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A DIFFERENTIAL APPROACH TO DOMINANT STRATEGY
MECHANISMS'

By JEAN-JACQUES LAFFONT AND ERIC MASKIN

This paper shows how a number of questions about dominant strategy mechanisms in
models with public goods can be conveniently formulated as systems of partial differential
equations. The question of the existence of dominant strategy mechanisms with given
desirable properties becomes equivalent to the integrability of these equations.

1. INTRODUCTION

FOLLOWING Vickrey [11], Clarke [27], and Groves [6] a number of papers” have
explored the properties of dominant strategy mechanisms, in particular in the
framework of the so called ‘‘free rider problem,” where elicitation of truthful
evaluation of public goods is sought.

This paper shows how a number of questions about dominant strategy
mechanisms in models with public goods can be conveniently formulated as
systems of partial differential equations. The question of the existence of
dominant strategy mechanisms with such desirable properties becomes equivalent
to the integrability of these equations.’

In addition to enabling us to derive rapidly and strengthen a variety of known
results on incentives, our approach permits us to develop certain new theorems
and to provide an insight into the common mathematical structure of several
apparently different questions.

In Section 2, we establish notation and in the following section substantially
strengthen the Green-Laffont [5] characterization theorem. Section 4 contains a
condition on the class of utility functions which is necessary and sufficient for the
existence of balanced incentive compatible mechanisms. This condition is used to
prove an impossibility theorem for two-agent models and some possibility and
impossibility results for models with more than two agents. Finally in Section 5 we
consider coalition incentive compatibility. Our results are essentially negative,
centering around a general necessary condition for the existence of mechanisms
which are incentive compatible for a class of coalitions.

2. THE MODEL

We consider an economy with n(n =2) consumers (indexed by i=1,...,n)
and two commodities, one public and one private.

The utility function of consumer i, u;(K, x;), is additively separable between the
public good K and the private good x;, i =1, . . ., n, and without loss of generality

! Maskin's research was supported, in part, by the National Science Foundation and Laffont’s
rcsearch was supported by Cordes n. 136-77.
% See, for example, Green and Laffont (3, 5].
? In Laffont and Maskin [10], we apply this approach to mechanisms for which the solution concep
is taken to be the maximization of expected utility.
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we write it as:
ui (K, x;) = vi(K, 6;) +x;

where 6;, lying in a space @, is a parameter of the valuation functions and where
for simplicity we assume that the quantity K of public good ranges in the set
R.=10,00[.*

The decision maker is supposed to know the functions v;(-,-) (possibly
identical for all consumers) but is ignorant of the true value 6; of the parameter 6;
which identifies agent i’s tastes for the public good. The purpose of a mechanism is
to choose an optimal level of the public good in this framework of imperfect
information. More formally, a mechanism is a mapping, f( - ), from the “strategy
spaces™ @ =11"-,6; into l¥+ X R", composed of a decision function, d( - ) from @
into R, and of an n-tuple of transfer functions ¢( - )=[t;(*),..., t.(-4)] from @
into R. d( - ) associates to any n-tuple 6 of announced parameters a quantity d(6)
of public good, while 7,(8) is a transfer of the private good to agenti,i=1,...,n
The mechanism is said to be continuously differentiable or C' when the function
f(+) is continuously differentiable.

Since the endowments of the private good play no role in the paper we will write
the utility function of an agent i faced with a mechanism (d( - ), #( - )) as:

vi(d(8), 6))+1,(6) (i=1,...,n).

A mechanism f(-)=[d(-), ()] is said to be strongly individually incentive
compaane (s.i.i.c), if the truth is a dominant strategy for each consumer; that is, if
for any i, any 8 € ©°

vi(d(éi’ o—i)’ éi)+rl(éh o—i)
= 0,(d(8, 0-1), 6:)+ 1:(6;, 0-)).

AssuMpPTION 1: Fori=1,...,n,let ®, be an open interval in R and v;: R.x
@; - R be a continuously differentiable function such that forany 6 € @ =11/-,0,,
there exists K *(8) € R., for which (i) 2]~ v,(K*(8), 6,) = maxx o /- v/(K, 6,), (ii
K *(8) is continuously differentiable.’

