bN + 1)( bN + 6)3

for bN = 4 modulo 10. In this case, the limiting value of the probability of casting a

decisive vote is given as:

Piv(�) ' c5
1

N

with c5 =
575
192
= 2:995.

� K = 7: The probability of casting a decisive vote is given as:

Piv(�) =
48(841 bN6 + 35322 bN5 + 616300 bN4 + 3859680 bN3 + 23167384 bN2 + 67791768 bN + 66810120)

11520( bN + 1)( bN + 8)6
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for bN = 6 modulo 14. And for N large:

Piv(�) ' c7
1

N

with c7 =
41209
11520

= 3:577.

� K = 9 and K = 11: Although we have been able to obtain the complete polynomial

associated with �(
bN
2
;
bN+1
9
� 1; bN+1

9
; :::;

bN+1
9
) and with �(

bN
2
;
bN+1
11
� 1; bN+1

11
; :::;

bN+1
11
), we only

give here the values of c9 and c11:

c9 =
2337507

573440
= 4:076

and

c11 =
4199504287

928972800
= 4:521:

For values of K higher than 11, the implementation of the Barvinok's algorithm demands

a very long computation time that prevents from obtaining some numerical results. The

following proposition describes the asymptotic behavior of �(
bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
) when

N gets large.

Proposition 3: Let K be an odd number (K � 3).
Let '(K) = lim

N!+1
[ 1
NK�1�(

bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
)]. Then, for each �xed value of K, we

have:

'(K) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
:

Proof. By de�nition, �(
bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
) is the number of integer solutions of the

following parametric linear system:8>>>>>>><>>>>>>>:

0 � x1 �
N

K
� 1

0 � xk �
N

K
for all k = 2; :::; K

KX
k=1

xk =
N � 1
2

We know by Ehrhart's theorem that this number is a quasi-polynomial of degree K � 1 on
the variable N . Hence, '(K) is equal to the leading coe�cient of this quasi-polynomial.

The additive constants in the second member of the constraints do not a�ect this coe�cient,

'(K) is also the leading coe�cient of the quasi-polynomial computing the number of integer

solutions of the system
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8>>><>>>:
0 � xk �

N

K
for all k = 1; 2; :::; K

KX
k=1

xk =
N

2

The system represents the dilatation by the factor N of the rational (K � 1)�dimensional
polytope Q de�ned by: 8>>><>>>:

0 � xk �
1

K
for all k = 1; :::; K

KX
k=1

xk =
1

2

By the second assertion of Ehrhart's theorem, and by de�nition of '(K), we know that

'(K) is equal to the relative volume of Q, which is the (normalized) volume in RK�1 of the
full-dimensional polytope P de�ned by:8>>><>>>:

0 � xk �
1

K
for all k = 1; :::; K � 1

K � 2
2K

�
K�1X
k=1

xk �
1

2

Let Vol(P) be the volume of P. To compute this volume, we consider some particular subsets

of RK�1. Let � and �0 be the K � 1-dimensional simplices de�ned by:

� = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 + : : :+ xK�1 � 1=2g

�0 = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 + : : :+ xK�1 � (K � 2)=2Kg

It is easy to see that Vol(P) = Vol(A)� Vol(B), where:

A = fx 2 � : xk � 1=K; 8k = 1; : : : ; K � 1g

B = fx 2 �0 : xk � 1=K;8k = 1; : : : ; K � 1g

We only show how to compute Vol(A), the same method will be applied to obtain Vol(B).

For each i in f1; : : : ; K � 1g let �i = fx 2 � : xi � 1=Kg. More generally, for each non
empty subset S of f1; : : : ; K � 1g, we de�ne �S by �S = \i2S�i. Note that �S = ; for
j S j> K�1

2
.

For S such that #S � K�1
2
, let #S = m and let tu be the translation of vector u, where

u is the vector of RK�1 de�ned by ui = � 1
K
if i 2 S and ui = 0 if not. It is obvious that
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tu(�S) = �(m), where �(m) = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 +
: : :+xK�1 � (K�2m)=2Kg. Since translations conserve volumes, and applying the formula
giving the volume of a simplex, we obtain:

Vol(�S) = Vol(�(m)) =
1

(K � 1)!
�K � 2m

2K

�K�1
On the other hand, we can write Vol(A) = Vol(�)�Vol([K�1i=1 �i). Applying the inclusion-

exclusion principle, we get:

Vol([K�1i=1 �i) =

K�1
2X

m=1

(�1)m�1
X

S;jSj=m

Vol(�S)

=

K�1
2X

m=1

(�1)m
�
K � 1
m

�
1

(K � 1)!
�K � 2m

2K

�K�1
Since Vol(�) = 1

(K�1)!
�
1
2

�K�1
, we obtain:

Vol(A) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K � 1
m

��K � 2m
2K

�K�1
Now, Vol(B) can be computed in a similar way and we can easily establish that:

Vol(B) =
1

(K � 1)!