‘ Generahzatnons to multidimensional pro;ect spaces are straightforward.
Because only agent i may know 0,. he is of course not constrained to reveal his true parameter,
9—1 =(61,...,0i-1, 0i41,...,6,) and 6 =(6; 6_,).
7 Several possnble alternative sets of postulatts on the v( - ) functions imply (i) and (ii). For example,
(ii) is obtained with v( -, ) strictly concave in K (as a consequence of the implicit function theorem).
To infer (i) one may assume that, for any @ in an open interval of R, there exists K;(6), K(6) such that

0<K,(0)<K,(0) and

a =
ﬁ(K 6)<0 forany K =K,(6),

at"(K 9)>0 forany K =K,(6).



DOMINANT STRATEGY MECHANISMS 1509

Under Assumption 1, strong individual incentive compatibility implies

av; at;

-~ -~ ad - -~
R(d(oh 6-i), oi):a;i(oh 0—:)+a—oi(0i, 0-:)=0.
Since we require this equality for any 6, in ©; we deduce the identity:
at,' av,- od
(1) a6".(6") ="K (d(8), 0')60.(0)'

A mechanism f(-)=[d(-), t(-)] attains success if
3 0(d@),6)= 3 u(K*(@), 6).

implying, with differentiability,

noodu; .
(2) ‘:L:l a—i(d(o), 6,)=0.

Implicitly differentiating (2) yields
3d(0) __3’v/aK 6,

(3) ‘
36, Y (8%v;/0K?)
j=1

3 if defined.

Finally, a mechanism is said to be satisfactory if it is both successful and s.i.i.c.
Clearly, (1) and (2) apply to a satisfactory mechanism.

3. CHARACTERIZATION OF SATISFACTORY CONTINUOUSLY DIFFERENTIABLE
MECHANISMS

We begin with a characterization theorem of all satisfactory C'-mechanisms for
a given family of admissible valuation functions.

V={vi(+,601),...,0.(",6,)/0€ 6}

THEOREM 3.1.: Let V be an admissible family which satisfies Assumption 1.
Then (a) there exist satisfactory C" -mechanisms, (b) a C'-mechanism (d( - ), t( -))
is satisfactory if and only if

@ Su@®),6)=3 vK*®),8) foral §c6
i=1 i=1
and
(5) 1(6) =1£1 v;(d(8), 6;)+ hi(6-:) (i=1,...,n)
#*
where h;( ) is an arbitrary C'-function from T1,,,0; into R.

8 Without a lower bound on the consumption of the private good, this is a necessary condition for
Pareto optimality.
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PROOF: That a C'-mechanism (d( - ), ¢( - )) satisfying (4) and (5) is satisfactory
can be immediately verified, establishing the sufficiency of ().

Choose d( - ) which is C? and satisfies (4). The C'-mechanism (d(-), t*(+)),
where for all i, tf(8) = X,.,(d(6), 6)), satisfies (5) and therefore is satisfactory,
establishing (a).

Finally, consider a satisfactory C'-mechanism (d(-), t(-)). From s.i.i.c. of
(d(-),t(-)) and (d(-), t*(+)) we have

ot e ;i . ad(6)
(6) 3 6,i(li., 0-:) 3 K(d(ﬂ), 6:) 36,
atf
-a(oh o—i)°
Integrating (6) yields
tl(ob 0—!’) - t?‘ (ol'y o-i)+hi(0—i) (' s la sy n)-

Q.E.D.

The mechanisms satisfying (4) and (5) have been called Groves mechanisms in
Green and Laffont [5] (see Groves [6]). In Green and Laffont [5], a similar
characterization is given in the discrete and continuous cases. In the continuous
case, no restriction beyond continuity is imposed on the admissible family of
valuation functions.

Theorem 3.1 shows that if one restricts the admissible to the class of differenti-
able functions indexed by a single parameter 6 in an open interval, no satisfactory
mechanisms beyond the Groves class can be found. The theorem applies, for
example, to the family of quadratic functions

V(K, 6)=6K -K?/2,

where 6; belongs to a given open interval of R,i=1,...,n. The theorem
strengthens Theorem 3 in Green and Laffont [5].

The second principal merit of the approach taken here is its constructive
character, which, given an admissible family of valuation functions, enables us to
construct the transfer functions explicitly. This feature is particularly useful in the
sections to follow where additional constraints such as balance or coalition
incentive compatibility’ are imposed on the mechanisms.

To illustrate this constructive character, let us consider the quadratic case and
obtain the associated transfer functions. We have

s 6,
- 3d(8) _1
d(e)= e and 36, i

? The approach taken here sheds some light on the mathematical origin of the arbitrary functions
hi( - ) which here become simply constants of integration.
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and the differential equation (1) becomes:

ioi
v o =1 __l( _l) 1
80,(6) n 0. n - n 1 n o'+'l1-/§10’.

Hence,
1 1y , 1 ( )
-i)= ——)0i +— j)0i +ni(6-).
(6, 6-) a(l n)o, A Z,0)0.+h0-)
It is then merely a matter of calculation to check that this expression differs from

n
z: 6; 1 2
S u(d(6),0)= 3 |0 |-+ 0)
jRi jRi n 2n°\jzi
by a function of 6_,.

One might believe that the smaller the admissible set, the stronger the charac-
terization theorem; when agents have less opportunity for misrepresenting their
preferences, there are ostensibly fewer constraints on potential mechanisms. As a
referee pointed out to us, however, this intuitive argument is incorrect in general
because as the admissible set shrinks, the set of possible mechanisms itself shrinks.
Indeed, it is possible (as the referee has shown) to give examples of domains V;
and V,, with V, a proper subset of V;, such that there exist successful, non-
Groves mechanisms for V, but not for V;. Of course, as Theorem 3.1 demon-
strates, such examples are impossible if V, consists of differentiable functions
indexed by a parameter whose domain is an interval. Independent of our work,
Holmstrom [8] established the more general result that every successful
mechanism on a smoothly connected admissible set is in the Groves class.
Therefore, his theorem generalizes Theorem 3.1, although his proof is noncon-
structive.

4. BALANCED MECHANISMS

A well known deficiency of Groves mechanisms is the fact that they are not in
general balanced; that is the sum of the prescribed transfers, £7-.%(6), is not
identically zero'® over the range of parameters 6 € 6.

By restricting the space of admissible functions one might hope to be able to
obtain balance through an appropriate choice of the arbitrary functions A;(-) in
the Groves mechanisms. Indeed, Groves and Loeb [7] have shown that, for n =3,
there exists a balanced satisfactory mechanism for the quadratic family, Vo =
{6,K —(K?/2),...,6,K—(K?/2),0¢€6).

First, we give a necessary and sufficient condition for an admissible family of
valuation functions to admit a balanced satisfactory mechanism.

19 gee Green and Laffont [3], Hurwicz [9], Walker [12] for different proofs of the nonexistence of
balanced Groves mechanisms.
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THEOREM 4.1: Under Assumption 1 there exists a balanced satisfactory C"-
mechanism for the class of admissible C"-functions

7/':{”1(' aol)y--~’vn(' 90")/06 6}

if and only if
n n—1 av‘ "
(7 2 0., - ] =0 for some d( - ) satisfying (4).
i=1 i

PROOF: Suppose there exists a balanced satisfactory C"-mechanism
€d(-), t(-)) with respect to 7. Then,

'=i| t;(0) =0
or, from (5),

® [-[z3 a‘%amﬁhd(e )] =o.

Differentiating (8) with respect to 6, .. ., 6, we obtain

n 3"l v, ad(8)

9 —_— s =
( ) lgl 30-.,‘ aK 804 0
which establishes necessity.
Reintegrating (9) successively with respect to 6y, . . ., 6, regenerates (8). Hence
sufficiency. Q.E.D.

The main interest of Theorem 4.1 is to permit a direct check of possibility of
balance for a given admissible family without actually attempting to construct the
transfers.

We next prove an impossibility theorem in the case of n = 2, with an assumption
of sufficient richness of the admissible class.

We first observe that there are rather trivial but large admissible families with
respect to which balance is possible. For example, choose K € R.,let@=0,=
@,=---=86,, and take-

F={v(-)v:R.xO->R,visC', and v(K, §)=max v(K,§) foralldeb}.