K�3
2X

m=0

(�1)m
�
K � 1
m

��K � 2� 2m
2K

�K�1
:

Finally, the following simple calculus gives the result:

Vol(P) =
1

(K � 1)!
� K�1

2X
m=0

(�1)m
�
K � 1
m

��K � 2m
2K

�K�1 � K�3
2X

m=0

(�1)m
�
K � 1
m

��K � 2� 2m
2K

�K�1�
=

1

(K � 1)!
��1
2

�K�1
+

K�1
2X

m=1

(�1)m[
�
K � 1
m

�
+

�
K � 1
m� 1

�
]
�K � 2m

2K

�K�1
=

1

(K � 1)!
��1
2

�K�1
+

K�1
2X

m=1

(�1)m
�
K

m

��K � 2m
2K

�K�1
=

1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
: �

Using the analytical expression obtained in the previous Proposition, we can extend the

calculation of cK = KK'(K) to larger values of K. The following table gives the exact value

of cK for K = 5 to 49 (K odd).
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K 5 7 9 11 13 15 17 19 21 23 25 27
cK 2.995 3.577 4.076 4.521 4.925 5.298 5.647 5.976 6.288 6.584 6.870 7.143
K 29 31 33 35 37 39 41 43 45 47 49
cK 7.408 7.657 7.903 8.141 8.372 8.597 8.817 9.031 9.240 9.444 9.644

Table 4 : Exact values of cK

Notice that the limiting result obtained in this subsection can be easily extended to the

case where N is even and the population is divided into K groups of size N
K
. The integer

K can be odd or even and the unique assumption is that N is an even multiple of K.

Let  (K) = lim
N!+1

[ 1
NK�1�(

N�2
2
; N
K
� 1; N

K
; :::; N

K
)]. With slight modi�cations in the proof of

Proposition 3, we obtain:

 (K) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
if K is odd, and

 (K) =
1

(K � 1)!

K
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
if K is even.

4.6 A Probabilistic Argument

To study the asymptotic behavior of the the above expression i.e. to understand how cK

behaves when K tends to 1, we develop a probabilistic argument. To this end, we will
consider as in the end of section 3 the probability of being pivotal from the perspective of a

small group of size �N where � > 0 is �xed instead of a group of size 1 as done until now.

Such a group, acting as a block, is pivotal i� :

N

2
� �N

2
� SN �

N

2
+
�N

2

where:

SN =

KX
k=1

SkN where S
k
N =

NkX
i=1

Xk
i and Nk =

N

K

The random variables S1N ; S
2
N ; :::; S

K
N are independent and identically distributed. Follow-

ing the argument used in Proposition 4 of Chamberlain and Rothschild (1981), we deduce

that for all k = 1; :::; K,
SkN
Nk

converges weakly to the uniform law on the interval [0; 1]
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when Nk ! 1. Since the SkN are independent, this implies that SN
N
converges weakly to

Z = 1
K

PK
k=1 U

k where the random variables Uk are independent and identically distrib-

uted. Their common distribution is the uniform distribution on [0; 1]. From the central limit

theorem, we deduce that if K is large then:PK
k=1 Uk
K

� 1
2
' N(0;

1p
12K

)

since
q

1
12
is the standard deviation of the uniform variable on [0; 1]. We deduce that the

probability of a group of relative size � to be pivotal denoted Piv(�;N) is approximatively

equal to

Pr

(
� �
2
�
PK

k=1 Uk
K

� 1
2
� �

2

)
' Pr

�
� �
2
� N(0;

1p
12K)

� �

2

�

' �

r
6K

�

From that computation, we conjecture that cK '
q

6K
�
when K is large and therefore:

Piv(�) ' 1

N

r
6K

�
when K is large

We have tabulated few values of
q

6K
�
below:

K 3 5 7 9 11 ::: 51 ::: 99q
6K
�

2: 393 7 3: 090 2 3: 656 4 4: 145 9 4: 583 5 ::: 9: 869 3 ::: 13: 750 5

Table 5 : Approximate values of cK

5 Further Considerations on Correlation and Parti-

tioning

In this paper, we have mostly focused on a speci�c pattern of correlation that we have called

the IAC partitioning model. It is important to recall that this model is speci�c on two

grounds. First, it is based on a partition of the individuals such that individuals belonging

to two di�erent groups in that partition have independent preferences. Second, it has been

assumed that in each group the correlations among the preferences in the group were resulting
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from the IAC model. In this last section, we keep the partitioning assumption but examine

two di�erent generalizations of the existing IAC version.

In the IAC setting, the correlation coe�cient between the votes of two voters from the

same group is equal to 1
3
. Let us consider instead the case where the correlation coe�cient

between the votes of two voters is positive but arbitrary19 and denoted �: Cov(Xik; Xjk), the

covariance between the votes of i and j when they belong to the same group is then equal

to �
4
. As before, as long as � 6= 1 we obtain:

Lim
R!1

p
NPiv(�R; s) =

1�q
1��+�1

4
+ �

4

PS
l=2 

ll

�p
2�

In particular, in the case where N is a multiple of s and all groups are of size s, we obtain:

Lim
R!1

p
NPiv(�R; s) =

r
2

�

1p
1 + � (s� 1)

We observe that
p
NPiv(�R; s) decreases with s and with �. This is consistent with

intuition as an increase in s or an increase in � leads to more correlation among the votes

and less room for pivotality. However, in the case of perfect correlation i.e. � = 1; we need

to be more careful as we cannot use Petrov's theorem. The reason is easy to see in the case

where all the groups are of same size s. In such case the variables ZRk and W
R
i introduced

in the proof of Proposition 1 have respectively a span of s and a span of s � 1. Only the
ZRk variables appear in�nitely often. To see what is going on, consider the case where s = 2

i.e. the case where the N random variables are grouped into M � N
2
packs of size 2. Let us

focus on the case where M is odd. In such case:

Piv(�R; 2) = Prob( S
R
i �WR

i =
N � 2
2

)

Since all the variables in the sum are independent, identically distributed with a maximal

span of 2 and a variance equal to 1, we deduce from the standard Moivre-Laplace's local

theorem20that:

Lim
R!1

1

2

r
N � 2
2

Prob( SRi �WR
i =

N � 2
2

) =
1p
2�

19In appendix 3, we o�er a slight generalization of the IAC model which allow to cover all conceivable
positive values of �.
20Alternatively, it is also a direct consequence of Gnedenko 's theorem (1948) (theorem 1 in chapter 7 of

Petrov (1975)) as all the variables in the sum are independent, identically distributed with a maximal span
of 2 and variance equal to 1.
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and therefore:

Lim
R!1

p
NPiv(�R; 2) =

2p
�
' 1: 128 4

which is di�erent from corresponds to the value of
q

2
�

1p
1+�(s�1)

= 1p
�
' 0:5642 when

� = 1 and s = 2. More generally, consider the case of an arbitrary value of s i.e. the

case where the N random variables are grouped into M � N
s
of size s which correspond to

M = N
s
independent and identically distributed Bernouilli random variables. Let us focus

on the case where M is odd. As above, we deduce that:

Piv(�R; s) = Prob( S
R
i �WR

i =
N � s

2
) '

r
2

�

1p
M
=

r
2s

�

1p
N

and therefore:

Lim
R!1

p
NPiv(�R; s) =

r
2s

�

For the case where s = 3, we obtain
q

6
�
= 1: 382 which is larger than

q
2
�

1p
1+�(s�1)

=q
2
�
1p
3
= 0:46066. This discontinuity (we jump from

q
2
�s
to
q

2s
�
) in the neighborhood of

� = 1 is rather peculiar but corresponds to the fact that when � = 1, the voters belonging to

the same group vote as a block. Everything is as if we had a population of N
s
independent

voters.

In the above generalization, the covariance is the same for all pairs but we could run

the same computations without assuming that the covariances are constant within each

group. An interesting situation of that kind appears in the Le Breton and Lepelley (2011)

study of the French electoral law of June 29 1820. This electoral law, known as the law

of double vote, has been used in France to elect the deputies from 1820 to 1830. France

was divided into a number of electoral districts (the so called French \d�epartements") and

each district sent a number of deputies to the chamber. Each district was divided itself

into subdistricts (the so called \arrondissements"). Each arrondissement elected one deputy

and to be voter in an arrondissement, your amount of tax had to be above some �xed level

(called the \cens"). In addition, the voters in the top quartile of the income distribution

of the voters in the d�epartement were members of an additional electoral college which

elected D additional deputies. These \rich" voters had a double vote: they voted in their

arrondissement and also in the electoral college constituted at the level of the d�epartement.