KeR,

! The operator 3" '/a6_; is defined as 3" /36, . . . 36;-106;.1 . . . 36,
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Let
VT={v1('ool)"--vvu('von)loieé’ vi€9}°

Then the mechanism which always chooses K and makes no transfers is
obviously satisfactory and balanced for any number of agents. To rule out such
degeneracies, we must invoke a requirement of richness for our admissible family.

ASSUMPTION 2: ¥ is such that (a) for all C'd(6) satisfying (4) (ad(6)/a6;) # 0 for
each i and each 6; (b) for all 8 € @, 2(a%v;(d(8), 8)/3K?) # 0 for all d( - ) satisfying
(4).

Intuitively, Assumption 2(a) says that an agent’s strategy space is sufficiently
varied so that by slightly changing his announced parameter he can always affect
the chosen supply of the public good. Assumption 2(b) is made only to avoid the
unlikely event that the sum of the second derivatives vanishes along the optimal
d(8) locus. For strictly concave functions such an event is generically impossible.

COROLLARY 4.1: Under Assumptions 1 and 2 there exists no balanced satis-
factory C*-mechanism for n = 2.

PROOF: A simple application of Theorem 4.2. A direct proof can also be given
using Young’s theorem."? Q.E.D.

As a further example of the use of Theorem 4.1. we show:

CoROLLARY 4.2: For n=3, (a) there exists a balanced satisfactory C"-
mechanism for the quadratic class; (b) there exists no balanced satisfactory
C"-mechanism for the admissible class

vR={v(.10i)=K_0[K2, 0{69,‘, i=1,...,n}.l3

'2 Young's theorem says that for a twice differentiable function flx, y),
Ff  &f
axdy dyax

'3 The reader can also verify the nonexistence of balanced Groves mechanisms for the admissible
classes:

vy ={6,K-log K, 6,€ 6/}, v2={6;log K -K, 6,€ 6.},
v3={6eX+K,0,€0,), vi={6logK~-K? 6,€6,),

K3
V5= {O‘K ""3—', 0, € 9‘}, etc.

Our conjecture is that the quadratic case is the only nontrivial case which permits balance.
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PROOF: (a) In the quadratic case:

dv; ad(8) 1 1) 1
— = ——)6;+— ). 6,
oK a6, n n n2/§: !

Clearly, for n>2

7 v, 3d(0) _

(10 96_; 0K  96;

0 for any /.

Hence the result by Theorem 4.1.
Observe that, for n =2, (10) is not satisfied (cf. Corollary 4.1).
(b) In the case of V&:

dv; ad(6) Oin n( no\-2
o W0 _ -2\ 2(La)
aK 80: zo’ 2 j=1
ji=1
So
5 9" ( ovy a(d(o)>) (=1)" -n-nlfn \-os0
K = =0. \E.D.
Z, ao_.-(aK 36, 2 (,:‘:19') Q

5. COALITION INCENTIVE COMPATIBILITY

The lack of robustness of Groves mechanisms with respect to manipulations by
coalitions is a well known fact. Green and Laffont [4] prove that, in the case of a
{0, 1} project space, no coalition incentive compatible dominant strategy
mechanism exists even if one restricts allowable coalitions' to a single coalition of
any size, when no restriction is imposed on preferences.

In this section we give a similar impossibility result for differentiable satis-
factory mechanisms and then give a necessary condition for coalition incentive
compatibility for a restricted class of coalitions.

A mechanism (d(8), t(8)) is said to be strongly coalitionally incentive compatible
(s.c.i.c.) for a class € of coalitions with respect to an admissible class of valuation
functions

7’={01(',0[),...,0;.(',0;‘)/068}

' The approach taken in Green and Laffont [4] is then to show that, for small coalitions, the
probability of a large per capita gain through misrepresentation of preferences is as small as desired for
a large economy. Therefore, if the formation of coalitions is costly, small coalitions will not form. Large
coalitions can be excluded on other grounds, like the free rider problem of their own. Bennett and
Conn [1] prove that coalition incentive compatibility breaks down if coalitions of size two are allowed.
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iff:VCe €, V(0c, 0-c)€ O, Yéce1l,.c0,

D) T[w(d(be 6-c), 6)+1(dc, 6-c)]

?l:[.c[vi(d(oc, 6-c), 6,)+ 1,6, 6-c).