This explains the name which was given to this law. It was decided that 3
5
of the deputies

was elected by the arrondissements and 2
5
by the voters in the top colleges. Le Breton and
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Lepelley (2011) study a symmetric version of that problem where there are K d�epartements,

with A arrondissements in each d�epartement and 4r+1 voters in each arrondissement where

r is an odd integer denoting the number of voters with two votes in that arrondissement.

The size N of the chamber is therefore K(A + D)21. A good approximation of the French

data at that time is given by K = 86, A = 3 and D = 2 leading to N = 430: 258

being elected in arrondissements and 172 elected by the top colleges. Hereafter, we will

limit however our attention to the case where K is odd. In the case where A = 3 and

D = 2, the 5K deputies are partitioned into groups of size 5. These legislators have in

common to be elected from the same territory. Even if we assume that the preferences of

the A(4r + 1) voters across the A districts are independent, the preferences of the deputies

are not independent because some voters have a double vote. Let
�
S1j ; S

2
j ; S

3
j ; S

4
j ; S

5
j

�
be the

pro�le of the �ve votes in the jth d�epartement where the �rst three coordinates denote the

votes in the three arrondissements and the last two the votes in the top college. When r is

large this random vector is approximatively Gaussian with (after normalization) the matrix

of variances-covariances:


 =

0BBBBB@

p
4r+1
2

0 0
p
r
2

p
r
2

0
p
4r+1
2

0
p
r
2

p
r
2

0 0
p
4r+1
2

p
r
2

p
r
2p

r
2

p
r
2

p
r
2

p
3r
2

p
3r
2p

r
2

p
r
2

p
r
2

p
3r
2

p
3r
2

1CCCCCA
We note that the coe�cient of correlation � between any of the �rst three variables

and any of the last two ones is equal to
q

1
12
Consider now the 5-dimensional vector of

Bernoulli variables
�
X1
j ; X

2
j ; X

3
j ; X

4
j ; X

5
j

�
where X l

j = 1 if Slj � 2r + 1 for l = 1; 2; 3 and

X l
j = 1 if S

l
j � Ar+1

2
for l = 4; 5. Based on the Gaussian orthant probabilities, the matrix of

variances-covariances of this vector is:0BBBB@
1
4

0 0 1
4
+ arcsin �

2�
1
4
+ arcsin �

2�

0 1
4

0 1
4
+ arcsin �

2�
1
4
+ arcsin �

2�

0 0 1
4

1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4

1
4

1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4

1
4

1CCCCA
In the speci�c case where � =

q
1
12
, we obtain that 1

4
+ arcsin �

2�
= 0:29849. Since the random

variables X1
j ; X

2
j ; X

3
j ; X

4
j and X

5
j are independent, identically distributed and have a span

equal to 1, by using the same argument as in the proof of Proposition 1, we deduce that the

21They assumed that A is an odd integer and that D is an even integer.
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probability for a deputy to be pivotal if both r and K are large integers is approximatively

equal to:

1�
1
4
+ 1p

5

�
1
2
+ 6� 0:29849

��p
2�N

' 0:313 01p
N

6 Concluding Remarks

In this paper, we have studied the impact of correlation across preferences and votes on the

probability of being pivotal. The analysis has been conducted under a number of assumptions

and we think that it would be of interest to examine how far we can go without being too

much speci�c. One key assumption is the the neutrality among the two alternatives. We

have assumed that the two alternatives were similar ex ante. One interesting generalization

could consist in assuming that there is a partition of the population into groups where in each

group the preferences are as here correlated but also possibly biased towards one candidate.

The bias could of course vary from group to another. In such a setting a group could be

de�ned as a subset of individuals displaying some homogeneity de�ned through a vector of

characteristics.

We are not aware of an ambitious attempt to generalize the current theory to a setting

that would allow for di�erences across alternatives. To the best of our knowledge, the only22

model along these lines is due to Beck (1975). He considers a population divided into two

groups of equal size. In the �rst group, the votes are independent and people vote left with

probability p > 1
2
. In the second group, votes are also independent and people vote left with

probability 1 � p. Beck estimates numerically the probability for a voter to be pivotal for

several values of the parameter p. Modulo a simple adjustment of the proof of Proposition

1, we obtain an asymptotic exact value of the probability of being pivotal in Beck's model.

Precisely, we obtain :

Lim
N!1

p
NPiv(N) =

1p
2�p(1� p)

When p = 1
2
, we obtain the traditional constant

q
2
�
= 0:797 88. When p = 3

4
, we

obtain 1p
2�� 3

16

= 0:921 32 and when p = 4
5
; we obtain 1p

2�� 4
25

= 0:997 36. Moving towards

polarization increases drastically the probability of being pivotal!

22See also Berg (1990) for another illustration.
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7 Appendix

7.1 Petrov's Local Central Limit Theorem23

Let k be an arbitrary �xed positive integer. A sequence of random variables (yn)n�1 is

said to be a k�sequence if the number of di�erent distribution functions in the sequence of
the distribution functions corresponding to (yn)n�1 is equal to k. Consider a k�sequence
of independent integer-valued random variables (yn)n�1 each having �nite variance. We

denote by F 1; :::; F l the l distributions which are non-degenerate and occur in�nitely often

in the sequence (F i)1�i�k. We denote by H
r the maximal span of F r for r = 1; :::; l. Let

Sn =
Pn

j=1 yj;Mn =
Pn

j=1E(yj), Bn =
Pn

j=1E(yj � E(yj))
2 and Prn (N) = Pr(Sn = N).

Then:

If g.c.d.
�
H1; H2; :::; H l

�
= 1, then Sup

N

����pBn Prn (N)� 1p
2�
e�

(N�Mn)
2

2Bn

���� !n!1 0
7.2 Berk's Theorem

For each k = 1; 2,...let n = n(k) and m = m(k) be speci�ed and suppose that yk1 ; y
k
2 ; :::; y

k
n

is an m�dependent sequence of random variables with zero means24. Assume the following

conditions hold. For some � > 0 and some constants M and K:

(i) For some � > 0; E
��yki ��2+� �M for all i and all k.

(ii) V ar
�
yki+1 + :::+ ykj

�
� (j � i)K for all i; j, and k.

(iii) Lim
k!1

V ar(yk1+:::+ykn)
n

exists and is nonzero. Denote v the limit.

(iv) Lim
k!1

m2+2
�

n
= 0

Then
yk1+:::+y

k
np

n
is asymptotically normal with mean 0 and variance v.

7.3 Correlation

A simple and nice way to legitimate an arbitrary positive value of the correlation coe�-

cient when we have a vector x � (x1; x2; :::; xn) of Bernouilli random variables such that

Pr (xi = 1) =
1
2
for all i = 1; 2; :::; n goes as follows. Let f be a continuous positive density

23Theorem 2 in Petrov (1975). In fact his result asserts a stronger claim namely that, under the stated
conditions, the uniform convergence holds true even if we alter the distribution of a �nite number of terms
in the sequence. Other local versions of the Central Limit Theorem have been proved (Davis and Mc Donald
(1995), Gamkrelidze (1964), Mc Donald (1979), Mukhin (1991)). To the best of our knowledge, no such
result exists in the general dependent case.
24The triangular array

�
ykn(k)

�
k�1

is m�dependent if
�
yk1 ; y

k
2 ; :::; y

k
j

�
and

�
ykj+n; y

k
j+1+n; :::; y

k
j+n+l

�
are

independent whenever n > m.
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on [0; 1] assumed to be symmetric around 1
2
. Consider the generalized IAC25 model where p

is drawn in [0; 1] according to f and Pr (xi = 1 j p) = p for all i = 1; :::; n. Note that:

(1) Pr (xi = 1) =
R 1
0
pf(p)dp =

R 1
2

0
pf(p)dp+

R 1
1
2
pf(p)dp =

R 1
2

0
pf(p)dp+

R 1
2

0
(1� p)f(1�

p)dp = 1
2
since by assumption f(p) = f(1� p).

(2) Pr (xi = 1 et xj = 1) =
R 1
0
p2f(p)dp.

Consider the case where f is a symmetric beta distribution i.e. f(p) = �(2�)

[�(�)]2
p�(1� p)�

where � is a strictly positive parameter and � is the gamma function26. By assumption, it

is symmetric. Further, it is well known that:Z 1

0

p2f(p)dp =
1

4
+

1

4(2�+ 1)

which means that Cov (xi; xj) =
1

4(2�+1)
and therefore:

� =
1

2�+ 1

When � ! 0, we have � ! 1 (perfect positive correlation) and when � ! 1, we have
�! 0 (independence)
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