TUnder Assumption 1 and with the same reasoning as in Section 2, these
conditions can be translated into a system of differential equations:

ad(6) az,(a)) 0
a6, a6,
for all j € C, and for all C in €.

Let us first observe that a satisfactory mechanism is s.c.i.c. for the universal

coalition if and only if it is balanced. Suppose we have a balanced mechanism;
then,

12 3 (3ae),60= "

ieC

% ol .
(13) ‘-2'168 (6)=0 i=1,...,n
Success and (13) imply (12).
Reciprocally, (12) and success imply (13); therefore 2. #;(6) is a constant which
can be chosen to be zero.
We first show that under the assumption of sufficient richness of the admissible
family, no s.c.i.c. C 2_mechanism exists when all coalitions are allowed.

THEOREM 5.1: Under Assumptions 1 and 2, if the valuation functions are C?,
there exists no s.c.i.c. C>-mechanism for the class of all coalitions.

ProoF: The existence question amounts to the possibility of integrating the
system (12) when all subsets of {1, ..., n} are allowed as potential coalitions.
The mechanism is in particular s.c.i.c. for a size 2 coalition; we have for a pair

(4 J):

a4 e=-2ae), oo%"—),
O_I,- av, ad(o)
o=@, 02
as)  Zo)+ ""(o)-—"”'<d(o) =
l ]
oy, 3d(6)
.05

'3 By analogy, with previous notation:
0C={(oi)0iec}| 9_c={(0,). ig C}. 0=(0Cv 0_¢_-).
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Equations (14) and (15) give:

at; 805

a6 o= "‘“‘”

3K 4(0), 6)— =

From the Young theorem, we must have

an {0 a"“”) i(ﬂ(d(o), o,)"—‘;;f’))

which reduces to

o 400), o.)m-o

18 Koo,

Substituting (3) into (18) we obtain
ad(8) ad(0) » 8°v,
a6; a6; 12'1 G_KT(d(o)’ 6)=0

which is impossible from Assumption 2. Q.E.D.

It is clear from the above argument that we do not need all coalitions to obtain
nonexistence. In fact, the proof requires only one coalition of size two. The last
question we turn to is then, whether we can characterize the classes of coalitions
which admit s.c.i.c. mechanisms.

We shall establish a simple general result of which our impossibility theorem,
using coalitions of size two, is a special case.

To do this, we must first define what we shall call the differential incidence matrix
for a class of coalitions €. Divide ¥ into subclasses €y, . . ., €, where %; consists
of all coalitions in € containing player i. Obviously, the €;’s are not in general
disjoint. Write €; ={Ci1, . . ., Cim,}, Where m; is the cardinality of €;. Construct a
S7_1m; X n’ matrix A so that the entry of row ., m; + and column rn +q is 1 if
individual g is in coalition Cs:;, and r=s and 0 otherwise, where r,s=
0,1,...,n—-1,t=1 ,msi,andg =1, ..., n. For example, suppose n =4 and

€={{1}, {2}, 3}, {4}, (1,3}, {1, 2,4}, 2,3}).

Then we can write

={{1},{1,3},{1,2,4}},
€.={{2},{1,2,4},{2,3}},
€ =1{{3},{1,3}{2,3}}
€.=1{{4},{1,2,4}}.
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So
6, 6> 65 04
p— — P — P N— PR
{1} 1000 0000 00O0O0O0 OOOO
{{13} 1010 0000 0000 00O0O
{1,2,4} 1101 0000 0000 00O00O
{2} 0000 0100 0O0O0OO0O 0OO0O0OO
{{124} 0000 1101 0000 0000
{2,3 0000 0110 0000 00O00O
(19) A=
{3} 0000 0000 0010 00O00O
{{13} 0000 0000 1010 0000
{2, 3} 0000 0000 0110 0000
‘{{4} 0000 0000 0000 O0O0O0OT1
{1,2,4} 0000 0000 0000 1101

Observe that we have labelled blocks of four columns successively 6y, 65, 6,
and 6. This is because A is the matrix of coefficients of the system of differential
equations which characterize a mechanism that is s.c.i.c. for the class €. In
particular, for this 4 person example, the equations (12) can be written as:

(20) At=—-Av
where
v’ = (v11, V21, V31, Va1, V12, V22, V32, V42, V13, U23, U33, Va3, V14, V24, V34, Vaa),
oy =20 K
" K a6,
t'=
(ﬁﬂﬁé&ﬁfﬂﬂz%ﬁ%i’z&ﬁé&ﬂa%
30,° 06,’ 36, 36, 36, 36, 36, 36,’ 365’ 905’ 965 365 364’ 364’ 364 36,

Observe that, in our proof of the nonexistence of a satisfactory mechanism
which is s.c.i.c. for a class € containing a coalition of cardinality two, the key to the
argument was the demonstration that, for some i # j,

at; 80; 8d(0)

This idea is the basis of the following theorem which provides a necessary
condition for coalitional incentive compatibility.'®

16 It should be possible to obtain necessary and sufficient conditions along the lines of the Frobenius
theorem.
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THEOREM 5.2: Suppose the admissible family V satisfies Assumptions 1 and 2.
If (d(-), t(+)) is a satisfactory mechanism with respectto V and is s.c.i.c. for €, then
if em+s is the (rn+s)th unit vector in R™ (r=0,1,...,n=1,s=1,...,n) and
s #r+1, there does not exist x € RE=1"7 such that x'A = P —

REMARK: There are, of course, many equivalent ways of stating this theorem.
Among them is the statement that the null space (i.e., the kernel) of A is
orthogonal to all unit vectors e,,.,, where s # r+ 1.

PROOF: Let (d( - ), t(+)) be as hypothesized and suppose that there exists x such
that x'A =e},,, for some s # r+ 1. Rewriting equations (12) as Ar= — Av by
analogy with our 4 person example above, and premultiplying by x gives

dts
- =x'At=-x'A
(21) 0 (0)=x x'Av
_0u ad(6
= aK(d((:’), 0’)—60,+,°
But (21) leads to a contradiction as shown in the proof of Theorem 5.1 above.

Q.E.D.

Theorem 5.2 can be used to derive several corollaries. The first makes use of the
special separable form of A.

COROLLARY 5.1: If V satisfies Assumptions 1 and 2 and the rows of A
corresponding to €; have rank n for some i =1,. .., n, then there exists no satis-
factory mechanism with respect to V which is s.c.i.c. for €.

COROLLARY 5.2: If V satisfies Assumptions 1 and 2 and € consists of all
coalitions of cardinality m for 2<m < n —1, then there does not exist a satisfactory
mechanism with respect to V which is s.c.i.c. for €.

COROLLARY 5.3: Let V satisfy Assumptions 1 and 2 and suppose € contains two
coalitions C, and C, such that C,= Cyu{i} for some i. Then there exists no
satisfactory mechanism with respect to V which is s.c.i.c. for €.

Note that Corollary 5.3 implies Theorem 5.1.
We conclude by the construction of an example of mechanism which is s.c.i.c for
a restricted class of coalitions.

Consider the case
2

oK, 6) = ox--’g— (i=1,2,3,4)
with € ={1}, {2}, {3}, {4}, {1, 2, 3}.

'7 This necessary condition can be easily tested by a variety of well known methods including the
simplex algorithm.
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From Section 3 we know that coalitions {1}, {2}, {3}, {4} impose

1
WO LA Ul VRS PRI (i=1,2,3,4)
2 n l"l
where n =4,
Incentive compatibility for coalition {1, 2, 3} requires
39t 3 v ad(O) 2
— , 6 =1, 21 3),
Ziae,~ " hax 4O 017, Y )

which reduces to

ahz ahg (n —= l)(o; + 03) 201
TS ————
001 601 n

oh, +ah3 (n - 1)(01 + 03)+202
LT e ’
36, 36, n n

- -
oh dhs__ (1= DX0u+0), 20y

303 803 n
This differential system is satisfied by
03 +63 n-1
hi(62, 6;) = 22 3 3-0293( ).
n’
61 +86 n—1)
hy(64, 63) = ! 2—0193( 7
2n? n
o’+o n—1
h3(6,, 62) = 3—0102( ).
Ecole Polytechnique
and

Massachusetts Institute of Technology
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